1
|
Li Y, Li Z, Xu T, Yang X, Zhang Y, Qi J, Wang J, Xie Q, Liu K, Tang C. The MYB-related transcription factor family in rubber dandelion (Taraxacum kok-saghyz): An insight into a latex-predominant member, TkMYBR090. Int J Biol Macromol 2025; 305:141058. [PMID: 39978497 DOI: 10.1016/j.ijbiomac.2025.141058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
MYB-related (MYBR) proteins play diverse roles in plant growth and development. However, the MYBR genes in Taraxacum kok-saghyz, a promising alternative source of natural rubber, a valuable biopolymer, remain scarcely investigated. Here, a total of 122 MYBR genes, namely TkMYBRs, were identified and classified into the groups of GARP-like, CCA1-like/R-R, and a heterogenous one in T. kok-saghyz. Collinearity analysis revealed a high similarity in MYBRs across two Taraxacum species with contrasting rubber yield. TkMYBR090 showed predominant expression in latex, the cytoplasm of rubber-producing laticifers. Transient overexpression of TkMYBR090 in tobacco and T. kok-saghyz demonstrated its localizations in nucleus and cytoplasm. Yeast two-hybrid assay revealed that the C-terminus of TkMYBR090 possessed transcriptional activation activity. DAP-seq analysis identified 18,232 TkMYBR090-targeted candidate genes, and four significantly enriched TkMYBR090 DNA-binding promoter motifs that were validated by yeast one-hybrid assay. The binding of TkMYBR090 on the promoter of an ascorbate oxidase gene was verified by yeast one-hybrid and dual luciferase activity assays, suggesting a role in ROS metabolism. Such assumption was supported by heterologous expression assays of TkMYBR090 in tobacco and yeast. This study is beneficial to further functional dissection of MYBRs in T. kok-saghyz, especially the roles in development and function of rubber-producing laticifers.
Collapse
Affiliation(s)
- Yongmei Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China
| | - Zhonghua Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Tiancheng Xu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China
| | - Xue Yang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Yuying Zhang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China
| | - Jiyan Qi
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Jiang Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Qingbiao Xie
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Kaiye Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Chaorong Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China.
| |
Collapse
|
2
|
Wang J, Liu H, Li H, Wang F, Yang S, Yue L, Liu S, Liu B, Huang M, Kong F, Sun Z. The LUX-SWI3C module regulates photoperiod sensitivity in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40105506 DOI: 10.1111/jipb.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
In plants, the photoperiod sensitivity directly influences flowering time, which in turn affects latitudinal adaptation and yield. However, research into the mechanisms underlying photoperiod sensitivity, particularly those mediated by epigenetic regulation, is still in its nascent stages. In this study, we analyzed the regulation of photoperiod sensitivity in Arabidopsis thaliana. We demonstrate that the evening complex LUX ARRYTHMO (LUX) and the chromatin remodeling factor SWITCH/SUCROSE NONFERMENTING 3C (SWI3C) regulate GI locus chromatin compaction and H3K4me3 modification levels at the GIGANTEA locus under different photoperiod conditions. This mechanism is one of the key factors that allow plants to distinguish between long-day and short-day photoperiods. Our study provides insight into how the LUX-SWI3C module regulates photoperiod sensitivity at the epigenetic level.
Collapse
Affiliation(s)
- Jianhao Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Hong Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Fan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Shuangrong Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Mingkun Huang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi, 332000, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Ji MG, Huh JS, Lim CJ, Ahn G, Cha JY, Jeong SY, Shin GI, Alimzhan A, Yun DJ, Kim WY. GIGANTEA functions as a co-repressor of cold stress response with a histone-modifying complex. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109801. [PMID: 40157149 DOI: 10.1016/j.plaphy.2025.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
The circadian clock in plants is crucial for regulating stress responses, including cold tolerance. Cold stress induces the expression of C-REPEAT BINDING FACTOR (CBF) transcription factors, which activate COLD-REGULATED (COR) genes to mitigate cold-induced damage. Previously, we identified that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15)-HISTONE DEACETYLASE 2C (HD2C) complex regulates cold tolerance by modulating histone deacetylation on the COR genes. Our research reports that the circadian oscillator GIGANTEA (GI) regulates the association of histone deacetylase complex on the COR promoter, controlling cold tolerance. We show that GI functions downstream of HOS15, as the hos15-2 gi-2 double mutant exhibits freezing tolerance and expression of the COR gene like gi-2. Consistent with the HOS15, GI doesn't affect CBF transcription, suggesting that GI involved cold stress responses through HOS15-mediated COR gene regulation. Moreover, GI reduces histone acetylation and CBF binding at the COR15A promoter under cold stress, repressing COR15A gene expression. We further demonstrate that GI forms a co-repressor with HOS15 and HD2C, inhibiting CBF binding and preventing COR gene activation under normal conditions. These findings provide insights into molecular mechanisms by which GI, HOS15, and HD2C coordinate cold stress responses, offering potential strategies for enhancing plant cold tolerance through chromatin-mediated regulation.
Collapse
Affiliation(s)
- Myung Geun Ji
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin-Sung Huh
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Chae Jin Lim
- Edgene, Inc., Seoul, 08790, Republic of Korea; Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongik Ahn
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Aliya Alimzhan
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Research Institute of Life Science, Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
4
|
Zareen S, Ali A, Park J, Kang SM, Lee IJ, Pardo JM, Yun DJ, Xu ZY. HOS15 impacts DIL9 protein stability during drought stress in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:2553-2568. [PMID: 39888052 DOI: 10.1111/nph.20398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor of E3 ligase complex, which plays a negative role in drought stress tolerance. However, whether and how HOS15 participates in controlling important transcriptional regulators remains largely unknown. Here, we report that HOS15 physically interacts with and tightly regulates DROUGHT-INDUCED LIKE 19 (DIL9) protein stability. Moreover, application of exogenous abscisic acid (ABA) stabilizes the interaction between DIL9 and HOS15, leading to ABA-induced proteasomal degradation of DIL9 by HOS15. Genetic analysis revealed that DIL9 functions downstream to HOS15 and that the drought tolerance of hos15-2 plants was impaired in dil9/hos15 double mutants. Notably, DIL9 is directly associated with the promoter regions of ABF transcription factors and facilitates their expression, which is pivotal in enhancing ABA-dependent drought tolerance. Collectively, these findings demonstrate that HOS15 consistently degrades DIL9 under normal condition, while stress (drought/ABA) promotes the DIL9 activity for binding to the promoter regions of ABFs and positively regulates their expression in response to dehydration.
