1
|
Martin‐Ramirez S, Stouthamer J, Smakowska‐Luzan E. More questions than answers: insights into potential cysteine-rich receptor-like kinases redox signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70176. [PMID: 40300149 PMCID: PMC12040379 DOI: 10.1111/tpj.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Over the past few decades, significant advancements have been made in understanding how plasma-membrane localised receptor kinases (RKs) detect signals and activate responses to various stimuli. Numerous examples of ligand-induced receptor activation mechanisms and their downstream consequences have been characterised in detail. The crucial role of post-translational modifications (PTMs), such as the phosphorylation of receptor kinases, has been demonstrated concerning different cellular responses. Given the diverse structures and architectures of the extracellular domains (ECDs) of RKs, it is probable that various forms of PTMs also play an essential role in receptor activation, including cysteine oxidative modifications triggered by reactive oxygen species (ROS). The function of cysteine oxidative modifications as functional redox switches that modulate protein structure and function has been extensively studied across various multicellular organisms. Based on biochemical and structural characteristics, the family of cysteine-rich receptor-like kinases (CRK) emerges as excellent candidates for proteins regulated in a redox-dependent manner. This review provides a concise overview of cysteine's biochemical and structural properties in its role as a molecular redox switch. Drawing on the currently available literature, we describe how cysteine-redox signalling is maintained, particularly in plant cells. We further focus on extracellular ROS perception and the role of CRKs as promising candidates for ROS sensors in Arabidopsis thaliana. We discuss the structural and biochemical properties of CRKs, their involvement in plant growth and defence processes, and our perspective on why CRKs could be key components of the ROS sensing machinery or ROS sensors, especially regarding the dimerization abilities of CRKs. Finally, we highlight the current challenges in identifying and quantifying cysteine oxidative modifications and propose methods for detecting ROS-modified cysteines that may be promising for investigating the role of CRKs in extracellular ROS perception and signalling.
Collapse
Affiliation(s)
- Sergio Martin‐Ramirez
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | - Jente Stouthamer
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
2
|
Ma Y, Chen Q, Javeed A, Wang Z, Liu S, Lin F, Zhang C, Liu C. Functional and transcriptomic characterization of the receptor-like protein kinase gene GmHSL1b involved in salt stress tolerance in soybean roots. PHYSIOLOGIA PLANTARUM 2025; 177:e70197. [PMID: 40207830 DOI: 10.1111/ppl.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The survival and adaptation of plants to adverse environmental conditions is crucial and is facilitated by receptor-like kinases, which act as cell surface receptors for a variety of signals. In this study, we identified a gene, GmHSL1b, encoding a receptor-like protein kinase that is responsive to abscisic acid (ABA) hormonal signals and is involved in the plant's response to drought and salt stresses. Subcellular localization assays have demonstrated that the GmHSL1b protein is located in the plasma membrane. Overexpression of the GmHSL1b gene in soybean enhanced root growth and development, as well as the plant's tolerance to salt stress, while the gmhsl1b mutant revealed increased sensitivity to salt stress. Comparative transcriptome analysis showed that some genes associated with various biological processes, such as mitogen-activated protein kinase (MAPK) cascade signaling, plant hormone signaling, cell wall remodeling, calcium signaling, and defense response mechanisms are differentially expressed in GmHSL1b overexpressing roots. Our research indicated that GmHSL1b can regulate the expression level of the candidate aquaporin GmPIP2-1, thereby affecting cell water content and the accumulation of reactive oxygen species (ROS) under salt stress. These findings indicate that the GmHSL1b participates in regulating root development and enhancing the tolerance to salt stress, thus offering insights for boosting crop adaptability to environmental stresses.
Collapse
Affiliation(s)
- Yuan Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qiumin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ansar Javeed
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of life sciences and medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou, China
| | - Zhenghao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sijia Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chunyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Zhao Y, Yang J, Liu Y, Hu X, Wang X, Yang J, Liu J. Wheat Yellow Mosaic Virus P1 Inhibits ROS Accumulation to Facilitate Viral Infection. Int J Mol Sci 2025; 26:1455. [PMID: 40003921 PMCID: PMC11855546 DOI: 10.3390/ijms26041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Reactive oxygen species (ROS), as signaling molecules, play a crucial role in the plant immune response. However, the mechanism(s) by which viruses affect ROS metabolism remain largely unexplored. Here, we found that wheat yellow mosaic virus (WYMV)-encoded P1 is a pathogenic protein. Transcriptomic and proteomic integrative analyses were performed on WYMV-infected overexpressing-P1 wheat and wild-type plants. A total of 9245 differentially expressed genes (DEGs) and 1383 differentially expressed proteins (DEPs) were identified in the transcriptome and proteome, respectively. At their intersection, 373 DEGs/Ps were identified. Enrichment analysis revealed that the expression of genes related to the ROS metabolism pathway in overexpressed P1 transgenic wheat (OE-P1) plants significantly increased during WYMV infection. We screened peroxidase (TaPOD) and thioredoxin reductase (TaTrxR) as they showed the most significant differences in expression. The silencing of TaPOD and TaTrxR revealed that they positively regulate WYMV infection by reducing ROS accumulation. Furthermore, hydrogen peroxide treatment induced WYMV resistance in wild-type wheat plants and OE-P1 transgenic plants. This study provides a theoretical basis for the role of P1 in plant viral infection.
Collapse
Affiliation(s)
- Yingjie Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Yang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaodi Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Riaz K, Yasmeen T, Attia KA, Kimiko I, Arif MS. Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape. TOXICS 2025; 13:57. [PMID: 39853055 PMCID: PMC11768867 DOI: 10.3390/toxics13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025]
Abstract
Microplastics pose a serious ecological threat to agricultural soils, as they are very persistent in nature. Microplastics can enter the soil system in different ways and present different shapes and concentrations. However, little is known about how plants react to microplastics with different concentrations and shapes. To this end, we conducted a factorial pot experiment with wheat (Triticum aestivum L.) in which we mixed polystyrene (PS) in different shapes (bead, fiber and powder) with soil at concentrations of 0, 1, 3 and 5%. Although all shapes of PS significantly reduced morphological growth traits, PS in powder shape was the microplastic that reduced plant height (by 58-60%), fresh biomass (by 54-55%) and dry biomass (by 61-62%) the most, especially at the 3% and 5% concentrations compared with 0% PS. Similar negative effects were also observed for root length and fresh root weight at the 3% and 5% concentrations, regardless of shape. A concentration-dependent reduction in the leaf area index (LAI) was also observed. Interestingly, increasing the PS concentration tended to up-regulate the activity of antioxidant enzymes for all shapes, indicating potential complexity and a highly time-dependent response related to various reactive oxygen species (ROS). Importantly, PS at the 5% concentration caused a significant reduction in chlorophyll pigmentation and photosynthetic rate. For the transpiration rate, stomatal conductance and intercellular CO2 concentration, the negative effects of PS on wheat plants increased with the increase in microplastic concentration for all shapes of PS. Overall, we concluded that PS microplastics at higher concentrations are potentially more devastating to the physiological growth and biochemical attributes of wheat, as evidenced by the negative effects on photosynthetic pigments and gas exchange parameters for all shapes. We recommend further research experiments not only on translocation but also on tissue-specific retention of different sizes in crops to fully understand their impact on food safety.
