1
|
Bose C, Das PK, Roylawar P, Rupawate P, Khandagale K, Nanda S, Gawande S. Identification and analysis of the GATA gene family in onion (Allium cepa L.) in response to chromium and salt stress. BMC Genomics 2025; 26:201. [PMID: 40016651 PMCID: PMC11866806 DOI: 10.1186/s12864-025-11251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND The GATA transcription factors play multifaceted roles in modulating vital physiological processes in plants. However, the GATA transcription factor family in onion (Allium cepa L.) has been explored to a limited extent. In the present study, a genome-wide survey of the GATA family and the subsequent characterization has been carried out in the onion genome. RESULTS In total, 24 A. cepa GATAs (AcGATA1-AcGATA24) have been identified in the onion genome. Chromosomal mapping revealed that all identified genes could be mapped onto different onion chromosomes or scaffolds. The gene duplication, synteny, and collinearity analysis of the AcGATAs suggested their divergence, expansion, and selection in onions. Phylogenetic analysis of the AcGATAs divided them into five groups along with other plant GATAs. Gene ontology and cis-regulatory element analysis results suggested that the AcGATAs could regulate crucial processes, such as growth and development, phytohormone signalling, and stress response. The tissue-specific expression study indicated that the AcGATAs expressed in multiple onion tissues. The expression analysis under subjected chromium and salt stress revealed that multiple AcGATAs get induced in response to the applied stresses. Lastly, the protein interaction network study predicted some key interacting partners of the AcGATAs that can regulate vital physiological processes in onions. CONCLUSIONS The present study identified and characterized the GATA gene family in onions. Functional predictions and interaction network analysis suggested the roles of AcGATAs in modulating multiple onion physiological processes. The induced expression of AcGATAs under chromium and salt stress indicated their involvement in abiotic stress response in onions. Overall, the study provides newer insights into the GATA gene family and their possible roles in onions.
Collapse
Affiliation(s)
- Chirasmita Bose
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Pratyush Kumar Das
- Department of Phytopharmaceuticals, School of Agriculture and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Praveen Roylawar
- Department of Botany, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, Maharashtra, 422605, India
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, 410505, India
| | - Pravara Rupawate
- Department of Zoology, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, Maharashtra, 422605, India
| | - Kiran Khandagale
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, 410505, India
| | - Satyabrata Nanda
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India.
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, 410505, India.
| |
Collapse
|
2
|
Park TK, Lee SH, Kim SH, Ko YW, Oh E, Kim YJ, Kim TW. Dual regulation of stomatal development by brassinosteroid in Arabidopsis hypocotyls. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:258-275. [PMID: 39714086 DOI: 10.1111/jipb.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024]
Abstract
Stomata are epidermal pores that are essential for water evaporation and gas exchange in plants. Stomatal development is orchestrated by intrinsic developmental programs, hormonal controls, and environmental cues. The steroid hormone brassinosteroid (BR) inhibits stomatal lineage progression by regulating BIN2 and BSL proteins in leaves. Notably, BR is known to promote stomatal development in hypocotyls as opposed to leaves; however, its molecular mechanism remains elusive. Here, we show that BR signaling has a dual regulatory role in controlling stomatal development in Arabidopsis hypocotyls. We found that brassinolide (BL; the most active BR) regulates stomatal development differently in a concentration-dependent manner. At low and moderate concentrations, BL promoted stomatal formation by upregulating the expression of SPEECHLESS (SPCH) and its target genes independently of BIN2 regulation. In contrast, high concentrations of BL and bikinin, which is a specific inhibitor of BIN2 and its homologs, significantly reduced stomatal formation. Genetic analyses revealed that BIN2 regulates stomatal development in hypocotyls through molecular mechanisms distinct from the regulatory mechanism of the cotyledons. In hypocotyls, BIN2 promoted stomatal development by inactivating BZR1, which suppresses the expression of SPCH and its target genes. Taken together, our results suggest that BR precisely coordinates the stomatal development of hypocotyls using an antagonistic control of SPCH expression via BZR1-dependent and BZR1-independent transcriptional regulation.
Collapse
Affiliation(s)
- Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea
| | - Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Korea
| | - So-Hee Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Korea
| | - Yeong-Woo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea
- Research, Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Korea
| |
Collapse
|
3
|
Wang F, Li Y, Yuan J, Li C, Lin Y, Gu J, Wang ZY. The U1 small nuclear RNA enhances drought tolerance in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1126-1146. [PMID: 39067058 DOI: 10.1093/plphys/kiae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
Alternative splicing (AS) is an important posttranscriptional regulatory mechanism that improves plant tolerance to drought stress by modulating gene expression and generating proteome diversity. The interaction between the 5' end of U1 small nuclear RNA (U1 snRNA) and the conserved 5' splice site of precursor messenger RNA (pre-mRNA) is pivotal for U1 snRNP involvement in AS. However, the roles of U1 snRNA in drought stress responses remain unclear. This study provides a comprehensive analysis of AtU1 snRNA in Arabidopsis (Arabidopsis thaliana), revealing its high conservation at the 5' end and a distinctive four-leaf clover structure. AtU1 snRNA is localized in the nucleus and expressed in various tissues, with prominent expression in young floral buds, flowers, and siliques. The overexpression of AtU1 snRNA confers enhanced abiotic stress tolerance, as evidenced in seedlings by longer seedling primary root length, increased fresh weight, and a higher greening rate compared with the wild-type. Mature AtU1 snRNA overexpressor plants exhibit higher survival rates and lower water loss rates under drought stress, accompanied by a significant decrease in H2O2 and an increase in proline. This study also provides evidence of altered expression levels of drought-related genes in AtU1 snRNA overexpressor or genome-edited lines, reinforcing the crucial role of AtU1 snRNA in drought stress responses. Furthermore, the overexpression of AtU1 snRNA influences the splicing of downstream target genes, with a notable impact on SPEECHLESS (SPCH), a gene associated with stomatal development, potentially explaining the observed decrease in stomatal aperture and density. These findings elucidate the critical role of U1 snRNA as an AS regulator in enhancing drought stress tolerance in plants, contributing to a deeper understanding of the AS pathway in drought tolerance and increasing awareness of the molecular network governing drought tolerance in plants.
Collapse
Affiliation(s)
- Fan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Yang Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Jianbo Yuan
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Yan Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| | - Jinbao Gu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| |
Collapse
|
4
|
Chen L. Regulation of stomatal development by epidermal, subepidermal and long-distance signals. PLANT MOLECULAR BIOLOGY 2024; 114:80. [PMID: 38940934 DOI: 10.1007/s11103-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Rosati VC, Quinn AA, Gleadow RM, Blomstedt CK. The Putative GATA Transcription Factor SbGATA22 as a Novel Regulator of Dhurrin Biosynthesis. Life (Basel) 2024; 14:470. [PMID: 38672741 PMCID: PMC11051066 DOI: 10.3390/life14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Cyanogenic glucosides are specialized metabolites produced by over 3000 species of higher plants from more than 130 families. The deployment of cyanogenic glucosides is influenced by biotic and abiotic factors in addition to being developmentally regulated, consistent with their roles in plant defense and stress mitigation. Despite their ubiquity, very little is known regarding the molecular mechanisms that regulate their biosynthesis. The biosynthetic pathway of dhurrin, the cyanogenic glucoside found in the important cereal crop sorghum (Sorghum bicolor (L.) Moench), was described over 20 years ago, and yet no direct regulator of the biosynthetic genes has been identified. To isolate regulatory proteins that bind to the promoter region of the key dhurrin biosynthetic gene of sorghum, SbCYP79A1, yeast one-hybrid screens were performed. A bait fragment containing 1204 base pairs of the SbCYP79A1 5' regulatory region was cloned upstream of a reporter gene and introduced into Saccharomyces cerevisiae. Subsequently, the yeast was transformed with library cDNA representing RNA from two different sorghum developmental stages. From these screens, we identified SbGATA22, an LLM domain B-GATA transcription factor that binds to the putative GATA transcription factor binding motifs in the SbCYP79A1 promoter region. Transient assays in Nicotiana benthamiana show that SbGATA22 localizes to the nucleus. The expression of SbGATA22, in comparison with SbCYP79A1 expression and dhurrin concentration, was analyzed over 14 days of sorghum development and in response to nitrogen application, as these conditions are known to affect dhurrin levels. Collectively, these findings suggest that SbGATA22 may act as a negative regulator of SbCYP79A1 expression and provide a preliminary insight into the molecular regulation of dhurrin biosynthesis in sorghum.
Collapse
Affiliation(s)
- Viviana C. Rosati
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Alicia A. Quinn
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Roslyn M. Gleadow
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| |
Collapse
|
6
|
Aksoy E, Yavuz C, Yagiz AK, Unel NM, Baloğlu MC. Genome-wide characterization and expression analysis of GATA transcription factors under combination of light wavelengths and drought stress in potato. PLANT DIRECT 2024; 8:e569. [PMID: 38659972 PMCID: PMC11042883 DOI: 10.1002/pld3.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
GATA is one of the prominent transcription factor families conserved among many organisms in eukaryotes and has different biological roles in many pathways, particularly in light regulation in plants. Although GATA transcription factors (TFs) have been identified in different crop species, their roles in abiotic stress tolerance have not been studied in potato. In this study, we identified 32 GATA TFs in potato (Solanum tuberosum) by in silico analyses, and expression levels of selected six genes were investigated in drought-tolerant (Sante) and sensitive (Agria) cultivars under light, drought, and combined (light + drought) stress conditions. According to the phylogenetic results, StGATA TFs were divided into four main groups (I, II, III, and IV) and different sub-groups in I and II (eight and five, respectively). StGATA genes were uniformly localized to each chromosome with a conserved exon/intron structure. The presence of cis-elements within the StGATA family further supported the possible involvement in abiotic stress tolerance and light response, tissue-specific expression, and hormonal regulation. Additional PPI investigations showed that these networks, especially for Groups I, II, and IV, play a significant role in response to light and drought stress. Six StGATAs were chosen from these groups for expressional profiling, and their expression in both Sante and Agria was mainly downregulated under purple and red lights, drought, and combined stress (blue + drought and purple + drought). The interactomes of selected StGATAs, StGATA3, StGATA24, and StGATA29 were analyzed, and the accessions with GATA motifs were checked for expression. The results showed that the target proteins, cyclin-P3-1, SPX domain-containing protein 1, mitochondrial calcium uniporter protein 2, mitogen-activated protein kinase kinase kinase YODA, and splicing factor 3 B subunit 4-like, mainly play a role in phytochrome-mediated stomatal patterning, development, and activity. Understanding the interactions between drought stress and the light response mechanisms in potato plants is essential. It will eventually be possible to enhance potato resilience to climate change by manipulating the TFs that play a role in these pathways.