Collapse
Affiliation(s)
- Shah Zareen
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Akhtar Ali
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Junghoon Park
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Americo Vespucio 49, Sevilla, 41092, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, 05029, South Korea
- Plant Global Stress Research Center, Konkuk University, Seoul, 05029, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Ji S, Yin P, Li T, Du X, Chen W, Zhang R, Yang X, Zhang X. Pan-WD40ome analysis of 26 diverse inbred lines reveals the structural and functional diversity of WD40 proteins in maize. BMC Genomics 2025; 26:181. [PMID: 39987072 PMCID: PMC11847395 DOI: 10.1186/s12864-025-11342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The WD40 repeat proteins are crucial components of eukaryotic genomes and contribute to a wide array of plant developmental processes and environmental interactions. However, the true extent of intraspecific WD40 diversity in plants is unclear. RESULTS We defined a nearly complete species-wide pan-WD40ome in maize based on the published genome sequences of 26 nested association mapping (NAM) population founders. The pan-WD40ome largely saturated with inclusion of approximately 20 inbred lines, with about 95% of the pan-WD40ome being present in at least two founders. The architectural diversity of the WD40 domains, additional domains, and consequent spatial protein structures suggested the functional diversity of the maize pan-WD40ome. This finding was supported by significant associations between 87 WD40 genes and 19 agronomic, 3 kernel-quality, and 3 biotic-stress traits, as well as the multiple molecular pathways through which the trait-associated WD40 genes were predicted to function. In addition, WD40 genes exhibited abundant genomic variations among the NAM founders. Sequence analysis indicated that gene duplications and gene translocations caused by Helitron transposons may play important roles in the amplification of WD40 genes during the evolution of the maize WD40 gene family. CONCLUSIONS In summary, this study provides a comprehensive framework for understanding the structural and functional diversity of the pan-WD40ome in maize and other agronomically important species with complex genomes, as well as excellent candidate genes/alleles for maize genetic improvement.
Collapse
Affiliation(s)
- Shenghui Ji
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Tao Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Du
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| | - Xuan Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Wang S, Feng D, Zheng Y, Lu Y, Shi K, Yang R, Ma W, Li N, Liu M, Wang Y, Hong Y, McClung CR, Zhao J. EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage. PLANT PHYSIOLOGY 2025; 197:kiae505. [PMID: 39545809 DOI: 10.1093/plphys/kiae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024]
Abstract
Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yakun Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kailin Shi
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Hebei International Joint Research Centre of Vegetable Functional Genomics, Department of Vegetable Breeding, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Tian S, Zhang S, Xu F, Sun Q, Xu G, Ni M. The evening complex component ELF3 recruits H3K4me3 demethylases to repress PHYTOCHROME INTERACTING FACTOR4 and 5 in Arabidopsis. THE PLANT CELL 2024; 37:koaf014. [PMID: 39880018 PMCID: PMC11779311 DOI: 10.1093/plcell/koaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks. The association of JMJ17 and JMJ18 with the 2 genomic loci depends on the EC, and the H3K4me3 marks are enriched in the elf3 and jmj17 jmj18 mutants. Half of the globally differentially expressed genes are overlapping in elf3 and jmj17 jmj18. Cleavage Under Targets and Tagmentation sequencing analysis identified 976 H3K4me3-enriched loci in elf3. Aligning the H3K4me3-enriched loci in elf3 to genes with increased expression in elf3 and jmj17 jmj18 identified 179 and 176 target loci, respectively. Half of the loci are targeted by both ELF3 and JMJ17/JMJ18. This suggests a strong connection between the 2 JMJ proteins and EC function. Our studies reveal that an array of key genes in addition to PIF4 and PIF5 are repressed by the EC through the H3K4me3 demethylation pathway.
Collapse
Affiliation(s)
- Shiyu Tian
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Shen Zhang
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| | - Fan Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Qingbin Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Gang Xu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Min Ni
- Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
8
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. THE NEW PHYTOLOGIST 2024; 244:798-810. [PMID: 39155726 PMCID: PMC11449641 DOI: 10.1111/nph.20062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Arabidopsis PSEUDORESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 abundance is unknown. We used mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions at low temperatures. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR1 (CBF1) and COLD-REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. HOS15 mediates PRR7 turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoters of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated degradation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways that lead to increased freezing tolerance.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
9
|
Zhou X, Fan Y, Zhu X, Zhao R, He J, Li P, Shang S, Goodrich J, Zhu JK, Zhang CJ. SANT proteins modulate gene expression by coordinating histone H3KAc and Khib levels and regulate plant heat tolerance. PLANT PHYSIOLOGY 2024; 196:902-915. [PMID: 38888999 DOI: 10.1093/plphys/kiae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3, and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinates different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear. Here, in addition to modulating histone deacetylation, we found that SANT1/2/3/4 proteins acted like HDA6 or HDA9 in regulating the removal of histone Khib in Arabidopsis (Arabidopsis thaliana). Histone H3 lysine acetylation (H3KAc) and histone Khib were coordinated by SANT1/2/3/4 to regulate gene expression, with H3KAc playing a predominant role and Khib acting complementarily to H3KAc. SANT1/2/3/4 mutation significantly increased the expression of heat-inducible genes with concurrent change of H3KAc levels under normal and heat stress conditions, resulting in enhanced thermotolerance. This study revealed the critical roles of Harbinger transposon-derived SANT domain-containing proteins in transcriptional regulation by coordinating different types of histone PTMs and in the regulation of plant thermotolerance by mediating histone acetylation modification.
Collapse
Affiliation(s)
- Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yujin Fan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xiying Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Ruihua Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Junna He
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Justin Goodrich
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518000, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100000, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
10
|
Zhang Z, Zeng Y, Hou J, Li L. Advances in understanding the roles of plant HAT and HDAC in non-histone protein acetylation and deacetylation. PLANTA 2024; 260:93. [PMID: 39264431 DOI: 10.1007/s00425-024-04518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Won JH, Park J, Lee HG, Shim S, Lee H, Oh E, Seo PJ. The PRR-EC complex and SWR1 chromatin remodeling complex function cooperatively to repress nighttime hypocotyl elongation by modulating PIF4 expression in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100981. [PMID: 38816994 PMCID: PMC11412930 DOI: 10.1016/j.xplc.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The circadian clock entrained by environmental light-dark cycles enables plants to fine-tune diurnal growth and developmental responses. Here, we show that physical interactions among evening clock components, including PSEUDO-RESPONSE REGULATOR 5 (PRR5), TIMING OF CAB EXPRESSION 1 (TOC1), and the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3), define a diurnal repressive chromatin structure specifically at the PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) locus in Arabidopsis. These three clock components act interdependently as well as independently to repress nighttime hypocotyl elongation, as hypocotyl elongation rate dramatically increased specifically at nighttime in the prr5-1 toc1-21 elf3-1 mutant, concomitantly with a substantial increase in PIF4 expression. Transcriptional repression of PIF4 by ELF3, PRR5, and TOC1 is mediated by the SWI2/SNF2-RELATED (SWR1) chromatin remodeling complex, which incorporates histone H2A.Z at the PIF4 locus, facilitating robust epigenetic suppression of PIF4 during the evening. Overall, these findings demonstrate that the PRR-EC-SWR1 complex represses hypocotyl elongation at night through a distinctive chromatin domain covering PIF4 chromatin.
