1
|
Nair AU, Kundariya HS, Samantaray D, Dopp IJ, Allu AD, Mackenzie SA. Short-Term High Light Stress Analysis Through Differential Methylation Identifies Root Architecture and Cell Size Responses. PLANT, CELL & ENVIRONMENT 2025; 48:3269-3280. [PMID: 39722567 PMCID: PMC11963490 DOI: 10.1111/pce.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
DNA methylation repatterning is an epigenomic component of plant stress response, but the extent that methylome data can elucidate changes in plant growth following stress onset is not known. We applied high-resolution DNA methylation analysis to decode plant responses to short- and long-term high light stress and, integrating with gene expression data, attempted to predict components of plant growth response. We identified 105 differentially methylated genes (DMGs) following 1 h of high light treatment and 193 DMGs following 1 week of intermittent high light treatment. Two distinct methylome-predicted plant growth responses to high light treatment could be confirmed by linking methylome changes in auxin response pathways to observed changes in root architecture and methylome changes in cell cycle pathway components to endoreduplication and palisade cell enlargement. We observed methylome changes in a cyclic GMP-dependent protein kinase in association with high light stress signalling. The ability to associate intragenic methylation repatterning with predictable plant phenotypic outcomes after a limited period of high light treatment allows for data-based early prediction of plant growth responses. The approach also permits the dissection of gene networks underpinning plant growth adjustments during environmental change to uncover dynamic phenotype determinants.
Collapse
Affiliation(s)
- Akshay U. Nair
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Hardik S. Kundariya
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Devidutta Samantaray
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Isaac J. Dopp
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Annapurna Devi Allu
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Sally A. Mackenzie
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| |
Collapse
|
2
|
Tomar S, Subba A, Chatterjee Y, Singhal NK, Pareek A, Singla-Pareek SL. A cystathionine beta-synthase domain containing protein, OsCBSCBS4, interacts with OsSnRK1A and OsPKG and functions in abiotic stress tolerance in rice. PLANT, CELL & ENVIRONMENT 2025; 48:2630-2646. [PMID: 39073079 DOI: 10.1111/pce.15061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The Cystathionine-β-Synthase (CBS) domain-containing proteins (CDCPs) constitute a functionally diverse protein superfamily, sharing an evolutionary conserved CBS domain either in pair or quad. Rice genome (Oryza sativa subsp. indica) encodes 42 CDCPs; their functions remain largely unexplored. This study examines OsCBSCBS4, a quadruple CBS domain containing protein towards its role in regulating the abiotic stress tolerance in rice. Gene expression analyses revealed upregulation of OsCBSCBS4 in response to diverse abiotic stresses. Further, the cytoplasm-localised OsCBSCBS4 showed interaction with two different kinases, a cytoplasmic localised cGMP-dependant protein kinase (OsPKG) and the nucleo-cytoplasmic catalytic subunit of sucrose-nonfermentation 1-related protein kinase 1 (OsSnRK1A). The interaction with the latter assisted in trafficking of OsCBSCBS4 to the nucleus as well. Overexpression of OsCBSCBS4 in rice resulted in enhanced tolerance to drought and salinity stress, via maintaining better physiological parameters and antioxidant activity. Additionally, OsCBSCBS4-overexpressing rice plants exhibited reduced yield penalty under stress conditions. The in silico docking and in vitro binding analyses of OsCBSCBS4 with ATP suggest its involvement in cellular energy balance. Overall, this study provides novel insight into the unexplored functions of OsCBSCBS4 and demonstrates it as a new promising target for augmenting crop resilience.
Collapse
Affiliation(s)
- Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yajnaseni Chatterjee
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Razalli II, Abdullah-Zawawi MR, Zainal Abidin RA, Harun S, Che Othman MH, Ismail I, Zainal Z. Identification and validation of hub genes associated with biotic and abiotic stresses by modular gene co-expression analysis in Oryza sativa L. Sci Rep 2025; 15:8465. [PMID: 40069264 PMCID: PMC11897307 DOI: 10.1038/s41598-025-92942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Rice, a staple food consumed by half of the world's population, is severely affected by the combined impact of abiotic and biotic stresses, with the former causing increased susceptibility of the plant to pathogens. Four microarray datasets for drought, salinity, tungro virus, and blast pathogen were retrieved from the Gene Expression Omnibus database. A modular gene co-expression (mGCE) analysis was conducted, followed by gene set enrichment analysis to evaluate the upregulation of module activity across different stress conditions. Over-representation analysis was conducted to determine the functional association of each gene module with stress-related processes and pathways. The protein-protein interaction network of mGCE hub genes was constructed, and the Maximal Clique Centrality (MCC) algorithm was applied to enhance precision in identifying key genes. Finally, genes implicated in both abiotic and biotic stress responses were validated using RT-qPCR. A total of 11, 12, 46, and 14 modules containing 85, 106, 253, and 143 hub genes were detected in drought, salinity, tungro virus, and blast. Modular genes in drought were primarily enriched in response to heat stimulus and water deprivation, while salinity-related genes were enriched in response to external stimuli. For the tungro virus and blast pathogen, enrichment was mainly observed in the defence and stress responses. Interestingly, RPS5, PKG, HSP90, HSP70, and MCM were consistently present in abiotic and biotic stresses. The DEG analysis revealed the upregulation of MCM under the tungro virus and downregulation under blast and drought in resistant rice, indicating its role in viral resistance. HSP70 showed no changes, while HSP90 was upregulated in susceptible rice during blast and drought. PKG increased during drought but decreased in japonica rice under salinity. RPS5 was highly upregulated during blast in both resistant and susceptible rice. The RT-qPCR analysis showed that all five hub genes were upregulated in all treatments, indicating their role in stress responses and potential for crop improvement.
Collapse
Affiliation(s)
- Izreen Izzati Razalli
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Rabiatul Adawiah Zainal Abidin
- Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hafiz Che Othman
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Zamri Zainal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Sakai T, Haga K, Kimura T, Kawaura K. Protein phosphatase PP2C19 controls hypocotyl phototropism through the phosphorylation modification of NONPHOTOTROPIC HYPOCOTYL3 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2025; 66:23-35. [PMID: 39604288 PMCID: PMC11775391 DOI: 10.1093/pcp/pcae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Plants exhibit shoot growth in the direction of the light source to facilitate photosynthesis, known as positive phototropism. In Arabidopsis hypocotyl phototropism, it is thought that a gradient of the signal intensity of the blue light (BL) photoreceptor phototropin1 (phot1) between the light-irradiated and shaded sides leads to the differential growth of hypocotyls. The intensity of phot1 signal is regulated not only by the protein kinase activity of phot1 but also by the phosphorylation status of the NONPHOTOTROPIC HYPOCOTYL3 (NPH3) protein, which has a dark form and a BL form of the phosphorylation modification. Previous studies have shown that phot1 drives the forward reaction from the dark form to the BL form of NPH3. However, the molecular mechanism underlying the reverse reaction remains unknown. Here, we show that protein phosphatase PP2C19 controls the reverse reaction that converts the BL form of NPH3 to the dark form of NPH3. The PP2C19 protein possesses the protein phosphatase type 2C (PP2C) domain, two cyclic nucleoside monophosphate (cNMP)-binding domains, and the protein kinase domain. Similar to phot1 and NPH3, PP2C19 localizes to the plasma membrane, and its PP2C domain is necessary and sufficient for PP2C19 function in hypocotyl phototropism. The pp2c19 mutants show abnormalities in second positive hypocotyl phototropism with a delay in the reverse reaction of NPH3 phosphorylation modification. The present study suggests that continuous BL irradiation induces an equilibrium state of the reversible reaction of NPH3 phosphorylation, which acts as a phot1 signaling gradient with phot1 kinase activity to induce the second positive phototropism.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Ken Haga
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, Saitama 345-8501, Japan
| | - Taro Kimura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Keita Kawaura
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
5
|
Song Y, Li F, Ali M, Li X, Zhang X, Ahmed ZFR. Advances in Protein Kinase Regulation of Stress Responses in Fruits and Vegetables. Int J Mol Sci 2025; 26:768. [PMID: 39859482 PMCID: PMC11765796 DOI: 10.3390/ijms26020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Fruits and vegetables (F&Vs) are essential in daily life and industrial production. These perishable produces are vulnerable to various biotic and abiotic stresses during their growth, postharvest storage, and handling. As the fruit detaches from the plant, these stresses become more intense. This unique biological process involves substantial changes in a variety of cellular metabolisms. To counter these stresses, plants have evolved complex physiological defense mechanisms, including regulating cellular activities through reversible phosphorylation of proteins. Protein kinases, key components of reversible protein phosphorylation, facilitate the transfer of the γ-phosphate group from adenosine triphosphate (ATP) to specific amino acid residues on substrates. This phosphorylation alters proteins' structure, function, and interactions, thereby playing a crucial role in regulating cellular activity. Recent studies have identified various protein kinases in F&Vs, underscoring their significant roles in plant growth, development, and stress responses. This article reviews the various types of protein kinases found in F&Vs, emphasizing their roles and regulatory mechanisms in managing stress responses. This research sheds light on the involvement of protein kinases in metabolic regulation, offering key insights to advance the quality characteristics of F&Vs.
