1
|
Wang H, Zhang J, Wang Y, Fang B, Ge W, Wang X, Zou J, Ji R. Transcriptome Analysis of Chinese Cabbage Infected with Plasmodiophora Brassicae in the Primary Stage. Sci Rep 2024; 14:26180. [PMID: 39477989 PMCID: PMC11525481 DOI: 10.1038/s41598-024-76634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis). However, the resistance mechanism of Chinese cabbage against clubroot disease is still unclear. It is important to exploit the key genes that response to early infection of P. brassicae. In this study, it was found that zoospores were firstly invaded hair roots on the 8th day after inoculating with 1 × 107 spores/mL P. brassicae. Transcriptome analysis found that the early interaction between Chinese cabbage and P. brassicae caused the significant expression change of some defense genes, such as NBS-LRRs and pathogenesis-related genes, etc. The above results were verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Otherwise, peroxidase (POD) salicylic acid (SA) and jasmonic acid (JA) were also found to be important signal molecules in the resistance to clubroot disease in Chinese cabbage. This study provides important clues for understanding the resistance mechanism of Chinese cabbage against clubroot disease.
Collapse
Affiliation(s)
- Huihui Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jing Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yilian Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, 110161, Liaoning, China
| | - Bing Fang
- Foreign language teaching department, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjie Ge
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinlei Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jiawei Zou
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Ruiqin Ji
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
2
|
Marie TRJG, Leonardos ED, Rana N, Grodzinski B. Tomato and mini-cucumber tolerance to photoperiodic injury involves photorespiration and the engagement of nighttime cyclic electron flow from dynamic LEDs. FRONTIERS IN PLANT SCIENCE 2024; 15:1384518. [PMID: 38841277 PMCID: PMC11150841 DOI: 10.3389/fpls.2024.1384518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Controlled environment agriculture (CEA) is critical for achieving year-round food security in many regions of the world. CEA is a resource-intensive endeavor, with lighting consuming a large fraction of the energy. To lessen the burden on the grid and save costs, an extended photoperiod strategy can take advantage of off-peak time-of-day options from utility suppliers. However, extending the photoperiod limits crop production morphologically and physiologically if pushed too long. Here, we present a continuous-light dynamic light-emitting diode (LED) strategy (involving changes in spectra, intensity, and timing), that overcomes these limitations. We focused on tomato, a well described photoperiodic injury-sensitive species, and mini-cucumber, a photoperiodic injury-tolerant species to first assess morphological responses under control (16-h photoperiod, unchanging spectrum), constant (24-h photoperiod, unchanging spectrum), and two variations of a dynamic LED strategy, dynamic 1 (16-h "day", 3-h "peak", 8-h "night" spectra) and dynamic 2 (20-h "day", 5-h "peak", 4-h "night" spectra). Next, we tested the hypothesis of photorespiration's involvement in photoperiodic injury by using a leaf gas exchange coupled with chlorophyll fluorescence protocol. We further explored Adenosine triphosphate (ATP): Nicotinamide adenine dinucleotide phosphate (NADPH) ratio supply/demand responses by probing photosynthetic electron flow and proton flow with the MultispeQ instrument. We found canopy architecture can be tuned by minor variations of the same dynamic LED strategy, and we highlight dynamic 1 as the optimal choice for both tomato and mini-cucumber as it improved biomass/architecture and first-yield, respectively. A central discovery was that dynamic 1 had a significantly higher level of photorespiration than control, for both species. Unexpectedly, photorespiration was comparable between species under the same treatments, except under constant. However, preliminary data on a fully tolerant tomato genotype grown under constant treatment upregulated photorespiration similar to mini-cucumber. These results suggest that photoperiodic injury tolerance involves a sustained higher level of photorespiration under extended photoperiods. Interestingly, diurnal MultispeQ measurements point to the importance of cyclic electron flow at subjective nighttime that may also partially explain why dynamic LED strategies mitigate photoperiodic injury. We propose an ontology of photoperiodic injury involving photorespiration, triose phosphate utilization, peroxisomal H2O2-catalase balance, and a circadian external coincidence model of sensitivity that initiates programmed cell death.
Collapse
|
3
|
Bader ZE, Bae MJ, Ali A, Park J, Baek D, Yun DJ. GIGANTEA-ENHANCED EM LEVEL complex initiates drought escape response via dual function of ABA synthesis and flowering promotion. PLANT SIGNALING & BEHAVIOR 2023; 18:2180056. [PMID: 36814117 PMCID: PMC9980605 DOI: 10.1080/15592324.2023.2180056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Plants use the regulation of their circadian clock to adapt to daily environmental challenges, particularly water scarcity. During drought, plants accelerate flowering through a process called drought escape (DE) response, which is promoted by the circadian clock component GIGANTEA (GI). GI up-regulates the flowering inducer gene FLOWERING LOCUS T (FT). Phytohormone Abscisic acid (ABA) is also required for drought escape, and both GIGANTEA and Abscisic acid are interdependent in the transition. Recent research has revealed a new mechanism by which GIGANTEA and the protein ENHANCED EM LEVEL form a heterodimer complex that turns on ABA biosynthesis during drought stress by regulating the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3). This highlights the close connection between the circadian clock and ABA regulation and reveals a new adaptive strategy for plants to cope with drought and initiates the DE response.
Collapse
Affiliation(s)
- Zein Eddin Bader
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Min Jae Bae
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Chen X, Wang L, Yan X, Tang Z. Nutrition regulates sex expression in a gender diphasy plant, Lilium concolor var. megalanthum. FRONTIERS IN PLANT SCIENCE 2023; 14:1252242. [PMID: 37771480 PMCID: PMC10523294 DOI: 10.3389/fpls.2023.1252242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Introduction The evolution and maintenance of plant polymorphism have always received much attention. Gender diphasy is a rare sexual system. Plant individuals with gender diphasy can adjust the resource allocation of different functional organs according to the changes of environmental conditions to regulate the sex expression of individuals, and the sex expression can be converted between years. However, our understanding of sex expression in plants is still very insufficient. In this study, we explored whether the perennial plant Lilium concolor var. megalanthum has a gender diphasy system and whether environmental resource availability affects its resource allocation and sex expression. Method By collecting the bulbs of two sexual phenotypes (male and hermaphrodite) in the field and simulating the application of different levels of nutrients under the same habitat conditions, the growth and reproduction indexes and sex expression of plants in two years (2021 and 2022) were measured to evaluate the resource allocation strategy and sex expression pattern of Lilium concolor var. megalanthum. Results We found that the sex expression of Lilium concolor var. megalanthum was variable in continuous years. Under limited resources, Lilium concolor var. megalanthum increases the biomass resources of the leaves and has a longer flowering period. Resource availability regulates the growth, reproduction and sex expression of Lilium concolor var. megalanthum. Bulb size is the main factor affecting its growth, reproduction and sex expression after accumulating sufficient resources. Discussion This study confirms that Lilium concolor var. megalanthum has gender diphasy system. There is a strong trade-off between growth and reproduction under limited resources. Nutrient levels can regulate the reproduction and sex expression process of Lilium concolor var. megalanthum. With the growth of Lilium concolor var. megalanthum in consecutive years, the size dependence of bulbs may be the decisive factor in its sex expression.