Collapse
Affiliation(s)
- Jin Hoon Won
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeonghyang Park
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangrae Shim
- Department of Forest Resources, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Huang Y, Liu J, Cheng L, Xu D, Liu S, Hu H, Ling Y, Yang R, Zhang Y. Genome-Wide Analysis of the Histone Modification Gene ( HM) Family and Expression Investigation during Anther Development in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2496. [PMID: 39273980 PMCID: PMC11396841 DOI: 10.3390/plants13172496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers' development and male sterility.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Duo Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Sijia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
13
|
Hou Y, Zhang C, Liu L, Yu Y, Shi L, Qin Y. WDR61 ablation triggers R-loop accumulation and suppresses breast cancer progression. FEBS J 2024; 291:3417-3431. [PMID: 38708718 DOI: 10.1111/febs.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Although, superkiller complex protein 8 (SKI8), previously known as WDR61 has been identified and mapped in breast tumor, little is currently known about its function. This study aims to elucidate the role of WDR61 in breast tumor development and its potential as a therapeutic target. Here, we show that tamoxifen-induced knockout of Wdr61 reduces the risk of breast tumors, resulting in smaller tumor size and weight, and improved overall survival. Furthermore, we show that knockdown of WDR61 compromises the proliferation of breast tumor cells with reduced colony-forming capacity. Further investigations demonstrate that the protective effect of WDR61 loss on breast tumor development is due to genomic instability. Mechanistic studies reveal that WDR61 interacts with the R-loop, and loss of WDR61 leads to R-loops accumulation in breast tumor cells, causing DNA damage and subsequent inhibition of cell proliferation. In summary, this study highlights the critical dependence of breast tumors on WDR61, which suppresses R-loop and counteracts endogenous DNA damage in tumor cells.
Collapse
Affiliation(s)
- Yayan Hou
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Ying Yu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, China
| |
Collapse
|
14
|
Wang F, Li CH, Liu Y, He LF, Li P, Guo JX, Zhang N, Zhao B, Guo YD. Plant responses to abiotic stress regulated by histone acetylation. FRONTIERS IN PLANT SCIENCE 2024; 15:1404977. [PMID: 39081527 PMCID: PMC11286584 DOI: 10.3389/fpls.2024.1404977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
In eukaryotes, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are reversibly regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Increasing evidence highlights histone acetylation plays essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance of histone acetylation in the regulation of abiotic stress responses including temperature, light, salt and drought stress. This information will contribute to our understanding of how plants adapt to environmental changes. As the mechanisms of epigenetic regulation are conserved in many plants, research in this field has potential applications in improvement of agricultural productivity.
Collapse
Affiliation(s)
- Fei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chong-Hua Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ying Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ling-Feng He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jun-Xin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
15
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599783. [PMID: 38979283 PMCID: PMC11230174 DOI: 10.1101/2024.06.20.599783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Arabidopsis PSEUDO RESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its transcriptional repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 protein activity is unknown. We used double mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR (CBF) and COLD REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. We establish that HOS15 mediates PRR7 protein turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoter regions of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated regulation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways leading to freezing tolerance through upregulation of CBF1 and COR15A.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Liu M, Gong F, Yu W, Cao K, Xu H, Zhou X. The Rhododendron Chrysanthum Pall.s' Acetylation Modification of Rubisco Enzymes Controls Carbon Cycling to Withstand UV-B Stress. Biomolecules 2024; 14:732. [PMID: 38927135 PMCID: PMC11201758 DOI: 10.3390/biom14060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV-B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
17
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
18
|
Yuan L, Avello P, Zhu Z, Lock SCL, McCarthy K, Redmond EJ, Davis AM, Song Y, Ezer D, Pitchford JW, Quint M, Xie Q, Xu X, Davis SJ, Ronald J. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology. Genetics 2024; 226:iyad217. [PMID: 38142447 PMCID: PMC10917503 DOI: 10.1093/genetics/iyad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/07/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Circadian clocks are endogenous timekeeping mechanisms that coordinate internal physiological responses with the external environment. EARLY FLOWERING3 (ELF3), PSEUDO RESPONSE REGULATOR (PRR9), and PRR7 are essential components of the plant circadian clock and facilitate entrainment of the clock to internal and external stimuli. Previous studies have highlighted a critical role for ELF3 in repressing the expression of PRR9 and PRR7. However, the functional significance of activity in regulating circadian clock dynamics and plant development is unknown. To explore this regulatory dynamic further, we first employed mathematical modeling to simulate the effect of the prr9/prr7 mutation on the elf3 circadian phenotype. These simulations suggested that simultaneous mutations in prr9/prr7 could rescue the elf3 circadian arrhythmia. Following these simulations, we generated all Arabidopsis elf3/prr9/prr7 mutant combinations and investigated their circadian and developmental phenotypes. Although these assays could not replicate the results from the mathematical modeling, our results have revealed a complex epistatic relationship between ELF3 and PRR9/7 in regulating different aspects of plant development. ELF3 was essential for hypocotyl development under ambient and warm temperatures, while PRR9 was critical for root thermomorphogenesis. Finally, mutations in prr9 and prr7 rescued the photoperiod-insensitive flowering phenotype of the elf3 mutant. Together, our results highlight the importance of investigating the genetic relationship among plant circadian genes.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Paula Avello
- Department of Mathematics, University of York, York, YO10 5DD, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zihao Zhu
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Sarah C L Lock
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Kayla McCarthy
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Amanda M Davis
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jonathan W Pitchford
- Department of Mathematics, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Seth J Davis
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Kumar V, Singh B, Kumar Singh R, Sharma N, Muthamilarasan M, Sawant SV, Prasad M. Histone deacetylase 9 interacts with SiHAT3.1 and SiHDA19 to repress dehydration responses through H3K9 deacetylation in foxtail millet. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1098-1111. [PMID: 37889853 DOI: 10.1093/jxb/erad425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
Climate change inflicts several stresses on plants, of which dehydration stress severely affects growth and productivity. C4 plants possess better adaptability to dehydration stress; however, the role of epigenetic modifications underlying this trait is unclear. In particular, the molecular links between histone modifiers and their regulation remain elusive. In this study, genome-wide H3K9 acetylation (H3K9ac) enrichment using ChIP-sequencing was performed in two foxtail millet cultivars with contrasting dehydration tolerances (IC403579, cv. IC4-tolerant, and IC480117, cv. IC41-sensitive). It revealed that a histone deacetylase, SiHDA9, was significantly up-regulated in the sensitive cultivar. Further characterization indicated that SiHDA9 interacts with SiHAT3.1 and SiHDA19 to form a repressor complex. SiHDA9 might be recruited through the SiHAT3.1 recognition sequence onto the upstream of dehydration-responsive genes to decrease H3K9 acetylation levels. The silencing of SiHDA9 resulted in the up-regulation of crucial genes, namely, SiRAB18, SiRAP2.4, SiP5CS2, SiRD22, SiPIP1;4, and SiLHCB2.3, which imparted dehydration tolerance in the sensitive cultivar (IC41). Overall, the study provides mechanistic insights into SiHDA9-mediated regulation of dehydration stress response in foxtail millet.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Babita Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | | | - Samir V Sawant
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
20
|
Liu L, Xie Y, Yahaya BS, Wu F. GIGANTEA Unveiled: Exploring Its Diverse Roles and Mechanisms. Genes (Basel) 2024; 15:94. [PMID: 38254983 PMCID: PMC10815842 DOI: 10.3390/genes15010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
GIGANTEA (GI) is a conserved nuclear protein crucial for orchestrating the clock-associated feedback loop in the circadian system by integrating light input, modulating gating mechanisms, and regulating circadian clock resetting. It serves as a core component which transmits blue light signals for circadian rhythm resetting and overseeing floral initiation. Beyond circadian functions, GI influences various aspects of plant development (chlorophyll accumulation, hypocotyl elongation, stomatal opening, and anthocyanin metabolism). GI has also been implicated to play a pivotal role in response to stresses such as freezing, thermomorphogenic stresses, salinity, drought, and osmotic stresses. Positioned at the hub of complex genetic networks, GI interacts with hormonal signaling pathways like abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), and brassinosteroids (BRs) at multiple regulatory levels. This intricate interplay enables GI to balance stress responses, promoting growth and flowering, and optimize plant productivity. This review delves into the multifaceted roles of GI, supported by genetic and molecular evidence, and recent insights into the dynamic interplay between flowering and stress responses, which enhance plants' adaptability to environmental challenges.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China;
| | - Yuxin Xie
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (B.S.Y.)