Collapse
Affiliation(s)
- Emre Aksoy
- Faculty of Arts and Sciences, Department of BiologyMiddle East Technical UniversityAnkaraTürkiye
| | - Caner Yavuz
- Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic EngineeringNiğde Ömer Halisdemir UniversityNiğdeTürkiye
| | - Ayten Kübra Yagiz
- Faculty of Agricultural Sciences and Technologies, Department of Agricultural Genetic EngineeringNiğde Ömer Halisdemir UniversityNiğdeTürkiye
| | - Necdet Mehmet Unel
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTürkiye
- Research and Application CenterKastamonu UniversityKastamonuTürkiye
| | - Mehmet Cengiz Baloğlu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and ArchitectureKastamonu UniversityKastamonuTürkiye
- Sabancı University Nanotechnology Research and Application Center (SUNUM)Sabancı UniversityTuzlaTürkiye
| |
Collapse
|
7
|
Zhang T, Zhang R, Zeng XY, Lee S, Ye LH, Tian SL, Zhang YJ, Busch W, Zhou WB, Zhu XG, Wang P. GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light-induced seedling development in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:2400-2421. [PMID: 38180123 DOI: 10.1093/plphys/kiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.
Collapse
Affiliation(s)
- Ting Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Xi-Yu Zeng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Sanghwa Lee
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Lu-Huan Ye
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Shi-Long Tian
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi-Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Wen-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin-Guang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China
| |
Collapse
|
8
|
Kinmonth-Schultz H, Walker SM, Bingol K, Hoyt DW, Kim YM, Markillie LM, Mitchell HD, Nicora CD, Taylor R, Ward JK. Oligosaccharide production and signaling correlate with delayed flowering in an Arabidopsis genotype grown and selected in high [CO2]. PLoS One 2023; 18:e0287943. [PMID: 38153952 PMCID: PMC10754469 DOI: 10.1371/journal.pone.0287943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Since industrialization began, atmospheric CO2 ([CO2]) has increased from 270 to 415 ppm and is projected to reach 800-1000 ppm this century. Some Arabidopsis thaliana (Arabidopsis) genotypes delayed flowering in elevated [CO2] relative to current [CO2], while others showed no change or accelerations. To predict genotype-specific flowering behaviors, we must understand the mechanisms driving flowering response to rising [CO2]. [CO2] changes alter photosynthesis and carbohydrates in plants. Plants sense carbohydrate levels, and exogenous carbohydrate application influences flowering time and flowering transcript levels. We asked how organismal changes in carbohydrates and transcription correlate with changes in flowering time under elevated [CO2]. We used a genotype (SG) of Arabidopsis that was selected for high fitness at elevated [CO2] (700 ppm). SG delays flowering under elevated [CO2] (700 ppm) relative to current [CO2] (400 ppm). We compared SG to a closely related control genotype (CG) that shows no [CO2]-induced flowering change. We compared metabolomic and transcriptomic profiles in these genotypes at current and elevated [CO2] to assess correlations with flowering in these conditions. While both genotypes altered carbohydrates in response to elevated [CO2], SG had higher levels of sucrose than CG and showed a stronger increase in glucose and fructose in elevated [CO2]. Both genotypes demonstrated transcriptional changes, with CG increasing genes related to fructose 1,6-bisphosphate breakdown, amino acid synthesis, and secondary metabolites; and SG decreasing genes related to starch and sugar metabolism, but increasing genes involved in oligosaccharide production and sugar modifications. Genes associated with flowering regulation within the photoperiod, vernalization, and meristem identity pathways were altered in these genotypes. Elevated [CO2] may alter carbohydrates to influence transcription in both genotypes and delayed flowering in SG. Changes in the oligosaccharide pool may contribute to delayed flowering in SG. This work extends the literature exploring genotypic-specific flowering responses to elevated [CO2].
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
- Departiment of Biology, Tennessee Technological University, Cookeville, TN, United States of America
| | - Stephen Michael Walker
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
| | - Kerem Bingol
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - David W. Hoyt
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Lye Meng Markillie
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Hugh D. Mitchell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Carrie D. Nicora
- Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Ronald Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Joy K. Ward
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
9
|
Nir I, Budrys A, Smoot NK, Erberich J, Bergmann DC. Targeting editing of tomato SPEECHLESS cis-regulatory regions generates plants with altered stomatal density in response to changing climate conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.564550. [PMID: 37961313 PMCID: PMC10635072 DOI: 10.1101/2023.11.02.564550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Flexible developmental programs enable plants to customize their organ size and cellular composition. In leaves of eudicots, the stomatal lineage produces two essential cell types, stomata and pavement cells, but the total numbers and ratio of these cell types can vary. Central to this flexibility is the stomatal lineage initiating transcription factor, SPEECHLESS (SPCH). Here we show, by multiplex CRISPR/Cas9 editing of SlSPCH cis-regulatory sequences in tomato, that we can identify variants with altered stomatal development responses to light and temperature cues. Analysis of tomato leaf development across different conditions, aided by newly-created tools for live-cell imaging and translational reporters of SlSPCH and its paralogues SlMUTE and SlFAMA, revealed the series of cellular events that lead to the environmental change-driven responses in leaf form. Plants bearing the novel SlSPCH variants generated in this study are powerful resources for fundamental and applied studies of tomato resilience in response to climate change.
Collapse
Affiliation(s)
- Ido Nir
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Current Address, Institute of Plant Sciences, ARO, Volcani Center, HaMaccabbim Road 68, POB 15159, Rishon LeZion 7505101, Israel
| | - Alanta Budrys
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Current Address, Department of Biology, New York University, 24 Waverly Pl, New York, NY, 10003, USA
| | - N. Katherine Smoot
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Current Address, Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Joel Erberich
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Liu Q, Wang F, Li P, Yu G, Zhang X. Overexpression of Lolium multiflorum LmMYB1 Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15280. [PMID: 37894960 PMCID: PMC10607481 DOI: 10.3390/ijms242015280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lolium multiflorum is one of the world-famous forage grasses with rich biomass, fast growth rate and good nutritional quality. However, its growth and forage yield are often affected by drought, which is a major natural disaster all over the world. MYB transcription factors have some specific roles in response to drought stress, such as regulation of stomatal development and density, control of cell wall and root development. However, the biological function of MYB in L. multiflorum remains unclear. Previously, we elucidated the role of LmMYB1 in enhancing osmotic stress resistance in Saccharomyces cerevisiae. Here, this study elucidates the biological function of LmMYB1 in enhancing plant drought tolerance through an ABA-dependent pathway involving the regulation of cell wall development and stomatal density. After drought stress and ABA stress, the expression of LmMYB1 in L. multiflorum was significantly increased. Overexpression of LmMYB1 increased the survival rate of Arabidopsis thaliana under drought stress. Under drought conditions, expression levels of drought-responsive genes such as AtRD22, AtRAB and AtAREB were up-regulated in OE compared with those in WT. Further observation showed that the stomatal density of OE was reduced, which was associated with the up-regulated expression of cell wall-related pathway genes in the RNA-Seq results. In conclusion, this study confirmed the biological function of LmMYB1 in improving drought tolerance by mediating cell wall development through the ABA-dependent pathway and thereby affecting stomatal density.
Collapse
Affiliation(s)
- Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fangyan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (F.W.); (P.L.)
| |
Collapse
|
11
|
Wei Y, Wang S, Yu D. The Role of Light Quality in Regulating Early Seedling Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2746. [PMID: 37514360 PMCID: PMC10383958 DOI: 10.3390/plants12142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
It is well-established that plants are sessile and photoautotrophic organisms that rely on light throughout their entire life cycle. Light quality (spectral composition) is especially important as it provides energy for photosynthesis and influences signaling pathways that regulate plant development in the complex process of photomorphogenesis. During previous years, significant progress has been made in light quality's physiological and biochemical effects on crops. However, understanding how light quality modulates plant growth and development remains a complex challenge. In this review, we provide an overview of the role of light quality in regulating the early development of plants, encompassing processes such as seed germination, seedling de-etiolation, and seedling establishment. These insights can be harnessed to improve production planning and crop quality by producing high-quality seedlings in plant factories and improving the theoretical framework for modern agriculture.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Zhu X, Duan H, Jin H, Chen S, Chen Z, Shao S, Tang J, Zhang Y. Heat responsive gene StGATA2 functions in plant growth, photosynthesis and antioxidant defense under heat stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1227526. [PMID: 37496854 PMCID: PMC10368472 DOI: 10.3389/fpls.2023.1227526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Backgrounds Potato is sensitive to heat stress particularly during plant seedling growth. However, limited studies have characterized the expression pattern of the StGATA family genes under heat stress and lacked validation of its function in potato plants. Methods Potato plants were cultivated at 30°C and 35°C to induce heat stress responses. qRT-PCR was carried out to characterize the expression pattern of StGATA family genes in potato plants subjected to heat stress. StGATA2 loss-of-function and gain-of-function plants were established. Morphological phenotypes and growth were indicated by plant height and mass. Photosynthesis and transpiration were suggested by stomatal aperture, net photosynthetic rate, transpiration rate, and stomatal conductance. Biochemical and genetic responses were indicated by enzyme activity and mRNA expression of genes encoding CAT, SOD, and POD, and contents of H2O2, MDA, and proline. Results The expression patterns of StGATA family genes were altered in response to heat stress. StGATA2 protein located in the nucleus. StGATA2 is implicated in regulating plant height and weight of potato plants in response to heat stresses, especially acute heat stress. StGATA2 over-expression promoted photosynthesis while inhibited transpiration under heat stress. StGATA2 overexpression induced biochemical responses of potato plant against heat stress by regulating the contents of H2O2, MDA and proline and the activity of CAT, SOD and POD. StGATA2 overexpression caused genetic responses (CAT, SOD and POD) of potato plant against heat stress. Conclusion Our data indicated that StGATA2 could enhance the ability of potato plants to resist heat stress-induced damages, which may provide an effective strategy to engineer potato plants for better adaptability to adverse heat stress conditions.