Collapse
Affiliation(s)
- Xin Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
| | - Lei Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
| | - Xingfu Yan
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Zhanhui Tang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Key Laboratory for Vegetation Ecology, Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
5
|
Han X, Kui M, Xu T, Ye J, Du J, Yang M, Jiang Y, Hu Y. CO interacts with JAZ repressors and bHLH subgroup IIId factors to negatively regulate jasmonate signaling in Arabidopsis seedlings. THE PLANT CELL 2023; 35:852-873. [PMID: 36427252 PMCID: PMC9940882 DOI: 10.1093/plcell/koac331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
CONSTANS (CO) is a master flowering-time regulator that integrates photoperiodic and circadian signals in Arabidopsis thaliana. CO is expressed in multiple tissues, including young leaves and seedling roots, but little is known about the roles and underlying mechanisms of CO in mediating physiological responses other than flowering. Here, we show that CO expression is responsive to jasmonate. CO negatively modulated jasmonate-imposed root-growth inhibition and anthocyanin accumulation. Seedlings from co mutants were more sensitive to jasmonate, whereas overexpression of CO resulted in plants with reduced sensitivity to jasmonate. Moreover, CO mediated the diurnal gating of several jasmonate-responsive genes under long-day conditions. We demonstrate that CO interacts with JASMONATE ZIM-DOMAIN (JAZ) repressors of jasmonate signaling. Genetic analyses indicated that CO functions in a CORONATINE INSENSITIVE1 (COI1)-dependent manner to modulate jasmonate responses. Furthermore, CO physically associated with the basic helix-loop-helix (bHLH) subgroup IIId transcription factors bHLH3 and bHLH17. CO acted cooperatively with bHLH17 in suppressing jasmonate signaling, but JAZ proteins interfered with their transcriptional functions and physical interaction. Collectively, our results reveal the crucial regulatory effects of CO on mediating jasmonate responses and explain the mechanism by which CO works together with JAZ and bHLH subgroup IIId factors to fine-tune jasmonate signaling.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Ye
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
6
|
Luklová M, Novák J, Kopecká R, Kameniarová M, Gibasová V, Brzobohatý B, Černý M. Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome. Int J Mol Sci 2022; 23:14134. [PMID: 36430613 PMCID: PMC9695588 DOI: 10.3390/ijms232214134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Plants are sessile organisms forced to adapt to environmental variations recurring in a day-night cycle. Extensive research has uncovered the transcriptional control of plants' inner clock and has revealed at least some part of the intricate and elaborate regulatory mechanisms that govern plant diel responses and provide adaptation to the ever-changing environment. Here, we analyzed the proteome of the Arabidopsis thaliana mutant genotypes collected in the middle of the day and the middle of the night, including four mutants in the phytochrome (phyA, phyB, phyC, and phyD) and the circadian clock protein LHY. Our approach provided a novel insight into the diel regulations, identifying 640 significant changes in the night-day protein abundance. The comparison with previous studies confirmed that a large portion of identified proteins was a known target of diurnal regulation. However, more than 300 were novel oscillations hidden under standard growth chamber conditions or not manifested in the wild type. Our results indicated a prominent role for ROS metabolism and phytohormone cytokinin in the observed regulations, and the consecutive analyses confirmed that. The cytokinin signaling significantly increased at night, and in the mutants, the hydrogen peroxide content was lower, and the night-day variation seemed to be lost in the phyD genotype. Furthermore, regulations in the lhy and phyB mutants were partially similar to those found in the catalase mutant cat2, indicating shared ROS-mediated signaling pathways. Our data also shed light on the role of the relatively poorly characterized Phytochrome D, pointing to its connection to glutathione metabolism and the regulation of glutathione S-transferases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
7
|
Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. PLANT PHYSIOLOGY 2022; 190:1057-1073. [PMID: 35512208 PMCID: PMC9516778 DOI: 10.1093/plphys/kiac196] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/29/2022] [Indexed: 05/06/2023]
Abstract
The circadian clock facilitates the survival and reproduction of crop plants under harsh environmental conditions such as drought and osmotic and salinity stresses, mainly by reprogramming the endogenous transcriptional landscape. Nevertheless, the genome-wide roles of core clock components in rice (Oryza sativa L.) abiotic stress tolerance are largely uncharacterized. Here, we report that CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1), a vital clock component in rice, is required for tolerance to salinity, osmotic, and drought stresses. DNA affinity purification sequencing coupled with transcriptome analysis identified 692 direct transcriptional target genes of OsCCA1. Among them, the genes involved in abscisic acid (ABA) signaling, including group A protein phosphatase 2C genes and basic region and leucine zipper 46 (OsbZIP46), were substantially enriched. Moreover, OsCCA1 could directly bind the promoters of OsPP108 and OsbZIP46 to activate their expression. Consistently, oscca1 null mutants generated via genome editing displayed enhanced sensitivities to ABA signaling. Together, our findings illustrate that OsCCA1 confers multiple abiotic stress tolerance likely by orchestrating ABA signaling, which links the circadian clock with ABA signaling in rice.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ntambiyukuri A, Li X, Xiao D, Wang A, Zhan J, He L. Circadian Rhythm Regulates Reactive Oxygen Species Production and Inhibits Al-Induced Programmed Cell Death in Peanut. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081271. [PMID: 36013450 PMCID: PMC9410085 DOI: 10.3390/life12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Peanut is among the most important oil crops in the world. In the southern part of China, peanut is highly produced; however, the arable land is acidic. In acidic soils, aluminum (Al) inhibits plant growth and development by changing the properties of the cell wall and causing the disorder of the intracellular metabolic process. Circadian rhythm is an internal mechanism that occurs about every 24 h and enables plants to maintain internal biological processes with a daily cycle. To investigate the effect of photoperiod and Al stress on the Al-induced programmed cell death (PCD), two peanut varieties were treated with 100 μM AlCl3 under three photoperiodic conditions (8/16, SD; 12/12, ND; 16/8 h, LD). The results show that Al toxicity was higher in ZH2 than in 99-1507 and higher under LD than under SD. Root length decreased by 30, 37.5, and 50% in ZH2 and decreased by 26.08, 34.78, and 47.82% in 99-1507 under SD, ND, and LD, respectively, under Al stress. Photoperiod and Al induced cell death and ROS production. MDA content, PME activity, and LOX activity increased under SD, ND, and LD, respectively, under Al stress both in ZH2 and 99-1507. APX, SOD, CAT, and POD activities were higher under SD, ND, and LD, respectively. Al stress increased the level of AhLHY expression under SD and ND but decreased it under LD in both ZH2 and 99-1507. Contrastingly, AhSTS expression levels increased exponentially and were higher under SD, LD, and ND, respectively, under Al stress. Our results will be a useful platform to research PCD induced by Al and gain new insights into the genetic manipulation of the circadian clock for plant stress response.