Collapse
Affiliation(s)
- Komal Riaz
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| | - Tahira Yasmeen
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishiku, Niigata 950-2181, Japan;
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| |
Collapse
|
5
|
Chai J, Gu X, Song P, Zhao X, Gao Y, Wang H, Zhang Q, Cai T, Liu Y, Li X, Song T, Zhu Z. Histone demethylase JMJ713 interaction with JMJ708 modulating H3K36me2, enhances rice heat tolerance through promoting hydrogen peroxide scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109284. [PMID: 39536507 DOI: 10.1016/j.plaphy.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The Earth is currently undergoing rapid warming cause of the accumulation in greenhouse gas emissions into the atmosphere and the consequent rise in global temperatures. High temperatures can bring the effects on rice development and growth and thereby decrease rice yield. In this study, we have identified that both JMJ713 and JMJ708 possess distinct histone demethylase activities. Specifically, JMJ713 modulates the levels of H3K36me2 while JMJ708 alters H3K9me3. Additionally, we have observed an interaction between JMJ713 and JMJ708, which collectively modify the level of H3K36me2. Furthermore, our findings demonstrate that JMJ713 plays an essential role to heat stress responses in rice (Oryza sativa). The overexpression of JMJ713 enhances heat tolerance in rice, whereas JMJ713 RNA interference rice lines exhibit increased sensitivity to heat. Further investigations revealed that overexpression of JMJ713 activated catalase (CAT) and peroxidase (POD) activities by mitigating excessive accumulation of reactive oxygen species (ROS) caused by heat stress. Interestingly, the setting rates of JMJ713 RNA interference lines decreased in comparing to wild-type, indicating that JMJ713 might play a crucial role in the rice seed development stage as well. Collectively, this study not only highlights JMJ713 is involved in heat stress responses but also provides insights into the conserved Fe(Ⅱ) and α-ketoglutarate (KG) binding residues are crucial for the demethylase activity of JMJ713, as well as JMJ713 interacts with JMJ708 to jointly regulate the levels of H3K36me2.
Collapse
Affiliation(s)
- Jiaxin Chai
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiangyang Gu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinzhou Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yingjie Gao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haiqi Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tingting Cai
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yutong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoting Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tao Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China.
| | - Zhengge Zhu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
6
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
7
|
Puttamadanayaka S, Emayavaramban P, Yadav PK, Radhakrishna A, Mehta BK, Chandra A, Ahmad S, Sanivarapu H, Siddaiah CN, Yogendra K. Unravelling the molecular mechanism underlying drought stress tolerance in Dinanath (Pennisetum pedicellatum Trin.) grass via integrated transcriptomic and metabolomic analyses. BMC PLANT BIOLOGY 2024; 24:928. [PMID: 39367330 PMCID: PMC11452992 DOI: 10.1186/s12870-024-05579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour). Transcriptomic analysis of Dinanath grass leaves revealed that a total of 218 and 704 genes were differentially expressed under 48- and 96-hour drought conditions, respectively. The genes that were expressed differently (DEGs) and the metabolites that accumulated in response to 48-hour drought stress mainly showed enrichment in the biosynthesis of secondary metabolites, particularly phenolics and flavonoids. Conversely, under 96-hour drought conditions, the enriched pathways predominantly involved lipid metabolism, specifically sterol lipids. In particular, phenylpropanoid pathway and brassinosteroid signaling played a crucial role in drought response to 48- and 96-hour water deficit conditions, respectively. This variation in drought response indicates that the adaptation mechanism in Dinanath grass is highly dependent on the intensity of drought stress. In addition, different genes associated with phenylpropanoid and fatty acid biosynthesis, as well as signal transduction pathways namely phenylalanine ammonia-lyase, putrescine hydroxycinnamoyl transferase, abscisic acid 8'-hydroxylase 2, syntaxin-61, lipoxygenase 5, calcium-dependent protein kinase and phospholipase D alpha one, positively regulated with drought tolerance. Combined transcriptomic and metabolomic analyses highlights the outstanding involvement of regulatory pathways related to secondary cell wall thickening and lignin biosynthesis in imparting drought tolerance to Dinanath grass leaves. These findings collectively contribute to an enhanced understanding of candidate genes and key metabolites relevant to drought response in Dinanath grass. Furthermore, they establish a groundwork for the creation of a transcriptome database aimed at developing abiotic stress-tolerant grasses and major crop varieties through both transgenic and genome editing approaches.
Collapse
Affiliation(s)
| | | | | | - Auji Radhakrishna
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | | | - Amaresh Chandra
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Shahid Ahmad
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India
| | | | - Kalenahalli Yogendra
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India.
| |
Collapse
|
8
|
Fan K, Wu Y, Mao Z, Yin K, He Y, Pan X, Zhu X, Liao C, Cui L, Jia Q, Li Z. A novel NAC transcription factor ZmNAC55 negatively regulates drought stress in Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108938. [PMID: 39067103 DOI: 10.1016/j.plaphy.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Drought stress is a major limit on the maize growth and productivity, and understanding the drought response mechanism is one of the important ways to improve drought resistance in maize. However, more drought-related genes and their regulated mechanisms are still to be reported. Here, we identified a novel NAC transcription factor ZmNAC55 in Zea mays and comprehensively investigated the functions of ZmNAC55 under drought stress. ZmNAC55 belonged to the NAP subfamily. ZmNAC55 had a conserved NAC domain in the N-terminal region and a divergent TAR region in the C-terminal region. ZmNAC55 was a nuclear protein, and ZmNAC55 and its TAR region had the transcriptional activation activity. Furthermore, the expression level of ZmNAC55 in leaves could be highly induced by drought stress. ZmNAC55 overexpression in Arabidopsis conferred the drought-sensitive phenotype with higher water loss, lower survival rate, higher membrane ion leakage, and higher expression levels of some drought-related genes. Meanwhile, ZmNAC55 underexpression in maize enhanced drought tolerance with lower water loss, higher survival rate, lower membrane ion leakage and lower expression levels of some drought-related genes. In addition, ZmNAC55 appeared to be very key in regulating ROS production under drought stress. Moreover, ZmNAC55 could activate ZmHOP3 expression by binding to its promoter. A novel working model of ZmNAC55 under drought stress could be found in maize. Taken together, the NAC transcription factor ZmNAC55 could negatively regulate drought stress via increasing ZmHOP3 expression in maize. ZmNAC55 is a promising candidate for improving drought resistance in maize.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuchen Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijun Mao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kan Yin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi He
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinfeng Pan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxiao Zhu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changjian Liao
- Crop Research Institute, Fujian Academy of Agricultural Sciences/Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Fuzhou, 350013, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
| | - Qi Jia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhaowei Li
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Hino Y, Inada T, Yoshioka M, Yoshioka H. NADPH oxidase-mediated sulfenylation of cysteine derivatives regulates plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4641-4654. [PMID: 38577861 DOI: 10.1093/jxb/erae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Reactive oxygen species (ROS) are rapidly generated during plant immune responses by respiratory burst oxidase homolog (RBOH), which is a plasma membrane-localized NADPH oxidase. Although regulatory mechanisms of RBOH activity have been well documented, the ROS-mediated downstream signaling is unclear. We here demonstrated that ROS sensor proteins play a central role in ROS signaling via oxidative post-translational modification of cysteine residues, sulfenylation. To detect protein sulfenylation, we used dimedone, which specifically and irreversibly binds to sulfenylated proteins. The sulfenylated proteins were labeled by dimedone in Nicotiana benthamiana leaves, and the conjugates were detected by immunoblot analyses. In addition, a reductant dissociated H2O2-induced conjugates, suggesting that cysteine persulfide and/or polysulfides are involved in sulfenylation. These sulfenylated proteins were continuously increased during both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in a RBOH-dependent manner. Pharmacological inhibition of ROS sensor proteins by dimedone perturbated cell death, ROS accumulation induced by INF1 and MEK2DD, and defense against fungal pathogens. On the other hand, Rpi-blb2-mediated ETI responses were enhanced by dimedone. These results suggest that the sulfenylation of cysteine and its derivatives in various ROS sensor proteins are important events downstream of the RBOH-dependent ROS burst to regulate plant immune responses.
