1
|
Poonsiri T, Stransky J, Demitri N, Haas H, Cianci M, Benini S. SidF, a dual substrate N5-acetyl-N5-hydroxy-L-ornithine transacetylase involved in Aspergillus fumigatus siderophore biosynthesis. J Struct Biol X 2025; 11:100119. [PMID: 39845173 PMCID: PMC11751504 DOI: 10.1016/j.yjsbx.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Siderophore-mediated iron acquisition is essential for the virulence of Aspergillus fumigatus, a fungus causing life-threatening aspergillosis. Drugs targeting the siderophore biosynthetic pathway could help improve disease management. The transacetylases SidF and SidL generate intermediates for different siderophores in A. fumigatus. A. fumigatus has a yet unidentified transacetylase that complements SidL during iron deficiency in SidL-lacking mutants. We present the first X-ray structure of SidF, revealing a two-domain architecture with tetrameric assembly. The N-terminal domain contributes to protein solubility and oligomerization, while the C-terminal domain containing the GCN5-related N-acetyltransferase (GNAT) motif is crucial for the enzymatic activity and mediates oligomer formation. Notably, AlphaFold modelling demonstrates structural similarity between SidF and SidL. Enzymatic assays showed that SidF can utilize acetyl-CoA as a donor, previously thought to be a substrate of SidL but not SidF, and selectively uses N5-hydroxy-L-ornithine as an acceptor. This study elucidates the structure of SidF and reveals its role in siderophore biosynthesis. We propose SidF as the unknown transacetylase complementing SidL activity, highlighting its central role in A. fumigatus siderophore biosynthesis. Investigation of this uncharacterized GNAT protein enhances our understanding of fungal virulence and holds promise for its potential application in developing antifungal therapies.
Collapse
Affiliation(s)
- Thanalai Poonsiri
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy
| | - Jan Stransky
- Institute of Biotechnology, AS CR, Centre of Molecular Structure, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Nicola Demitri
- Elettra –Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste I-34149, Italy
| | - Hubertus Haas
- Institute of Molecular Biology/Biocenter, Medical University Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl) Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 1, 39100 Bolzano, Italy
| |
Collapse
|
2
|
Staneviciute A, B Scariot D, Liu YG, Qian Y, Sharma S, Mbaye EHA, Almunif S, Engman DM, Scott EA. Dual Treatment of Chronic Chagasic Cardiomyopathy and Parasitic Burden via Combination Nanotherapy. ACS NANO 2025; 19:16650-16664. [PMID: 40279477 DOI: 10.1021/acsnano.5c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
In chronic Chagas disease, the persistence of the protozoan Trypanosoma cruzi (T. cruzi) is associated with an extensive inflammatory response that impacts cardiac function. The standard treatment, oral benznidazole, effectively targets the parasitic burden but does not address the chronic inflammation nor prevent the progression of severe cardiomyopathies. This presents an inherent immunotherapeutic challenge, as implementing an anti-inflammatory approach can have the unwanted effect of inhibiting beneficial parasite-specific immunity. Here, we investigated a combination therapy approach using benznidazole and immunomodulatory rapamycin-loaded poly(ethylene glycol)-b-poly(propylene sulfide) polymersome nanocarriers in a chronic Chagas disease murine model with cardiac abnormalities. The combined treatment demonstrated effective management of both inflammation and parasitic burden at systemic and local levels. No systemic reactivation of T. cruzi infection was observed, along with cardioprotective immunomodulatory effects through the modulation of cytokines, management of parasitic burden, and improved cardiac function based on electrocardiography assessment. The combination treatment enhanced a protective cytokine response in the heart, characterized by increased anti-inflammatory IL-10 levels, achieving greater effects than standard benznidazole treatment, and normalized TNF-α levels. Localized immunomodulatory effects, along with parasitic burden control, extended to other solid tissues relevant to parasite pathology and reservoirs. These findings highlight the therapeutic potential of modulating the immune response in chronic Chagas disease with rapamycin polymersomes and emphasize the importance of precise treatment timing in the strategy's efficacy.