Collapse
Affiliation(s)
- Xi Zhu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Huimin Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hui Jin
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zhuo Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shunwei Shao
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Tang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yu Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
13
|
Yin Z, Liao W, Li J, Pan J, Yang S, Chen S, Cao S. Genome-Wide Identification of GATA Family Genes in Phoebe bournei and Their Transcriptional Analysis under Abiotic Stresses. Int J Mol Sci 2023; 24:10342. [PMID: 37373489 DOI: 10.3390/ijms241210342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
GATA transcription factors are crucial proteins in regulating transcription and are characterized by a type-IV zinc finger DNA-binding domain. They play a significant role in the growth and development of plants. While the GATA family gene has been identified in several plant species, it has not yet been reported in Phoebe bournei. In this study, 22 GATA family genes were identified from the P. bournei genome, and their physicochemical properties, chromosomal distribution, subcellular localization, phylogenetic tree, conserved motif, gene structure, cis-regulatory elements in promoters, and expression in plant tissues were analyzed. Phylogenetic analysis showed that the PbGATAs were clearly divided into four subfamilies. They are unequally distributed across 11 out of 12 chromosomes, except chromosome 9. Promoter cis-elements are mostly involved in environmental stress and hormonal regulation. Further studies showed that PbGATA11 was localized to chloroplasts and expressed in five tissues, including the root bark, root xylem, stem bark, stem xylem, and leaf, which means that PbGATA11 may have a potential role in the regulation of chlorophyll synthesis. Finally, the expression profiles of four representative genes, PbGATA5, PbGATA12, PbGATA16, and PbGATA22, under drought, salinity, and temperature stress, were detected by qRT-PCR. The results showed that PbGATA5, PbGATA22, and PbGATA16 were significantly expressed under drought stress. PbGATA12 and PbGATA22 were significantly expressed after 8 h of low-temperature stress at 10 °C. This study concludes that the growth and development of the PbGATA family gene in P. bournei in coping with adversity stress are crucial. This study provides new ideas for studying the evolution of GATAs, provides useful information for future functional analysis of PbGATA genes, and helps better understand the abiotic stress response of P. bournei.
Collapse
Affiliation(s)
- Ziyuan Yin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinxi Pan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Luan J, Ju J, Li X, Wang X, Tan Y, Xia G. Functional identification of moss PpGATA1 provides insights into the evolution of LLM-domain B-GATA transcription factors in plants. Gene 2023; 855:147103. [PMID: 36513191 DOI: 10.1016/j.gene.2022.147103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
B-GATA transcription factors with the LLM domain (LLM-domain B-GATAs) play important roles in developmental processes and environmental responses in flowering plants. Their characterization can therefore provide insights into the structural and functional evolution of functional gene families. Phylogenetic and sequence analysis suggests that LLM-domain B-GATAs evolved from ancestral GATA transcription factors before the divergence of chlorophyte algae and Streptophyta. We compared the function of PpGATA1, a LLM-domain B-GATA gene in moss Physcomitrium patens, with Arabidopsis thaliana counterparts and showed that, in P. patens, PpGATA1 controls growth and greening in haploid gametophytes, while in transgenic Arabidopsis it affects germination, leaf development, flowering time, greening and light responses in diploid sporophytes. These PpGATA1 functions are similar to those of Arabidopsis counterparts, AtGNC, AtGNL and AtGATA17. PpGATA1 was able to complement the role of GNC and GNL in a gnc gnl double mutant, and the LLM domains of PpGATA1 and GNC behaved similarly. The functions of LLM-domain B-GATAs regulating hypocotyl elongation and cotyledon epinasty in flowering plants pre-exist before the divergence of mosses and the lineage leading to flowering plants. This study sheds light on adaption of PpGATA1 and its homologs to new developmental designs during the evolution.
Collapse
Affiliation(s)
- Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China; The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Jianfang Ju
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiuling Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China
| | - Yufei Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
15
|
Lv X, Huang S, Wang J, Han D, Li J, Guo D, Zhu H. Genome-wide identification of Mg 2+ transporters and functional characteristics of DlMGT1 in Dimocarpus longan. FRONTIERS IN PLANT SCIENCE 2023; 14:1110005. [PMID: 36818860 PMCID: PMC9932547 DOI: 10.3389/fpls.2023.1110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Longan (Dimocarpus Longan) is one of the most important fruit crops in Southern China. Lack of available Mg in acidic soil conditions is a limitation to further increasing longan yield. Magnesium transporter (MGT/MRS2) mediates the uptake, transport, and redistribution of Mg2+ in higher plants. To understand the role of MGTs family members in longan Mg deficiency. We identified and analyzed the protein characteristics, phylogeny, expression changes, subcellular localization, and transcriptional regulation of DlMGTs members. The results showed that, twelve DlMGTs are localized in the cell membrane, chloroplast, and nucleus. The evolutionary differences in MGTs between herbaceous and woody species in different plants. The DlMGTs promoters contained many cis-acting elements and transcription factor binding sites related to the hormone, environmental, and stress response. Subcellular localization assays showed that DlMGT1 localizes in the cell membrane of Arabidopsis protoplasts. The candidate transcription factor DlGATA16, which may regulate the expression of DlMGT1, was localized in the nucleus of tobacco leaves. Dual luciferase analysis demonstrated that DlGATA16 is a potential factor regulating the transcriptional activity of DlMGT1. In this study, we identified and analyzed DlMGTs on a genome-wide scale and the subcellular localization and interaction of DlMGT1 and DlGATA16, which has important implications for further functional analysis studies of MGTs and the use of MGT for longan genetic improvement.
Collapse
Affiliation(s)
- Xinmin Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Haifeng Zhu
- Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
16
|
Chen Y, Zhu W, Yan T, Chen D, Jiang L, Chen ZH, Wu D. Stomatal morphological variation contributes to global ecological adaptation and diversification of Brassica napus. PLANTA 2022; 256:64. [PMID: 36029339 DOI: 10.1007/s00425-022-03982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Stomatal density and guard cell length of 274 global core germplasms of rapeseed reveal that the stomatal morphological variation contributes to global ecological adaptation and diversification of Brassica napus. Stomata are microscopic structures of plants for the regulation of CO2 assimilation and transpiration. Stomatal morphology has changed substantially in the adaptation to the external environment during land plant evolution. Brassica napus is a major crop to produce oil, livestock feed and biofuel in the world. However, there are few studies on the regulatory genes controlling stomatal development and their interaction with environmental factors as well as the genetic mechanism of adaptive variation in B. napus. Here, we characterized stomatal density (SD) and guard cell length (GL) of 274 global core germplasms at seedling stage. It was found that among the significant phenotypic variation, European germplasms are mostly winter rapeseed with high stomatal density and small guard cell length. However, the germplasms from Asia (especially China) are semi-winter rapeseed, which is characterized by low stomatal density and large guard cell length. Through selective sweep analysis and homology comparison, we identified several candidate genes related to stomatal density and guard cell length, including Epidermal Patterning Factor2 (EPF2; BnaA09g23140D), Epidermal Patterning Factor Like4 (EPFL4; BnaC01g22890D) and Suppressor of LLP1 (SOL1 BnaC01g22810D). Haplotype and phylogenetic analysis showed that natural variation in EPF2, EPFL4 and SOL1 is closely associated with the winter, spring, and semi-winter rapeseed ecotypes. In summary, this study demonstrated for the first time the relation between stomatal phenotypic variation and ecological adaptation in rapeseed, which is useful for future molecular breeding of rapeseed in the context of evolution and domestication of key stomatal traits and global climate change.
Collapse
Affiliation(s)
- Yeke Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Weizhuo Zhu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Danyi Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
17
|
Shen C, Li Q, An Y, Zhou Y, Zhang Y, He F, Chen L, Liu C, Mao W, Wang X, Liang H, Yin W, Xia X. The transcription factor GNC optimizes nitrogen use efficiency and growth by up-regulating the expression of nitrate uptake and assimilation genes in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4778-4792. [PMID: 35526197 DOI: 10.1093/jxb/erac190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plants have evolved complex mechanisms to cope with the fluctuating environmental availability of nitrogen. However, potential genes modulating plant responses to nitrate are yet to be characterized. Here, a poplar GATA transcription factor gene PdGNC (GATA nitrate-inducible carbon-metabolism-involved) was found to be strongly induced by low nitrate. Overexpressing PdGNC in poplar clone 717-1B4 (P. tremula × alba) significantly improved nitrate uptake, remobilization, and assimilation with higher nitrogen use efficiency (NUE) and faster growth, particularly under low nitrate conditions. Conversely, CRISPR/Cas9-mediated poplar mutant gnc exhibited decreased nitrate uptake, relocation, and assimilation, combined with lower NUE and slower growth. Assays with yeast one-hybrid, electrophoretic mobility shift, and a dual-luciferase reporter showed that PdGNC directly activated the promoters of nitrogen pathway genes PdNRT2.4b, PdNR, PdNiR, and PdGS2, leading to a significant increase in nitrate utilization in poplar. As expected, the enhanced NUE promoted growth under low nitrate availability. Taken together, our data show that PdGNC plays an important role in the regulation of NUE and growth in poplar by improving nitrate acquisition, remobilization, and assimilation, and provide a promising strategy for molecular breeding to improve productivity under nitrogen limitation in trees.