Collapse
Affiliation(s)
- Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Taichi Inada
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Zhou S, Wang W, Wang P, Ma H, Li W. The role of reactive oxygen species in regulation of the plasma membrane H+-ATPase activity in Masson pine (Pinus massoniana Lamb.) roots responding to acid stress. TREE PHYSIOLOGY 2024; 44:tpae083. [PMID: 38982738 DOI: 10.1093/treephys/tpae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
To understand the role of reactive oxygen species (ROS) in regulation of the plasma membrane (PM) H+-ATPase in acid-stressed Masson pine roots, different acidity (pH 6.6 as the control, pH 5.6 and pH 4.6) of simulated acid rain (SAR) added with and without external chemicals (H2O2, enzyme inhibitors and ROS scavenger) was prepared. After 30 days of SAR exposure, the plant morphological phenotype attributes, levels of cellular ROS and lipid peroxidation, enzymatic activities of antioxidants, PM nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and PM H+-ATPase activity in pine seedlings were measured. Compared with the control, the growth of pine seedlings exposed to SAR in the presence or absence of H2O2 was well-maintained, but the application of Na3VO4, 1,3-dimethyl-2-thiourea, N, N-dimethylthiourea (DMTU) and diphenyleneiodonium chloride (DPI) caused a substantial growth inhibition. In addition, SAR exposure, SAR with H2O2 treatment, and SAR with Na3VO4 treatment increased the cellular H2O2 content, O2- content and malondialdehyde (MDA) content, while the use of DMTU and DPI lead to relatively low levels. Similarly, the enzymatic activities of antioxidants, PM NADPH oxidase and PM H+-ATPase in acid stressed pine seedlings elevated with the increasing acidity. A significant stimulation of these enzymatic activities obtained from SAR with H2O2 treatment was observed, whereas which decreased obviously with the addition of Na3VO4, DMTU and DPI (P < 0.05). Moreover, a positive correlation was found between plant morphological attributes and the PM H+-ATPase activity (P < 0.05). Besides, the PM H+-ATPase activity positively correlated with the cellular ROS contents and the enzymatic activities of antioxidants and PM NADPH oxidase (P < 0.05). Therefore, the PM H+-ATPase is instrumental in the growth of pine seedlings resisting to acid stress by enhancing its activity. The process involves the signaling transduction of cellular ROS and coordination with PM NADPH oxidase.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
- Cooperative College, Jiangsu Vocational College of Business, Nantong 226011, P.R. China
| | - Wenxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ping Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Huiyan Ma
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Wenhui Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, P.R. China
| |
Collapse
|
11
|
Hou K, Cao L, Li W, Fang ZH, Sun D, Guo Z, Zhang L. Overexpression of Rhodiola crenulata glutathione peroxidase 5 increases cold tolerance and enhances the pharmaceutical value of the hairy roots. Gene 2024; 917:148467. [PMID: 38615983 DOI: 10.1016/j.gene.2024.148467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Rhodiola crenulata, a plant of great medicinal value found in cold high-altitude regions, has been excessively exploited due to the difficulty in cultivation. Understanding Rhodiola crenulata's adaptation mechanisms to cold environment can provide a theoretical basis for artificial breeding. Glutathione peroxidases (GPXs), critical enzymes found in plants, play essential roles in antioxidant defense through the ascorbate-glutathione cycle. However, it is unknown whether GPX5 contributes to Rhodiola crenulata's cold tolerance. In this study, we investigated the role of GPX5 in Rhodiola crenulata's cold tolerance mechanisms. By overexpressing Rhodiola crenulata GPX5 (RcGPX5) in yeast and Arabidopsis thaliana, we observed down-regulation of Arabidopsis thaliana GPX5 (AtGPX5) and increased cold tolerance in both organisms. Furthermore, the levels of antioxidants and enzyme activities in the ascorbate-glutathione cycle were elevated, and cold-responsive genes such as AtCBFs and AtCORs were induced. Additionally, RcGPX5 overexpressing lines showed insensitivity to exogenous abscisic acid (ABA), suggesting a negative regulation of the ABA pathway by RcGPX5. RcGPX5 also promoted the expression of several thioredoxin genes in Arabidopsis and interacted with two endogenous genes of Rhodiola crenulata, RcTrx2-3 and RcTrxo1, located in mitochondria and chloroplasts. These findings suggest a significantly different model in Rhodiola crenulata compared to Arabidopsis thaliana, highlighting a complex network involving the function of RcGPX5. Moreover, overexpressing RcGPX5 in Rhodiola crenulata hairy roots positively influenced the salidroside synthesis pathway, enhancing its pharmaceutical value for doxorubicin-induced cardiotoxicity. These results suggested that RcGPX5 might be a key component for Rhodiola crenulata to adapt to cold stress and overexpressing RcGPX5 could enhance the pharmaceutical value of the hairy roots.
Collapse
Affiliation(s)
- Kai Hou
- Pu'er People's Hospital, Yunnan, China; Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China
| | - Wen Li
- Pu'er People's Hospital, Yunnan, China
| | | | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China.
| | - Zhigang Guo
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China.
| | - Lipeng Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| |
Collapse
|
12
|
Panda SK, Gupta D, Patel M, Vyver CVD, Koyama H. Functionality of Reactive Oxygen Species (ROS) in Plants: Toxicity and Control in Poaceae Crops Exposed to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2071. [PMID: 39124190 PMCID: PMC11313751 DOI: 10.3390/plants13152071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Agriculture and changing environmental conditions are closely related, as weather changes could adversely affect living organisms or regions of crop cultivation. Changing environmental conditions trigger different abiotic stresses, which ultimately cause the accumulation of reactive oxygen species (ROS) in plants. Common ROS production sites are the chloroplast, endoplasmic reticulum, plasma membrane, mitochondria, peroxisomes, etc. The imbalance in ROS production and ROS detoxification in plant cells leads to oxidative damage to biomolecules such as lipids, nucleic acids, and proteins. At low concentrations, ROS initiates signaling events related to development and adaptations to abiotic stress in plants by inducing signal transduction pathways. In plants, a stress signal is perceived by various receptors that induce a signal transduction pathway that activates numerous signaling networks, which disrupt gene expression, impair the diversity of kinase/phosphatase signaling cascades that manage the stress response in the plant, and result in changes in physiological responses under various stresses. ROS production also regulates ABA-dependent and ABA-independent pathways to mitigate drought stress. This review focuses on the common subcellular location of manufacturing, complex signaling mechanisms, and networks of ROS, with an emphasis on cellular effects and enzymatic and non-enzymatic antioxidant scavenging mechanisms of ROS in Poaceae crops against drought stress and how the manipulation of ROS regulates stress tolerance in plants. Understanding ROS systems in plants could help to create innovative strategies to evolve paths of cell protection against the negative effects of excessive ROS in attempts to improve crop productivity in adverse environments.
Collapse
Affiliation(s)
- Sanjib Kumar Panda
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Divya Gupta
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Mayur Patel
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India; (S.K.P.); (D.G.); (M.P.)
| | - Christell Van Der Vyver
- Institute of Plant Biotechnology, Stellenbosch University, Private Bag X1, Stellenbosch 7601, South Africa;
| | - Hiroyuki Koyama
- Faculty of Applied Biology, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Liu R, Tan X, Wang Y, Lin F, Li P, Rahman FU, Sun L, Jiang J, Fan X, Liu C, Zhang Y. The cysteine-rich receptor-like kinase CRK10 targeted by Coniella diplodiella effector CdE1 contributes to white rot resistance in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3026-3039. [PMID: 38318854 DOI: 10.1093/jxb/erae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.
Collapse
Affiliation(s)
- Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yiming Wang
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chonghuai Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ying Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| |
Collapse
|
14
|
Liu H, Li X, Yin Z, Hu J, Xie L, Wu H, Han S, Li B, Zhang H, Li C, Li L, Zhang F, Tan G. Identification and characterization of the CRK gene family in the wheat genome and analysis of their expression profile in response to high temperature-induced male sterility. PeerJ 2024; 12:e17370. [PMID: 38737737 PMCID: PMC11086307 DOI: 10.7717/peerj.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.
Collapse
Affiliation(s)
- Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Xiaoyi Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Zehui Yin
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Junmin Hu
- Jiaozuo Seed Management Station, Jiaozuo, Henan Province, China
| | - Liuyong Xie
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huanhuan Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Shuying Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Huifang Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| | - Fuli Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Dancheng, Henan Province, China
| | - Guangxuan Tan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan Province, China
- Engineering Technology Research Center of Crop Molecular Breeding and Cultivation in Henan Province, Zhoukou, Henan Province, China
| |
Collapse
|
15
|
Der C, Courty PE, Recorbet G, Wipf D, Simon-Plas F, Gerbeau-Pissot P. Sterols, pleiotropic players in plant-microbe interactions. TRENDS IN PLANT SCIENCE 2024; 29:524-534. [PMID: 38565452 DOI: 10.1016/j.tplants.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.