Collapse
Affiliation(s)
- Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| |
Collapse
|
9
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Cortleven A, Roeber VM, Frank M, Bertels J, Lortzing V, Beemster GTS, Schmülling T. Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:838284. [PMID: 35646013 PMCID: PMC9134115 DOI: 10.3389/fpls.2022.838284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 06/15/2023]
Abstract
Plants are exposed to regular diurnal rhythms of light and dark. Changes in the photoperiod by the prolongation of the light period cause photoperiod stress in short day-adapted Arabidopsis thaliana. Here, we report on the transcriptional response to photoperiod stress of wild-type A. thaliana and photoperiod stress-sensitive cytokinin signaling and clock mutants and identify a core set of photoperiod stress-responsive genes. Photoperiod stress caused altered expression of numerous reactive oxygen species (ROS)-related genes. Photoperiod stress-sensitive mutants displayed similar, but stronger transcriptomic changes than wild-type plants. The alterations showed a strong overlap with those occurring in response to ozone stress, pathogen attack and flagellin peptide (flg22)-induced PAMP triggered immunity (PTI), which have in common the induction of an apoplastic oxidative burst. Interestingly, photoperiod stress triggers transcriptional changes in jasmonic acid (JA) and salicylic acid (SA) biosynthesis and signaling and results in increased JA, SA and camalexin levels. These responses are typically observed after pathogen infections. Consequently, photoperiod stress increased the resistance of Arabidopsis plants to a subsequent infection by Pseudomonas syringae pv. tomato DC3000. In summary, we show that photoperiod stress causes transcriptional reprogramming resembling plant pathogen defense responses and induces systemic acquired resistance (SAR) in the absence of a pathogen.
Collapse
Affiliation(s)
- Anne Cortleven
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Venja M. Roeber
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Manuel Frank
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Vivien Lortzing
- Institute of Biology/Applied Zoology—Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Gerrit T. S. Beemster
- Laboratory for Integrated Molecular Plant Physiology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thomas Schmülling
- Dahlem Centre of Plant Sciences, Institute of Biology/Applied Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Du K, Wu W, Liao T, Yang J, Kang X. Transcriptome analysis uncovering regulatory networks and hub genes of Populus photosynthesis and chlorophyll content. Genomics 2022; 114:110385. [DOI: 10.1016/j.ygeno.2022.110385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
|
12
|
Venkat A, Muneer S. Role of Circadian Rhythms in Major Plant Metabolic and Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:836244. [PMID: 35463437 PMCID: PMC9019581 DOI: 10.3389/fpls.2022.836244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 05/10/2023]
Abstract
Plants require an endogenous regulatory network and mechanism to cope with diurnal environmental changes and compensate for their sessile nature. Plants use the circadian clock to anticipate diurnal changes. Circadian rhythm predicts a 24-h cycle with 16 h of light and 8 h of darkness in response to abiotic and biotic factors as well as the appropriate temperature. For a plant's fitness, proper growth, and development, these rhythms synchronize the diurnal photoperiodic changes. Input pathway, central oscillator, and output pathway are the three components that make up the endogenous clock. There are also transcriptional and translational feedback loops (TTFLs) in the clock, which are dependent on the results of gene expression. Several physiological processes, such as stress acclimatization, hormone signaling, morphogenesis, carbon metabolism, and defense response, are currently being investigated for their interactions with the circadian clock using phenotypic, genomic, and metabolic studies. This review examines the role of circadian rhythms in the regulation of plant metabolic pathways, such as photosynthesis and carbon metabolism, as well as developmental and degenerative processes, such as flowering and senescence. Furthermore, we summarized signaling pathways related to circadian rhythms, such as defense response and gene regulatory pathways.
Collapse
Affiliation(s)
- Ajila Venkat
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Frank M, Cortleven A, Pěnčík A, Novak O, Schmülling T. The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin. Int J Mol Sci 2022; 23:2936. [PMID: 35328357 PMCID: PMC8955046 DOI: 10.3390/ijms23062936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress responses. Here, we investigated the regulation of the photoperiod stress response in Arabidopsis thaliana by auxin and its interaction with CK. Transcriptome analysis revealed an altered transcript abundance of numerous auxin metabolism and signaling genes after photoperiod stress treatment. The changes appeared earlier and were stronger in the photoperiod-stress-sensitive CK receptor mutant arabidopsis histidine kinase 2 (ahk2),3 compared to wild-type plants. The concentrations of indole-3-acetic acid (IAA), IAA-Glc and IAA-Asp increased in both genotypes, but the increases were more pronounced in ahk2,3. Genetic analysis revealed that the gain-of-function YUCCA 1 (YUC1) mutant, yuc1D, displayed an increased photoperiod stress sensitivity. In contrast, a loss of the auxin receptors TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 in wild-type and ahk2,3 background caused a reduced photoperiod stress response. Overall, this study revealed that auxin promotes response to photoperiod stress antagonizing the protective CK.
Collapse
Affiliation(s)
- Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, D-14195 Berlin, Germany; (M.F.); (A.C.)
| |
Collapse
|
14
|
Zhang Z, Zheng Y, Zhang J, Wang N, Wang Y, Liu W, Bai S, Xie W. High-Altitude Genetic Selection and Genome-Wide Association Analysis of Yield-Related Traits in Elymus sibiricus L. Using SLAF Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:874409. [PMID: 35800604 PMCID: PMC9253694 DOI: 10.3389/fpls.2022.874409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 05/04/2023]
Abstract
The genetic adaptations to harsh climatic conditions in high altitudes and genetic basis of important agronomic traits are poorly understood in Elymus sibiricus L. In this study, an association population of 210 genotypes was used for population structure, selective sweep analysis, and genome-wide association study (GWAS) based on 88,506 single nucleotide polymorphisms (SNPs). We found 965 alleles under the natural selection of high altitude, which included 7 hub genes involved in the response to UV, and flavonoid and anthocyanin biosynthetic process based on the protein-protein interaction (PPI) analysis. Using a mixed linear model (MLM), the GWAS test identified a total of 1,825 significant loci associated with 12 agronomic traits. Based on the gene expression data of two wheat cultivars and the PPI analysis, we finally identified 12 hub genes. Especially, in plant height traits, the top hub gene (TOPLESS protein) encoding auxins and jasmonic acid signaling pathway, shoot apical meristem specification, and xylem and phloem pattern formation was highly overexpressed. These genes might play essential roles in controlling the growth and development of E. sibiricus. Therefore, this study provides fundamental insights relevant to hub genes and will benefit molecular breeding and improvement in E. sibiricus and other Elymus species.
Collapse
Affiliation(s)
- Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuying Zheng
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junchao Zhang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, China
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Wengang Xie,
| |
Collapse
|
15
|
Marriboina S, Sharma K, Sengupta D, Yadavalli AD, Sharma RP, Reddy Attipalli R. Evaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone-metabolic network. PHYSIOLOGIA PLANTARUM 2021; 173:1514-1534. [PMID: 34165187 DOI: 10.1111/ppl.13486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress results in significant losses in plant productivity and loss of cultivable lands. Although Pongamia pinnata is reported to be a salt-tolerant semiarid biofuel tree, the adaptive mechanisms to saline environments are elusive. Despite a reduction in carbon exchange rate (CER), the unchanged relative water content provides no visible salinity induced symptoms in leaves of hydroponic cultivated Pongamia seedlings for 8 days. Our Na+ -specific fluorescence results demonstrated that there was an effective apoplastic sodium sequestration in the roots. Salinity stress significantly increased zeatin (~5.5-fold), and jasmonic acid (~3.8-fold) levels in leaves while zeatin (~2.5-fold) content increased in leaves as well as in roots of salt-treated plants. Metabolite analysis suggested that osmolytes such as myo-inositol and mannitol were enhanced by ~12-fold in leaves and roots of salt-treated plants. Additionally, leaves of Pongamia showed a significant enhancement in carbohydrate content, while fatty acids were accumulated in roots under salt stress condition. At the molecular level, salt stress enhanced the expression of genes related to transporters, including the Salt Overly Sensitive 2 gene (SOS2), SOS3, vacuolar-cation/proton exchanger, and vacuolar-proton/ATPase exclusively in leaves, whereas the Sodium Proton Exchanger1 (NHX1), Cation Calcium Exchanger (CCX), and Cyclic Nucleotide Gated Channel 5 (CNGC5) were up-regulated in roots. Antioxidant gene expression analysis clearly demonstrated that peroxidase levels were significantly enhanced by ~10-fold in leaves, while Catalase and Fe-superoxide Dismutase (Fe-SOD) genes were increased in roots under salt stress. The correlation interaction studies between phytohormones and metabolites revealed new insights into the molecular and metabolic adaptations that confer salinity tolerance to Pongamia.