Collapse
Affiliation(s)
- Chao Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Qing Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yi An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yangyan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Yue Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Fang He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Lingyun Chen
- Hangzhou Lifeng Seed Co., Ltd, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Xiaofei Wang
- Salver Academy of Botany, Rizhao, Shandong 276800, China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Schwechheimer C, Schröder PM, Blaby-Haas CE. Plant GATA Factors: Their Biology, Phylogeny, and Phylogenomics. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:123-148. [PMID: 35130446 DOI: 10.1146/annurev-arplant-072221-092913] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.
Collapse
Affiliation(s)
- Claus Schwechheimer
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | - Peter Michael Schröder
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
19
|
Genome-Wide Identification of the Eucalyptus urophylla GATA Gene Family and Its Diverse Roles in Chlorophyll Biosynthesis. Int J Mol Sci 2022; 23:ijms23095251. [PMID: 35563644 PMCID: PMC9102942 DOI: 10.3390/ijms23095251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
GATA transcription factors have been demonstrated to play key regulatory roles in plant growth, development, and hormonal response. However, the knowledge concerning the evolution of GATA genes in Eucalyptus urophylla and their trans-regulatory interaction is indistinct. Phylogenetic analysis and study of conserved motifs, exon structures, and expression patterns resolved the evolutionary relationships of these GATA proteins. Phylogenetic analysis showed that EgrGATAs are broadly distributed in four subfamilies. Cis-element analysis of promoters revealed that EgrGATA genes respond to light and are influenced by multiple hormones and abiotic stresses. Transcriptome analysis revealed distinct temporal and spatial expression patterns of EgrGATA genes in various tissues of E. urophylla S.T.Blake, which was confirmed by real-time quantitative PCR (RT-qPCR). Further research revealed that EurGNC and EurCGA1 were localized in the nucleus, and EurGNC directly binds to the cis-element of the EurGUN5 promoter, implying its potential roles in the regulation of chlorophyll synthesis. This comprehensive study provides new insights into the evolution of GATAs and could help to improve the photosynthetic assimilation and vegetative growth of E. urophylla at the genetic level.
Collapse
|
20
|
Genetic Analysis of the Grapevine GATA Gene Family and Their Expression Profiles in Response to Hormone and Downy Mildew Infection. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grapevine (Vitis. vinifera L.) is one of the most economically important fruit crops throughout the world. However, grape production is increasingly impacted by numerous diseases, including downy mildew, caused by the oomycete Plasmopara viticola. In grapevine and other plants, members of the GATA family of transcription factors play key roles in light and phytohormone signaling. However, little is known about their potential roles in biotic defense responses. As a first step, we identified 27 GATA transcription factors in grapevine and defined their transcriptional responses to three biotic stress-related phytohormones (SA, MeJA, and BR) in callus cells, and challenge with P. viticola in a downy mildew-sensitive cultivar, V. vinifera ‘Pinot noir’, and a resistant cultivar, V. piasezkii ‘Liuba-8′. Many of the VvGATA genes had higher expression at 0.5 h after hormones treatments. Moreover, a group of VvGATAs was dramatically induced in ‘Liuba-8′ at 24 post infection by P. viticola. However, the same genes were significantly repressed and showed low expression levels in ‘Pinot noir’. Additionally, VvGATA27 was located in the nucleus and had transcriptional activity. Taken together, the study identified the GATA full gene families in grapes on phylogenetic analysis and protein structure. Moreover, this study provided a basis for discussing the roles of VvGATAs in response to hormones and P. viticola infection. Our results provided evidence for the selection of candidate genes against downy mildew and lay the foundation for further investigation of VvGATA transcription factors.
Collapse
|
21
|
Han C, Qiao Y, Yao L, Hao W, Liu Y, Shi W, Fan M, Bai MY. TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. THE NEW PHYTOLOGIST 2022; 234:107-121. [PMID: 35060119 DOI: 10.1111/nph.17984] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the differentiation of epidermal cells into stomata is regulated by endogenous and environmental signals. Sugar is required for plant epidermal cell proliferation and differentiation. However, it is unclear how epidermal cells maintain division and differentiation to generate proper amounts of stomata in response to different sugar availability. Here, we show that two evolutionarily conserved kinase Snf1-related protein kinase 1 (SnRK1) and Target of rapamycin (TOR) play critical roles in the regulation of stomatal development under different sugar availability. When plants are grown on a medium containing 1% sucrose, sucrose-activated TOR promotes the stomatal development by inducing the expression of SPEECHLESS (SPCH), a master regulator of stomatal development. SnRK1 promotes stomatal development through phosphorylating and stabilizing SPCH. However, under the high sucrose conditions, the highly accumulated trehalose-6-phosphate (Tre6P) represses the activity of KIN10, the catalytic α-subunit of SnRK1, by reducing the interaction between KIN10 and its upstream kinase, consequently promoting SPCH degradation and inhibiting stomatal development. Our findings revealed that TOR and SnRK1 finely regulate SPCH expression and protein stability to optimize the stomatal development in response to exogenously supplied sugar.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yan Qiao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
22
|
WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles. Biochem J 2022; 479:641-659. [PMID: 35212355 PMCID: PMC9022988 DOI: 10.1042/bcj20210810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1–1 and W1–7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1–1 and W1–7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1–1 and W1–7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development.
Collapse
|
23
|
Yang J, Xu Y, Wang J, Gao S, Huang Y, Hung FY, Li T, Li Q, Yue L, Wu K, Yang S. The chromatin remodelling ATPase BRAHMA interacts with GATA-family transcription factor GNC to regulate flowering time in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:835-847. [PMID: 34545936 DOI: 10.1093/jxb/erab430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 05/13/2023]
Abstract
BRAHMA (BRM) is the ATPase of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex, which is indispensable for transcriptional inhibition and activation, associated with vegetative and reproductive development in Arabidopsis thaliana. Here, we show that BRM directly binds to the chromatin of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which integrates multiple flowering signals to regulate floral transition, leading to flowering. In addition, genetic and molecular analysis showed that BRM interacts with GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM INVOLVED), a GATA transcription factor that represses flowering by directly repressing SOC1 expression. Furthermore, BRM is recruited by GNC to directly bind to the chromatin of SOC1. The transcript level of SOC1 is elevated in brm-3, gnc, and brm-3/gnc mutants, which is associated with increased histone H3 lysine 4 tri-methylation (H3K4Me3) but decreased DNA methylation. Taken together, our results indicate that BRM associates with GNC to regulate SOC1 expression and flowering time.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sujuan Gao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yisui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tao Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qing Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agrobiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
24
|
Pignon CP, Fernandes SB, Valluru R, Bandillo N, Lozano R, Buckler E, Gore MA, Long SP, Brown PJ, Leakey ADB. Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. PLANT PHYSIOLOGY 2021; 187:2544-2562. [PMID: 34618072 PMCID: PMC8644692 DOI: 10.1093/plphys/kiab395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 05/07/2023]
Abstract
Stomata allow CO2 uptake by leaves for photosynthetic assimilation at the cost of water vapor loss to the atmosphere. The opening and closing of stomata in response to fluctuations in light intensity regulate CO2 and water fluxes and are essential for maintaining water-use efficiency (WUE). However, a little is known about the genetic basis for natural variation in stomatal movement, especially in C4 crops. This is partly because the stomatal response to a change in light intensity is difficult to measure at the scale required for association studies. Here, we used high-throughput thermal imaging to bypass the phenotyping bottleneck and assess 10 traits describing stomatal conductance (gs) before, during and after a stepwise decrease in light intensity for a diversity panel of 659 sorghum (Sorghum bicolor) accessions. Results from thermal imaging significantly correlated with photosynthetic gas exchange measurements. gs traits varied substantially across the population and were moderately heritable (h2 up to 0.72). An integrated genome-wide and transcriptome-wide association study identified candidate genes putatively driving variation in stomatal conductance traits. Of the 239 unique candidate genes identified with the greatest confidence, 77 were putative orthologs of Arabidopsis (Arabidopsis thaliana) genes related to functions implicated in WUE, including stomatal opening/closing (24 genes), stomatal/epidermal cell development (35 genes), leaf/vasculature development (12 genes), or chlorophyll metabolism/photosynthesis (8 genes). These findings demonstrate an approach to finding genotype-to-phenotype relationships for a challenging trait as well as candidate genes for further investigation of the genetic basis of WUE in a model C4 grass for bioenergy, food, and forage production.
Collapse
Affiliation(s)
- Charles P Pignon
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN1 3QE, UK
| | - Nonoy Bandillo
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | - Roberto Lozano
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Edward Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Lancaster Environment Centre, University of Lancaster, Lancaster LA1 1YX, UK
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Author for communication:
| |
Collapse
|
25
|
Cao X, Xu P, Liu Y, Yang G, Liu M, Chen L, Cheng Y, Xu P, Miao L, Mao Z, Wang W, Kou S, Guo T, Yang HQ. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1967-1981. [PMID: 34469075 DOI: 10.1111/jipb.13168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. The heterotrimeric G-protein is known to regulate various physiological processes in plants and mammals. In Arabidopsis, cryptochrome 1 (CRY1) and the G-protein β subunit AGB1 act antagonistically to regulate stomatal development. The molecular mechanism by which CRY1 and AGB1 regulate this process remains unknown. Here, we show that Arabidopsis CRY1 acts partially through AGB1, and AGB1 acts through SPEECHLESS (SPCH), a master transcription factor that drives stomatal initiation and proliferation, to regulate stomatal development. We demonstrate that AGB1 physically interacts with SPCH to block the bHLH DNA-binding domain of SPCH and inhibit its DNA-binding activity. Moreover, we demonstrate that photoexcited CRY1 represses the interaction of AGB1 with SPCH to release AGB1 inhibition of SPCH DNA-binding activity, leading to the expression of SPCH-target genes promoting stomatal development. Taken together, our results suggest that the mechanism by which CRY1 promotes stomatal development involves positive regulation of the DNA-binding activity of SPCH mediated by CRY1 inhibition of the AGB1-SPCH interaction. We propose that the antagonistic regulation of SPCH DNA-binding activity by CRY1 and AGB1 may allow plants to balance light and G-protein signaling and optimize stomatal density and pattern.