Collapse
Affiliation(s)
- Yanan Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Xiaoan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Xinhua Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Zienab F. R. Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
6
|
Judy KJ, Pinseel E, Downey KM, Lewis JA, Alverson AJ. The Divergent Responses of Salinity Generalists to Hyposaline Stress Provide Insights Into the Colonisation of Freshwaters by Diatoms. Mol Ecol 2024; 33:e17556. [PMID: 39432060 DOI: 10.1111/mec.17556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Environmental transitions, such as the salinity divide separating marine and fresh waters, shape biodiversity over both shallow and deep timescales, opening up new niches and creating opportunities for accelerated speciation and adaptive radiation. Understanding the genetics of environmental adaptation is central to understanding how organisms colonise and subsequently diversify in new habitats. We used time-resolved transcriptomics to contrast the hyposalinity stress responses of two diatoms. Skeletonema marinoi has deep marine ancestry but has recently invaded brackish waters. Cyclotella cryptica has deep freshwater ancestry and can withstand a much broader salinity range. Skeletonema marinoi is less adept at mitigating even mild salinity stress compared to Cyclotella cryptica, which has distinct mechanisms for rapid mitigation of hyposaline stress and long-term growth in low salinity. We show that the cellular mechanisms underlying low salinity tolerance, which has allowed diversification across freshwater habitats worldwide, includes elements that are both conserved and variable across the diatom lineage. The balance between ancestral and lineage-specific environmental responses in phytoplankton have shaped marine-freshwater transitions on evolutionary timescales and, on contemporary timescales, will affect which lineages survive and adapt to changing ocean conditions.
Collapse
Affiliation(s)
- Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
7
|
Yang L. From the archives: On abiotic stress signaling: An ON/OFF switch for the heat stress response in wheat, connecting gibberellin signaling and salt stress, and calcium homeostasis and stress sensitivity. THE PLANT CELL 2024; 36:koae258. [PMID: 39302722 PMCID: PMC11638329 DOI: 10.1093/plcell/koae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Leiyun Yang
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Song L, Yu Y, Chen H, Feng Y, Chen S, Zhang H, Zhou H, Meng L, Wang Y. Response of photosynthetic characteristics and antioxidant system in the leaves of safflower to NaCl and NaHCO 3. PLANT CELL REPORTS 2024; 43:146. [PMID: 38764051 DOI: 10.1007/s00299-024-03234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
KEY MESSAGE Compared with NaCl, NaHCO3 caused more serious oxidative damage and photosynthesis inhibition in safflower by down-regulating the expression of related genes. Salt-alkali stress is one of the important factors that limit plant growth. NaCl and sodium bicarbonate (NaHCO3) are neutral and alkaline salts, respectively. This study investigated the physiological characteristics and molecular responses of safflower (Carthamus tinctorius L.) leaves treated with 200 mmol L-1 of NaCl or NaHCO3. The plants treated with NaCl treatment were less effective at inhibiting the growth of safflower, but increased the content of malondialdehyde (MDA) in leaves. Meanwhile, safflower alleviated stress damage by increasing proline (Pro), soluble protein (SP), and soluble sugar (SS). Both fresh weight and dry weight of safflower was severely decreased when it was subjected to NaHCO3 stress, and there was a significant increase in the permeability of cell membranes and the contents of osmotic regulatory substances. An enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes identified significant enrichment of photosynthesis and pathways related to oxidative stress. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the darkgreen module had the highest correlation with photosynthesis and oxidative stress traits. Large numbers of transcription factors, primarily from the MYB, GRAS, WRKY, and C2H2 families, were predicted from the genes within the darkgreen module. An analysis of physiological indicators and DEGs, it was found that under saline-alkali stress, genes related to chlorophyll synthesis enzymes were downregulated, while those related to degradation were upregulated, resulting in inhibited chlorophyll biosynthesis and decreased chlorophyll content. Additionally, NaCl and NaHCO3 stress downregulated the expression of genes related to the Calvin cycle, photosynthetic antenna proteins, and the activity of photosynthetic reaction centers to varying degrees, hindering the photosynthetic electron transfer process, suppressing photosynthesis, with NaHCO3 stress causing more pronounced adverse effects. In terms of oxidative stress, the level of reactive oxygen species (ROS) did not change significantly under the NaCl treatment, but the contents of hydrogen peroxide and the rate of production of superoxide anions increased significantly under NaHCO3 stress. In addition, treatment with NaCl upregulated the levels of expression of the key genes for superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), the ascorbate-glutathione cycle, and the thioredoxin-peroxiredoxin pathway, and increased the activity of these enzymes, thus, reducing oxidative damage. Similarly, NaHCO3 stress increased the activities of SOD, CAT, and POD and the content of ascorbic acid and initiated the glutathione-S-transferase pathway to remove excess ROS but suppressed the regeneration of glutathione and the activity of peroxiredoxin. Overall, both neutral and alkaline salts inhibited the photosynthetic process of safflower, although alkaline salt caused a higher level of stress than neutral salt. Safflower alleviated the oxidative damage induced by stress by regulating its antioxidant system.
Collapse
Affiliation(s)
- Linlin Song
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China
| | - Yongliang Yu
- Institute of Chinese Herbel Medicines, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongzhi Chen
- College of Bioengineering, Xinxiang Institute of Engineering, Henan, China
| | - Yuwei Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Haijia Zhou
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China
| | - Li Meng
- School of Life Sciences, Henan Institute of Science and Technology, Henan, China.