Collapse
Affiliation(s)
- Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kapil Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anurupa Devi Yadavalli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Prasad Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
16
|
Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nat Commun 2021; 12:5816. [PMID: 34611150 PMCID: PMC8492644 DOI: 10.1038/s41467-021-26088-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
During vegetative growth plants pass from a juvenile to an adult phase causing changes in shoot morphology. This vegetative phase change is primarily regulated by the opposite actions of two microRNAs, the inhibitory miR156 and the promoting miR172 as well as their respective target genes, constituting the age pathway. Here we show that the phytohormone cytokinin promotes the juvenile-to-adult phase transition through regulating components of the age pathway. Reduction of cytokinin signalling substantially delayed the transition to the adult stage. tZ-type cytokinin was particularly important as compared to iP- and the inactive cZ-type cytokinin, and root-derived tZ influenced the phase transition significantly. Genetic and transcriptional analyses indicated the requirement of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors and miR172 for cytokinin activity. Two miR172 targets, TARGET OF EAT1 (TOE1) and TOE2 encoding transcriptional repressors were necessary and sufficient to mediate the influence of cytokinin on vegetative phase change. This cytokinin pathway regulating plant aging adds to the complexity of the regulatory network controlling the juvenile-to-adult phase transition and links cytokinin to miRNA action.
Collapse
|
17
|
Ghorbel M, Brini F, Sharma A, Landi M. Role of jasmonic acid in plants: the molecular point of view. PLANT CELL REPORTS 2021; 40:1471-1494. [PMID: 33821356 DOI: 10.1007/s00299-021-02687-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Recent updates in JA biosynthesis, signaling pathways and the crosstalk between JA and others phytohormones in relation with plant responses to different stresses. In plants, the roles of phytohormone jasmonic acid (JA), amino acid conjugate (e.g., JA-Ile) and their derivative emerged in last decades as crucial signaling compounds implicated in stress defense and development in plants. JA has raised a great interest, and the number of researches on JA has increased rapidly highlighting the importance of this phytohormone in plant life. First, JA was considered as a stress hormone implicated in plant response to biotic stress (pathogens and herbivores) which confers resistance to biotrophic and hemibiotrophic pathogens contrarily to salicylic acid (SA) which is implicated in plant response to necrotrophic pathogens. JA is also implicated in plant responses to abiotic stress (such as soil salinity, wounding and UV). Moreover, some researchers have recently revealed that JA controls several physiological processes like root growth, growth of reproductive organs and, finally, plant senescence. JA is also involved in the biosynthesis of various metabolites (e.g., phytoalexins and terpenoids). In plants, JA signaling pathways are well studied in few plants essentially Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa L. confirming the crucial role of this hormone in plants. In this review, we highlight the last foundlings about JA biosynthesis, JA signaling pathways and its implication in plant maturation and response to environmental constraints.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Biology Department, Faculty of Science, University of Ha'il, P.O. box, Ha'il, 2440, Saudi Arabia
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, B.P '1177', 3018, Sfax, Tunisia
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Marco Landi
- Department of Agriculture, Food and Environment - University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
18
|
Leuendorf JE, Schmülling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071458. [PMID: 34371661 PMCID: PMC8309282 DOI: 10.3390/plants10071458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.
Collapse
|
19
|
Ma H, Wu J, Zhang H, Tang H, Wan Y. Identification and expression profiling of genes involved in circadian clock regulation in red dragon fruit ( Hylocereus polyrhizus) by full-length transcriptome sequencing. PLANT SIGNALING & BEHAVIOR 2021; 16:1907054. [PMID: 33825662 PMCID: PMC8143213 DOI: 10.1080/15592324.2021.1907054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Crassulacean acid metabolism (CAM) plants fix CO2 at night, exhibiting a reversed regulatory pattern of metabolomic pathways compared with most model plants, which have C3 and C4 pathways. In this study, we used a valuable tropic fruit, red dragon fruit (Hylocereus polyrhizus), as model plant to identify and analyze the circadian regulation genes. Due to the absence of red dragon fruit's whole-genome dataset, we established a full-length transcriptome dataset using single-molecule real-time (SMRT) sequencing method. A 7.66-Gb dataset with 4,552,474 subreads was generated, with an average length of 1,683 bp and an N50 of 2,446 bp. Using this dataset, we identified center oscillator genes: CCA1 (CIRCADIAN CLOCK ASSOCIATED1), ELF3 (EARLY FLOWERING 3), GI (GIGANTEA), LHY (LATE ELONGATED HYPOCOTYL), LNK1 (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1), and TOC1 (TIMING OF CAB EXPRESSION 1); a gene for the input pathway: CRY1 (CRYPTOCHROME); a gene for the output pathway: CO (CONSTANS); and genes related to the CAM pathway: MDH (MALATE DEHYDROGENASE), ME (MALIC ENZYMES), and PPDK (PYRUVATE PHOSPHATE DIKINASE). We further established the 24-h rhythmic expression pattern of these genes and classified these into three groups: HpCCA1, HpELF3, HpLHY, HpLNK1, and HpGI have expression peaks during the day; HpTOC1, HpCO, and HpCRY1 have highest expression levels at night; The genes involved in the CAM pathways, namely, HpMDH, HpME1, and HpPPDK, have double expression peaks in the day and night. Comparison of these expression patterns between red dragon fruit and model plants could provide clues in understanding the circadian clock regulation and the activity of the CAM pathways in cactus plants.