Collapse
Affiliation(s)
- Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Debora B Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Yu-Gang Liu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Qian
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Swagat Sharma
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - El Hadji Arona Mbaye
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Sultan Almunif
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Bioengineering Institute, King Abdulaziz City for Science and Technology, Riydah 12354, Saudi Arabia
| | - David M Engman
- Department of Pathology, Northwestern University, Chicago, Illinois 60611, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| |
Collapse
|
3
|
Bandekar SJ, Garbett K, Kordon SP, Dintzner EE, Li J, Shearer T, Sando RC, Araç D. Structural basis for regulation of CELSR1 by a compact module in its extracellular region. Nat Commun 2025; 16:3972. [PMID: 40295529 PMCID: PMC12038025 DOI: 10.1038/s41467-025-59319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
The Cadherin EGF Laminin G seven-pass G-type receptor subfamily (CELSR/ADGRC) is one of the most conserved among adhesion G protein-coupled receptors and is essential for animal development. The extracellular regions (ECRs) of CELSRs are large with 23 adhesion domains. However, molecular insight into CELSR function is sparsely available. Here, we report the 3.8 Å cryo-EM reconstruction of the mouse CELSR1 ECR and reveal that 14 domains form a compact module mediated by conserved interactions majorly between the CADH9 and C-terminal GAIN domains. In the presence of Ca2+, the CELSR1 ECR forms a dimer species mediated by the cadherin repeats putatively in an antiparallel fashion. Cell-based assays reveal the N-terminal CADH1-8 repeat is required for cell-cell adhesion and the C-terminal CADH9-GAIN compact module can regulate cellular adhesion. Our work provides molecular insight into how one of the largest GPCRs uses defined structural modules to regulate receptor function.
Collapse
Affiliation(s)
- Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Krassimira Garbett
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Ethan E Dintzner
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA
| | - Tanner Shearer
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Richard C Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- The University of Chicago Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Center for Mechanical Excitability, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Zhang S, Chen T, Zhang Y, Lu C. RNA Binding to CCRRM of PABPN1 Induces Conformation Change. BIOLOGY 2025; 14:432. [PMID: 40282297 PMCID: PMC12024694 DOI: 10.3390/biology14040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Poly(A) Binding Protein Nuclear 1 (PABPN1) is a nuclear poly(A)-binding protein that is highly conserved in eukaryotes. It plays multifaceted roles in RNA processing and metabolism, with its dysregulation closely linked to various diseases. PABPN1 contains an alanine-rich N-terminus, a central coiled-coil domain (CC), a conserved RNA recognition motif (RRM) and a C-terminal extension. PABPN1 influences mRNA splicing and stability through its RNA-binding capabilities, thereby modulating gene expression. While PABPN1 is known to interact with RNA, the molecular mechanism underlying this interaction with RNA awaits further investigation. Here, we designed and purified a PABPN1 fragment encompassing the RNA-binding domain (CCRRM fragment, amino acids 114-254). Using a combination of 3D modeling, small-angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) assay, our result indicated that CCRRM exhibits a high affinity for poly(A) RNA, a moderate affinity for GU-rich and CU-rich sequences, and negligible binding to AU-rich and CA-rich sequences. RNA binding induces conformation change in the CC. These results suggest that PABPN1 could potentially be involved in cytoplasmic polyadenylation and may influence the regulation of mRNA translation and degradation, although further investigation is required to confirm this role.