Collapse
Affiliation(s)
- Christophe Der
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | - Ghislaine Recorbet
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | | | | |
Collapse
|
16
|
Jing XQ, Shi PT, Zhang R, Zhou MR, Shalmani A, Wang GF, Liu WT, Li WQ, Chen KM. Rice kinase OsMRLK63 contributes to drought tolerance by regulating reactive oxygen species production. PLANT PHYSIOLOGY 2024; 194:2679-2696. [PMID: 38146904 DOI: 10.1093/plphys/kiad684] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/27/2023]
Abstract
Drought is a major adverse environmental factor that plants face in nature but the molecular mechanism by which plants transduce stress signals and further endow themselves with tolerance remains unclear. Malectin/malectin-like domains containing receptor-like kinases (MRLKs) have been proposed to act as receptors in multiple biological signaling pathways, but limited studies show their roles in drought-stress signaling and tolerance. In this study, we demonstrate OsMRLK63 in rice (Oryza sativa L.) functions in drought tolerance by acting as the receptor of 2 rapid alkalization factors, OsRALF45 and OsRALF46. We show OsMRLK63 is a typical receptor-like kinase that positively regulates drought tolerance and reactive oxygen species (ROS) production. OsMRLK63 interacts with and phosphorylates several nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with the primarily phosphorylated site at Ser26 in the N-terminal of RESPIRATORY BURST OXIDASE HOMOLOGUE A (OsRbohA). The application of the 2 small signal peptides (OsRALF45/46) on rice can greatly alleviate the dehydration of plants induced by mimic drought. This function depends on the existence of OsMRLK63 and the NADPH oxidase-dependent ROS production. The 2 RALFs interact with OsMRLK63 by binding to its extracellular domain, suggesting they may act as drought/dehydration signal sensors for the OsMRLK63-mediated process. Our study reveals a OsRALF45/46-OsMRLK63-OsRbohs module which contributes to drought-stress signaling and tolerance in rice.
Collapse
Affiliation(s)
- Xiu-Qing Jing
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, Shanxi 030619, China
| | - Peng-Tao Shi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng-Ru Zhou
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gang-Feng Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qiang Li
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
18
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
19
|
Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108032. [PMID: 37757722 DOI: 10.1016/j.plaphy.2023.108032] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
20
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
21
|
Zeiner A, Colina FJ, Citterico M, Wrzaczek M. CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES: their evolution, structure, and roles in stress response and development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4910-4927. [PMID: 37345909 DOI: 10.1093/jxb/erad236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Plant-specific receptor-like protein kinases (RLKs) are central components for sensing the extracellular microenvironment. CYSTEINE-RICH RLKs (CRKs) are members of one of the biggest RLK subgroups. Their physiological and molecular roles have only begun to be elucidated, but recent studies highlight the diverse types of proteins interacting with CRKs, as well as the localization of CRKs and their lateral organization within the plasma membrane. Originally the DOMAIN OF UNKNOWN FUNCTION 26 (DUF26)-containing extracellular region of the CRKs was proposed to act as a redox sensor, but the potential activating post-translational modification or ligands perceived remain elusive. Here, we summarize recent progress in the analysis of CRK evolution, molecular function, and role in plant development, abiotic stress responses, plant immunity, and symbiosis. The currently available information on CRKs and related proteins suggests that the CRKs are central regulators of plant signaling pathways. However, more research using classical methods and interdisciplinary approaches in various plant model species, as well as structural analyses, will not only enhance our understanding of the molecular function of CRKs, but also elucidate the contribution of other cellular components in CRK-mediated signaling pathways.
Collapse
Affiliation(s)
- Adam Zeiner
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Francisco J Colina
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Matteo Citterico
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
22
|
Sasaki Y, González-Tobón J, Hino Y, Jin C, Li T, Nguyen TAN, Oakley B, Stevens D. 12th Japan-US Seminar in Plant Pathology Meeting Report. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:549-553. [PMID: 37102778 DOI: 10.1094/mpmi-04-23-0041-mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The 12th iteration of the Japan-US Seminar in Plant Pathology was held in Ithaca, New York at Cornell University in the fall of 2022. Presentations covered a range of topics under the theme "Remodeling of the Plant-Microbe Environment During Disease, Defense, and Mutualism," and the meeting included a panel discussion of best practices in science communication. This report presents highlights of the meeting, from the perspective of early career participants of the seminar. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yumino Sasaki
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chujia Jin
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| | - Tan Anh Nhi Nguyen
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Blake Oakley
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| | - Danielle Stevens
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
23
|
Zelman AK, Berkowitz GA. Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2856. [PMID: 37571010 PMCID: PMC10421127 DOI: 10.3390/plants12152856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes.
Collapse
Affiliation(s)
| | - Gerald Alan Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
24
|
Wang L, Yang T, Pan Y, Shi L, Jin Y, Huang X. The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae. Int J Mol Sci 2023; 24:11041. [PMID: 37446218 DOI: 10.3390/ijms241311041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Microalgae have outstanding abilities to transform carbon dioxide (CO2) into useful lipids, which makes them extremely promising as renewable sources for manufacturing beneficial compounds. However, during this process, reactive oxygen species (ROS) can be inevitably formed via electron transfers in basal metabolisms. While the excessive accumulation of ROS can have negative effects, it has been supported that proper accumulation of ROS is essential to these organisms. Recent studies have shown that ROS increases are closely related to total lipid in microalgae under stress conditions. However, the exact mechanism behind this phenomenon remains largely unknown. Therefore, this paper aims to introduce the production and elimination of ROS in microalgae. The roles of ROS in three different signaling pathways for lipid biosynthesis are then reviewed: receptor proteins and phosphatases, as well as redox-sensitive transcription factors. Moreover, the strategies and applications of ROS-induced lipid biosynthesis in microalgae are summarized. Finally, future perspectives in this emerging field are also mentioned, appealing to more researchers to further explore the relative mechanisms. This may contribute to improving lipid accumulation in microalgae.
Collapse
Affiliation(s)
- Liufu Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Pan
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Liqiu Shi
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yaqi Jin
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
25
|
Fan S, Xu Y, Bai M, Luo F, Yu J, Yang G. Integrated Transcriptome and Metabolome Analysis Revealed the Causal Agent of Primary Bud Necrosis in 'Summer Black' Grape. Int J Mol Sci 2023; 24:10410. [PMID: 37373557 DOI: 10.3390/ijms241210410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Primary bud necrosis of grape buds is a physiological disorder that leads to decreased berry yield and has a catastrophic impact on the double cropping system in sub-tropical areas. The pathogenic mechanisms and potential solutions remain unknown. In this study, the progression and irreversibility patterns of primary bud necrosis in 'Summer Black' were examined via staining and transmission electron microscopy observation. Primary bud necrosis was initiated at 60 days after bud break and was characterized by plasmolysis, mitochondrial swelling, and severe damage to other organelles. To reveal the underlying regulatory networks, winter buds were collected during primary bud necrosis progression for integrated transcriptome and metabolome analysis. The accumulation of reactive oxygen species and subsequent signaling cascades disrupted the regulation systems for cellular protein quality. ROS cascade reactions were related to mitochondrial stress that can lead to mitochondrial dysfunction, lipid peroxidation causing damage to membrane structure, and endoplasmic reticulum stress leading to misfolded protein aggregates. All these factors ultimately resulted in primary bud necrosis. Visible tissue browning was associated with the oxidation and decreased levels of flavonoids during primary bud necrosis, while the products of polyunsaturated fatty acids and stilbenes exhibited an increasing trend, leading to a shift in carbon flow from flavonoids to stilbene. Increased ethylene may be closely related to primary bud necrosis, while auxin accelerated cell growth and alleviated necrosis by co-chaperone VvP23-regulated redistribution of auxin in meristem cells. Altogether, this study provides important clues for further study on primary bud necrosis.