Collapse
Affiliation(s)
- Huaqing Ma
- College of Tropic Crops, Hainan University, Haikou, China
| | - Jiao Wu
- College of Tropic Crops, Hainan University, Haikou, China
| | - He Zhang
- College of Tropic Crops, Hainan University, Haikou, China
| | - Hua Tang
- College of Tropic Crops, Hainan University, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| | - Yinglang Wan
- College of Tropic Crops, Hainan University, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, China
| |
Collapse
|
20
|
Paponov M, Arakelyan A, Dobrev PI, Verheul MJ, Paponov IA. Nitrogen Deficiency and Synergism between Continuous Light and Root Ammonium Supply Modulate Distinct but Overlapping Patterns of Phytohormone Composition in Xylem Sap of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:573. [PMID: 33803638 PMCID: PMC8003008 DOI: 10.3390/plants10030573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Continuous light (CL) or a predominant nitrogen supply as ammonium (NH4+) can induce leaf chlorosis and inhibit plant growth. The similarity in injuries caused by CL and NH4+ suggests involvement of overlapping mechanisms in plant responses to these conditions; however, these mechanisms are poorly understood. We addressed this topic by conducting full factorial experiments with tomato plants to investigate the effects of NO3- or NH4+ supply under diurnal light (DL) or CL. We used plants at ages of 26 and 15 days after sowing to initiate the treatments, and we modulated the intensity of the stress induced by CL and an exclusive NH4+ supply from mild to strong. Under DL, we also studied the effect of nitrogen (N) deficiency and mixed application of NO3- and NH4+. Under strong stress, CL and exclusive NH4+ supply synergistically inhibited plant growth and reduced chlorophyll content. Under mild stress, when no synergetic effect between CL and NH4+ was apparent on plant growth and chlorophyll content, we found a synergetic effect of CL and NH4+ on the accumulation of several plant stress hormones, with an especially strong effect for jasmonic acid (JA) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, in xylem sap. This modulation of the hormonal composition suggests a potential role for these plant hormones in plant growth responses to the combined application of CL and NH4+. No synergetic effect was observed between CL and NH4+ for the accumulation of soluble carbohydrates or of mineral ions, indicating that these plant traits are less sensitive than the modulation of hormonal composition in xylem sap to the combined CL and NH4+ application. Under diurnal light, NH4+ did not affect the hormonal composition of xylem sap; however, N deficiency strongly increased the concentrations of phaseic acid (PA), JA, and salicylic acid (SA), indicating that decreased N concentration rather than the presence of NO3- or NH4+ in the nutrient solution drives the hormone composition of the xylem sap. In conclusion, N deficiency or a combined application of CL and NH4+ induced the accumulation of JA in xylem sap. This accumulation, in combination with other plant hormones, defines the specific plant response to stress conditions.
Collapse
Affiliation(s)
- Martina Paponov
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
| | - Aleksandr Arakelyan
- Department of Agronomy, Armenian National Agrarian University, Yerevan 0009, Armenia;
| | - Petre I. Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic;
| | - Michel J. Verheul
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
| | - Ivan A. Paponov
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
21
|
Roeber VM, Schmülling T, Cortleven A. The Photoperiod: Handling and Causing Stress in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:781988. [PMID: 35145532 PMCID: PMC8821921 DOI: 10.3389/fpls.2021.781988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 05/05/2023]
Abstract
The photoperiod, which is the length of the light period in the diurnal cycle of 24 h, is an important environmental signal. Plants have evolved sensitive mechanisms to measure the length of the photoperiod. Photoperiod sensing enables plants to synchronize developmental processes, such as the onset of flowering, with a specific time of the year, and enables them to alleviate the impact of environmental stresses occurring at the same time every year. During the last years, the importance of the photoperiod for plant responses to abiotic and biotic stresses has received increasing attention. In this review, we summarize the current knowledge on the signaling pathways involved in the photoperiod-dependent regulation of responses to abiotic (freezing, drought, osmotic stress) and biotic stresses. A central role of GIGANTEA (GI), which is a key player in the regulation of photoperiod-dependent flowering, in stress responses is highlighted. Special attention is paid to the role of the photoperiod in regulating the redox state of plants. Furthermore, an update on photoperiod stress, which is caused by sudden alterations in the photoperiod, is given. Finally, we will review and discuss the possible use of photoperiod-induced stress as a sustainable resource to enhance plant resistance to biotic stress in horticulture.
Collapse
|
22
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
23
|
Li MW, Lam HM. The Modification of Circadian Clock Components in Soybean During Domestication and Improvement. Front Genet 2020; 11:571188. [PMID: 33193673 PMCID: PMC7554537 DOI: 10.3389/fgene.2020.571188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Agricultural production is greatly dependent on daylength, which is determined by latitude. Living organisms align their physiology to daylength through the circadian clock, which is made up of input sensors, core and peripheral clock components, and output. The light/dark cycle is the major input signal, moderated by temperature fluctuations and metabolic changes. The core clock in plants functions mainly through a number of transcription feedback loops. It is known that the circadian clock is not essential for survival. However, alterations in the clock components can lead to substantial changes in physiology. Thus, these clock components have become the de facto targets of artificial selection for crop improvement during domestication. Soybean was domesticated around 5,000 years ago. Although the circadian clock itself is not of particular interest to soybean breeders, specific alleles of the circadian clock components that affect agronomic traits, such as plant architecture, sensitivity to light/dark cycle, flowering time, maturation time, and yield, are. Consequently, compared to their wild relatives, cultivated soybeans have been bred to be more adaptive and productive at different latitudes and habitats for acreage expansion, even though the selection processes were made without any prior knowledge of the circadian clock. Now with the advances in comparative genomics, known modifications in the circadian clock component genes in cultivated soybean have been found, supporting the hypothesis that modifications of the clock are important for crop improvement. In this review, we will summarize the known modifications in soybean circadian clock components as a result of domestication and improvement. In addition to the well-studied effects on developmental timing, we will also discuss the potential of circadian clock modifications for improving other aspects of soybean productivity.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Working with Inadequate Tools: Legislative Shortcomings in Protection against Ecological Effects of Artificial Light at Night. SUSTAINABILITY 2020. [DOI: 10.3390/su12062551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Collapse
|
25
|
Wang J, Song L, Gong X, Xu J, Li M. Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. Int J Mol Sci 2020; 21:E1446. [PMID: 32093336 PMCID: PMC7073113 DOI: 10.3390/ijms21041446] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Jasmonic acid (JA) is an endogenous growth-regulating substance, initially identified as a stress-related hormone in higher plants. Similarly, the exogenous application of JA also has a regulatory effect on plants. Abiotic stress often causes large-scale plant damage. In this review, we focus on the JA signaling pathways in response to abiotic stresses, including cold, drought, salinity, heavy metals, and light. On the other hand, JA does not play an independent regulatory role, but works in a complex signal network with other phytohormone signaling pathways. In this review, we will discuss transcription factors and genes involved in the regulation of the JA signaling pathway in response to abiotic stress. In this process, the JAZ-MYC module plays a central role in the JA signaling pathway through integration of regulatory transcription factors and related genes. Simultaneously, JA has synergistic and antagonistic effects with abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and other plant hormones in the process of resisting environmental stress.
Collapse
Affiliation(s)
- Jia Wang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Li Song
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Xue Gong
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Jinfan Xu
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
| | - Minhui Li
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China; (J.W.); (L.S.); (X.G.); (J.X.)
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
26
|
Hearn TJ, Webb AAR. Recent advances in understanding regulation of the Arabidopsis circadian clock by local cellular environment. F1000Res 2020; 9. [PMID: 32047621 PMCID: PMC6993837 DOI: 10.12688/f1000research.21307.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks have evolved to synchronise an organism’s physiology with the environmental rhythms driven by the Earth’s rotation on its axis. Over the past two decades, many of the genetic components of the
Arabidopsis thaliana circadian oscillator have been identified. The interactions between these components have been formulized into mathematical models that describe the transcriptional translational feedback loops of the oscillator. More recently, focus has turned to the regulation and functions of the circadian clock. These studies have shown that the system dynamically responds to environmental signals and small molecules. We describe advances that have been made in discovering the cellular mechanisms by which signals regulate the circadian oscillator of Arabidopsis in the context of tissue-specific regulation.