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Bibi G, Shafique I, Ali S, Ahmad R, Shah MM, Naqvi TA, Zeb I, Maathuis FJM, Hussain J. Cyclic guanosine monophosphate improves salt tolerance in Solanum lycopersicum. JOURNAL OF PLANT RESEARCH 2024; 137:111-124. [PMID: 37610631 PMCID: PMC10764492 DOI: 10.1007/s10265-023-01487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
The cyclic nucleotide cyclic guanosine monophosphate (cGMP) is a powerful cell signaling molecule involved in biotic and abiotic stress perception and signal transduction. In the model plant Arabidopsis thaliana, salt and osmotic stress rapidly induce increase in cGMP which plays role by modulating the activity of monovalent cation transporters, possibly by direct binding to these proteins and by altering the expression of many abiotic stress responsive genes. In a recent study, a membrane permeable analogue of cGMP (8-bromo-cGMP) was found to have a promotive effect on soluble sugar, flavonoids and lignin content, and membrane integrity in Solanum lycopersicum seedlings under salt stress. However, it remains to be elucidated how salt stress affects the endogenous cGMP level in S. lycopersicum and if Br-cGMP-induced improvement in salt tolerance in S. lycopersicum involves altered cation fluxes. The current study was conducted to answer these questions. A rapid increase (within 30 s) in endogenous cGMP level was determined in S. lycopersicum roots after treatment with 100 mM NaCl. Addition of membrane permeable Br-cGMP in growth medium remarkably ameliorated the inhibitory effects of NaCl on seedlings' growth parameters, chlorophyll content and net photosynthesis rate. In salt stressed plants, Br-cGMP significantly decreased Na+ content by reducing its influx and increasing efflux while it improved plants K+ content by reducing its efflux and enhancing influx. Furthermore, supplementation with Br-cGMP improved plant's proline content and total antioxidant capacity, resulting in markedly decreased electrolyte leakage under salt stress. Br-cGMP increased the expression of Na+/H+ antiporter genes in roots and shoots of S. lycopersicum growing under salt stress, potentially enhancing plant's ability to sequester Na+ into the vacuole. The findings of this study provide insights into the mechanism of cGMP-induced salt stress tolerance in S. lycopersicum.
Collapse
Affiliation(s)
- Gulnaz Bibi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Iqra Shafique
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Sartaj Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Mohammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Tatheer Alam Naqvi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Iftikhar Zeb
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | | | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan.
| |
Collapse
|
11
|
Liu Y, Ge L, Tang H, Zheng J, Hu J, Wang J, Yang X, Zhang R, Wang X, Li X, Zhang Y, Shi Q. cGMP functions as an important messenger involved in SlSAMS1-regulated salt stress tolerance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108097. [PMID: 37864930 DOI: 10.1016/j.plaphy.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Salt stress adversely affects the growth, development, and yield of tomato (Solanum lycopersicum). SAM Synthetase (SAMS), which is responsible for the biosynthesis of S-adenosylmethionine (SAM, a precursor of polyamine biosynthesis), participates in plant response to abiotic stress. However, the regulatory mechanism of SAMS-mediated salt stress tolerance remains elusive. In this study, we characterized a SAMS homologue SlSAMS1 in tomato. We found that SlSAMS1 is highly expressed in tomato roots, and its expression can be induced by salt stress. Crucially, overexpression of SlSAMS1 in tomato enhances salt stress tolerance. Through metabolomic profiling, we identified some differentially accumulated metabolites, especially, a secondary messenger guanosine 3',5'-cyclic monophosphate (cGMP) which may play a key role in SlSAMS1-regulated salt tolerance. A series of physiological and biochemical data suggest that cGMP alleviates salt stress-induced growth inhibition, and potentially acts downstream of the polyamine-nitric oxide (PA-NO) signaling pathway to trigger H2O2 signaling in response to salt stress. Taken together, the study reveals that SlSAMS1 regulates tomato salt tolerance via the PA-NO-cGMP-H2O2 signal module. Our findings elucidate the regulatory pathway of SlSAMS1-induced plant response to salt stress and indicate a pivotal role of cGMP in salt tolerance.
Collapse
Affiliation(s)
- Yue Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Lianjing Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Huimeng Tang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jinhui Zheng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jinxiang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Jingru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Ruimin Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiaoyun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Xiuming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China
| | - Yan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, PR China.
| |
Collapse
|
12
|
Zhang Y, Gan L, Zhang Y, Huang B, Wan B, Li J, Tong L, Zhou X, Wei Z, Li Y, Song Z, Zhang X, Cai D, He Y. OsCBL5-CIPK1-PP23 module enhances rice grain size and weight through the gibberellin pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:895-909. [PMID: 37133258 DOI: 10.1111/tpj.16266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023]
Abstract
Grain size is a key factor in determining rice (Oryza sativa) yield, and exploring new pathways to regulate grain size has immense potential to improve yield. In this study, we report that OsCBL5 encodes a calcineurin B subunit protein that significantly promotes grain size and weight. oscbl5 plants produced obviously smaller and lighter seeds. We further revealed that OsCBL5 promotes grain size by affecting cell expansion in the spikelet hull. Biochemical analyses demonstrated that CBL5 interacts with CIPK1 and PP23. Furthermore, double and triple mutations were induced using CRISPR/Cas9 (cr) to analyze the genetic relationship. It was found that the cr-cbl5/cipk1 phenotype was similar to that of cr-cipk1 and that the cr-cbl5/pp23, cr-cipk1/pp23, and cr-cbl5/cipk1/pp23 phenotype was similar to that of cr-pp23, indicating that OsCBL5, CIPK1, and PP23 act as a molecular module influencing seed size. In addition, the results show that both CBL5 and CIPK1 are involved in the gibberellic acid (GA) pathway and significantly affect the accumulation of endogenous active GA4 . PP23 participates in GA signal transduction. In brief, this study identified a new module that affects rice grain size, OsCBL5-CIPK1-PP23, which could potentially be targeted to improve rice yield.
Collapse
Affiliation(s)
- Yachun Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Lu Gan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Yujie Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Baosheng Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Shandong Institute of Commerce and Technology, 250000, Jinan, China
| | - Binliang Wan
- Hubei Academy of Agricultural Sciences Institute of Food Crops, 430000, Wuhan, China
| | - Jinbo Li
- Hubei Academy of Agricultural Sciences Institute of Food Crops, 430000, Wuhan, China
| | - Liqi Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Xue Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Zhisong Wei
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
| | - Zhaojian Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Detian Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430000, Wuhan, China
- Wuhan Polyploid Biotechnology Limited Company, 430000, Wuhan, China
| |
Collapse
|
13
|
Xu Q, Yue Y, Liu B, Chen Z, Ma X, Wang J, Zhao Y, Zhou DX. ACL and HAT1 form a nuclear module to acetylate histone H4K5 and promote cell proliferation. Nat Commun 2023; 14:3265. [PMID: 37277331 DOI: 10.1038/s41467-023-39101-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Acetyl-CoA utilized by histone acetyltransferases (HAT) for chromatin modification is mainly generated by ATP-citrate lyase (ACL) from glucose sources. How ACL locally establishes acetyl-CoA production for histone acetylation remains unclear. Here we show that ACL subunit A2 (ACLA2) is present in nuclear condensates, is required for nuclear acetyl-CoA accumulation and acetylation of specific histone lysine residues, and interacts with Histone AcetylTransferase1 (HAT1) in rice. The rice HAT1 acetylates histone H4K5 and H4K16 and its activity on H4K5 requires ACLA2. Mutations of rice ACLA2 and HAT1 (HAG704) genes impair cell division in developing endosperm, result in decreases of H4K5 acetylation at largely the same genomic regions, affect the expression of similar sets of genes, and lead to cell cycle S phase stagnation in the endosperm dividing nuclei. These results indicate that the HAT1-ACLA2 module selectively promotes histone lysine acetylation in specific genomic regions and unravel a mechanism of local acetyl-CoA production which couples energy metabolism with cell division.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Biao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