Collapse
Affiliation(s)
- Shaogang Fan
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yanshuai Xu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Feixiong Luo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jun Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Guoshun Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
26
|
Zhou S, Luo Q, Nie Z, Wang C, Zhu W, Hong Y, Zhao J, Pei B, Ma W. CRK41 Modulates Microtubule Depolymerization in Response to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1285. [PMID: 36986973 PMCID: PMC10051889 DOI: 10.3390/plants12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The pivotal role of cysteine-rich receptor-like kinases (CRKs) in modulating growth, development, and responses to stress has been widely acknowledged in Arabidopsis. However, the function and regulation of CRK41 has remained unclear. In this study, we demonstrate that CRK41 is critical for modulating microtubule depolymerization in response to salt stress. The crk41 mutant exhibited increased tolerance, while overexpression of CRK41 led to hypersensitivity to salt. Further analysis revealed that CRK41 interacts directly with the MAP kinase3 (MPK3), but not with MPK6. Inactivation of either MPK3 or MPK6 could abrogate the salt tolerance of the crk41 mutant. Upon NaCl treatment, microtubule depolymerization was heightened in the crk41 mutant, yet alleviated in the crk41mpk3 and crk41mpk6 double mutants, indicating that CRK41 suppresses MAPK-mediated microtubule depolymerizations. Collectively, these results reveal that CRK41 plays a crucial role in regulating microtubule depolymerization triggered by salt stress through coordination with MPK3/MPK6 signalling pathways, which are key factors in maintaining microtubule stability and conferring salt stress resistance in plants.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Qiuling Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Changhui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
| | - Jun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baolei Pei
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (S.Z.)
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
27
|
Pierre E, Marcelo P, Croutte A, Dauvé M, Bouton S, Rippa S, Pageau K. Impact of Rhamnolipids (RLs), Natural Defense Elicitors, on Shoot and Root Proteomes of Brassica napus by a Tandem Mass Tags (TMTs) Labeling Approach. Int J Mol Sci 2023; 24:ijms24032390. [PMID: 36768708 PMCID: PMC9916879 DOI: 10.3390/ijms24032390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The rapeseed crop is susceptible to many pathogens such as parasitic plants or fungi attacking aerial or root parts. Conventional plant protection products, used intensively in agriculture, have a negative impact on the environment as well as on human health. There is therefore a growing demand for the development of more planet-friendly alternative protection methods such as biocontrol compounds. Natural rhamnolipids (RLs) can be used as elicitors of plant defense mechanisms. These glycolipids, from bacteria secretome, are biodegradable, non-toxic and are known for their stimulating and protective effects, in particular on rapeseed against filamentous fungi. Characterizing the organ responsiveness to defense-stimulating compounds such as RLs is missing. This analysis is crucial in the frame of optimizing the effectiveness of RLs against various diseases. A Tandem Mass Tags (TMT) labeling of the proteins extracted from the shoots and roots of rapeseed has been performed and showed a differential pattern of protein abundance between them. Quantitative proteomic analysis highlighted the differential accumulation of parietal and cytoplasmic defense or stress proteins in response to RL treatments with a clear effect of the type of application (foliar spraying or root absorption). These results must be considered for further use of RLs to fight specific rapeseed pathogens.
Collapse
Affiliation(s)
- Elise Pierre
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Antoine Croutte
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Morgane Dauvé
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Sophie Bouton
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, UMR CNRS 7025, Alliance Sorbonne Universités, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (S.R.); (K.P.)
| | - Karine Pageau
- Unité Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UMRt 1158, Université de Picardie Jules Verne, 80039 Amiens, France
- Correspondence: (S.R.); (K.P.)
| |
Collapse
|
28
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
29
|
Lüdke D, Yan Q, Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. THE NEW PHYTOLOGIST 2022; 236:24-42. [PMID: 35794845 DOI: 10.1111/nph.18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| |
Collapse
|
30
|
Wrublewsky S, Glas J, Carlein C, Nalbach L, Hoffmann MDA, Pack M, Vilas-Boas EA, Ribot N, Kappl R, Menger MD, Laschke MW, Ampofo E, Roma LP. The loss of pancreatic islet NADPH oxidase (NOX)2 improves islet transplantation. Redox Biol 2022; 55:102419. [PMID: 35933903 PMCID: PMC9357848 DOI: 10.1016/j.redox.2022.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/31/2022] Open
Abstract
Islet transplantation is a promising treatment strategy for type 1 diabetes mellitus (T1DM) patients. However, oxidative stress-induced graft failure due to an insufficient revascularization is a major problem of this therapeutic approach. NADPH oxidase (NOX)2 is an important producer of reactive oxygen species (ROS) and several studies have already reported that this enzyme plays a crucial role in the endocrine function and viability of β-cells. Therefore, we hypothesized that targeting islet NOX2 improves the outcome of islet transplantation. To test this, we analyzed the cellular composition and viability of isolated wild-type (WT) and Nox2-/- islets by immunohistochemistry as well as different viability assays. Ex vivo, the effect of Nox2 deficiency on superoxide production, endocrine function and anti-oxidant protein expression was studied under hypoxic conditions. In vivo, we transplanted WT and Nox2-/- islets into mouse dorsal skinfold chambers and under the kidney capsule of diabetic mice to assess their revascularization and endocrine function, respectively. We found that the loss of NOX2 does not affect the cellular composition and viability of isolated islets. However, decreased superoxide production, higher glucose-stimulated insulin secretion as well as expression of nuclear factor erythroid 2-related factor (Nrf)2, heme oxygenase (HO)-1 and superoxide dismutase 1 (SOD1) was detected in hypoxic Nox2-/- islets when compared to WT islets. Moreover, we detected an early revascularization, a higher take rate and restoration of normoglycemia in diabetic mice transplanted with Nox2-/- islets. These findings indicate that the suppression of NOX2 activity represents a promising therapeutic strategy to improve engraftment and function of isolated islets.
Collapse
Affiliation(s)
- Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia Glas
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | | | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Eloisa Aparecida Vilas-Boas
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany; Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, 05508-900, Brazil
| | - Nathan Ribot
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Reinhard Kappl
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
31
|
Juurakko CL, diCenzo GC, Walker VK. Brachypodium Antifreeze Protein Gene Products Inhibit Ice Recrystallisation, Attenuate Ice Nucleation, and Reduce Immune Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1475. [PMID: 35684248 PMCID: PMC9182837 DOI: 10.3390/plants11111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Antifreeze proteins (AFPs) from the model crop, Brachypodium distachyon, allow freeze survival and attenuate pathogen-mediated ice nucleation. Intriguingly, Brachypodium AFP genes encode two proteins, an autonomous AFP and a leucine-rich repeat (LRR). We present structural models which indicate that ice-binding motifs on the ~13 kDa AFPs can "spoil" nucleating arrays on the ~120 kDa bacterial ice nucleating proteins used to form ice at high sub-zero temperatures. These models are consistent with the experimentally demonstrated decreases in ice nucleating activity by lysates from wildtype compared to transgenic Brachypodium lines. Additionally, the expression of Brachypodium LRRs in transgenic Arabidopsis inhibited an immune response to pathogen flagella peptides (flg22). Structural models suggested that this was due to the affinity of the LRR domains to flg22. Overall, it is remarkable that the Brachypodium genes play multiple distinctive roles in connecting freeze survival and anti-pathogenic systems via their encoded proteins' ability to adsorb to ice as well as to attenuate bacterial ice nucleation and the host immune response.
Collapse
Affiliation(s)
- Collin L. Juurakko
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
- Department of Biomedical and Molecular Sciences, School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
32
|
Lian J, Han H, Chen X, Chen Q, Zhao J, Li C. Stemphylium lycopersici Nep1-like Protein (NLP) Is a Key Virulence Factor in Tomato Gray Leaf Spot Disease. J Fungi (Basel) 2022; 8:jof8050518. [PMID: 35628773 PMCID: PMC9144795 DOI: 10.3390/jof8050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Stemphylium lycopersici (S. lycopersici) is an economically important plant pathogen that causes grey leaf spot disease in tomato. However, functional genomic studies in S. lycopersici are lacking, and the factors influencing its pathogenicity remain largely unknown. Here, we present the first example of genetic transformation and targeted gene replacement in S. lycopersici. We functionally analyzed the NLP gene, which encodes a necrosis- and ethylene-inducing peptide 1 (Nep1)-like protein (NLP). We found that targeted disruption of the NLP gene in S. lycopersici significantly compromised its virulence on tomato. Moreover, our data suggest that NLP affects S. lycopersici conidiospore production and weakly affects its adaptation to osmotic and oxidative stress. Interestingly, we found that NLP suppressed the production of reactive oxygen species (ROS) in tomato leaves during S. lycopersici infection. Further, expressing the fungal NLP in tomato resulted in constitutive transcription of immune-responsive genes and inhibited plant growth. Through gene manipulation, we demonstrated the function of NLP in S. lycopersici virulence and development. Our work provides a paradigm for functional genomics studies in a non-model fungal pathogen system.