Collapse
Affiliation(s)
- Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK.,Research Department of Cell and Developmental Biology, Rockefeller Building, University College London, London, WC1E 6DE, UK.,Academic Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK
| |
Collapse
|
27
|
Crosstalk with Jasmonic Acid Integrates Multiple Responses in Plant Development. Int J Mol Sci 2020; 21:ijms21010305. [PMID: 31906415 PMCID: PMC6981462 DOI: 10.3390/ijms21010305] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role in the modulation of plant growth and development under stress conditions, and crosstalk between JA and other phytohormones involved in growth and development, such as gibberellic acid (GA), cytokinin, and auxin modulate various developmental processes. This review summarizes recent findings of JA crosstalk in the modulation of plant growth and development, focusing on JA–GA, JA–cytokinin, and JA–auxin crosstalk. The molecular mechanisms underlying this crosstalk are also discussed.
Collapse
|
28
|
Tong M, Lee K, Ezer D, Cortijo S, Jung J, Charoensawan V, Box MS, Jaeger KE, Takahashi N, Mas P, Wigge PA, Seo PJ. The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. PLANT PHYSIOLOGY 2020; 182:612-625. [PMID: 31712305 PMCID: PMC6945876 DOI: 10.1104/pp.19.00881] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
The Evening Complex (EC) is a core component of the Arabidopsis (Arabidopsis thaliana) circadian clock, which represses target gene expression at the end of the day and integrates temperature information to coordinate environmental and endogenous signals. Here we show that the EC induces repressive chromatin structure to regulate the evening transcriptome. The EC component ELF3 directly interacts with a protein from the SWI2/SNF2-RELATED (SWR1) complex to control deposition of H2A.Z-nucleosomes at the EC target genes. SWR1 components display circadian oscillation in gene expression with a peak at dusk. In turn, SWR1 is required for the circadian clockwork, as defects in SWR1 activity alter morning-expressed genes. The EC-SWR1 complex binds to the loci of the core clock genes PSEUDO-RESPONSE REGULATOR7 (PRR7) and PRR9 and catalyzes deposition of nucleosomes containing the histone variant H2A.Z coincident with the repression of these genes at dusk. This provides a mechanism by which the circadian clock temporally establishes repressive chromatin domains to shape oscillatory gene expression around dusk.
Collapse
Affiliation(s)
- Meixuezi Tong
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Jaehoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Mathew S Box
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Nozomu Takahashi
- Center for Research in Agricultural Genomics, Consortium Consejo Superior de Investigaciones Cientificas-Institute of Agrifood Research and Technology-Universitat Autònoma de Barcelona-Universidad de Barcelona, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Barcelona 08193, Spain
| | - Paloma Mas
- Center for Research in Agricultural Genomics, Consortium Consejo Superior de Investigaciones Cientificas-Institute of Agrifood Research and Technology-Universitat Autònoma de Barcelona-Universidad de Barcelona, Parc de Recerca Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona 08193, Spain
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, 14979 Großbeeren, Germany
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Wungrampha S, Joshi R, Rathore RS, Singla-Pareek SL, Pareek A. CO 2 uptake and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. PHOTOSYNTHESIS RESEARCH 2019; 142:211-227. [PMID: 31317383 DOI: 10.1007/s11120-019-00659-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 05/15/2023]
Abstract
Although only 2-4% of absorbed light is emitted as chlorophyll (Chl) a fluorescence, its measurement provides valuable information on photosynthesis of the plant, particularly of Photosystem II (PSII) and Photosystem I (PSI). In this paper, we have examined photosynthetic parameters of Suaeda fruticosa L. (family: Amaranthaceae), surviving under extreme xerohalophytic conditions, as influenced by diurnal rhythm or continuous dark condition. We report here CO2 gas exchange and the kinetics of Chl a fluorescence of S. fruticosa, made every 3 hours (hrs) for 3 days, using a portable infra-red gas analyzer and a Handy PEA fluorimeter. Our measurements on CO2 gas exchange show the maximum rate of photosynthesis to be at 08:00 hrs under diurnal condition and at 05:00 hrs under continuous dark. From the OJIP phase of Chl a fluorescence transient, we have inferred that the maximum quantum yield of PSII photochemistry must have increased during the night under diurnal rhythm, and between 11:00 and 17:00 hrs under constant dark. Overall, our study has revealed novel insights into how photosynthetic reactions are affected by the photoperiodic cycles in S. fruticosa under high salinity. This study has further revealed a unique strategy operating in this xero-halophyte where the repair mechanism for damaged PSII operates during the dark, which, we suggest, contributes to its ecological adaptation and ability to survive and reproduce under extreme saline, high light, and drought conditions. We expect these investigations to help in identifying key genes and pathways for raising crops for saline and dry areas.
Collapse
Affiliation(s)
- Silas Wungrampha
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ray S Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
30
|
Zhang Y, Bo C, Wang L. Novel Crosstalks between Circadian Clock and Jasmonic Acid Pathway Finely Coordinate the Tradeoff among Plant Growth, Senescence and Defense. Int J Mol Sci 2019; 20:ijms20215254. [PMID: 31652760 PMCID: PMC6862349 DOI: 10.3390/ijms20215254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/31/2023] Open
Abstract
Circadian clock not only functions as a cellular time-keeping mechanism, but also acts as a master regulator to coordinate the tradeoff between plant growth and defense in higher plants by timing a few kinds of phytohormone biosynthesis and signaling, including jasmonic acid (JA). Notably, circadian clock and JA pathway have recently been shown to intertwine with each other to ensure and optimize the plant fitness in an ever-changing environment. It has clearly demonstrated that there are multiple crosstalk pathways between circadian clock and JA at both transcriptional and post-transcriptional levels. In this scenario, circadian clock temporally modulates JA-mediated plant development events, herbivory resistance and susceptibility to pathogen. By contrast, the JA signaling regulates clock activity in a feedback manner. In this review, we summarized the cross networks between circadian clock and JA pathway at both transcriptional and post-transcriptional levels. We proposed that the novel crosstalks between circadian clock and JA pathway not only benefit for the understanding the JA-associated circadian outputs including leaf senescence, biotic, and abiotic defenses, but also put timing as a new key factor to investigate JA pathway in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Thines B, Parlan EV, Fulton EC. Circadian Network Interactions with Jasmonate Signaling and Defense. PLANTS 2019; 8:plants8080252. [PMID: 31357700 PMCID: PMC6724144 DOI: 10.3390/plants8080252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023]
Abstract
Plants experience specific stresses at particular, but predictable, times of the day. The circadian clock is a molecular oscillator that increases plant survival by timing internal processes to optimally match these environmental challenges. Clock regulation of jasmonic acid (JA) action is important for effective defenses against fungal pathogens and generalist herbivores in multiple plant species. Endogenous JA levels are rhythmic and under clock control with peak JA abundance during the day, a time when plants are more likely to experience certain types of biotic stresses. The expression of many JA biosynthesis, signaling, and response genes is transcriptionally controlled by the clock and timed through direct connections with core clock proteins. For example, the promoter of Arabidopsis transcription factor MYC2, a master regulator for JA signaling, is directly bound by the clock evening complex (EC) to negatively affect JA processes, including leaf senescence, at the end of the day. Also, tobacco ZEITLUPE, a circadian photoreceptor, binds directly to JAZ proteins and stimulates their degradation with resulting effects on JA root-based defenses. Collectively, a model where JA processes are embedded within the circadian network at multiple levels is emerging, and these connections to the circadian network suggest multiple avenues for future research.