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
21
|
Liu S, He M, Lin X, Kong F. Epigenetic regulation of photoperiodic flowering in plants. THE PLANT GENOME 2023; 16:e20320. [PMID: 37013370 DOI: 10.1002/tpg2.20320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
In response to changeable season, plants precisely control the initiation of flowering in appropriate time of the year to ensure reproductive success. Day length (photoperiod) acts as the most important external cue to determine flowering time. Epigenetics regulates many major developmental stages in plant life, and emerging molecular genetics and genomics researches reveal their essential roles in floral transition. Here, we summarize the recent advances in epigenetic regulation of photoperiod-mediated flowering in Arabidopsis and rice, and discuss the potential of epigenetic regulation in crops improvement, and give the brief prospect for future study trends.
Collapse
Affiliation(s)
- Shuangrong Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
22
|
Nguyen NH, Sng BJR, Chin HJ, Choi IKY, Yeo HC, Jang IC. HISTONE DEACETYLASE 9 promotes hypocotyl-specific auxin response under shade. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:804-822. [PMID: 37522556 DOI: 10.1111/tpj.16410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hui Jun Chin
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Ian Kin Yuen Choi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Hock Chuan Yeo
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
23
|
Ke S, Jiang Y, Zhou M, Li Y. Genome-Wide Identification, Evolution, and Expression Analysis of the WD40 Subfamily in Oryza Genus. Int J Mol Sci 2023; 24:15776. [PMID: 37958759 PMCID: PMC10648978 DOI: 10.3390/ijms242115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.
Collapse
Affiliation(s)
| | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.K.); (Y.J.); (M.Z.)
| |
Collapse
|
24
|
Liu M, Lin X, Cao K, Yang L, Xu H, Zhou X. Multi-Omic Analysis Reveals the Molecular Mechanism of UV-B Stress Resistance in Acetylated RcMYB44 in Rhododendron chrysanthum. Genes (Basel) 2023; 14:2022. [PMID: 38002965 PMCID: PMC10671296 DOI: 10.3390/genes14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth and development of plants. MYBs play an essential role in the processes of plant responses to abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome technologies have resulted in further and more reliable data for understanding the UV-B response mechanism in plants. In this research, the transcriptome and acetylated proteome were used to analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 differentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares the same function with ATMYB44. We further constructed the hormone signaling pathway involved in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum. Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of proteins and genes were inconsistent, which is related to post-translational modifications of proteins. In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (H.X.)
| |
Collapse
|
25
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
26
|
Bai J, Shi Z, Zheng S. The Role of Histone Modifications in Heat Signal Transduction in Plants. Adv Biol (Weinh) 2023; 7:e2200323. [PMID: 36866515 DOI: 10.1002/adbi.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Indexed: 03/04/2023]
Abstract
Global warming and the more frequent occurrence of extremly high temperatures seriously affect crop yields. Heat stress (HS) has become a major environmental factor threatening food security worldwide. Understanding how plants sense and respond to HS is of clear interest to plant scientists and crop breeders. However, it is not trivial to elucidate the underlying signaling cascade, as specific cellular responses (ranging from detrimental to systemic effects) must be disentangled. Plants respond and adapt to high temperatures in many ways. In this review, recent progress in understanding heat signal transduction and the role of histone modifications in regulating the expression of genes involved in HS responses are discussed. The outstanding issues that are crucial for understanding the interactions between plants and HS are also discussed. The study of heat signal transduction mechanisms in plants is essential to facilitate the cultivation of heat-resistant crop varieties.
Collapse
Affiliation(s)
- Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zeyu Shi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
27
|
Wu Z, Zhang T, Li J, Chen S, Grin IR, Zharkov DO, Yu B, Li H. Genome-wide analysis of WD40 protein family and functional characterization of BvWD40-82 in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1185440. [PMID: 37332716 PMCID: PMC10272600 DOI: 10.3389/fpls.2023.1185440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.
Collapse
Affiliation(s)
- Zhirui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Tingyue Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jinna Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Inga R. Grin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
28
|
Zhao H, Ge Z, Zhou M, Zeng H, Wei Y, Liu G, Yan Y, Reiter RJ, He C, Shi H. Histone deacetylase 9 regulates disease resistance through fine-tuning histone deacetylation of melatonin biosynthetic genes and melatonin accumulation in cassava. J Pineal Res 2023; 74:e12861. [PMID: 36750349 DOI: 10.1111/jpi.12861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Melatonin participates in plant growth and development and biotic and abiotic stress responses. Histone acetylation regulates many plant biological processes via transcriptional reprogramming. However, the direct relationship between melatonin and histone acetylation in plant disease resistance remains unclear. In this study, we identified cassava bacterial blight (CBB) responsive histone deacetylase 9 (HDA9), which negatively regulated disease resistance to CBB by reducing melatonin content. In addition, exogenous melatonin alleviated disease sensitivity of MeHDA9 overexpressed plants to CBB. Importantly, MeHDA9 inhibited the expression of melatonin biosynthetic genes through decreasing lysine 5 of histone 4 (H4K5) acetylation at the promoter regions of melatonin biosynthetic genes, thereby modulating melatonin accumulation in cassava. Furthermore, protein phosphatase 2C 12 (MePP2C12) interacted with MeHDA9 in vivo and in vitro, and it was involved in MeHDA9-mediated disease resistance via melatonin biosynthetic pathway. In summary, this study highlights the direct interaction between histone deacetylation and melatonin biosynthetic genes in cassava disease resistance via histone deacetylation, providing new insights into the genetic improvement of disease resistance via epigenetic regulation of melatonin level in tropical crops.