Collapse
Affiliation(s)
- Jiajie Lian
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Hongyu Han
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Xizhan Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Jiuhai Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (J.Z.); (C.L.)
| | - Chuanyou Li
- University of Chinese Academy of Sciences, Beijing 100864, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.Z.); (C.L.)
| |
Collapse
|
33
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Szal B. Respiratory Burst Oxidase Homolog D as a Modulating Component of Oxidative Response under Ammonium Toxicity. Antioxidants (Basel) 2022; 11:antiox11040703. [PMID: 35453389 PMCID: PMC9031508 DOI: 10.3390/antiox11040703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Delayed growth, a visible phenotypic component of the so-called ammonium syndrome, occurs when ammonium is the sole inorganic nitrogen source. Previously, we have shown that modification of apoplastic reactive oxygen species (apROS) metabolism is a key factor contributing to plant growth retardation under ammonium nutrition. Here, we further analyzed the changes in apROS metabolism in transgenic plants with disruption of the D isoform of the respiratory burst oxidase homolog (RBOH) that is responsible for apROS production. Ammonium-grown Arabidopsisrbohd plants are characterized by up to 50% lower contents of apoplastic superoxide and hydrogen peroxide. apROS sensing markers such as OZF1 and AIR12 were downregulated, and the ROS-responsive signaling pathway, including MPK3, was also downregulated in rbohd plants cultivated using ammonium as the sole nitrogen source. Additionally, the expression of the cell-wall-integrity marker FER and peroxidases 33 and 34 was decreased. These modifications may contribute to phenomenon wherein ammonium inhibited the growth of transgenic plants to a greater extent than that of wild-type plants. Overall, this study indicated that due to disruption of apROS metabolism, rbohd plants cannot adjust to ammonium toxicity and are more sensitive to these conditions.
Collapse
|
34
|
Heat Stress Reduces Root Meristem Size via Induction of Plasmodesmal Callose Accumulation Inhibiting Phloem Unloading in Arabidopsis. Int J Mol Sci 2022; 23:ijms23042063. [PMID: 35216183 PMCID: PMC8879574 DOI: 10.3390/ijms23042063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
The intercellular transport of sugars, nutrients, and small molecules is essential for plant growth, development, and adaptation to environmental changes. Various stresses are known to affect the cell-to-cell molecular trafficking modulated by plasmodesmal permeability. However, the mechanisms of plasmodesmata modification and molecules involved in the phloem unloading process under stress are still not well understood. Here, we show that heat stress reduces the root meristem size and inhibits phloem unloading by inducing callose accumulation at plasmodesmata that connect the sieve element and phloem pole pericycle. Furthermore, we identify the loss-of-function of CALLOSE SYNTHASE 8 (CalS8), which is expressed specifically in the phloem pole pericycle, decreasing the plasmodesmal callose deposition at the interface between the sieve element and phloem pole pericycle and alleviating the suppression at root meristem size by heat stress. Our studies indicate the involvement of callose in the interaction between root meristem growth and heat stress and show that CalS8 negatively regulates the thermotolerance of Arabidopsis roots.
Collapse
|
35
|
Chaparro-Encinas LA, Parra-Cota FI, Cruz-Mendívil A, Santoyo G, Peña-Cabriales JJ, Castro-Espinoza L, de Los Santos-Villalobos S. Transcriptional regulation of cell growth and reprogramming of systemic response in wheat (Triticum turgidum subsp. durum) seedlings by Bacillus paralicheniformis TRQ65. PLANTA 2022; 255:56. [PMID: 35106645 DOI: 10.1007/s00425-022-03837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Bacillus paralicheniformis TRQ65 reprograms the gene expression patterns associated with systemic response to potentially facilitate its colonization and stimulate cell growth and plant biomass. Plant growth-promoting rhizobacteria (PGPR) carry out numerous mechanisms that enhance growth in seedlings, such as nutrient solubilization, phytohormone production, biocontrol activity, and regulation of induced systemic resistance (ISR) and acquired systemic resistance (ASR). Bacillus paralicheniformis TRQ65 is a biological and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere. In this study, we performed a transcriptomic analysis of wheat seedlings inoculated with the native rhizobacterium Bacillus paralicheniformis TRQ65 (1 × 107 cells∙g -1 of soil) at early development stages (GS15). A morphometrical assay was carried out to confirm growth promotion and after the cultivation period, TRQ65 was re-isolated to define inoculum persistence. Inoculated seedlings showed a significant (P < 0.05) increase in shoot length (93.48%) and dry weight in both shoot (117.02%) and root (48.33%) tissues; also, the strain persisted in the soil at 1.4 × 107 UFC∙g-1 of soil. A total of 228 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 fold change|≥ 1.3) were observed in response to TRQ65 inoculation, of which 185 were down-regulated and 43 were up-regulated. The transcriptional patterns were characterized by the regulation of multidimensional cell growth (ROS, Ca+2 channel, and NADPH oxidases activity), suppression of defense mechanism (PR proteins, PDFs, ROS, transcription factors), induction of central stimuli receptors (RALF, WAK, MAPK), carbohydrate metabolism (invertase activity) and phytohormone-related transport (ABCG transporter and AAAP). These results suggest that B. paralicheniformis TRQ65 is a promising bioinoculant agent for increasing wheat growth and development by reprogramming ISR and ASR simultaneously, suppressing defense mechanisms and inducing central stimuli response.
Collapse
Affiliation(s)
- Luis A Chaparro-Encinas
- Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, México
- Universidad Autónoma Agraria Antonio Narro (UAAAN) Unidad Laguna, Periférico Raúl López Sánchez, Valle Verde, 27054, Torreón, Coahuila, México
| | - Fannie I Parra-Cota
- Campo Experimental Norman E. Borlaug-CIRNO. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Norman E. Borlaug Km. 12, CP 85000, Valle del Yaqui, Ciudad Obregón, Sonora, México
| | - Abraham Cruz-Mendívil
- Cátedras CONACYT, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa, Guasave, Sinaloa, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Juan J Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Campus Guanajuato, Irapuato Guanajuato, México
| | - Luciano Castro-Espinoza
- Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, México
| | | |
Collapse
|
36
|
Zhang H, Jiang C, Lei J, Dong J, Ren J, Shi X, Zhong C, Wang X, Zhao X, Yu H. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics 2022; 114:110285. [DOI: 10.1016/j.ygeno.2022.110285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
37
|
Xie DL, Zheng XL, Zhou CY, Kanwar MK, Zhou J. Functions of Redox Signaling in Pollen Development and Stress Response. Antioxidants (Basel) 2022; 11:antiox11020287. [PMID: 35204170 PMCID: PMC8868224 DOI: 10.3390/antiox11020287] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular redox homeostasis is crucial for normal plant growth and development. Each developmental stage of plants has a specific redox mode and is maintained by various environmental cues, oxidants, and antioxidants. Reactive oxygen species (ROS) and reactive nitrogen species are the chief oxidants in plant cells and participate in cell signal transduction and redox balance. The production and removal of oxidants are in a dynamic balance, which is necessary for plant growth. Especially during reproductive development, pollen development depends on ROS-mediated tapetal programmed cell death to provide nutrients and other essential substances. The deviation of the redox state in any period will lead to microspore abortion and pollen sterility. Meanwhile, pollens are highly sensitive to environmental stress, in particular to cell oxidative burst due to its peculiar structure and function. In this regard, plants have evolved a series of complex mechanisms to deal with redox imbalance and oxidative stress damage. This review summarizes the functions of the main redox components in different stages of pollen development, and highlights various redox protection mechanisms of pollen in response to environmental stimuli. In continuation, we also discuss the potential applications of plant growth regulators and antioxidants for improving pollen vigor and fertility in sustaining better agriculture practices.