Collapse
Affiliation(s)
- Bryan Thines
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA.
| | - Emily V Parlan
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| | - Elena C Fulton
- Biology Department, University of Puget Sound, 1500 North Warner St., Tacoma, WA 98416, USA
| |
Collapse
|
32
|
Singh M, Mas P. A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis. Genes (Basel) 2018; 9:E567. [PMID: 30477118 PMCID: PMC6315462 DOI: 10.3390/genes9120567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
The rotation of the Earth entails changes in environmental conditions that pervasively influence an organism's physiology and metabolism. An internal cellular mechanism known as the circadian clock acts as an internal timekeeper that is able to perceive the changes in environmental cues to generate 24-h rhythms in synchronization with daily and seasonal fluctuations. In plants, the circadian clock function is particularly important and regulates nearly every aspect of plant growth and development as well as proper responses to stresses. The circadian clock does not function in isolation but rather interconnects with an intricate network of different pathways, including those of phytohormones. Here, we describe the interplay of the circadian clock with a subset of hormones in Arabidopsis. The molecular components directly connecting the circadian and hormone pathways are described, highlighting the biological significance of such connections in the control of growth, development, fitness, and survival. We focus on the overlapping as well as contrasting circadian and hormonal functions that together provide a glimpse on how the Arabidopsis circadian system regulates hormone function in response to endogenous and exogenous cues. Examples of feedback regulation from hormone signaling to the clock are also discussed.
Collapse
Affiliation(s)
- Manjul Singh
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano R, Kieber JJ, Loraine AE, Schaller GE. Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. PLANT PHYSIOLOGY 2018; 178:130-147. [PMID: 30002259 PMCID: PMC6130010 DOI: 10.1104/pp.18.00414] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 05/03/2023]
Abstract
Fundamental questions regarding how chloroplasts develop from proplastids remain poorly understood despite their central importance to plant life. Two families of nuclear transcription factors, the GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and GOLDEN TWO-LIKE (GLK) families, have been implicated in directly and positively regulating chloroplast development. Here, we determined the degree of functional overlap between the two transcription factor families in Arabidopsis (Arabidopsis thaliana), characterizing their ability to regulate chloroplast biogenesis both alone and in concert. We determined the DNA-binding motifs for GNC and GLK2 using protein-binding microarrays; the enrichment of these motifs in transcriptome datasets indicates that GNC and GLK2 are repressors and activators of gene expression, respectively. ChIP-seq analysis of GNC identified PHYTOCHROME INTERACTING FACTOR and brassinosteroid activity genes as targets whose repression by GNC facilitates chloroplast biogenesis. In addition, GNC targets and represses genes involved in ERECTA signaling and thereby facilitates stomatal development. Our results define key regulatory features of the GNC and GLK transcription factor families that contribute to the control of chloroplast biogenesis and photosynthetic activity, including areas of independence and cross talk.
Collapse
Affiliation(s)
- Yan O Zubo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Ivory Clabaugh Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Maria V Yamburenko
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
34
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
35
|
Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Redox State in Plants: Till Stress Do Us Part. FRONTIERS IN PLANT SCIENCE 2018; 9:247. [PMID: 29556244 PMCID: PMC5844964 DOI: 10.3389/fpls.2018.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
A growing body of evidence demonstrates a significant relationship between cellular redox state and circadian rhythms. Each day these two vital components of plant biology influence one another, dictating the pace for metabolism and physiology. Diverse environmental stressors can disrupt this condition and, although plant scientists have made significant progress in re-constructing functional networks of plant stress responses, stress impacts on the clock-redox crosstalk is poorly understood. Inter-connected phenomena such as redox state and metabolism, internal and external environments, cellular homeostasis and rhythms can impede predictive understanding of coordinated regulation of plant stress response. The integration of circadian clock effects into predictive network models is likely to increase final yield and better predict plant responses to stress. To achieve such integrated understanding, it is necessary to consider the internal clock not only as a gatekeeper of environmental responses but also as a target of stress syndromes. Using chlorophyll fluorescence as a reliable and high-throughput probe of stress coupled to functional genomics and metabolomics will provide insights on the crosstalk across a wide range of stress severity and duration, including potential insights into oxidative stress response and signaling. We suggest the efficiency of photosystem II in light conditions (Fv'/Fm') to be the most dynamic of the fluorescence variables and therefore the most reliable parameter to follow the stress response from early sensing to mortality.
Collapse
Affiliation(s)
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
- Department of Molecular and Cellular Life Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
36
|
Jang G, Choi YD. Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid. PLANT SIGNALING & BEHAVIOR 2018; 13:e1451707. [PMID: 29533132 PMCID: PMC5927639 DOI: 10.1080/15592324.2018.1451707] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/09/2018] [Indexed: 05/25/2023]
Abstract
Drought stress provokes jasmonic acid (JA) signaling, which mediates plant stress responses; moreover, growing numbers of studies suggest that JA is involved in the modulation of root development under drought stress. Recently, we showed that JA promotes differentiation of xylem from procambial cells in Arabidopsis roots. Further molecular and genetic approaches revealed that the effect of JA on xylem development is caused by suppression of cytokinin responses, suggesting that JA antagonistically interacts with cytokinin to modulate xylem development. Here, we showed that, similar to JA, drought stress promotes xylem development. This suggests that the antagonistic interaction between JA and cytokinin is involved in drought-mediated xylem development, a hypothesis supported by the observation that drought stress increases JA responses and decreases cytokinin responses. Based on these findings, we propose that drought stress promotes xylem development, and the antagonistic interaction between JA and cytokinin is deeply involved in this process.
Collapse
Affiliation(s)
- Geupil Jang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Reza SH, Delhomme N, Street NR, Ramachandran P, Dalman K, Nilsson O, Minina EA, Bozhkov PV. Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death. PLoS One 2018; 13:e0192945. [PMID: 29499063 PMCID: PMC5834160 DOI: 10.1371/journal.pone.0192945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
The terminal differentiation and elimination of the embryo-suspensor is the earliest manifestation of programmed cell death (PCD) during plant ontogenesis. Molecular regulation of suspensor PCD remains poorly understood. Norway spruce (Picea abies) embryos provide a powerful model for studying embryo development because of their large size, sequenced genome, and the possibility to obtain a large number of embryos at a specific developmental stage through somatic embryogenesis. Here, we have carried out global gene expression analysis of the Norway spruce embryo-suspensor versus embryonal mass (a gymnosperm analogue of embryo proper) using RNA sequencing. We have identified that suspensors have enhanced expression of the NAC domain-containing transcription factors, XND1 and ANAC075, previously shown to be involved in the initiation of developmental PCD in Arabidiopsis. The analysis has also revealed enhanced expression of Norway spruce homologues of the known executioners of both developmental and stress-induced cell deaths, such as metacaspase 9 (MC9), cysteine endopeptidase-1 (CEP1) and ribonuclease 3 (RNS3). Interestingly, a spruce homologue of bax inhibitor-1 (PaBI-1, for Picea abies BI-1), an evolutionarily conserved cell death suppressor, was likewise up-regulated in the embryo-suspensor. Since Arabidopsis BI-1 so far has been implicated only in the endoplasmic reticulum (ER)-stress induced cell death, we investigated its role in embryogenesis and suspensor PCD using RNA interference (RNAi). We have found that PaBI-1-deficient lines formed a large number of abnormal embryos with suppressed suspensor elongation and disturbed polarity. Cytochemical staining of suspensor cells has revealed that PaBI-1 deficiency suppresses vacuolar cell death and induces necrotic type of cell death previously shown to compromise embryo development. This study demonstrates that a large number of cell-death components are conserved between angiosperms and gymnosperms and establishes a new role for BI-1 in the progression of vacuolar cell death.