Collapse
Affiliation(s)
| | | | | | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (T.C.); (Y.Z.)
| |
Collapse
|
5
|
Li T, Stayrook SE, Li W, Wang Y, Li H, Zhang J, Liu Y, Klein DE. Crystal structure of Isthmin-1 and reassessment of its functional role in pre-adipocyte signaling. Nat Commun 2025; 16:3580. [PMID: 40234450 PMCID: PMC12000326 DOI: 10.1038/s41467-025-58828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Isthmin-1 (ISM1) is a recently described adipokine with insulin-like properties that can control hyperglycemia and liver steatosis. Additionally, ISM1 is proposed to play critical roles in patterning, angiogenesis, vascular permeability, and apoptosis. A key feature of ISM1 is its AMOP (adhesion-associated domain in MUC4 (Mucin-4) and other proteins) domain which is essential for many of its functions. However, the molecular details of AMOP domains remain elusive as there are no descriptions of their structure. Here we determined the crystal structure of ISM1 including its thrombospondin type I repeat (TSR) and AMOP domain. Interestingly, ISM1's AMOP domain exhibits a distinct fold with similarities to bacterial streptavidin. When comparing our structure to predicted structures of other AMOP domains, we observed that while the core streptavidin-like barrel is conserved, the surface helices and loops vary greatly. Thus, the AMOP domain fold allows for structural plasticity that may underpin its diverse functions. Furthermore, and contrary to prior studies, we show that highly purified ISM1 does not stimulate AKT phosphorylation on 3T3-F442A pre-adipocytes. Rather, we find that co-purifying growth factors are responsible for this activity. Together, our data reveal the structure and clarify functional studies of this enigmatic protein.
Collapse
Affiliation(s)
- Tongqing Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Steven E Stayrook
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Yueyue Wang
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Hengyi Li
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jianan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Daryl E Klein
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
6
|
Martin F, Kazrani AA, Lafouge J, Diaz-Jimenez D, Siebert S, Fabbro-Burtschell L, Maillard E, Lapouge K, Mertens H, Sauter C, Leitner A, Ochsenbein F, Blais A, Bergamin E. Structure of the nucleosome-bound human BCL7A. Nucleic Acids Res 2025; 53:gkaf273. [PMID: 40207634 PMCID: PMC11983133 DOI: 10.1093/nar/gkaf273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Proteins of the BCL7 family (BCL7A, BCL7B, and BCL7C) are among the most recently identified subunits of the mammalian SWI/SNF chromatin remodeler complex and are absent from the unicellular version of this complex. Their function in the complex is unknown, and very limited structural information is available, despite the fact that they are mutated in several cancer types, most notably blood malignancies and hence medically relevant. Here, using cryo-electron microscopy in combination with biophysical and biochemical approaches, we show that BCL7A forms a stable, high-affinity complex with the nucleosome core particle (NCP) through binding of BCL7A with the acidic patch of the nucleosome via an arginine anchor motif. This interaction is impaired by BCL7A mutations found in cancer. Further, we determined that BCL7A contributes to the remodeling activity of the mSWI/SNF complex and we examined its function at the genomic level. Our findings reveal how BCL7 proteins interact with the NCP and help rationalize the impact of cancer-associated mutations. By providing structural information on the positioning of BCL7 on the NCP, our results broaden the understanding of the mechanism by which SWI/SNF recognizes the chromatin fiber.