Collapse
Affiliation(s)
- Xiaoli Cao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Pengbo Xu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guangqiong Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yingyu Cheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Xu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Langxi Miao
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
26
|
Guo X, Wang L, Dong J. Establishing asymmetry: stomatal division and differentiation in plants. THE NEW PHYTOLOGIST 2021; 232:60-67. [PMID: 34254322 PMCID: PMC8429090 DOI: 10.1111/nph.17613] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 05/07/2023]
Abstract
In the leaf epidermis, stomatal pores allow gas exchange between plants and the environment. The production of stomatal guard cells requires the lineage cells to divide asymmetrically. In this Insight review, we describe an emerging picture of how intrinsic molecules drive stomatal asymmetric cell division in multidimensions, from transcriptional activities in the nucleus to the dynamic assembly of the polarity complex at the cell cortex. Given the significant roles of stomatal activity in plant responses to environmental changes, we incorporate recent advances in external cues feeding into the regulation of core molecular machinery required for stomatal development. The work we discuss here is mainly based on the dicot plant Arabidopsis thaliana with summaries of recent progress in the monocots.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Correspondence: Xiaoyu Guo (), Juan Dong ()
| | - Lu Wang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: Xiaoyu Guo (), Juan Dong ()
| |
Collapse
|
27
|
Kim M, Xi H, Park S, Yun Y, Park J. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes. Sci Rep 2021; 11:16578. [PMID: 34400697 PMCID: PMC8367991 DOI: 10.1038/s41598-021-95940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. We identified 262 GATA genes (389 GATA TFs) from seven Populus genomes using the pipeline of GATA-TFDB. Alternative splicing forms of Populus GATA genes exhibit dynamics of GATA gene structures including partial or full loss of GATA domain and additional domains. Subfamily III of Populus GATA genes display lack CCT and/or TIFY domains. 21 Populus GATA gene clusters (PCs) were defined in the phylogenetic tree of GATA domains, suggesting the possibility of subfunctionalization and neofunctionalization. Expression analysis of Populus GATA genes identified the five PCs displaying tissue-specific expression, providing the clues of their biological functions. Amino acid patterns of Populus GATA motifs display well conserved manner of Populus GATA genes. The five Populus GATA genes were predicted as membrane-bound GATA TFs. Biased chromosomal distributions of GATA genes of three Populus species. Our comparative analysis approaches of the Populus GATA genes will be a cornerstone to understand various plant TF characteristics including evolutionary insights.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Hong Xi
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Suhyeon Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Yunho Yun
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Jongsun Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
| |
Collapse
|
28
|
Light regulates stomatal development by modulating paracrine signaling from inner tissues. Nat Commun 2021; 12:3403. [PMID: 34099707 PMCID: PMC8184810 DOI: 10.1038/s41467-021-23728-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental outcomes are shaped by the interplay between intrinsic and external factors. The production of stomata—essential pores for gas exchange in plants—is extremely plastic and offers an excellent system to study this interplay at the cell lineage level. For plants, light is a key external cue, and it promotes stomatal development and the accumulation of the master stomatal regulator SPEECHLESS (SPCH). However, how light signals are relayed to influence SPCH remains unknown. Here, we show that the light-regulated transcription factor ELONGATED HYPOCOTYL 5 (HY5), a critical regulator for photomorphogenic growth, is present in inner mesophyll cells and directly binds and activates STOMAGEN. STOMAGEN, the mesophyll-derived secreted peptide, in turn stabilizes SPCH in the epidermis, leading to enhanced stomatal production. Our work identifies a molecular link between light signaling and stomatal development that spans two tissue layers and highlights how an environmental signaling factor may coordinate growth across tissue types. Light promotes stomatal development in plants. Here Wang et al. show that light stimulates stomatal development via the HY5 transcription factor which induces expression of STOMAGEN, a mesophyll-derived secreted peptide, that in turn leads to stabilization of a master regulator of stomatal development in the epidermis.
Collapse
|
29
|
Kim M, Xi H, Park J. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: Intraspecific characteristics of GATA transcription factors. PLoS One 2021; 16:e0252181. [PMID: 34038437 PMCID: PMC8153473 DOI: 10.1371/journal.pone.0252181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. Due to the low cost of genome sequencing, multiple strains of specific species have been sequenced: e.g., number of plant genomes in the Plant Genome Database (http://www.plantgenome.info/) is 2,174 originated from 713 plant species. Thus, we investigated GATA TFs of 19 Arabidopsis thaliana genome-widely to understand intraspecific features of Arabidopsis GATA TFs with the pipeline of GATA database (http://gata.genefamily.info/). Numbers of GATA genes and GATA TFs of each A. thaliana genome range from 29 to 30 and from 39 to 42, respectively. Four cases of different pattern of alternative splicing forms of GATA genes among 19 A. thaliana genomes are identified. 22 of 2,195 amino acids (1.002%) from the alignment of GATA domain amino acid sequences display variations across 19 ecotype genomes. In addition, maximally four different amino acid sequences per each GATA domain identified in this study indicate that these position-specific amino acid variations may invoke intraspecific functional variations. Among 15 functionally characterized GATA genes, only five GATA genes display variations of amino acids across ecotypes of A. thaliana, implying variations of their biological roles across natural isolates of A. thaliana. PCA results from 28 characteristics of GATA genes display the four groups, same to those defined by the number of GATA genes. Topologies of bootstrapped phylogenetic trees of Arabidopsis chloroplasts and common GATA genes are mostly incongruent. Moreover, no relationship between geographical distribution and their phylogenetic relationships was found. Our results present that intraspecific variations of GATA TFs in A. thaliana are conserved and evolutionarily neutral along with 19 ecotypes, which is congruent to the fact that GATA TFs are one of the main regulators for controlling essential mechanisms, such as seed germination and hypocotyl elongation.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
30
|
Wei H, Jing Y, Zhang L, Kong D. Phytohormones and their crosstalk in regulating stomatal development and patterning. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2356-2370. [PMID: 33512461 DOI: 10.1093/jxb/erab034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Phytohormones play important roles in regulating various aspects of plant growth and development as well as in biotic and abiotic stress responses. Stomata are openings on the surface of land plants that control gas exchange with the environment. Accumulating evidence shows that various phytohormones, including abscisic acid, jasmonic acid, brassinosteroids, auxin, cytokinin, ethylene, and gibberellic acid, play many roles in the regulation of stomatal development and patterning, and that the cotyledons/leaves and hypocotyls/stems of Arabidopsis exhibit differential responsiveness to phytohormones. In this review, we first discuss the shared regulatory mechanisms controlling stomatal development and patterning in Arabidopsis cotyledons and hypocotyls and those that are distinct. We then summarize current knowledge of how distinct hormonal signaling circuits are integrated into the core stomatal development pathways and how different phytohormones crosstalk to tailor stomatal density and spacing patterns. Knowledge obtained from Arabidopsis may pave the way for future research to elucidate the effects of phytohormones in regulating stomatal development and patterning in cereal grasses for the purpose of increasing crop adaptive responses.
Collapse
Affiliation(s)
- Hongbin Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yifeng Jing
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dexin Kong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
31
|
Genome-wide identification and function characterization of GATA transcription factors during development and in response to abiotic stresses and hormone treatments in pepper. J Appl Genet 2021; 62:265-280. [PMID: 33624251 DOI: 10.1007/s13353-021-00618-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 01/03/2023]
Abstract
Pepper (Capsicum annuum L.) is an economically important vegetable crop whose production and quality are severely reduced under adverse environmental stress conditions. The GATA transcription factors belonging to type IV zinc-finger proteins, play a significant role in regulating light morphogenesis, nitrate assimilation, and organ development in plants. However, the functional characteristics of GATA gene family during development and in response to environmental stresses have not yet been investigated in pepper. In this study, a total of 28 pepper GATA (CaGATA) genes were identified. To gain an overview of the CaGATAs, we analyzed their chromosomal distribution, gene structure, conservative domains, cis-elements, phylogeny, and evolutionary relationship. We divided 28 CaGATAs into four groups distributed on 10 chromosomes, and identified 7 paralogs in CaGATA family of pepper and 35 orthologous gene pairs between CaGATAs and Arabidopsis GATAs (AtGATAs). The results of promoter cis-element analysis and the quantitative real-time PCR (qRT-PCR) analysis revealed that CaGATA genes were involved in regulating the plant growth and development and the responses to various abiotic stresses and hormone treatments in pepper. Tissue-specific expression analysis showed that most CaGATA genes were preferentially expressed in flower buds, flowers, and leaves. Several CaGATA genes, especially CaGATA14, were significantly regulated under multiple abiotic stresses, and CaGATA21 and CaGATA27 were highly responsive to phytohormone treatments. Taken together, our results lay a foundation for the biological function analysis of GATA gene family in pepper.