Collapse
Affiliation(s)
- Huiping Zhao
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Zhongyuan Ge
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Mengmeng Zhou
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Chaozu He
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Sanya Nanfan Research Institute-College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya and Haikou, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province, China
| |
Collapse
|
29
|
Ahn G, Park HJ, Jeong SY, Shin GI, Ji MG, Cha JY, Kim J, Kim MG, Yun DJ, Kim WY. HOS15 represses flowering by promoting GIGANTEA degradation in response to low temperature in Arabidopsis. PLANT COMMUNICATIONS 2023:100570. [PMID: 36864727 PMCID: PMC10363504 DOI: 10.1016/j.xplc.2023.100570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Song Yi Jeong
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyeong-Im Shin
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myung Geun Ji
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeongsik Kim
- Faculty of Science Education and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Jin Yun
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Republic of Korea; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Woe-Yeon Kim
- Research Institute of Life Science, Institute of Agricultural and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center, Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
30
|
Huang LJ, Wang Y, Lin Z, Jiang D, Luo Y, Li N. The role of corepressor HOS15-mediated epigenetic regulation of flowering. FRONTIERS IN PLANT SCIENCE 2023; 13:1101912. [PMID: 36704168 PMCID: PMC9871556 DOI: 10.3389/fpls.2022.1101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Regulation of gene expression underpins gene function and is essential for regulation of physiological roles. Epigenetic modifications regulate gene transcription by physically facilitating relaxation or condensation of target loci in chromatin. Transcriptional corepressors are involved in chromatin remodeling and regulate gene expression by establishing repressive complexes. Genetic and biochemical studies reveal that a member of the Groucho/Thymidine uptake 1 (Gro/Tup1) corepressor family, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), is recruited via the evening complex (EC) to the GIGANTEA (GI) promoter to repress gene expression, and modulating flowering time. Therefore, HOS15 connects photoperiodic pathway and epigenetic mechanism to control flowering time in plants. In addition, growing body of evidence support a diverse roles of the epigenetic regulator HOS15 in fine-tuning plant development and growth by integrating intrinsic genetic components and various environmental signals.
Collapse
Affiliation(s)
- Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yukun Wang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Zeng Lin
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Dong Jiang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Yong Luo
- School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, China
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
31
|
Lim CJ, Park KS, Ali A, Park J, Ryou SM, Shen M, Khan HA, Bader ZE, Zareen S, Bae MJ, Choi JH, Xu ZY, Pardo JM, Yun DJ. Negative regulation of floral transition in Arabidopsis by HOS15-PWR-HDA9 complex. FRONTIERS IN PLANT SCIENCE 2023; 13:1105988. [PMID: 36684790 PMCID: PMC9853073 DOI: 10.3389/fpls.2022.1105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis HOS15/PWR/HDA9 repressor complex, which is similar to the TBL1/NcoR1/HDAC complex in animals, plays a well-known role in epigenetic regulation. PWR and HDA9 have been reported to interact with each other and modulate the flowering time by repressing AGL19 expression, whereas HOS15 and HDA9, together with the photoperiodic evening complex, regulate flowering time through repression of GI transcription. However, the role of the HOS15/PWR/HDA9 core repressor complex as a functional unit in the regulation of flowering time is yet to be explored. In this study, we reported that the loss-of-function hos15-2/pwr/hda9 triple mutant accumulates higher transcript levels of AGL19 and exhibits an early flowering phenotype similar to those of hos15, pwr, and hda9 single mutants. Interestingly, the accumulation of HOS15 in the nucleus was drastically reduced in pwr and hda9 mutants. As a result, HOS15 could not perform its role in histone deacetylation or interaction with H3 in the nucleus. Furthermore, HOS15 is also associated with the same region of the AGL19 promoter known for PWR-HDA9 binding. The acetylation level of the AGL19 promoter was increased in the hos15-2 mutant, similar to the pwr and hda9 mutants. Therefore, our findings reveal that the HOS15/PWR/HDA9 repressor complex deacetylates the promoter region of AGL19, thereby negatively regulating AGL19 transcription, which leads to early flowering in Arabidopsis.
Collapse
Affiliation(s)
- Chae Jin Lim
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Suk Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Akhtar Ali
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junghoon Park
- Institute of Global Disease Control, Konkuk University, Seoul, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Seung Min Ryou
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Mingzhe Shen
- Department of Agronomy, Agricultural College, Yanbian University, Yanji, China
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Zein Eddin Bader
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shah Zareen
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Min Jae Bae
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong Hyoo Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jose M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones 17 Cientificas and Universidad de Sevilla, Seville, Spain
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Abstract
Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'β directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.
Collapse
|
33
|
Ronald J, Su C, Wang L, Davis SJ. Cellular localization of Arabidopsis EARLY FLOWERING3 is responsive to light quality. PLANT PHYSIOLOGY 2022; 190:1024-1036. [PMID: 35191492 PMCID: PMC9516731 DOI: 10.1093/plphys/kiac072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 05/13/2023]
Abstract
Circadian clocks facilitate the coordination of physiological and developmental processes to changing daily and seasonal cycles. A hub for environmental signaling pathways in the Arabidopsis (Arabidopsis thaliana) circadian clock is the evening complex (EC), a protein complex composed of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRYTHMO (LUX). Formation of the EC depends on ELF3, a scaffold protein that recruits the other components of the EC and chromatin remodeling enzymes to repress gene expression. Regulating the cellular distribution of ELF3 is thus an important mechanism in controlling its activity. Here, we determined that the cellular and sub-nuclear localization of ELF3 is responsive to red (RL) and blue light and that these two wavelengths have apparently competitive effects on where in the cell ELF3 localizes. We further characterized the RL response, revealing that at least two RL pathways influence the cellular localization of ELF3. One of these depends on the RL photoreceptor phytochrome B (phyB), while the second is at least partially independent of phyB activity. Finally, we investigated how changes in the cellular localization of ELF3 are associated with repression of EC target-gene expression. Our analyses revealed a complex effect whereby ELF3 is required for controlling RL sensitivity of morning-phased genes, but not evening-phased genes. Together, our findings establish a previously unknown mechanism through which light signaling influences ELF3 activity.