14
|
Akintunde J, Olayinka M, Ugbaja V, Akinfenwa C, Akintola T, Akamo A, Bello I. Downregulation of inflammatory erectile dysfunction by Mantisa religiosa egg-cake through NO-cGMP-PKG dependent NF-kB signaling cascade activated by mixture of salt intake. Toxicol Rep 2023; 10:633-646. [PMID: 37250529 PMCID: PMC10220466 DOI: 10.1016/j.toxrep.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
We hypothesized whether 10% praying-mantis-egg-cake (10% PMEC) can be applied against inflammatory-erectile-dysfunction and whether it could be linked to NO-cGMP-dependent PKG signaling cascade. Ninety male albino-rats were randomly distributed into nine (n = 10) groups. Group I was given distilled water. Group II and III were pre-treated with 80 mg/kg NaCl and 75 mg/kg MSG, respectively. Group IV was pre-treated with 80 mg/kg NaCl + 75 mg/kg MSG. Group V was administered with 80 mg/kg NaCl+ 3 mg/kg Amylopidin. Group VI was given 80 mg/kg NaCl + 10% PMEC. Group VII was treated with 75 mg/kg MSG + 10% PMEC. Group VIII was treated with 80 mg/kg NaCl+ 75 mg/kg MSG + 10% PMEC. Group IX was post-treated with 10% PMEC for 14 days. Penile PDE-51, arginase, ATP hydrolytic, cholinergic, dopaminergic (MAO-A) and adenosinergic (ADA) enzymes were hyperactive on intoxication with NaCl and MSG. The erectile dysfunction caused by inflammation was linked to alteration of NO-cGMP-dependent PKG signaling cascade via up-regulation of key cytokines and chemokine (MCP-1). These lesions were prohibited by protein-rich-cake (10% PMEC). Thus, protein-rich-cake (10% PMEC) by a factor of 4 (25%) inhibited penile cytokines/MCP-1 on exposure to mixture of salt-intake through NO-cGMP-PKG dependent-NF-KB signaling cascade in rats.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M.C. Olayinka
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.C. Ugbaja
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C.A. Akinfenwa
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - T.E. Akintola
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.J. Akamo
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - I.J. Bello
- School of Applied Sciences, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
15
|
Shrestha H, Yao T, Qiao Z, Muchero W, Hettich RL, Chen JG, Abraham PE. Lectin Receptor-like Kinase Signaling during Engineered Ectomycorrhiza Colonization. Cells 2023; 12:cells12071082. [PMID: 37048154 PMCID: PMC10093077 DOI: 10.3390/cells12071082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mutualistic association can improve a plant’s health and productivity. G-type lectin receptor-like kinase (PtLecRLK1) is a susceptibility factor in Populus trichocarpa that permits root colonization by a beneficial fungus, Laccaria bicolor. Engineering PtLecRLK1 also permits L. bicolor root colonization in non-host plants similar to Populus trichocarpa. The intracellular signaling reprogramed by PtLecRLK1 upon recognition of L. bicolor to allow for the development and maintenance of symbiosis is yet to be determined. In this study, phosphoproteomics was utilized to identify phosphorylation-based relevant signaling pathways associated with PtLecRLK1 recognition of L. bicolor in transgenic switchgrass roots. Our finding shows that PtLecRLK1 in transgenic plants modifies the chitin-triggered plant defense and MAPK signaling along with a significant adjustment in phytohormone signaling, ROS balance, endocytosis, cytoskeleton movement, and proteasomal degradation in order to facilitate the establishment and maintenance of L. bicolor colonization. Moreover, protein–protein interaction data implicate a cGMP-dependent protein kinase as a potential substrate of PtLecRLK1.
Collapse
Affiliation(s)
- Him Shrestha
- Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhenzhen Qiao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Robert L. Hettich
- Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E. Abraham
- Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
16
|
Lu C, Wang Q, Jiang Y, Zhang M, Meng X, Li Y, Liu B, Yin Z, Liu H, Peng C, Li F, Yue Y, Hao M, Sui Y, Wang L, Cheng G, Liu J, Chu Z, Zhu C, Dong H, Ding X. Discovery of a novel nucleoside immune signaling molecule 2'-deoxyguanosine in microbes and plants. J Adv Res 2023; 46:1-15. [PMID: 35811061 PMCID: PMC10105077 DOI: 10.1016/j.jare.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Beneficial microorganisms play essential roles in plant growth and induced systemic resistance (ISR) by releasing signaling molecules. Our previous study obtained the crude extract from beneficial endophyte Paecilomyces variotii, termed ZNC (ZhiNengCong), which significantly enhanced plant resistance to pathogen even at 100 ng/ml. However, the immunoreactive components of ZNC remain unclear. Here, we further identified one of the immunoreactive components of ZNC is a nucleoside 2'-deoxyguanosine (2-dG). OBJECTIVES This paper intends to reveal the molecular mechanism of microbial-derived 2'-deoxyguanosine (2-dG) in activating plant immunity, and the role of plant-derived 2-dG in plant immunity. METHODS The components of ZNC were separated using a high-performance liquid chromatography (HPLC), and 2-dG is identified using a HPLC-mass spectrometry system (LC-MS). Transcriptome analysis and genetic experiments were used to reveal the immune signaling pathway dependent on 2-dG activation of plant immunity. RESULTS This study identified 2'-deoxyguanosine (2-dG) as one of the immunoreactive components from ZNC. And 2-dG significantly enhanced plant pathogen resistance even at 10 ng/ml (37.42 nM). Furthermore, 2-dG-induced resistance depends on NPR1, pattern-recognition receptors/coreceptors, ATP receptor P2K1 (DORN1), ethylene signaling but not salicylic acid accumulation. In addition, we identified Arabidopsis VENOSA4 (VEN4) was involved in 2-dG biosynthesis and could convert dGTP to 2-dG, and vne4 mutant plants were more susceptible to pathogens. CONCLUSION In summary, microbial-derived 2-dG may act as a novel immune signaling molecule involved in plant-microorganism interactions, and VEN4 is 2-dG biosynthesis gene and plays a key role in plant immunity.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., LTD, Taian 271018, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xuanlin Meng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chune Peng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yurong Sui
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lulu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
17
|
Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L, Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111451. [PMID: 36075278 DOI: 10.1016/j.plantsci.2022.111451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic changes play an important role in plant growth and development and in stress response. However, DNA methylation pattern and its relationship with the expression changes of non-coding RNAs and mRNAs of Moso bamboo in response to abiotic stress is still largely unknown. In this work, we used whole-genome bisulfite sequencing in combination with whole-transcriptome sequencing to analyze the DNA methylation and transcription patterns of mRNAs and non-coding RNAs in Moso bamboo under abiotic stresses such as cold, heat, ultraviolet (UV) and salinity. We found that CHH methylation in the promoter region was positively correlated with gene expression, while CHG and CHH methylations in the gene body regions were negatively associated with gene expression. Moreover, CG and CHG methylations in the promoter regions were negatively correlated with the transcript abundance of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs). Similarly, the methylation levels of three contexts in the genic regions were negatively correlated with the transcript abundance of lncRNAs and miRNAs but positively correlated with that of circRNAs. In addition, we suggested that the reduction of 21-nt and 24-nt small interfering RNA (siRNA) expression tended to increase methylation levels in the genic regions. We found that stress-responsive genes such as CRPK1, HSFB2A and CIPK were differentially methylated and expressed. Our results also proposed that DNA methylation may regulate the expression of the transcription factors (TFs) and plant hormone signalling genes such as IAA9, MYC2 and ERF110 in response to abiotic stress. This study firstly reports the abiotic stress-responsive DNA methylation pattern and its involvement of expression of coding RNAs and non-coding RNAs in Moso bamboo. The results expand the knowledge of epigenetic mechanisms in Moso bamboo under abiotic stress and support in-depth deciphering of the function of specific non-coding RNAs in future studies.