Collapse
|
32
|
Han SK, Kwak JM, Qi X. Stomatal Lineage Control by Developmental Program and Environmental Cues. FRONTIERS IN PLANT SCIENCE 2021; 12:751852. [PMID: 34707632 PMCID: PMC8542704 DOI: 10.3389/fpls.2021.751852] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 05/15/2023]
Abstract
Stomata are micropores that allow plants to breathe and play a critical role in photosynthesis and nutrient uptake by regulating gas exchange and transpiration. Stomatal development, therefore, is optimized for survival and growth of the plant despite variable environmental conditions. Signaling cascades and transcriptional networks that determine the birth, proliferation, and differentiation of a stomate have been identified. These networks ensure proper stomatal patterning, density, and polarity. Environmental cues also influence stomatal development. In this review, we highlight recent findings regarding the developmental program governing cell fate and dynamics of stomatal lineage cells at the cell state- or single-cell level. We also overview the control of stomatal development by environmental cues as well as developmental plasticity associated with stomatal function and physiology. Recent advances in our understanding of stomatal development will provide a route to improving photosynthesis and water-stress resilience of crop plants in the climate change we currently face.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of New Biology, DGIST, Daegu, South Korea
- *Correspondence: Soon-Ki Han,
| | - June M. Kwak
- Department of New Biology, DGIST, Daegu, South Korea
| | - Xingyun Qi
- Department of Biology, Rutgers University, Camden, NJ, United States
- Xingyun Qi,
| |
Collapse
|
33
|
Wei H, Kong D, Yang J, Wang H. Light Regulation of Stomatal Development and Patterning: Shifting the Paradigm from Arabidopsis to Grasses. PLANT COMMUNICATIONS 2020; 1:100030. [PMID: 33367232 PMCID: PMC7747992 DOI: 10.1016/j.xplc.2020.100030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 02/06/2020] [Indexed: 05/22/2023]
Abstract
The stomatal pores of plant leaves control gas exchange with the environment. Stomatal development is prevised regulated by both internal genetic programs and environmental cues. Among various environmental factors, light regulation of stomata formation has been extensively studied in Arabidopsis. In this review, we summarize recent advances in the genetic control of stomata development and its regulation by light. We also present a comparative analysis of the conserved and diverged stomatal regulatory networks between Arabidopsis and cereal grasses. Lastly, we provide our perspectives on manipulation of the stomata density on plant leaves for the purpose of breeding crops that are better adapted to the adverse environment and high-density planting conditions.
Collapse
Affiliation(s)
- Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Juan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Corresponding author
| |
Collapse
|
34
|
Nutan KK, Singla-Pareek SL, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:684-698. [PMID: 31613368 DOI: 10.1093/jxb/erz368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/06/2019] [Indexed: 05/23/2023]
Abstract
GATA represents a highly conserved family of transcription factors reported in organisms ranging from fungi to angiosperms. A member of this family, OsGATA8, localized within the Saltol QTL in rice, has been reported to be induced by salinity, drought, and ABA. However, its precise role in stress tolerance has not yet been elucidated. Using genetic, molecular, and physiological analyses, in this study we show that OsGATA8 increases seed size and tolerance to abiotic stresses in both Arabidopsis and rice. Transgenic lines of rice were generated with 3-fold overexpression of OsGATA8 compared to the wild-type together with knockdown lines with 2-fold lower expression. The overexpressing lines showed higher biomass accumulation and higher photosynthetic efficiency in seedlings compared to the wild-type and knockdown lines under both normal and salinity-stress conditions. OsGATA8 appeared to be an integrator of diverse cellular processes, including K+/Na+ content, photosynthetic efficiency, relative water content, Fv/Fm ratio, and the stability to sub-cellular organelles. It also contributed to maintaining yield under stress, which was ~46% higher in overexpression plants compared with the wild-type. OsGATA8 produced these effects by regulating the expression of critical genes involved in stress tolerance, scavenging of reactive oxygen species, and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Kamlesh K Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Chen L, Wu Z, Hou S. SPEECHLESS Speaks Loudly in Stomatal Development. FRONTIERS IN PLANT SCIENCE 2020; 11:114. [PMID: 32153616 PMCID: PMC7046557 DOI: 10.3389/fpls.2020.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Stomata, the small pores on the epidermis of plant shoot, control gas exchange between the plant and environment and play key roles in plant physiology, evolution, and global ecology. Stomatal development is initiated by the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS (SPCH), whose central importance in stomatal development has recently come to light. SPCH integrates intralineage signals and serves as an acceptor of hormonal and environmental signals to regulate stomatal density and patterning during the development. SPCH also plays a direct role in regulating asymmetric cell division in the stomatal lineage. Owing to its importance in stomatal development, SPCH expression is tightly and spatiotemporally regulated. The purpose of this review is to provide an overview of the SPCH-mediated regulation of stomatal development, reinforcing the idea that SPCH is the central molecular hub for stomatal development.
Collapse
|
36
|
Liu X, Zhu X, Wei X, Lu C, Shen F, Zhang X, Zhang Z. The wheat LLM-domain-containing transcription factor TaGATA1 positively modulates host immune response to Rhizoctonia cerealis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:344-355. [PMID: 31536614 PMCID: PMC6913698 DOI: 10.1093/jxb/erz409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/03/2019] [Indexed: 05/26/2023]
Abstract
Wheat (Triticum aestivum) is essential for global food security. Rhizoctonia cerealis is the causal pathogen of sharp eyespot, an important disease of wheat. GATA proteins in model plants have been implicated in growth and development; however, little is known about their roles in immunity. Here, we report a defence role for a wheat LLM-domain-containing B-GATA transcription factor, TaGATA1, against R. cerealis infection and explore the underlying mechanism. Through transcriptomic analysis, TaGATA1 was identified to be more highly expressed in resistant wheat genotypes than in susceptible wheat genotypes. TaGATA1 was located on chromosome 3B and had two homoeologous genes on chromosomes 3A and 3D. TaGATA1 was found to be localized in the nucleus, possessed transcriptional activation activity, and bound to GATA-core cis-elements. TaGATA1 overexpression significantly enhanced resistance of transgenic wheat to R. cerealis, whereas silencing of TaGATA1 suppressed the resistance. Quantitative reverse transcription-PCR and ChIP-qPCR results indicated that TaGATA1 directly bound to and activated certain defence genes in host immune response to R. cerealis. Collectively, TaGATA1 positively regulates immune responses to R. cerealis through activating expression of defence genes in wheat. This study reveals a new function of plant GATAs in immunity and provides a candidate gene for improving crop resistance to R. cerealis.
Collapse
Affiliation(s)
- Xin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hunan Agricultural University, Changsha, China
- College of Life Sciences, Northwest A & F University, Yangling, China
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - Fangdi Shen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ningbo Polytechnic, Ningbo, China
| | | | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Lopes EM, Guimarães-Dias F, Gama TDSS, Macedo AL, Valverde AL, de Moraes MC, de Aguiar-Dias ACA, Bizzo HR, Alves-Ferreira M, Tavares ES, Macedo AF. Artemisia annua L. and photoresponse: from artemisinin accumulation, volatile profile and anatomical modifications to gene expression. PLANT CELL REPORTS 2020; 39:101-117. [PMID: 31576412 DOI: 10.1007/s00299-019-02476-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 05/19/2023]
Abstract
Blue and yellow light affected metabolism and the morphology. Blue and red promote the DOXP/MEP pathway. ADS gene expression was increased in plants cultivated under blue, promoting artemisinin content. Artemisinin-based combination therapies are the most effective treatment for highly lethal malaria. Artemisinin is produced in small quantities in the glandular trichomes of Artemisia annua L. Our aim was to evaluate the effect of light quality in A. annua cultivated in vitro under different light qualities, considering anatomical and morphological changes, the volatile composition, artemisinin content and the expression of two key enzymes for artemisinin biosynthesis. Yellow light is related to the increase in the number of glandular trichomes and this seemed to positively affect the molecular diversity in A. annua. Yellow light-stimulated glandular trichome frequency without triggered area enhancement, whereas blue light stimulated both parameters. Blue light enhanced the thickness of the leaf epidermis. The B-promoting effect was due to increased cell size and not to increased cell numbers. Green and yellow light positively influenced the volatile diversity in the plantlets. Nevertheless, blue and red light seemed to promote the DOXP/MEP pathway, while red light stimulates MVA pathway. Amorpha-4,11-diene synthase gene expression was significantly increased in plants cultivated under blue light, and not red light, promoting artemisinin content. Our results showed that light quality, more specifically blue and yellow light, positively affected secondary metabolism and the morphology of plantlets. It seemed that steps prior to the last one in the artemisinin biosynthesis pathway could be strongly influenced by blue light. Our work provides an alternative method to increase the amount of artemisinin production in A. annua without the use of transgenic plants, by the employment of blue light.
Collapse
Affiliation(s)
- Ellen M Lopes
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Department of Botany, Federal University of Rio de Janeiro State (UNIRIO), Avenida Pasteur nº 458, 5th Floor, Room 512, Rio de Janeiro, RJ, CEP: 22290-240, Brazil
| | - Fábia Guimarães-Dias
- Laboratory of Plant Molecular Genetics (LGMV), Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Thália do S S Gama
- Laboratory of Plant Anatomy (LAV), Institute of Biosciences, Department of Botany, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Arthur L Macedo
- Laboratory of Natural Products (LaProMar), Institute of Chemistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Post-Graduate Program in Pharmacy, Laboratory of Natural Products and Mass Spectrometry (LaPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Alessandra L Valverde
- Laboratory of Natural Products (LaProMar), Institute of Chemistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Marcela C de Moraes
- Laboratory of Chromatography and Screening Strategies, Institute of Chemistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ana Cristina A de Aguiar-Dias
- Laboratory of Plant Anatomy (LAV), Institute of Biosciences, Department of Botany, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Humberto R Bizzo
- Brazilian Agricultural Research Corporation (Embrapa), Food Agroindustry, Rio de Janeiro, RJ, Brazil
| | - Marcio Alves-Ferreira
- Laboratory of Plant Molecular Genetics (LGMV), Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Eliana S Tavares
- Laboratory of Plant Anatomy, Institute of Biology, Department of Botany, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Andrea F Macedo
- Integrated Laboratory of Plant Biology (LIBV), Institute of Biosciences, Department of Botany, Federal University of Rio de Janeiro State (UNIRIO), Avenida Pasteur nº 458, 5th Floor, Room 512, Rio de Janeiro, RJ, CEP: 22290-240, Brazil.
| |
Collapse
|
38
|
Regulation of Photomorphogenic Development by Plant Phytochromes. Int J Mol Sci 2019; 20:ijms20246165. [PMID: 31817722 PMCID: PMC6941077 DOI: 10.3390/ijms20246165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/03/2022] Open
Abstract
Photomorphogenesis and skotomorphogenesis are two key events that control plant development, from seed germination to flowering and senescence. A group of wavelength-specific photoreceptors, E3 ubiquitin ligases, and various transcription factors work together to regulate these two critical processes. Phytochromes are the main photoreceptors in plants for perceiving red/far-red light and transducing the light signals to downstream factors that regulate the gene expression network for photomorphogenic development. In this review, we highlight key developmental stages in the life cycle of plants and how phytochromes and other components in the phytochrome signaling pathway play roles in plant growth and development.