Collapse
Affiliation(s)
- Franck Martin
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Asgar Abbas Kazrani
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Julie Lafouge
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Dana Mariel Diaz-Jimenez
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Stéphanie Siebert
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Leonie Fabbro-Burtschell
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Emma Maillard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Haydyn David Thomas Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 2 All. Konrad Roentgen, 67084 Strasbourg, France
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario K1H 8M5, Canada
- Éric Poulin Centre for Neuromuscular Disease, Ottawa, Ontario K1H 8M5, Canada
| | - Elisa Bergamin
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
7
|
Hooten M, Murthy NS, Pal N, Khare SD, Gormley AJ, Dutt M. Martini 3 coarse-grained model of enzymes: Framework with validation by all-atom simulations and x-ray diffraction measurements. J Chem Phys 2025; 162:135104. [PMID: 40177969 PMCID: PMC11970941 DOI: 10.1063/5.0247634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Recent experiments have shown that complexation with a stabilizing compound can preserve enzyme activity in harsh environments. Such complexation is believed to be driven by noncovalent interactions at the enzyme surface, including hydrophobicity and electrostatics. Molecular modeling of these interactions is costly at the all-atom scale due to the long time scales and large particle counts needed to characterize binding. Protein structure at the scale of amino acid residues is parsimoniously represented by a coarse-grained model in which one particle represents several atoms, significantly reducing the cost of simulation. Coarse-grained models may then be used to generate reduced surface descriptions to underlie detailed theories of surface adhesion. In this study, we present two coarse-grained enzyme models-lipase and dehalogenase-that have been prepared using the Martini 3 top-down modeling framework. We simulate each enzyme in aqueous solution and calculate the statistics of protein surface features and shape descriptors. The values from the coarse-grained data are compared with the same calculations performed on all-atom reference systems, revealing key similarities of surface chemistry at the two scales. Structural measures are calculated from the all-atom reference systems and compared with estimates from small-angle x-ray scattering experiments, with good agreement between the two. The described procedures of modeling and analysis comprise a framework for the development of coarse-grained models of protein surfaces with validation to experiment.
Collapse
Affiliation(s)
- Mason Hooten
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - N. Sanjeeva Murthy
- Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nityananda Pal
- Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Adam J. Gormley
- Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
8
|
Malard F, Dias K, Baudy M, Thore S, Vialet B, Barthélémy P, Fribourg S, Karginov FV, Campagne S. Molecular basis for the calcium-dependent activation of the ribonuclease EndoU. Nat Commun 2025; 16:3110. [PMID: 40169637 PMCID: PMC11961692 DOI: 10.1038/s41467-025-58462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Ribonucleases (RNases) are ubiquitous enzymes that process or degrade RNA, essential for cellular functions and immune responses. The EndoU-like superfamily includes endoribonucleases conserved across bacteria, eukaryotes, and certain viruses, with an ancient evolutionary link to the ribonuclease A-like superfamily. Both bacterial EndoU and animal RNase A share a similar fold and function independently of cofactors. In contrast, the eukaryotic EndoU catalytic domain requires divalent metal ions for catalysis, possibly due to an N-terminal extension near the catalytic core. In this study, we use biophysical and computational techniques along with in vitro assays to investigate the calcium-dependent activation of human EndoU. We determine the crystal structure of EndoU bound to calcium and find that calcium binding remote from the catalytic triad triggers water-mediated intramolecular signaling and structural changes, activating the enzyme through allostery. Calcium binding involves residues from both the catalytic core and the N-terminal extension, indicating that the N-terminal extension interacts with the catalytic core to modulate activity in response to calcium. Our findings suggest that similar mechanisms may be present across all eukaryotic EndoUs, highlighting a unique evolutionary adaptation that connects endoribonuclease activity to cellular signaling in eukaryotes.
Collapse
Affiliation(s)
- Florian Malard
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, Pessac, France
| | - Kristen Dias
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, USA
| | - Margaux Baudy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, Pessac, France
| | - Stéphane Thore
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
| | - Brune Vialet
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
| | | | | | - Fedor V Karginov
- Department of Molecular, Cell and Systems Biology, Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, USA.
| | - Sébastien Campagne
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France.
- Univ. Bordeaux, CNRS, INSERM, IECB, US1, UAR 3033, Pessac, France.
| |
Collapse
|
9
|
Lenton S, Chaaban H, Khaled M, van de Weert M, Strodel B, Foderà V. Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation. J Colloid Interface Sci 2025; 683:1175-1187. [PMID: 39778472 DOI: 10.1016/j.jcis.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules. The same interaction was responsible for an enhanced insulin conformational stability and resistance to oligomerisation. Under aggregation conditions, the anion-protein interaction translated into the activation of a coalescence process, leading to amyloid-like microparticles. This reaction is alternative to conformationally-driven pathways, giving rise to elongated amyloid-like fibrils and occurs in the absence of preferential ion-protein binding. Our findings depict a unifying scenario in which common interactions dictated both phase separation at low temperatures and the occurrence of pronounced heterogeneity in the amyloid morphology at high temperatures, similar to what has previously been reported for protein crystal growth.