Collapse
Affiliation(s)
- James Ronald
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
34
|
Hu T, Manuela D, Hinsch V, Xu M. PICKLE associates with histone deacetylase 9 to mediate vegetative phase change in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:1070-1081. [PMID: 35460275 PMCID: PMC9324081 DOI: 10.1111/nph.18174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/09/2022] [Indexed: 05/04/2023]
Abstract
The juvenile-to-adult vegetative phase change in flowering plants is mediated by a decrease in miR156 levels. Downregulation of MIR156A/MIR156C, the two major sources of miR156, is accompanied by a decrease in acetylation of histone 3 lysine 27 (H3K27ac) and an increase in trimethylation of H3K27 (H3K27me3) at MIR156A/MIR156C in Arabidopsis. Here, we show that histone deacetylase 9 (HDA9) is recruited to MIR156A/MIR156C during the juvenile phase and associates with the CHD3 chromatin remodeler PICKLE (PKL) to erase H3K27ac at MIR156A/MIR156C. H2Aub and H3K27me3 become enriched at MIR156A/MIR156C, and the recruitment of Polycomb Repressive Complex 2 (PRC2) to MIR156A/MIR156C is partially dependent on the activities of PKL and HDA9. Our results suggest that PKL associates with histone deacetylases to erase H3K27ac and promote PRC1 and PRC2 activities to mediate vegetative phase change and maintain plants in the adult phase after the phase transition.
Collapse
Affiliation(s)
- Tieqiang Hu
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Darren Manuela
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Valerie Hinsch
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| | - Mingli Xu
- Department of Biological SciencesUniversity of South CarolinaColumbiaSC29208USA
| |
Collapse
|
35
|
Zhang X, Xue C, Wang R, Shen R, Lan P. Physiological and proteomic dissection of the rice roots in response to iron deficiency and excess. J Proteomics 2022; 267:104689. [PMID: 35914714 DOI: 10.1016/j.jprot.2022.104689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Iron (Fe) disorder is a pivotal factor that limits rice yields in many parts of the world. Extensive research has been devoted to studying how rice molecularly copes with the stresses of Fe deficiency or excess. However, a comprehensive dissection of the whole Fe-responsive atlas at the protein level is still lacking. Here, different concentrations of Fe (0, 40, 350, and 500 μM) were supplied to rice to demonstrate its response differences to Fe deficiency and excess via physiological and proteomic analysis. Results showed that compared with the normal condition, the seedling growth and contents of Fe and manganese were significantly disturbed under either Fe stress. Proteomic analysis revealed that differentially accumulated proteins under Fe deficiency and Fe excess were commonly enriched in localization, carbon metabolism, biosynthesis of amino acids, and antioxidant system. Notably, proteins with abundance retuned by Fe starvation were individually associated with phenylpropanoid biosynthesis, cysteine and methionine metabolism, while ribosome- and endocytosis-related proteins were specifically enriched in treatment of Fe overdose of 500 μM. Moreover, several novel proteins which may play potential roles in rice Fe homeostasis were predicted. These findings expand the understanding of rice Fe nutrition mechanisms, and provide efficient guidance for genetic breeding work. SIGNIFICANCE: Both iron (Fe) deficiency and excess significantly inhibited the growth of rice seedlings. Fe deficiency and excess disturbed processes of localization and cellular oxidant detoxification, metabolisms of carbohydrates and amino acids in different ways. The Fe-deficiency and Fe-excess-responsive proteins identified by the proteome were somewhat different from the reported transcriptional profiles, providing complementary information to the transcriptomic data.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Lee HG, Jeong YY, Lee H, Seo PJ. Arabidopsis HISTONE DEACETYLASE 9 Stimulates Hypocotyl Cell Elongation by Repressing GIGANTEA Expression Under Short Day Photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:950378. [PMID: 35923878 PMCID: PMC9341324 DOI: 10.3389/fpls.2022.950378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Developmental plasticity contributes to plant adaptation and fitness in a given condition. Hypocotyl elongation is under the tight control of complex genetic networks encompassing light, circadian, and photoperiod signaling. In this study, we demonstrate that HISTONE DEACETYLASE 9 (HDA9) mediates day length-dependent hypocotyl cell elongation. HDA9 binds to the GIGANTEA (GI) locus involved in photoperiodic hypocotyl elongation. The short day (SD)-accumulated HDA9 protein promotes histone H3 deacetylation at the GI locus during the dark period, promoting hypocotyl elongation. Consistently, HDA9-deficient mutants display reduced hypocotyl length, along with an increase in GI gene expression, only under SD conditions. Taken together, our study reveals the genetic basis of day length-dependent cell elongation in plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yeong Yeop Jeong
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
37
|
Meng J, Wen Z, Li M, Cheng T, Zhang Q, Sun L. HDACs Gene Family Analysis of Eight Rosaceae Genomes Reveals the Genomic Marker of Cold Stress in Prunus mume. Int J Mol Sci 2022; 23:5957. [PMID: 35682633 PMCID: PMC9180812 DOI: 10.3390/ijms23115957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in plant growth, development, and stress response. However, the pattern of how they are expressed in response to cold stress in the ornamental woody plant Prunus mume is poorly understood. Here, we identify 121 RoHDACs from eight Rosaceae plants of which 13 PmHDACs genes are from P. mume. A phylogenetic analysis suggests that the RoHDACs family is classified into three subfamilies, HDA1/RPD3, HD2, and SIR2. We identify 11 segmental duplication gene pairs of RoHDACs and find, via a sequence alignment, that the HDACs gene family, especially the plant-specific HD2 family, has experienced gene expansion and contraction at a recent genome evolution history. Each of the three HDACs subfamilies has its own conserved domains. The expression of PmHDACs in mei is found to be tissue-specific or tissue-wide. RNA-seq data and qRT-PCR experiments in cold treatments suggest that almost all PmHDACs genes-especially PmHDA1/6/14, PmHDT1, and PmSRT1/2-significantly respond to cold stress. Our analysis provides a fundamental insight into the phylogenetic relationship of the HDACs family in Rosaceae plants. Expression profiles of PmHDACs in response to cold stress could provide an important clue to improve the cold hardiness of mei.