Collapse
|
39
|
Liu Y, Patra B, Pattanaik S, Wang Y, Yuan L. GATA and Phytochrome Interacting Factor Transcription Factors Regulate Light-Induced Vindoline Biosynthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2019; 180:1336-1350. [PMID: 31123092 PMCID: PMC6752914 DOI: 10.1104/pp.19.00489] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 05/18/2023]
Abstract
Catharanthus roseus is the exclusive source of an array of terpenoid indole alkaloids including the anticancer drugs vincristine and vinblastine, derived from the coupling of catharanthine and vindoline. Leaf-synthesized vindoline is regulated by light. A seven-step enzymatic process is involved in the sequential conversion of tabersonine to vindoline; however, the regulatory mechanism controlling the expression of genes encoding these enzymes has not been elucidated. Here, we identified CrGATA1, an Leu-Leu-Met domain GATA transcription factor that regulates light-induced vindoline biosynthesis in C. roseus seedlings. Expression of CrGATA1 and the vindoline pathway genes T16H2, T3O, T3R, D4H, and DAT was significantly induced by light. In addition, CrGATA1 activated the promoters of five light-responsive vindoline pathway genes in plant cells. Two GATC motifs in the D4H promoter were critical for CrGATA1-mediated transactivation. Transient overexpression of CrGATA1 in C. roseus seedlings resulted in up-regulation of vindoline pathway genes and increased vindoline accumulation. Conversely, virus-induced gene silencing of CrGATA1 in young C. roseus leaves significantly repressed key vindoline pathway genes and reduced vindoline accumulation. Furthermore, we showed that a C. roseus Phytochrome Interacting Factor, CrPIF1, is a repressor of CrGATA1 and vindoline biosynthesis. Transient overexpression or virus-induced gene silencing of CrPIF1 in C. roseus seedlings altered CrGATA1 and vindoline pathway gene expression in the dark. CrPIF1 repressed CrGATA1 and DAT promoter activity by binding to G/E-box/PBE elements. Our findings reveal a regulatory module involving Phytochrome Interacting Factor -GATA that governs light-mediated biosynthesis of specialized metabolites.
Collapse
Affiliation(s)
- Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China 510650
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China 510650
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China 510650
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
40
|
Qi S, Lin Q, Feng X, Han H, Liu J, Zhang L, Wu S, Le J, Blumwald E, Hua X. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1446-1457. [PMID: 30623555 PMCID: PMC6576023 DOI: 10.1111/pbi.13070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by SPEECHLESS (SPCH). Phosphorylation of SPCH at the post-translational level has been reported to regulate stomatal development. Here we report that IDD16 acts as a negative regulator for stomatal initiation by directly regulating SPCH transcription. In Arabidopsis, IDD16 overexpression decreased abaxial stomatal density in a dose-dependent manner. Time course analysis revealed that the initiation of stomatal precursor cells in the IDD16-OE plants was severely inhibited. Consistent with these findings, the transcription of SPCH was greatly repressed in the IDD16-OE plants. In contrast, IDD16-RNAi transgenic line resulted in enhanced stomatal density, suggesting that IDD16 is an intrinsic regulator of stomatal development. ChIP analysis indicated that IDD16 could directly bind to the SPCH promoter. Furthermore, Arabidopsis plants overexpressing IDD16 exhibited significantly increased drought tolerance and higher integrated water use efficiency (WUE) due to reduction in leaf transpiration. Collectively, our results established that IDD16 negatively regulates stomatal initiation via trans-repression of SPCH, and thus provide a practical tool for increasing plant WUE through the manipulation of IDD16 expression.
Collapse
Affiliation(s)
- Shi‐Lian Qi
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing‐Fang Lin
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Jun Feng
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui‐Ling Han
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Liu
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liu Zhang
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Shuang Wu
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Jie Le
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xue‐Jun Hua
- Key Laboratory of Plant Resources and Beijing Botanical GardenInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Life SciencesZhejiang Sci‐Tech UniversityHangzhouZhejiangChina
| |
Collapse
|
41
|
Verma SK, Gantait S, Jeong BR, Hwang SJ. Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Sci Rep 2018; 8:18009. [PMID: 30573772 PMCID: PMC6302110 DOI: 10.1038/s41598-018-36113-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
In this report, we have investigated the influence of different light qualities on Digitalis purpurea under a controlled environment. For this purpose, red (R), blue (B), fluorescent lamp (FL, control), along with combined red and blue (R:B) LEDs were used. Interestingly, the plant growth parameters such as number of leaf, longest root, width of leaf, width of stomata, width of trichome, leaf area, leaf or root fresh weight (FW), weight (DW) as well as length of trichome were maximum under R:B (8:2), and significantly larger than control plants. The stomatal conductance or anthocyanin was maximum under B LED than those under FL, however the photosynthesis rate was greater under FL. RuBisCO activity was maximum under R:B (1:1) LEDs while the quantity of the UV absorbing substances was highest under R LED than under FL. The maximum amount of cardenolides were obtained from leaf tissue under R:B (2:8) LED than those under FL. The R:B LEDs light was suitable for Digitalis plant growth, development, micro- and macro-elements, as well as cardenolides accumulation in the plant factory system. The adaptation of the growth strategy developed in this study would be useful for the production of optimized secondary metabolites in Digitalis spp.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Department of Agricultural Plant Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea. .,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea. .,Biotechnology Laboratory (TUBITAK Fellow), Department of Biology, Bolu Abant Izeet Baysal University, 14030, Bolu, Turkey.
| | - Saikat Gantait
- Crop Research Unit, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.,Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Byoung Ryong Jeong
- Department of Agricultural Plant Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea.,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea.,Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University, Jinju, 52828, South Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung Jae Hwang
- Department of Agricultural Plant Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea. .,Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea. .,Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University, Jinju, 52828, South Korea. .,Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
42
|
Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano R, Kieber JJ, Loraine AE, Schaller GE. Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. PLANT PHYSIOLOGY 2018; 178:130-147. [PMID: 30002259 PMCID: PMC6130010 DOI: 10.1104/pp.18.00414] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 05/03/2023]
Abstract
Fundamental questions regarding how chloroplasts develop from proplastids remain poorly understood despite their central importance to plant life. Two families of nuclear transcription factors, the GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and GOLDEN TWO-LIKE (GLK) families, have been implicated in directly and positively regulating chloroplast development. Here, we determined the degree of functional overlap between the two transcription factor families in Arabidopsis (Arabidopsis thaliana), characterizing their ability to regulate chloroplast biogenesis both alone and in concert. We determined the DNA-binding motifs for GNC and GLK2 using protein-binding microarrays; the enrichment of these motifs in transcriptome datasets indicates that GNC and GLK2 are repressors and activators of gene expression, respectively. ChIP-seq analysis of GNC identified PHYTOCHROME INTERACTING FACTOR and brassinosteroid activity genes as targets whose repression by GNC facilitates chloroplast biogenesis. In addition, GNC targets and represses genes involved in ERECTA signaling and thereby facilitates stomatal development. Our results define key regulatory features of the GNC and GLK transcription factor families that contribute to the control of chloroplast biogenesis and photosynthetic activity, including areas of independence and cross talk.
Collapse
Affiliation(s)
- Yan O Zubo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Ivory Clabaugh Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Maria V Yamburenko
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
43
|
Zhang Z, Ren C, Zou L, Wang Y, Li S, Liang Z. Characterization of the GATA gene family in Vitis vinifera: genome-wide analysis, expression profiles, and involvement in light and phytohormone response. Genome 2018; 61:713-723. [PMID: 30092656 DOI: 10.1139/gen-2018-0042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant GATA family is one of the most important transcription factors involved in light-responsive development, nitrogen metabolism, phytohormone signaling, and source/sink balance. However, the function of the GATA gene is less known in grape (Vitis vinifera L.). In this study, we comprehensively analyzed the GATA family in grape, particularly the phylogenetic evolution, duplication patterns, conserved motifs, gene structures, cis-elements, tissue expression patterns, and predicted function of VvGATA genes in response to abiotic stress. The potential roles of VvGATA genes in berry development were also investigated. The GATA transcription factors displayed expression diversity among different grape organs and tissues, and some of them showed preferential expression in a specific tissue. Heterotrophic cultured cells were used as model systems for the functional characterization of the VvGATA gene and study of its response to light and phytohormone. Results indicated that some VvGATA genes displayed differential responses to light and phytohormones, suggesting their role in light and hormone signaling pathways. A thorough analysis of GATA transcription factors in grape (V. vinifera L.) presented the characterization and functional prediction of VvGATA genes. The data presented here lay the foundation for further functional studies of grape GATA transcription factors.