Collapse
Affiliation(s)
- Samuel Lenton
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hussein Chaaban
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marco van de Weert
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Yun MKD, Subramanian C, Miller K, Jackson P, Radka CD, Rock CO. Isoleucine binding and regulation of Escherichia coli and Staphylococcus aureus threonine dehydratase (IlvA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641827. [PMID: 40093177 PMCID: PMC11908243 DOI: 10.1101/2025.03.06.641827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In Staphylococcus aureus, the branched-chain amino acid biosynthetic pathway provides essential intermediates for membrane biosynthesis. Threonine deaminase (IlvA) is the first enzyme in the pathway, and isoleucine feedback-regulates the enzyme in Escherichia coli. These studies on E. coli IlvA (EcIlvA) introduced the concept of allosteric regulation. To investigate the regulation of S. aureus IlvA (SaIlvA), we first conducted additional studies on EcIlvA. The previously determined crystal structure of EcIlvA revealed a tetrameric assembly of protomers, each with catalytic and regulatory domains, but the structural basis of isoleucine regulation was not characterized. Here, we present the crystal structure of the EcIlvA regulatory domain bound to isoleucine, which reveals the isoleucine binding site and conformational changes that initiate at Phe352 and propagate 23 Angstrom across the domain. This suggests an allosteric pathway that extends to the active site of the adjacent protomer, mediating regulation across the protomer-protomer interface. The EcIlvA(F352A) mutant binds isoleucine but is feedback-resistant due to the absence of the initiating Phe352. In contrast, SaIlvA is not feedback-regulated by isoleucine and does not bind it. The structure of the SaIlvA regulatory domain reveals a different organization that lacks the isoleucine binding site. Other potential allosteric inhibitors of SaIlvA, including phospholipid intermediates, do not affect enzyme activity. We propose that the absence of feedback inhibition in SaIlvA is due to its role in membrane biosynthesis. These findings enhance our understanding of IlvA's allosteric regulation and offer opportunities for engineering feedback-resistant IlvA variants for biotechnological use.
Collapse
|
11
|
Kimball WD, Lanzaro A, Hurd C, Jhaveri N, Huang J, Lewandowski J, Qian KK, Woldeyes MA, Majumdar R, Witek MA, Feng J, Gillilan RE, Huang Q, Marras AE, Truskett TM, Johnston KP. Growth of Clusters toward Liquid-Liquid Phase Separation of Monoclonal Antibodies as Characterized by Small-Angle X-ray Scattering and Molecular Dynamics Simulation. J Phys Chem B 2025; 129:2856-2871. [PMID: 40053704 DOI: 10.1021/acs.jpcb.4c07064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In concentrated protein solutions, short-range attractions (SRAs) contribute to liquid-liquid phase separation (LLPS) as a function of temperature and salinity, particularly when the charge and thus long-range repulsions are low near the isoelectric point pI. Herein, we study how SRA and solution morphology vary with the approach to LLPS from increased SRA for two monoclonal antibodies (mAbs) as salt concentration is reduced near the pI. These properties are quantified using small-angle X-ray scattering (SAXS) interpreted via coarse-grained (CG) molecular dynamics (MD) simulations and compared with less descriptive properties from static and dynamic light scattering. Experimental structure factors are fit with a library of MD simulations for a CG 12-bead mAb model to determine the SRA strength (K) and cluster size distributions. Proximity to LLPS and clustering characteristics in mAb solutions are impacted by both net charge, which are modified by pH, and the strength of anisotropic electrostatic SRA (charge-charge, charge-dipole, hydrogen bonding, etc.), which are screened and weakened by added salts. The trends in LLPS are consistent with the reduced diffusion interaction parameter kD/B22ex for dilute solutions. However, greater insight is provided with SAXS along with CG-MD simulations; in particular, the growth of clusters is observed with the approach to LLPS with decreasing salinity over a wide range of concentrations.