Collapse
Affiliation(s)
| | | | | | | | | | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (J.M.); (Z.W.); (M.L.); (T.C.); (Q.Z.)
| |
Collapse
|
38
|
Chu L, Yang C, Zhuang F, Gao Y, Luo M. The HDA9‐HY5 module epigenetically regulates flowering time in
Arabidopsis thaliana. J Cell Physiol 2022; 237:2961-2968. [DOI: 10.1002/jcp.30761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Liutian Chu
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Feng Zhuang
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Yingmiao Gao
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Agriculture and Biotechnology Research Center South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences Guangzhou China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science Guangzhou China
| |
Collapse
|
39
|
Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: Linking timing to fitness. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:792-811. [PMID: 35088570 DOI: 10.1111/jipb.13230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Endogenous circadian clock integrates cyclic signals of environment and daily and seasonal behaviors of organisms to achieve spatiotemporal synchronization, which greatly improves genetic diversity and fitness of species. This review addresses recent studies on the plant circadian system in the field of chronobiology, covering topics on molecular mechanisms, internal and external Zeitgebers, and hierarchical regulation of physiological outputs. The architecture of the circadian clock involves the autoregulatory transcriptional feedback loops, post-translational modifications of core oscillators, and epigenetic modifications of DNA and histones. Here, light, temperature, humidity, and internal elemental nutrients are summarized to illustrate the sensitivity of the circadian clock to timing cues. In addition, the circadian clock runs cell-autonomously, driving independent circadian rhythms in various tissues. The core oscillators responds to each other with biochemical factors including calcium ions, mineral nutrients, photosynthetic products, and hormones. We describe clock components sequentially expressed during a 24-h day that regulate rhythmic growth, aging, immune response, and resistance to biotic and abiotic stresses. Notably, more data have suggested the circadian clock links chrono-culture to key agronomic traits in crops.
Collapse
Affiliation(s)
- Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
40
|
Zareen S, Ali A, Lim CJ, Khan HA, Park J, Xu ZY, Yun DJ. The Transcriptional Corepressor HOS15 Mediates Dark-Induced Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:828264. [PMID: 35283908 PMCID: PMC8914473 DOI: 10.3389/fpls.2022.828264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 05/23/2023]
Abstract
Multiple endogenous and environmental signals regulate the intricate and highly complex processes driving leaf senescence in plants. A number of genes have been identified in a variety of plant species, including Arabidopsis, which influence leaf senescence. Previously, we have shown that HOS15 is a multifunctional protein that regulates several physiological processes, including plant growth and development under adverse environmental conditions. HOS15 has also been reported to form a chromatin remodeling complex with PWR and HDA9 and to regulate the chromatin structure of numerous genes. However, unlike PWR and HDA9, the involvement of HOS15 in leaf senescence is yet to be identified. Here, we report that HOS15, together with PWR and HDA9, promotes leaf senescence via transcriptional regulation of SAG12/29, senescence marker genes, and CAB1/RCBS1A, photosynthesis-related genes. The expression of ORE1, SAG12, and SAG29 was downregulated in hos15-2 plants, whereas the expression of photosynthesis-related genes, CAB1 and RCBS1A, was upregulated. HOS15 also promoted senescence through dark stress, as its mutation led to a much greener phenotype than that of the WT. Phenotypes of double and triple mutants of HOS15 with PWR and HDA9 produced phenotypes similar to those of a single hos15-2. In line with this observation, the expression levels of NPX1, APG9, and WRKY57 were significantly elevated in hos15-2 and hos15/pwr, hos15/hda9, and hos15/pwr/hda9 mutants compared to those in the WT. Surprisingly, the total H3 acetylation level decreased in age-dependent manner and under dark stress in WT; however, it remained the same in hos15-2 plants regardless of dark stress, suggesting that dark-induced deacetylation requires functional HOS15. More interestingly, the promoters of APG9, NPX1, and WRKY57 were hyperacetylated in hos15-2 plants compared to those in WT plants. Our data reveal that HOS15 acts as a positive regulator and works in the same repressor complex with PWR and HDA9 to promote leaf senescence through aging and dark stress by repressing NPX1, APG9, and WRKY57 acetylation.
Collapse
Affiliation(s)
- Shah Zareen
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Haris Ali Khan
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
41
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
42
|
Han S, Jiang S, Xiong R, Shafique K, Zahid KR, Wang Y. Response and tolerance mechanism of food crops under high temperature stress: a review. BRAZ J BIOL 2022; 82:e253898. [PMID: 35107484 DOI: 10.1590/1519-6984.253898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023] Open
Abstract
High temperature stress events are critical factors inhibiting crop yield. Meanwhile, world population is growing very rapidly and will be reached up to 9 billion by 2050. To feed increasing world population, it is challenging task to increase about 70% global food productions. Food crops have significant contribution toward global food demand and food security. However, consequences from increasing heat stress events are demolishing their abilities to survive and sustain yield when subjected to extreme high temperature stress. Therefore, there is dire need to better understand response and tolerance mechanism of food crops following exposure to heat stress. Here, we aimed to provide recent update on impact of high temperature stress on crop yield of food crops, pollination, pollinators, and novel strategies for improving tolerance of food crop under high temperature stress. Importantly, development of heat-resistant transgenic food crops can grant food security through transformation of superior genes into current germplasm, which are associated with various signaling pathways as well as epigenetic regulation in response to extreme high temperature stress.
Collapse
Affiliation(s)
- S Han
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - S Jiang
- Zhengzhou Normal University, Bioengineering Research Center, Zhengzhou, Henan, P.R. China
| | - R Xiong
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - K R Zahid
- Shenzhen University, Carson International Cancer Center, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen, Guangdong, China
| | - Y Wang
- Liupanshui Normal University, School of Biological Sciences and Technology, Liupanshui, China
| |
Collapse
|
43
|
Deng L, Gao B, Zhao L, Zhang Y, Zhang Q, Guo M, Yang Y, Wang S, Xie L, Lou H, Ma M, Zhang W, Cao Z, Zhang Q, McClung CR, Li G, Li X. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice. Genome Biol 2022; 23:7. [PMID: 34991658 PMCID: PMC8734370 DOI: 10.1186/s13059-021-02594-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. RESULTS Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete "transcriptional factory" foci in the evening, linking chromatin architecture to coordinated transcription outputs. CONCLUSION Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yongqing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Liang Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Hao Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Department of Resources and Environment, Henan University of Engineering, 1 Xianghe Road, Longhu Town, Zhengzhou, 451191, Henan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
44
|
Zhang X, Cheng J, Lin Y, Fu Y, Xie J, Li B, Bian X, Feng Y, Liang W, Tang Q, Zhang H, Liu X, Zhang Y, Liu C, Jiang D. Editing homologous copies of an essential gene affords crop resistance against two cosmopolitan necrotrophic pathogens. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2349-2361. [PMID: 34265153 PMCID: PMC8541787 DOI: 10.1111/pbi.13667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are typical necrotrophic pathogens that can attack more than 700 and 3000 plant species, respectively, and cause huge economic losses across numerous crops. In particular, the absence of resistant cultivars makes the stem rot because of S. sclerotiorum the major threat of rapeseed (Brassica napus) worldwide along with Botrytis. Previously, we identified an effector-like protein (SsSSVP1) from S. sclerotiorum and a homologue of SsSSVP1 on B. cinerea genome and found that SsSSVP1 could interact with BnQCR8 of rapeseed, a subunit of the cytochrome b-c1 complex. In this study, we found that BnQCR8 has eight homologous copies in rapeseed cultivar Westar and reduced the copy number of BnQCR8 using CRISPR/Cas9 to improve rapeseed resistance against S. sclerotiorum. Mutants with one or more copies of BnQCR8 edited showed strong resistance against S. sclerotiorum and B. cinerea. BnQCR8-edited mutants did not show significant difference from Westar in terms of respiration and agronomic traits tested, including the plant shape, flowering time, silique size, seed number, thousand seed weight and seed oil content. These traits make it possible to use these mutants directly for commercial production. Our study highlights a common gene for breeding of rapeseed to unravel the key hindrance of rapeseed production caused by S. sclerotiorum and B. cinerea. In contrast to previously established methodologies, our findings provide a novel strategy to develop crops with high resistance against multiple pathogens by editing only a single gene that encodes the common target of pathogen effectors.