Collapse
Affiliation(s)
- Yiqian Ding
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Long-Hai Zou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Jiajun Wu
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Muthusamy Ramakrishnan
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yubang Gao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Liangzhen Zhao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
18
|
Jiang S, Abdalla HB, Bi C, Zhu Y, Tian X, Yang Y, Wong A. HNOXPred: a web tool for the prediction of gas-sensing H-NOX proteins from amino acid sequence. Bioinformatics 2022; 38:4643-4644. [PMID: 35993887 DOI: 10.1093/bioinformatics/btac571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/05/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
SUMMARY HNOXPred is a webserver for the prediction of gas-sensing heme-nitric oxide/oxygen (H-NOX) proteins from amino acid sequence. H-NOX proteins are gas-sensing hemoproteins found in diverse organisms ranging from bacteria to eukaryotes. Recently, gas-sensing complex multi-functional proteins containing only the conserved amino acids at the heme centers of H-NOX proteins, have been identified through a motif-based approach. Based on experimental data and H-NOX candidates reported in the literature, HNOXPred is created to automate and facilitate the identification of similar H-NOX centers across systems. The server features HNOXSCORES scaled from 0 to 1 that consider in its calculation, the physicochemical properties of amino acids constituting the heme center in H-NOX in addition to the conserved amino acids within the center. From user input amino acid sequence, the server returns positive hits and their calculated HNOXSCORES ordered from high to low confidence which are accompanied by interpretation guides and recommendations. The utility of this server is demonstrated using the human proteome as an example. AVAILABILITY AND IMPLEMENTATION The HNOXPred server is available at https://www.hnoxpred.com. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shiyu Jiang
- Department of Computer Science, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China
| | - Hemn Barzan Abdalla
- Department of Computer Science, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| | - Yi Zhu
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| | - Aloysius Wong
- Department of Biology, Wenzhou-Kean University, Wenzhou, Zhejiang Province 325060, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province 325060, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province 325060, China
| |
Collapse
|
19
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
20
|
Sezen UU, Worthy SJ, Umaña MN, Davies SJ, McMahon SM, Swenson NG. Comparative transcriptomics of tropical woody plants supports fast and furious strategy along the leaf economics spectrum in lianas. Biol Open 2022; 11:276072. [PMID: 35876379 PMCID: PMC9346291 DOI: 10.1242/bio.059184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Lianas, climbing woody plants, influence the structure and function of tropical forests. Climbing traits have evolved multiple times, including ancestral groups such as gymnosperms and pteridophytes, but the genetic basis of the liana strategy is largely unknown. Here, we use a comparative transcriptomic approach for 47 tropical plant species, including ten lianas of diverse taxonomic origins, to identify genes that are consistently expressed or downregulated only in lianas. Our comparative analysis of full-length transcripts enabled the identification of a core interactomic network common to lianas. Sets of transcripts identified from our analysis reveal features related to functional traits pertinent to leaf economics spectrum in lianas, include upregulation of genes controlling epidermal cuticular properties, cell wall remodeling, carbon concentrating mechanism, cell cycle progression, DNA repair and a large suit of downregulated transcription factors and enzymes involved in ABA-mediated stress response as well as lignin and suberin synthesis. All together, these genes are known to be significant in shaping plant morphologies through responses such as gravitropism, phyllotaxy and shade avoidance. Summary: The full-length fraction of liana transcriptomes mapped on a protein–protein interactome revealed the nature of their convergence through distinct sets of expressed and downregulated genes not observed in free-standing plants.
Collapse
Affiliation(s)
- U Uzay Sezen
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, 95616USA
| | - Maria N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Gamboa, Panama.,Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
| | - Nathan G Swenson
- Department of Evolution and Ecology, University of California, Davis, CA, 95616USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
21
|
Ren Y, Deng J, Lin Y, Huang J, Chen F. Developing a Chromochloris zofingiensis Mutant for Enhanced Production of Lutein under CO2 Aeration. Mar Drugs 2022; 20:md20030194. [PMID: 35323493 PMCID: PMC8950978 DOI: 10.3390/md20030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Microalgae are competitive and commercial sources for health-benefit carotenoids. In this study, a Chromochloris zofingiensis mutant (Cz-pkg), which does not shut off its photosystem and stays green upon glucose treatment, was generated and characterized. Cz-pkg was developed by treating the algal cells with a chemical mutagen as N-methyl-N’-nitro-N-nitrosoguanidine and followed by a color-based colony screening approach. Cz-pkg was found to contain a dysfunctional cGMP-dependent protein kinase (PKG). By cultivated with CO2 aeration under mixotrophy, the mutant accumulated lutein up to 31.93 ± 1.91 mg L−1 with a productivity of 10.57 ± 0.73 mg L−1 day−1, which were about 2.5- and 8.5-fold of its mother strain. Besides, the lutein content of Cz-pkg could reach 7.73 ± 0.52 mg g−1 of dry weight, which is much higher than that of marigold flower, the most common commercial source of lutein. Transcriptomic analysis revealed that in the mutant Cz-pkg, most of the genes involved in the biosynthesis of lutein and chlorophylls were not down-regulated upon glucose addition, suggesting that PKG may regulate the metabolisms of photosynthetic pigments. This study demonstrated that Cz-pkg could serve as a promising strain for both lutein production and glucose sensing study.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yan Lin
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (J.H.); (F.C.)
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (J.D.); (Y.L.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (J.H.); (F.C.)
| |
Collapse
|
22
|
BdGUCD1 and Cyclic GMP Are Required for Responses of Brachypodium distachyon to Fusarium pseudograminearum in the Mechanism Involving Jasmonate. Int J Mol Sci 2022; 23:ijms23052674. [PMID: 35269814 PMCID: PMC8910563 DOI: 10.3390/ijms23052674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/25/2023] Open
Abstract
Guanosine 3′,5′-cyclic monophosphate (cGMP) is an important signaling molecule in plants. cGMP and guanylyl cyclases (GCs), enzymes that catalyze the synthesis of cGMP from GTP, are involved in several physiological processes and responses to environmental factors, including pathogen infections. Using in vitro analysis, we demonstrated that recombinant BdGUCD1 is a protein with high guanylyl cyclase activity and lower adenylyl cyclase activity. In Brachypodium distachyon, infection by Fusarium pseudograminearum leads to changes in BdGUCD1 mRNA levels, as well as differences in endogenous cGMP levels. These observed changes may be related to alarm reactions induced by pathogen infection. As fluctuations in stress phytohormones after infection have been previously described, we performed experiments to determine the relationship between cyclic nucleotides and phytohormones. The results revealed that inhibition of cellular cGMP changes disrupts stress phytohormone content and responses to pathogen. The observations made here allow us to conclude that cGMP is an important element involved in the processes triggered as a result of infection and changes in its levels affect jasmonic acid. Therefore, stimuli-induced transient elevation of cGMP in plants may play beneficial roles in priming an optimized response, likely by triggering the mechanisms of feedback control.
Collapse
|
23
|
Kesawat MS, Kherawat BS, Singh A, Dey P, Routray S, Mohapatra C, Saha D, Ram C, Siddique KHM, Kumar A, Gupta R, Chung SM, Kumar M. Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:496. [PMID: 35214830 PMCID: PMC8880425 DOI: 10.3390/plants11040496] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/19/2023]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study's outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, Rajasthan, India;
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
| | - Snehasish Routray
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (S.R.); (C.M.)
| | - Chinmayee Mohapatra
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (S.R.); (C.M.)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneshwar 752050, Odisha, India;
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, Rajasthan, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ajay Kumar
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu, Ilsan, Seoul 10326, Korea;
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu, Ilsan, Seoul 10326, Korea;
| |
Collapse
|
24
|
Ma C, Bian C, Liu W, Sun Z, Xi X, Guo D, Liu X, Tian Y, Wang C, Zheng X. Strigolactone alleviates the salinity-alkalinity stress of Malus hupehensis seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:901782. [PMID: 35937337 PMCID: PMC9354494 DOI: 10.3389/fpls.2022.901782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/04/2022] [Indexed: 05/22/2023]
Abstract
Salinity-alkalinity stress can remarkably affect the growth and yield of apple. Strigolactone (SL) is a class of carotenoid-derived compounds that functions in stress tolerance. However, the effects and mechanism of exogenous SL on the salinity-alkalinity tolerance of apple seedlings remain unclear. Here, we assessed the effect of SL on the salinity-alkalinity stress response of Malus hupehensis seedlings. Results showed that treatment with 100 μM exogenous SL analog (GR24) could effectively alleviate salinity-alkalinity stress with higher chlorophyll content and photosynthetic rate than the apple seedlings without GR24 treatment. The mechanism was also explored: First, exogenous GR24 regulated the expression of Na+/K+ transporter genes and decreased the ratio of Na+/K+ in the cytoplasm to maintain ion homeostasis. Second, exogenous GR24 increased the enzyme activities of superoxide, peroxidase and catalase, thereby eliminating reactive oxygen species production. Third, exogenous GR24 alleviated the high pH stress by regulating the expression of H+-ATPase genes and inducing the production of organic acid. Last, exogenous GR24 application increased endogenous acetic acid, abscisic acid, zeatin riboside, and GA3 contents for co-responding to salinity-alkalinity stress indirectly. This study will provide important theoretical basis for analyzing the mechanism of exogenous GR24 in improving salinity-alkalinity tolerance of apple.