Collapse
Affiliation(s)
- Dong-Ling Xie
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Xue-Lian Zheng
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Can-Yu Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (D.-L.X.); (X.-L.Z.); (C.-Y.Z.); (M.K.K.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| |
Collapse
|
38
|
Bazihizina N, Vita F, Balestrini R, Kiferle C, Caparrotta S, Ghignone S, Atzori G, Mancuso S, Shabala S. Early signalling processes in roots play a crucial role in the differential salt tolerance in contrasting Chenopodium quinoa accessions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:292-306. [PMID: 34436573 DOI: 10.1093/jxb/erab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density. In particular, the tolerant accession had improved root plasma membrane integrity and K+ retention in the mature root zone in response to salt. Furthermore, superior ST in the tolerant Q68 was associated with faster and root-specific H2O2 accumulation and reactive oxygen species-induced K+ and Ca2+ fluxes in the root apex within 30 min after NaCl application. This was found to be associated with the constitutive up-regulation of the membrane-localized receptor kinases regulatory protein FERONIA in the tolerant accession. Taken together, this study shows that differential root signalling events upon salt exposure are essential for the halophytic quinoa; the failure to do this limits quinoa adaptation to salinity, independently of salt sequestration in EBCs.
Collapse
Affiliation(s)
- Nadia Bazihizina
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, Italy
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Federico Vita
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Turin, Italy
| | - Claudia Kiferle
- Plantlab, Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Stefania Caparrotta
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, Italy
| | - Stefano Ghignone
- National Research Council, Institute for Sustainable Plant Protection, Turin, Italy
| | - Giulia Atzori
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, Italy
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
39
|
Xiang Y, Bian X, Wei T, Yan J, Sun X, Han T, Dong B, Zhang G, Li J, Zhang A. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. THE NEW PHYTOLOGIST 2021; 232:2400-2417. [PMID: 34618923 DOI: 10.1111/nph.17761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
Mitogen-activated protein kinase (MPK) is a critical regulator of the antioxidant defence system in response to various stimuli. However, how MPK directly and exactly regulates antioxidant enzyme activities is still unclear. Here, we demonstrated that a NAC transcription factor ZmNAC49 mediated the regulation of antioxidant enzyme activities by ZmMPK5. ZmNAC49 expression is induced by oxidative stress. ZmNAC49 enhances oxidative stress tolerance in maize, and it also reduces superoxide anion generation and increases superoxide dismutase (SOD) activity. A detailed study showed that ZmMPK5 directly interacts with and phosphorylates ZmNAC49 in vitro and in vivo. ZmMPK5 directly phosphorylates Thr-26 in NAC subdomain A of ZmNAC49. Mutation at Thr-26 of ZmNAC49 does not affect the interaction with ZmMPK5 and its subcellular localisation. Further analysis found that ZmNAC49 activates the ZmSOD3 expression by directly binding to its promoter. ZmMPK5-mediated ZmNAC49 phosphorylation improves its ability to bind to the ZmSOD3 promoter. Thr-26 of ZmNAC49 is essential for its transcriptional activity. In addition, ZmSOD3 enhances oxidative stress tolerance in maize. Our results show that phosphorylation of Thr-26 in ZmNAC49 by ZmMPK5 increased its DNA-binding activity to the ZmSOD3 promoter, enhanced SOD activity and thereby improved oxidative stress tolerance in maize.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiangli Bian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tianhui Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Baicheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Gaofeng Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
40
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
41
|
Mondal R, Biswas S, Srivastava A, Basu S, Trivedi M, Singh SK, Mishra Y. In silico analysis and expression profiling of S-domain receptor-like kinases (SD-RLKs) under different abiotic stresses in Arabidopsis thaliana. BMC Genomics 2021; 22:817. [PMID: 34772363 PMCID: PMC8590313 DOI: 10.1186/s12864-021-08133-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S-domain receptor-like kinases (SD-RLKs) are an important and multi-gene subfamily of plant receptor-like/pelle kinases (RLKs), which are known to play a significant role in the development and immune responses of Arabidopsis thaliana. The conserved cysteine residues in the extracellular domain of SD-RLKs make them interesting candidates for sensing reactive oxygen species (ROS), assisting oxidative stress mitigation and associated signaling pathways during abiotic stresses. However, how closely SD-RLKs are interrelated to abiotic stress mitigation and signaling remains unknown in A. thaliana. RESULTS This study was initiated by examining the chromosomal localization, phylogeny, sequence and differential expression analyses of 37 SD-RLK genes using publicly accessible microarray datasets under cold, osmotic stress, genotoxic stress, drought, salt, UV-B, heat and wounding. Out of 37 SD-RLKs, 12 genes displayed differential expression patterns in both the root and the shoot tissues. Promoter structure analysis suggested that these 12 SD-RLK genes harbour several potential cis-regulatory elements (CREs), which are involved in regulating multiple abiotic stress responses. Based on these observations, we investigated the expression patterns of 12 selected SD-RLKs under ozone, wounding, oxidative (methyl viologen), UV-B, cold, and light stress at different time points using semi-qRT-PCR. Of these 12 SD-SRKs, the genes At1g61360, At1g61460, At1g61380, and At4g27300 emerged as potential candidates that maintain their expression in most of the stress treatments till exposure for 12 h. Expression patterns of these four genes were further verified under similar stress treatments using qRT-PCR. The expression analysis indicated that the gene At1g61360, At1g61380, and At1g61460 were mostly up-regulated, whereas the expression of At4g27300 either up- or down-regulated in these conditions. CONCLUSIONS To summarize, the computational analysis and differential transcript accumulation of SD-RLKs under various abiotic stresses suggested their association with abiotic stress tolerance and related signaling in A. thaliana. We believe that a further detailed study will decipher the specific role of these representative SD-RLKs in abiotic stress mitigation vis-a-vis signaling pathways in A. thaliana.
Collapse
Affiliation(s)
- Raju Mondal
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.,Current address: Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Center, Central Silk Board-Ministry of Textiles (GoI), Hosur, Tamil Nadu, 635109, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suvajit Basu
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Maitri Trivedi
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Sunil Kumar Singh
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
42
|
Baik OL, Kyyak NY, Humeniuk OM, Humeniuk VV. Oxidative stress in moss Bryum caespiticium (Bryaceae) under the influence of high temperature and light intensity in a technogenically transformed environment. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mosses are pioneer plants in post-technogenic areas. Therefore, the question of adaptive reactions of mosses from these habitats represents a scientific interest. The research is devoted to the study of adaptive changes in the metabolism of the dominant moss species Bryum caespiticium Hedw., collected in the devastated territories of the Novoyavorivsk State Mining and Chemical Enterprise (SMCE) “Sirka (Sulfur)” exposed to hyperthermia and insolation, which cause oxidative stress in plants. The influence of these stressors on the activity and thermal stability of antioxidant enzymes, hydrogen peroxide content, anion radical generation and accumulation of prooxidant components in moss shoots was studied. The activity and thermal stability of peroxidase and superoxide dismutase (SOD) were analysed forB. caespiticium moss from different locations of northern exposure at the sulfur mining dump No 1 in summer and autumn. We established the dependence of the activity of antioxidant enzymes of moss on the intensity of light and temperature on the experimental plots of the dump No 1. In summer, the highest activity and thermal stability rates of peroxidase and SOD were observed. Under the conditions of the experiment in shoots of В. caespiticium from the northern peak of the dump under the influence of 2 hours temperature action (+ 42 ºС) the most significant increase in peroxidase activity was found by 1.78 times and SOD by 1.89 times, as well as increase in its thermal stability by 1.35–1.42 times, respectively. The increase in peroxidase and SOD activity, as well as the increase in their thermal stability caused by hyperthermia were negated by pre-processing with a protein biosynthesis inhibitor cyclohexamide, which may indicate the participation of the protein-synthesizing system in this process. The effect of increasing the thermal stability of enzymes can be considered as a mechanism of adaptation of the protein-synthesizing system to the action of high temperatures. Increase in the activity and thermal stability of antioxidant enzymes is caused primarily by changes in the expression of stress protein genes, which control the synthesis of specific adaptogens and protectors. The obtained results indicate that the extreme conditions of the anthropogenically transformed environment contribute to the development of forms with the highest potential abilities. The mechanism of action of high temperatures is associated with the development of oxidative stress, which is manifested in the intensification of lipid peroxidation and the generation of superoxide anion radical. It was found that temperature stress and high insolation caused an increased generation of superoxide anion radical as the main inducers of protective reactions in the samples of B. caespiticium from the experimental transect of the sulfur mining heap. It is known that the synthesis of Н2О2 occurs under stress and is a signal to start a number of molecular, biochemical and physiological processes of cells, including adaptation of plants to extreme temperatures. It is shown that high temperatures initiate the generation of hydrogen peroxide. Increased reactive oxygen species (ROS) formation, including Н2О2, under the action of extreme temperatures, can cause the activation of signaling systems. Therefore, the increase in the content of Н2О2 as a signaling mediator is a component of the antioxidant protection system. It is determined that adaptive restructuring of the metabolism of the moss В. caespiticium is associated with the accumulation of signaling prooxidant components (diene and triene conjugates and dienketones). The increase in primary lipid peroxidation products, detected by us, under the action of hyperthermia may indicate the intensification of free radical oxidation under adverse climatic conditions in the area of the sulfur production dump, which leads to the intensification of lipid peroxidation processes. The accumulation of radical and molecular lipid peroxidation products are signals for the activation of protective systems, activators of gene expression and processes that lead to increased resistance of plants.