Collapse
Affiliation(s)
- Xuekun Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yang Lin
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yanping Fu
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Bo Li
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xuefeng Bian
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yanbo Feng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Weibo Liang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Qian Tang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Hongxiang Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xiaofan Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yu Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Changxing Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
45
|
Liu X, Wan Y, An J, Zhang X, Cao Y, Li Z, Liu X, Ma H. Morphological, Physiological, and Molecular Responses of Sweetly Fragrant Luculia gratissima During the Floral Transition Stage Induced by Short-Day Photoperiod. FRONTIERS IN PLANT SCIENCE 2021; 12:715683. [PMID: 34456954 PMCID: PMC8385556 DOI: 10.3389/fpls.2021.715683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Photoperiod-regulated floral transition is vital to the flowering plant. Luculia gratissima "Xiangfei" is a flowering ornamental plant with high development potential economically and is a short-day woody perennial. However, the genetic regulation of short-day-induced floral transition in L. gratissima is unclear. To systematically research the responses of L. gratissima during this process, dynamic changes in morphology, physiology, and transcript levels were observed and identified in different developmental stages of long-day- and short-day-treated L. gratissima plants. We found that floral transition in L. gratissima occurred 10 d after short-day induction, but flower bud differentiation did not occur at any stage under long-day conditions. A total of 1,226 differentially expressed genes were identified, of which 146 genes were associated with flowering pathways of sugar, phytohormones, photoperiod, ambient temperature, and aging signals, as well as floral integrator and meristem identity genes. The trehalose-6-phosphate signal positively modulated floral transition by interacting with SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 4 (SPL4) in the aging pathway. Endogenous gibberellin, abscisic acid, cytokinin, and jasmonic acid promoted floral transition, whereas strigolactone inhibited it. In the photoperiod pathway, FD, CONSTANS-LIKE 12, and nuclear factors Y positively controlled floral transition, whereas PSEUDO-RESPONSE REGULATOR 7, FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1, and LUX negatively regulated it. SPL4 and pEARLI1 positively affected floral transition. Suppressor of Overexpression of Constans 1 and AGAMOUSLIKE24 integrated multiple flowering signals to modulate the expression of FRUITFULL/AGL8, AP1, LEAFY, SEPALLATAs, SHORT VEGETATIVE PHASE, and TERMINAL FLOWER 1, thereby regulating floral transition. Finally, we propose a regulatory network model for short-day-induced floral transition in L. gratissima. This study improves our understanding of flowering time regulation in L. gratissima and provides knowledge for its production and commercialization.
Collapse
Affiliation(s)
- Xiongfang Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Youming Wan
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Jing An
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Xiujiao Zhang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Yurong Cao
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Zhenghong Li
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Xiuxian Liu
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| | - Hong Ma
- Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
46
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
47
|
Liao X, Li Y, Hu Z, Lin Y, Zheng B, Ding J. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. PLANT, CELL & ENVIRONMENT 2021; 44:1830-1845. [PMID: 33675080 DOI: 10.1111/pce.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/06/2023]
Abstract
For perennials in boreal and temperate ecosystems, bud dormancy is crucial for survival in harsh winter. Dormancy is released by prolonged exposure to low temperatures and is followed by reactive growth in the spring. Lysine acetylation (Kac) is one of the major post-translational modifications (PTMs) that are involved in plant response to environmental signals. However, little information is available on the effects of Kac modification on bud dormancy release. Here, we report the dynamics of lysine acetylome in hybrid poplar (Populus tremula × Populus alba) dormant buds. A total of 7,594 acetyl-sites from 3,281 acetyl-proteins were identified, representing a large dataset of lysine acetylome in plants. Of them, 229 proteins were differentially acetylated during bud dormancy release and were mainly involved in the primary metabolic pathways. Site-directed mutagenesis enzymatic assays showed that Kac strongly modified the activities of two key enzymes of primary metabolism, pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH). We thus propose that Kac of enzymes could be an important strategy for reconfiguration of metabolic processes during bud dormancy release. In all, our results reveal the importance of Kac in bud dormancy release and provide a new perspective to understand the molecular mechanisms of seasonal growth of trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Ying Lin
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response. J Genet Genomics 2021; 48:369-383. [PMID: 34144927 DOI: 10.1016/j.jgg.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.
Collapse
|
49
|
Lim CJ, Ali A, Park J, Shen M, Park KS, Baek D, Yun DJ. HOS15-PWR chromatin remodeling complex positively regulates cold stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1893978. [PMID: 33641608 PMCID: PMC8078502 DOI: 10.1080/15592324.2021.1893978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Cold stress is a major environmental constraint that restrains plant growth and productivity. To cope with cold stress, plants must be able to perceive a cold signal and regulate the expression of cold-regulated (COR) genes. In our recent study, we showed that Arabidopsis HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15) acts as a substrate receptor for CULLIN4-based ubiquitin E3 ligase complex to promote cold-induced histone deacetylase 2 C (HD2C) degradation that allows the activation of COR genes. Additionally, we found that POWERDRESS (PWR), a HOS15-interacting protein, is required for the association of HOS15 with COR gene chromatin and HD2C degradation. The HOS15/PWR complex interacts with and recruits CBF transcription factors to the promoters of COR genes. Collectively, our previous findings suggest that HOS15 and PWR function as positive regulators for the expression of COR genes, and promote cold tolerance. Accordingly, we herein discuss the role of PWR in cold tolerance.
Collapse
Affiliation(s)
- Chae Jin Lim
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Akhtar Ali
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Junghoon Park
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Mingzhe Shen
- Division of Applied Life Science (Bk21plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Suk Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Dongwon Baek
- Division of Applied Life Science (Bk21plus), Plant Molecular Biology and Biotechnology Research Center, Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dea-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Ordon J, Martin P, Erickson JL, Ferik F, Balcke G, Bonas U, Stuttmann J. Disentangling cause and consequence: genetic dissection of the DANGEROUS MIX2 risk locus, and activation of the DM2h NLR in autoimmunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1008-1023. [PMID: 33629456 DOI: 10.1111/tpj.15215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.
Collapse
Affiliation(s)
- Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Patrick Martin
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Jessica Lee Erickson
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| |
Collapse
|