Collapse
Affiliation(s)
- Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Wenjie Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, China
- *Correspondence: Xiaodong Zheng,
| |
Collapse
|
25
|
Chatelain P, Astier J, Wendehenne D, Rosnoblet C, Jeandroz S. Identification of Partner Proteins of the Algae Klebsormidium nitens NO Synthases: Toward a Better Understanding of NO Signaling in Eukaryotic Photosynthetic Organisms. FRONTIERS IN PLANT SCIENCE 2021; 12:797451. [PMID: 35003186 PMCID: PMC8728061 DOI: 10.3389/fpls.2021.797451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In animals, NO is synthesized from L-arginine by three isoforms of nitric oxide synthase (NOS) enzyme. NO production and effects have also been reported in plants but the identification of its sources, especially the enzymatic ones, remains one of the critical issues in the field. NOS-like activities have been reported, although there are no homologs of mammalian NOS in the land plant genomes sequenced so far. However, several NOS homologs have been found in algal genomes and transcriptomes. A first study has characterized a functional NOS in the chlorophyte Ostreococcus tauri and the presence of NOS homologs was later confirmed in a dozen algae. These results raise the questions of the significance of the presence of NOS and their molecular diversity in algae. We hypothesize that comparisons among protein structures of the two KnNOS, together with the identification of their interacting partner proteins, might allow a better understanding of the molecular diversification and functioning of NOS in different physiological contexts and, more generally, new insights into NO signaling in photosynthetic organisms. We recently identified two NOS homologs sequences in the genome of the streptophyte Klebsormidium nitens, a model alga in the study of plant adaptation to terrestrial life. The first sequence, named KnNOS1, contains canonical NOS signatures while the second, named KnNOS2, presents a large C-ter extension including a globin domain. In order to identify putative candidates for KnNOSs partner proteins, we draw the protein-protein interaction networks of the three human NOS using the BioGRID database and hypothesized on the biological role of K. nitens orthologs. Some of these conserved partners are known to be involved in mammalian NOSs regulation and functioning. In parallel, our methodological strategy for the identification of partner proteins of KnNOS1 and KnNOS2 by in vitro pull-down assay is presented.
Collapse
|
26
|
Cao H, Gong R, Yuan S, Su Y, Lv W, Zhou Y, Zhang Q, Deng X, Tong P, Liang S, Wang X, Hong Y. Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Rep 2021; 22:e51871. [PMID: 34396669 DOI: 10.15252/embr.202051871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes membrane lipids to produce phosphatidic acid (PA), a lipid mediator involved in various cellular and physiological processes. Here, we show that PLDα6 and PA regulate the distribution of GIBBERELLIN (GA)-INSENSITIVE DWARF1 (GID1), a soluble gibberellin receptor in rice. PLDα6-knockout (KO) plants display less sensitivity to GA than WT, and PA restores the mutant to a normal GA response. PA binds to GID1, as documented by liposome binding, fat immunoblotting, and surface plasmon resonance. Arginines 79 and 82 of GID1 are two key amino acid residues required for PA binding and also for GID1's nuclear localization. The loss of PLDα6 impedes GA-induced nuclear localization of GID1. In addition, PLDα6-KO plants attenuated GA-induced degradation of the DELLA protein SLENDER RICE1 (SLR1). These data suggest that PLDα6 and PA positively mediate GA signaling in rice via PA binding to GID1 and promotion of its nuclear translocation.
Collapse
Affiliation(s)
- Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rong Gong
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuan Su
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Weixin Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yimeng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pan Tong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shihu Liang
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Miras-Moreno B, Zhang L, Senizza B, Lucini L. A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110955. [PMID: 34134851 DOI: 10.1016/j.plantsci.2021.110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Cyclic Nucleotides Monophosphate (cNMP) are key signalling compounds whose role in plant cell signal transduction is still poorly understood. In this work we used sildenafil, a phosphodiesterase (PDE) inhibitor used in human, to amplify the signal cascade triggered by cNMP using tomato as model plant. Metabolomics was then used, together with plant growth and root architecture parameters, to unravel the changes elicited by PDE inhibition either under non-stress and 100 mM NaCl salinity conditions. The PDE inhibitor elicited a significant increase in biomass (+62 %) and root length (+56 %) under no stress conditions, and affected root architecture in terms of distribution over diameter classes. Together with cGMP, others cNMP were modulated by the treatment. Moreover, PDE inhibition triggered a broad metabolic reprogramming involving photosynthesis and secondary metabolism. A complex crosstalk network of phytohormones and other signalling compounds could be observed in treated plants. Nonetheless, metabolites related to redox imbalance processes and NO signalling could be highlighted in tomato following PDE application. Despite salinity damped down the growth-promoting effects of sildenafil, interesting implications in plant mitigation to stress-related detrimental effects could be observed.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| |
Collapse
|
28
|
Zhou X, Joshi S, Khare T, Patil S, Shang J, Kumar V. Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. PLANT CELL REPORTS 2021; 40:1395-1414. [PMID: 33974111 DOI: 10.1007/s00299-021-02705-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide is a dynamic gaseous molecule involved in signalling, crosstalk with stress regulators, and plant abiotic-stress responses. It has great exploratory potentials for engineering abiotic stress tolerance in crops. Nitric oxide (NO), a redox-active gaseous signalling molecule, though present uniformly through the eukaryotes, maintain its specificity in plants with respect to its formation, signalling, and functions. Its cellular concentrations are decisive for its function, as a signalling molecule at lower concentrations, but triggers nitro-oxidative stress and cellular damage when produced at higher concentrations. Besides, it also acts as a potent stress alleviator. Discovered in animals as neurotransmitter, NO has come a long way to being a stress radical and growth regulator in plants. As a key redox molecule, it exhibits several key cellular and molecular interactions including with reactive chemical species, hydrogen sulphide, and calcium. Apart from being a signalling molecule, it is emerging as a key player involved in regulations of plant growth, development and plant-environment interactions. It is involved in crosstalk with stress regulators and is thus pivotal in these stress regulatory mechanisms. NO is getting an unprecedented attention from research community, being investigated and explored for its multifaceted roles in plant abiotic stress tolerance. Through this review, we intend to present the current knowledge and updates on NO biosynthesis and signalling, crosstalk with stress regulators, and how biotechnological manipulations of NO pathway are leading towards developing transgenic crop plants that can withstand environmental stresses and climate change. The targets of various stress responsive miRNA signalling have also been discussed besides giving an account of current approaches used to characterise and detect the NO.