Collapse
Affiliation(s)
- Salim H. Reza
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Prashanth Ramachandran
- Department of Organismal Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala University, Uppsala, SE, Sweden
| | - Kerstin Dalman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| |
Collapse
|
38
|
Jang G, Chang SH, Um TY, Lee S, Kim JK, Choi YD. Antagonistic interaction between jasmonic acid and cytokinin in xylem development. Sci Rep 2017; 7:10212. [PMID: 28860478 PMCID: PMC5579306 DOI: 10.1038/s41598-017-10634-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Developmental flexibility under stress conditions largely relies on the interactions between hormones that mediate stress responses and developmental processes. In this study, we showed that the stress hormone jasmonic acid (JA) induces formation of extra xylem in the roots of wild-type Arabidopsis thaliana (Col-0). JA signaling mutants such as coronatine insensitive1-1 and jasmonate resistant1-1 did not form extra xylem in response to JA, but the JA biosynthesis mutant oxophytodienoate-reductase3 did form extra xylem. These observations suggested that the JA response promotes xylem development. To understand the mechanism, we examined the regulatory interaction between JA and cytokinin, a negative regulator of xylem development. JA treatment reduced cytokinin responses in the vasculature, and exogenous cytokinin nullified the effect of JA on formation of extra xylem. A time-course experiment showed that suppression of cytokinin responses by JA does not occur rapidly, but the JA-mediated xylem phenotype is tightly linked to the suppression of the cytokinin response. Further analysis of arabidopsis histidine phosphotransfer protein6-1 and myc2-3 mutants revealed that the JA-responsive transcription factor MYC2 regulates the expression of AHP6 in response to JA and expression of AHP6 is involved in the JA-mediated xylem phenotype.
Collapse
Affiliation(s)
- Geupil Jang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Sun Hyun Chang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Tae Young Um
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Sangyool Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/Green BioScience and Technology, Seoul National University, Pyeongchang, 232-916, Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea.
| |
Collapse
|
39
|
Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA. The evening complex coordinates environmental and endogenous signals in Arabidopsis. NATURE PLANTS 2017; 3:17087. [PMID: 28650433 PMCID: PMC5495178 DOI: 10.1038/nplants.2017.87] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in Arabidopsis.
Collapse
Affiliation(s)
- Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Laura Gregoire
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Mathew S. Box
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) center, Mahidol University, Bangkok 10400, Thailand
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Xuelei Lai
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Dorothee Stöckle
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Chloe Zubieta
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Katja E. Jaeger
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Philip A. Wigge
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Correspondence to:
| |
Collapse
|
40
|
Kaur N, Pandey A, Kumar P, Pandey P, Kesarwani AK, Mantri SS, Awasthi P, Tiwari S. Regulation of Banana Phytoene Synthase (MaPSY) Expression, Characterization and Their Modulation under Various Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:462. [PMID: 28421096 PMCID: PMC5377061 DOI: 10.3389/fpls.2017.00462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Phytoene synthase (PSY) is a key regulatory enzyme of carotenoid biosynthesis pathway in plants. The present study examines the role of PSY in carotenogenesis and stress management in banana. Germplasm screening of 10 Indian cultivars showed that Nendran (3011.94 μg/100 g dry weight) and Rasthali (105.35 μg/100 g dry weight) contained the highest and lowest amounts of β-carotene, respectively in ripe fruit-pulp. Nendran ripe pulp also showed significantly higher antioxidant activity as compared to Rasthali. Meta-analysis of three banana PSY genes (MaPSY1, MaPSY2, and MaPSY3) was performed to identify their structural features, subcellular, and chromosomal localization in banana genome. The distinct expression patterns of MaPSY1, MaPSY2, and MaPSY3 genes were observed in various tissues, and fruit developmental stages of these two contrasting cultivars, suggesting differential regulation of the banana PSY genes. A positive correlation was observed between the expression of MaPSY1 and β-carotene accumulation in the ripe fruit-peel and pulp of Nendran. The presence of stress responsive cis-regulatory motifs in promoter region of MaPSY genes were correlated with the expression pattern during various stress (abscisic acid, methyl jasmonate, salicylic acid and dark) treatments. The positive modulation of MaPSY1 noticed under abiotic stresses suggested its role in plant physiological functions and defense response. The amino acid sequence analysis of the PSY proteins in contrasting cultivars revealed that all PSY comprises conserved domains related to enzyme activity. Bacterial complementation assay has validated the functional activity of six PSY proteins and among them PSY1 of Nendran (Nen-PSY1) gave the highest activity. These data provide new insights into the regulation of PSY expression in banana by developmental and stress related signals that can be explored in the banana improvement programs.
Collapse
Affiliation(s)
- Navneet Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
- Department of Biotechnology, Panjab UniversityChandigarh, India
| | - Ashutosh Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Prateek Kumar
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Pankaj Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Atul K Kesarwani
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Shrikant S Mantri
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Praveen Awasthi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India)Mohali, India
| |
Collapse
|
41
|
Lu C, Yang Y, Zhao R, Hua B, Xu C, Yan Z, Sun N, Qian R. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells. Protein Cell 2016; 7:820-832. [PMID: 27664156 PMCID: PMC5084156 DOI: 10.1007/s13238-016-0319-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022] Open
Abstract
Biological rhythms controlled by the circadian clock are absent in embryonic stem cells (ESCs). However, they start to develop during the differentiation of pluripotent ESCs to downstream cells. Conversely, biological rhythms in adult somatic cells disappear when they are reprogrammed into induced pluripotent stem cells (iPSCs). These studies indicated that the development of biological rhythms in ESCs might be closely associated with the maintenance and differentiation of ESCs. The core circadian gene Clock is essential for regulation of biological rhythms. Its role in the development of biological rhythms of ESCs is totally unknown. Here, we used CRISPR/CAS9-mediated genetic editing techniques, to completely knock out the Clock expression in mouse ESCs. By AP, teratoma formation, quantitative real-time PCR and Immunofluorescent staining, we did not find any difference between Clock knockout mESCs and wild type mESCs in morphology and pluripotent capability under the pluripotent state. In brief, these data indicated Clock did not influence the maintaining of pluripotent state. However, they exhibited decreased proliferation and increased apoptosis. Furthermore, the biological rhythms failed to develop in Clock knockout mESCs after spontaneous differentiation, which indicated that there was no compensational factor in most peripheral tissues as described in mice models before (DeBruyne et al., 2007b). After spontaneous differentiation, loss of CLOCK protein due to Clock gene silencing induced spontaneous differentiation of mESCs, indicating an exit from the pluripotent state, or its differentiating ability. Our findings indicate that the core circadian gene Clock may be essential during normal mESCs differentiation by regulating mESCs proliferation, apoptosis and activity.
Collapse
Affiliation(s)
- Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China
| | - Yang Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Bingxuan Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China.
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|