Collapse
|
43
|
Li C, Hou N, Fang N, He J, Ma Z, Ma F, Guan Q, Li X. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:83-92. [PMID: 34627025 DOI: 10.1016/j.plaphy.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
As RNA chaperones, cold shock proteins (CSPs) are essential for cold adaptation. Although the functions of CSPs in cold response have been demonstrated in several species, the roles of CSPs in response to drought are largely unknown. Here, we demonstrated that MdCSP3, a downstream target gene of MdMYB88 and MdMYB124, contributes to drought tolerance in apple (Malus × domestica). MdCSP3 responds to various abiotic stresses, including drought, cold, heat, and salt stress. Compared with non-transgenic apple GL-3, the MdCSP3 overexpressing plants exhibit significantly lower drought resistance and a reduced capacity for ROS scavenging by the regulation of antioxidant enzymes SOD, CAT, and POD. Additionally, RNA-seq data shows that MdCSP3 regulates expression of genes involved in oxidative stress response. Taken together, our results demonstrate the functions of MdCSP3 in apple drought tolerance, and this finding provides a new direction for breeding of drought resistant apple.
Collapse
Affiliation(s)
- Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Fang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
44
|
Kou X, Sun J, Wang P, Wang D, Cao P, Lin J, Chang Y, Zhang S, Wu J. PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. HORTICULTURE RESEARCH 2021; 8:222. [PMID: 34608125 PMCID: PMC8490453 DOI: 10.1038/s41438-021-00684-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Rapid alkalinization factors (RALFs) are cysteine-rich peptides that play important roles in a variety of biological processes, such as cell elongation and immune signaling. Recent studies in Arabidopsis have shown that RALFs regulate pollen tube growth via plasma membrane receptor-like kinases (RLKs). However, the downstream signal transduction mechanisms of RLKs in pollen tubes are unknown. Here, we identified PbrRALF2, a pear (Pyrus bretschneideri) pollen RALF peptide that inhibits pollen tube growth. We found that PbrRALF2 interacts with a malectin-like domain-containing RLK, PbrCrRLK1L13. The relative affinity between PbrRALF2 and PbrCrRLK1L13 was at the submicromolar level, which is consistent with the values of ligand-receptor kinase pairs and the physiological concentration for PbrRALF2-mediated inhibition of pollen tube growth. After binding to its extracellular domain, PbrRALF2 activated the phosphorylation of PbrCrRLK1L13 in a dose-dependent manner. We further showed that the MAP kinase PbrMPK18 is a downstream target of PbrCrRLK1L13 that mediates PbrRALF2-elicited reactive oxygen species (ROS) production. The excessive accumulation of ROS inhibits pollen tube growth. We show that MPK acts as a mediator for CrRLK1L to stimulate ROS production, which might represent a general mechanism by which RALF and CrRLK1L function in signaling pathways.
Collapse
Affiliation(s)
- Xiaobing Kou
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangmei Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Danqi Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peng Cao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jing Lin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China
| | - Youhong Chang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China.
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China.
| |
Collapse
|
45
|
Changes in Photosynthesis Could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens. Int J Mol Sci 2021; 22:ijms22168865. [PMID: 34445571 PMCID: PMC8396289 DOI: 10.3390/ijms22168865] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Photosynthesis is a universal process for plant survival, and immune defense is also a key process in adapting to the growth environment. Various studies have indicated that these two processes are interconnected in a complex network. Photosynthesis can influence signaling pathways and provide both materials and energy for immune defense, while the immune defense process can also have feedback effects on photosynthesis. Pathogen infection inevitably leads to changes in photosynthesis parameters, including Pn, Gs, and Ci; biochemical materials such as SOD and CAT; signaling molecules such as H2O2 and hormones; and the expression of genes involved in photosynthesis. Some researchers have found that changes in photosynthesis activity are related to the resistance level of the host, the duration after infection, and the infection position (photosynthetic source or sink). Interactions between wheat and the main fungal pathogens, such as Puccinia striiformis, Blumeria graminis, and Fusarium graminearum, constitute an ideal study system to elucidate the relationship between changes in host photosynthesis and resistance levels, based on the accessibility of methods for artificially controlling infection and detecting changes in photosynthesis, the presence of multiple pathogens infecting different positions, and the abundance of host materials with various resistance levels. This review is written only from the perspective of plant pathologists, and after providing an overview of the available data, we generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.
Collapse
|
46
|
Wrzaczek M. A negative feedback loop controls ROS production in plant immunity. MOLECULAR PLANT 2021; 14:1221-1222. [PMID: 34098092 DOI: 10.1016/j.molp.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Michael Wrzaczek
- Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
47
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
48
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
49
|
Bleau JR, Spoel SH. Selective redox signaling shapes plant-pathogen interactions. PLANT PHYSIOLOGY 2021; 186:53-65. [PMID: 33793940 PMCID: PMC8154045 DOI: 10.1093/plphys/kiaa088] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
A review of recent progress in understanding the mechanisms whereby plants utilize selective and reversible redox signaling to establish immunity.
Collapse
Affiliation(s)
- Jade R Bleau
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Author for communication:
| |
Collapse
|
50
|
Leschevin M, Marcelo P, Ismael M, San-Clemente H, Jamet E, Rayon C, Pageau K. A Tandem Mass Tags (TMTs) labeling approach highlights differences between the shoot proteome of two Arabidopsis thaliana ecotypes, Col-0 and Ws. Proteomics 2021; 21:e2000293. [PMID: 33891803 DOI: 10.1002/pmic.202000293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Arabidopsis has become a powerful model to study morphogenesis, plant growth, development but also plant response to environmental conditions. Over 1000 Arabidopsis genomes are available and show natural genetic variations. Among them, the main reference accessions Wassilewskija (Ws) and Columbia (Col-0), originally growing at contrasted altitudes and temperatures, are widely studied, but data contributing to their molecular phenotyping are still scarce. A global quantitative proteomics approach using isobaric stable isotope labeling (Tandem Mass Tags, TMT) was performed on Ws and Col-0. Plants have been hydroponically grown at 16 h/8 h (light/dark cycle) at 23°C day/19°C night for three weeks. A TMT labeling of the proteins extracted from their shoots has been performed and showed a differential pattern of protein abundance between them. These results have allowed identifying several proteins families possibly involved in the differential responses observed for Ws and Col-0 during plant development and upon environmental changes. In particular, Ws and Col-0 mainly differ in photosynthesis, cell wall-related proteins, plant defense/stress, ROS scavenging enzymes/redox homeostasis and DNA/RNA binding/transcription/translation/protein folding.
Collapse
Affiliation(s)
- Maïté Leschevin
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - Paulo Marcelo
- Plateforme d'Ingénierie Cellulaire & Analyses des Protéines ICAP, FR CNRS 3085 ICP, Université de Picardie Jules Verne, Amiens, France
| | - Marwa Ismael
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | | | - Elisabeth Jamet
- LRSV, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Catherine Rayon
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| | - Karine Pageau
- UMRT 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|