Collapse
Affiliation(s)
- Xianrong Zhou
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China.
| | - Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India
| | - Suraj Patil
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Jin Shang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, 408100, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
29
|
Li T, Li Y, Sun Z, Xi X, Sha G, Ma C, Tian Y, Wang C, Zheng X. Resveratrol Alleviates the KCl Salinity Stress of Malus hupehensis Rhed. FRONTIERS IN PLANT SCIENCE 2021; 12:650485. [PMID: 34054896 PMCID: PMC8149799 DOI: 10.3389/fpls.2021.650485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/01/2021] [Indexed: 05/26/2023]
Abstract
Applying large amounts of potash fertilizer in apple orchards for high apple quality and yield aggravates KCl stress. As a phytoalexin, resveratrol (Res) participates in plant resistance to biotic stress. However, its role in relation to KCl stress has never been reported. Herein we investigated the role of Res in KCl stress response of Malus hupehensis Rehd., a widely used apple rootstock in China which is sensitive to KCl stress. KCl-stressed apple seedlings showed significant wilting phenotype and decline in photosynthetic rate, and the application of 100 μmol Res alleviated KCl stress and maintained photosynthetic capacity. Exogenous Res can strengthen the activities of peroxidase and catalase, thus eliminating reactive oxygen species production induced by KCl stress. Moreover, exogenous Res can decrease the electrolyte leakage by accumulating proline for osmotic balance under KCl stress. Furthermore, exogenous Res application can affect K+/Na+ homeostasis in cytoplasm by enhancing K+ efflux outside the cells, inhibiting Na+ efflux and K+ absorption, and compartmentalizing K+ into vacuoles through regulating the expression of K+ and Na+ transporter genes. These findings provide a theoretical basis for the application of exogenous Res to relieve the KCl stress of apples.
Collapse
Affiliation(s)
- Tingting Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yuqi Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiangli Xi
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Guangli Sha
- Qingdao Academy of Agricultural Sciences, Qingdao, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao, China
| |
Collapse
|
30
|
Zhou W, Chi W, Shen W, Dou W, Wang J, Tian X, Gehring C, Wong A. Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. FRONTIERS IN BIOINFORMATICS 2021; 1:652286. [PMID: 36303732 PMCID: PMC9581015 DOI: 10.3389/fbinf.2021.652286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In proteins, functional centers consist of the key amino acids required to perform molecular functions such as catalysis, ligand-binding, hormone- and gas-sensing. These centers are often embedded within complex multi-domain proteins and can perform important cellular signaling functions that enable fine-tuning of temporal and spatial regulation of signaling molecules and networks. To discover hidden functional centers, we have developed a protocol that consists of the following sequential steps. The first is the assembly of a search motif based on the key amino acids in the functional center followed by querying proteomes of interest with the assembled motif. The second consists of a structural assessment of proteins that harbor the motif. This approach, that relies on the application of computational tools for the analysis of data in public repositories and the biological interpretation of the search results, has to-date uncovered several novel functional centers in complex proteins. Here, we use recent examples to describe a step-by-step guide that details the workflow of this approach and supplement with notes, recommendations and cautions to make this protocol robust and widely applicable for the discovery of hidden functional centers.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanting Shen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Aloysius Wong
| |
Collapse
|
31
|
Świeżawska-Boniecka B, Duszyn M, Kwiatkowski M, Szmidt-Jaworska A, Jaworski K. Cross Talk Between Cyclic Nucleotides and Calcium Signaling Pathways in Plants-Achievements and Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:643560. [PMID: 33664763 PMCID: PMC7921789 DOI: 10.3389/fpls.2021.643560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
A variety of plant cellular activities are regulated through mechanisms controlling the level of signal molecules, such as cyclic nucleotides (cNMPs, e.g., cyclic adenosine 3':5'-monophosphate, cAMP, and cyclic guanosine 3':5'- monophosphate, cGMP) and calcium ions (Ca2+). The mechanism regulating cNMP levels affects their synthesis, degradation, efflux and cellular distribution. Many transporters and the spatiotemporal pattern of calcium signals, which are transduced by multiple, tunable and often strategically positioned Ca2+-sensing elements, play roles in calcium homeostasis. Earlier studies have demonstrated that while cNMPs and Ca2+ can act separately in independent transduction pathways, they can interact and function together. Regardless of the context, the balance between Ca2+ and cNMP is the most important consideration. This balance seems to be crucial for effectors, such as phosphodiesterases, cyclic nucleotide gated channels and cyclase activity. Currently, a wide range of molecular biology techniques enable thorough analyses of cellular cross talk. In recent years, data have indicated relationships between calcium ions and cyclic nucleotides in mechanisms regulating specific signaling pathways. The purpose of this study is to summarize the current knowledge on nucleotide-calcium cross talk in plants.
Collapse
|
32
|
Astier J, Rossi J, Chatelain P, Klinguer A, Besson-Bard A, Rosnoblet C, Jeandroz S, Nicolas-Francès V, Wendehenne D. Nitric oxide production and signalling in algae. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:781-792. [PMID: 32910824 DOI: 10.1093/jxb/eraa421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) was the first identified gaseous messenger and is now well established as a major ubiquitous signalling molecule. The rapid development of our understanding of NO biology in embryophytes came with the partial characterization of the pathways underlying its production and with the decrypting of signalling networks mediating its effects. Notably, the identification of proteins regulated by NO through nitrosation greatly enhanced our perception of NO functions. In comparison, the role of NO in algae has been less investigated. Yet, studies in Chlamydomonas reinhardtii have produced key insights into NO production through the identification of NO-forming nitrite reductase and of S-nitrosated proteins. More intriguingly, in contrast to embryophytes, a few algal species possess a conserved nitric oxide synthase, the main enzyme catalysing NO synthesis in metazoans. This latter finding paves the way for a deeper characterization of novel members of the NO synthase family. Nevertheless, the typical NO-cyclic GMP signalling module transducing NO effects in metazoans is not conserved in algae, nor in embryophytes, highlighting a divergent acquisition of NO signalling between the green and the animal lineages.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jordan Rossi
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pauline Chatelain
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
33
|
Kwiatkowski M, Wong A, Kozakiewicz A, Gehring C, Jaworski K. A tandem motif-based and structural approach can identify hidden functional phosphodiesterases. Comput Struct Biotechnol J 2021; 19:970-975. [PMID: 33613864 PMCID: PMC7873575 DOI: 10.1016/j.csbj.2021.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic nucleotide monophosphates (cNMPs) are increasingly recognized as essential signaling molecules governing many physiological and developmental processes in prokaryotes and eukaryotes. Degradation of cNMPs is as important as their generation because it offers the capability for transient and dynamic cellular level regulation but unlike their generating enzymes, the degrading enzymes, cyclic nucleotide phosphodiesterases (PDEs) are somewhat elusive in higher plants. Based on sequence analysis and structural properties of canonical PDE catalytic centers, we have developed a consensus sequence search motif and used it to identify candidate PDEs. One of these is an Arabidopsis thaliana K+-Uptake Permease (AtKUP5). Structural and molecular docking analysis revealed that the identified PDE domain occupies the C-terminal of this protein forming a solvent-exposed distinctive pocket that can spatially accommodate the cyclic adenosine monophosphate (cAMP) substrate and importantly, cAMP assumes a binding pose that is favorable for interactions with the key amino acids in the consensus motif. PDE activity was confirmed by the sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Notably, this activity was stimulated by the Ca2+/CaM complex, the binding of which to the PDE center was confirmed by surface plasmon resonance (SPR). Since AtKUP5 also has adenylate cyclase (AC) activity that is essential for K+ transport, we propose that this dual moonlighting AC-PDE architecture, offers modulatory roles that afford intricate intramolecular regulation of cAMP levels thereby enabling fine-tuning of cAMP signaling in K+ homeostasis.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, China
| | - Anna Kozakiewicz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina St. 7, 87-100 Toruń, Poland
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
- Corresponding author.
| |
Collapse
|
34
|
Williams WR. Phytohormones: structural and functional relationship to purine nucleotides and some pharmacologic agents. PLANT SIGNALING & BEHAVIOR 2021; 16:1837544. [PMID: 33100143 PMCID: PMC7781725 DOI: 10.1080/15592324.2020.1837544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Structural components of second messenger signaling (nucleotides and associated enzyme systems) within plant and animal cells have more in common than the hormones that initiate metabolic and functional changes. Neurotransmitters and hormones of mammalian pharmacologic classes relate to purine nucleotides in respect of chemical structure and the molecular changes they initiate. This study compares the molecular structures of purine nucleotides with compounds from the abscisic acid, auxin, brassinosteroid, cytokinin, gibberellin, and jasmonate classes by means of a computational program. The results illustrate how phytohomones relate to each other through the structures of nucleotides and cyclic nucleotides. Molecular similarity within the phytohormone structures relates to synergism, antagonism and the modulation of nucleotide function that regulates germination and plant development. As with the molecular evolution of mammalian hormones, cell signaling and cross-talk within the phytohormone classes is purine nucleotide centered.