Collapse
Affiliation(s)
- Zhan Zhang
- a Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Science, Beijing, 100093, China.,b University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong Ren
- a Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Science, Beijing, 100093, China.,b University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luming Zou
- a Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Science, Beijing, 100093, China.,b University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Wang
- a Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Science, Beijing, 100093, China.,b University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohua Li
- a Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Science, Beijing, 100093, China
| | - Zhenchang Liang
- a Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Science, Beijing, 100093, China.,c Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
44
|
Bastakis E, Hedtke B, Klermund C, Grimm B, Schwechheimer C. LLM-Domain B-GATA Transcription Factors Play Multifaceted Roles in Controlling Greening in Arabidopsis. THE PLANT CELL 2018; 30:582-599. [PMID: 29453227 PMCID: PMC5894840 DOI: 10.1105/tpc.17.00947] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Chlorophyll accumulation and chloroplast development are regulated at multiple levels during plant development. The paralogous LLM-domain B-GATA transcription factors GNC and GNL contribute to chlorophyll biosynthesis and chloroplast formation in light-grown Arabidopsis thaliana seedlings. Whereas there is already ample knowledge about the transcriptional regulation of GNC and GNL, the identity of their downstream targets is largely unclear. Here, we identified genes controlling greening directly downstream of the GATAs by integrating data from RNA-sequencing and microarray data sets. We found that genes encoding subunits of the Mg-chelatase complex and 3,8-divinyl protochlorophyllide a 8-vinyl reductase (DVR) likely function directly downstream of the GATAs and that DVR expression is limiting in the pale-green gnc gnl mutants. The GATAs also regulate the nucleus-encoded SIGMA (SIG) factor genes, which control transcription in the chloroplast and suppress the greening defects of sig mutants. Furthermore, GNC and GNL act, at the gene expression level, in an additive manner with the GOLDEN2-LIKE1 (GLK1) and GLK2 transcription factor genes, which are also important for proper chlorophyll accumulation. We thus reveal that chlorophyll biosynthesis genes are directly controlled by LLM-domain B-GATAs and demonstrate that these transcription factors play an indirect role in the control of greening through regulating SIGMA factor genes.
Collapse
Affiliation(s)
- Emmanouil Bastakis
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Boris Hedtke
- Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Carina Klermund
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Bernhard Grimm
- Plant Physiology, Humboldt University Berlin, 10115 Berlin, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
45
|
Abstract
Stomata are pores on plant epidermis that facilitate gas exchange and water evaporation between plants and the environment. Given the central role of stomata in photosynthesis and water-use efficiency, two vital events for plant growth, stomatal development is tightly controlled by a diverse range of signals. A family of peptide hormones regulates stomatal patterning and differentiation. In addition, plant hormones as well as numerous environmental cues influence the decision of whether to make stomata or not in distinct and complex manners. In this review, we summarize recent findings that reveal the mechanism of these three groups of signals in controlling stomatal formation, and discuss how these signals are integrated into the core stomatal development pathway.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
46
|
Bölter B, Seiler F, Soll J. Analysis of Arabidopsis thaliana Growth Behavior in Different Light Qualities. J Vis Exp 2018. [PMID: 29443082 PMCID: PMC5912333 DOI: 10.3791/57152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Plant biologists often need to observe the growth behavior of their chosen species. To this end, the plants need constant environmental and stable light conditions, which are preferably variable in quantity and quality so that studies under different setups can be conducted. These requirements are met by climatic chambers featuring light emitting diodes (LED) lights, which can – in contrast to fluorescent lights – be set to different wavelengths. LEDs are energy conserving and emit virtually no heat even at light intensities, which often constitutes a problem with other light sources. The presented protocol provides a step-by-step guidance of how to program a climatic chamber equipped with variable LED lights as well as describing several approaches for in depth analysis of growth phenotypes. Depending on the experimental set-up various characteristics of the growing plants can be observed and analyzed. Here we describe how to determine fresh weight, leaf area, photosynthetic activity, and stomatal density. We demonstrate that in order to obtain reliable data and draw valid conclusions it is mandatory to use a sufficient number of individuals for statistical evaluation. Taking too few plants for this kind of analysis results in high statistical errors and consequently in less clear interpretations of the data.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität
| | - Franka Seiler
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität;
| |
Collapse
|
47
|
Hepworth C, Caine RS, Harrison EL, Sloan J, Gray JE. Stomatal development: focusing on the grasses. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:1-7. [PMID: 28826033 DOI: 10.1016/j.pbi.2017.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 05/02/2023]
Abstract
The development and patterning of stomata in the plant epidermis has emerged as an ideal system for studying fundamental plant developmental processes. Over the past twenty years most studies of stomata have used the model dicotyledonous plant Arabidopsis thaliana. However, cultivated monocotyledonous grass (or Gramineae) varieties provide the majority of human nutrition, and future research into grass stomata could be of critical importance for improving food security. Recent studies using Brachypodium distachyon, Hordeum vulgare (barley) and Oryza sativa (rice) have led to the identification of the core transcriptional regulators essential for stomatal initiation and progression in grasses, and begun to unravel the role of secretory signaling peptides in controlling stomatal developmental. This review revisits how stomatal developmental unfolds in grasses, and identifies key ontogenetic steps for which knowledge of the underpinning molecular mechanisms remains outstanding.
Collapse
Affiliation(s)
| | - Robert S Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Emily L Harrison
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Jennifer Sloan
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK; Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN, UK
| |
Collapse
|
48
|
Lee JH, Jung JH, Park CM. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. THE PLANT CELL 2017; 29:2817-2830. [PMID: 29070509 PMCID: PMC5728130 DOI: 10.1105/tpc.17.00371] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/06/2017] [Accepted: 10/24/2017] [Indexed: 05/20/2023]
Abstract
Stomata are epidermal openings that facilitate plant-atmosphere gas exchange during photosynthesis, respiration, and water evaporation. Stomatal differentiation and patterning are spatially and temporally regulated by the master regulators SPEECHLESS (SPCH), MUTE, and FAMA, which constitute a central gene regulatory network along with Inducer of CBF Expression (ICE) transcription factors for this developmental process. Stomatal development is also profoundly influenced by environmental conditions, such as light, temperature, and humidity. Light induces stomatal development, and various photoreceptors modulate this response. However, it is unknown how light is functionally linked with the master regulatory network. Here, we demonstrate that, under dark conditions, the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) degrades ICE proteins through ubiquitination pathways in leaf abaxial epidermal cells in Arabidopsis thaliana Accordingly, the ICE proteins accumulate in the nuclei of leaf abaxial epidermal cells in COP1-defective mutants, which constitutively produce stomata. Notably, light in the blue, red, and far-red wavelength ranges suppresses the COP1-mediated degradation of the ICE proteins to induce stomatal development. These observations indicate that light is directly linked with the ICE-directed signaling module, via the COP1-mediated protein surveillance system, in the modulation of stomatal development.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
49
|
Xu Z, Casaretto JA, Bi Y, Rothstein SJ. Genome-wide binding analysis of AtGNC and AtCGA1 demonstrates their cross-regulation and common and specific functions. PLANT DIRECT 2017; 1:e00016. [PMID: 31245665 PMCID: PMC6508505 DOI: 10.1002/pld3.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 05/26/2023]
Abstract
GATA transcription factors are involved in multiple processes in plant growth and development. Two GATA factors, NITRATE-INDUCIBLE,CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1, also named GNL), are important regulators in greening, flowering, senescence, and hormone signaling. However, their direct target genes related to these biological processes are poorly characterized. Here, GNC and CGA1 are shown to be transcription activators and by using chromatin immunoprecipitation sequencing (ChIP-seq), 1475 and 638 genes are identified to be associated with GNC and CGA1 binding, respectively. Enrichment of diverse motifs in the peak binding regions for GNC and CGA1 suggests the possibility that these two transcription factors also interact with other transcription factors and in addition genes coding for DNA-binding proteins are highly enriched among GNC- and CGA1-associated genes. Despite the fact that these two GATA factors are known to share a large portion of co-expressed genes, our analysis revealed a low percentage of overlapping binding-associated genes for these two homologues. This suggests a possible cross-regulation between these, which is verified using ChIP-qPCR. The common and specific biological processes regulated by GNC and CGA1 also support this notion. Functional analysis of the binding-associated genes revealed that those encoding transcription factors, E3 ligase, as well as genes with roles in plant development are highly enriched, indicating that GNC and CGA1 mediate complex genetic networks in regulating different aspects of plant growth and development.
Collapse
Affiliation(s)
- Zhenhua Xu
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - José A. Casaretto
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Yong‐Mei Bi
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Steven J. Rothstein
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
50
|
Comparative Phenotypical and Molecular Analyses of Arabidopsis Grown under Fluorescent and LED Light. PLANTS 2017; 6:plants6020024. [PMID: 28608805 PMCID: PMC5489796 DOI: 10.3390/plants6020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/08/2017] [Accepted: 06/11/2017] [Indexed: 12/05/2022]
Abstract
Comparative analyses of phenotypic and molecular traits of Arabidopsis thaliana grown under standardised conditions is still a challenge using climatic devices supplied with common light sources. These are in most cases fluorescent lights, which have several disadvantages such as heat production at higher light intensities, an invariable spectral output, and relatively rapid “ageing”. This results in non-desired variations of growth conditions and lowers the comparability of data acquired over extended time periods. In this study, we investigated the growth behaviour of Arabidopsis Col0 under different light conditions, applying fluorescent compared to LED lamps, and we conducted physiological as well as gene expression analyses. By changing the spectral composition and/or light intensity of LEDs we can clearly influence the growth behaviour of Arabidopsis and thereby study phenotypic attributes under very specific light conditions that are stable and reproducible, which is not necessarily given for fluorescent lamps. By using LED lights, we can also roughly mimic the sun light emission spectrum, enabling us to study plant growth in a more natural-like light set-up. We observed distinct growth behaviour under the different light regimes which was reflected by physiological properties of the plants. In conclusion, LEDs provide variable emission spectra for studying plant growth under defined, stable light conditions.
Collapse
|