Collapse
Affiliation(s)
- W. Robert Williams
- Faculty of Life Sciences & Education, University of South Wales, Cardiff, UK
| |
Collapse
|
35
|
Li P, Liu J. Protein Phosphorylation in Plant Cell Signaling. Methods Mol Biol 2021; 2358:45-71. [PMID: 34270045 DOI: 10.1007/978-1-0716-1625-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their sessile nature, plants have evolved sophisticated sensory mechanisms to respond quickly and precisely to the changing environment. The extracellular stimuli are perceived and integrated by diverse receptors, such as receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), and then transmitted to the nucleus by complex cellular signaling networks, which play vital roles in biological processes including plant growth, development, reproduction, and stress responses. The posttranslational modifications (PTMs) are important regulators for the diversification of protein functions in plant cell signaling. Protein phosphorylation is an important and well-characterized form of the PTMs, which influences the functions of many receptors and key components in cellular signaling. Protein phosphorylation in plants predominantly occurs on serine (Ser) and threonine (Thr) residues, which is dynamically and reversibly catalyzed by protein kinases and protein phosphatases, respectively. In this review, we focus on the function of protein phosphorylation in plant cell signaling, especially plant hormone signaling, and highlight the roles of protein phosphorylation in plant abiotic stress responses.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
36
|
Abstract
Plants are an important part of nature because as photoautotrophs, they provide a nutrient source for many other living organisms. Due to their sessile nature, to overcome both biotic and abiotic stresses, plants have developed intricate mechanisms for perception of and reaction to these stresses, both on an external level (perception) and on an internal level (reaction). Specific proteins found within cells play crucial roles in stress mitigation by enhancing cellular processes that facilitate the plants survival during the unfavorable conditions. Well before plants are able to synthesize nascent proteins in response to stress, proteins which already exist in the cell can be subjected to an array of posttranslation modifications (PTMs) that permit a rapid response. These activated proteins can, in turn, aid in further stress responses. Different PTMs have different functions in growth and development of plants. Protein phosphorylation, a reversible form of modification has been well elucidated, and its role in signaling cascades is well documented. In this mini-review, we discuss the integration of protein phosphorylation with other components of abiotic stress-responsive pathways including phytohormones and ion homeostasis. Overall, this review demonstrates the high interconnectivity of the stress response system in plants and how readily plants are able to toggle between various signaling pathways in order to survive harsh conditions. Most notably, fluctuations of the cytosolic calcium levels seem to be a linking component of the various signaling pathways.
Collapse
Affiliation(s)
- Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
37
|
Zhan X, Qi J, Zhou B, Mao B. Metabolomic and transcriptomic analyses reveal the regulation of pigmentation in the purple variety of Dendrobium officinale. Sci Rep 2020; 10:17700. [PMID: 33077850 PMCID: PMC7573623 DOI: 10.1038/s41598-020-74789-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
We performed an integrated analysis of the transcriptome and metabolome from purple (Pr) and normal cultivated varieties (CK) of Dendrobium officinale to gain insights into the regulatory networks associated with phenylpropanoid metabolism and to identify the key regulatory genes of pigmentation. Metabolite and transcript profiling were conducted by ultra-performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) and RNA sequencing. Pr had more flavonoids in the stem than did CK. Metabolome analyses showed that 148 differential metabolites are involved in the biosynthesis of phenylpropanoids, amino acids, purines, and organic acids. Among them, the delphinidin and quercetin derivatives were significantly higher in Pr. A total of 4927 differentially expressed genes (DEGs) were significantly enriched (p ≤ 0.01) in 50 Gene Ontology (GO) terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significantly enriched phenylpropanoid biosynthesis and phytohormone signal transduction in Pr versus CK. The expression levels of flavanone 3-hydroxylase (F3H) and leucoanthocyanidin dioxygenase (LDOX) affected the flux of dihydroflavonol, which led to a color change in Pr. Moreover, DEG enrichment and metabolite analyses reflected flavonoid accumulation in Pr related to brassinosteroid (BR) and auxin metabolism. The results of this study elucidate phenylpropanoid biosynthesis in D. officinale.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China.
| | - Jufeng Qi
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhou
- Zhejiang Baihua Landscape Group Co., Ltd., Taizhou, 318000, China
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Malukani KK, Ranjan A, Hota SJ, Patel HK, Sonti RV. Dual Activities of Receptor-Like Kinase OsWAKL21.2 Induce Immune Responses. PLANT PHYSIOLOGY 2020; 183:1345-1363. [PMID: 32354878 PMCID: PMC7333719 DOI: 10.1104/pp.19.01579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/14/2020] [Indexed: 05/04/2023]
Abstract
Plant pathogens secrete cell wall-degrading enzymes that degrade various components of the plant cell wall. Plants sense this cell wall damage as a mark of infection and induce immune responses. However, the plant functions that are involved in the elaboration of cell wall damage-induced immune responses remain poorly understood. Transcriptome analysis revealed that a rice (Oryza sativa) receptor-like kinase, WALL-ASSOCIATED KINASE-LIKE21 (OsWAKL21.2), is up-regulated following treatment with either Xanthomonas oryzae pv oryzae (a bacterial pathogen) or lipaseA/esterase (LipA; a cell wall-degrading enzyme of X. oryzae pv oryzae). Overexpression of OsWAKL21.2 in rice induces immune responses similar to those activated by LipA treatment. Down-regulation of OsWAKL21.2 attenuates LipA-mediated immune responses. Heterologous expression of OsWAKL21.2 in Arabidopsis (Arabidopsis thaliana) also activates plant immune responses. OsWAKL21.2 is a dual-activity kinase that has in vitro kinase and guanylate cyclase activities. Interestingly, kinase activity of OsWAKL21.2 is necessary to activate rice immune responses, whereas in Arabidopsis, OsWAKL21.2 guanylate cyclase activity activates these responses. Our study reveals a rice receptor kinase that activates immune responses in two different species via two different mechanisms.
Collapse
Affiliation(s)
- Kamal Kumar Malukani
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ashish Ranjan
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- University of Hyderabad, Hyderabad 500046, India
| | - Shiva Jyothi Hota
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Hitendra Kumar Patel
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ramesh V Sonti
- Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
- Department of Biotechnology, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
39
|
Petřivalský M, Luhová L. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:598. [PMID: 32508862 PMCID: PMC7248558 DOI: 10.3389/fpls.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by reactive nitrogen species represents one of the key mechanisms mediating nitric oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is formed from guanosine-5'-triphosphate by a combined action of reactive nitrogen (RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic properties and chemical interactions with protein thiols resulting in a novel protein post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated guard cell signaling. Here we present a survey of current knowledge on biosynthesis, metabolism and biological activities of nitrated nucleotides with special attention to described and proposed functions of 8-nitro-cGMP and its metabolites in plant physiology and stress responses.
Collapse
|