Collapse
Affiliation(s)
- William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christian Hurd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neel Jhaveri
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jintian Huang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joshua Lewandowski
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Jiangyan Feng
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Qingqiu Huang
- Center for High Energy X-ray Sciences at CHESS, Cornell University, Ithaca, New York 14853, United States
| | - Alexander E Marras
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Rinee KC, Patton ZE, Gillilan RE, Huang Q, Pingali SV, Heroux L, Xu AY. Elucidating the porous structure of aluminum adjuvants via in-situ small-angle scattering technique. Vaccine 2025; 50:126813. [PMID: 39914255 DOI: 10.1016/j.vaccine.2025.126813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/18/2025] [Accepted: 01/25/2025] [Indexed: 02/25/2025]
Abstract
Aluminum-based adjuvants are widely used in vaccine formulations due to their immunostimulatory properties and strong safety profile. Despite their effectiveness and safety, the exact mechanisms by which they enhance vaccine efficacy remain unclear. One proposed mechanism is that aluminum adjuvants form a depot that gradually releases antigens, thereby improving antigen uptake by antigen-presenting cells. This study investigates the porous structures of two commonly used aluminum adjuvants, aluminum hydroxide (AH) and aluminum phosphate (AP), using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). Our measurements reveal that AH nanoparticles, with their needle-like morphology, form smaller, interconnected pores within the aggregated architecture. In contrast, AP nanoparticles, with a plate-like shape, form more discrete, isolated porous structures. Both adjuvants have pore sizes within the range of commonly used vaccine antigens, supporting the depot theory. Our findings also reveal that antigen retention is prolonged when the antigen size is comparable to the average pore size of the adjuvant. This study highlights the utility of SAXS and SANS for in-situ characterization of adjuvant porosity and provides insights into how nanoparticle morphology affects antigen retention and release. By elucidating these structural details, our research underscores the importance of porous structure in adjuvant function and offers potential pathways for improving vaccine formulations through tailored adjuvant design.
Collapse
Affiliation(s)
- Khaleda C Rinee
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zoe E Patton
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Qingqiu Huang
- Cornell High Energy Synchrotron Source, Ithaca, NY 14853, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Lang W, Watanabe T, Lee C, Fukushima S, Li F, Yamamoto T, Tajima K, Tagami T, Borsali R, Takahashi K, Satoh T, Isono T. Self-assembly of malto-oligosaccharide-block-solanesol in aqueous solutions: Investigating morphology and sugar-based physiological compatibility. Carbohydr Polym 2025; 352:123207. [PMID: 39843108 DOI: 10.1016/j.carbpol.2024.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
Starch-derived hydrophilic malto-oligosaccharides (Glcn, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glcn-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications. This study explores in detail the solution self-assembly, lectin recognition, and pancreatic digestion of Glc6- and Glc7-b-Sol. Above a critical micelle concentration (CMC) of 0.3 g/L, both systems demonstrated self-assembly into diverse morphologies. Using the pyrene probe method, a polarity parameter of 1.2 was observed at 1 mM samples. Dynamic light scattering experiments, which measured autocorrelation functions and relaxation times at various angles, revealed the anisotropic and heterogeneous characteristics of the morphologies. Specifically, Glc6-b-Sol predominantly exhibited spherical and elongated worm-like micelles with considerable heterogeneity across the entire range of concentrations studied. In contrast, Glc7-b-Sol primarily formed stable, shorter, worm-like structures at lower concentrations, as observed by transmission electron microscopy. However, small-angle X-ray scattering showed that higher concentrations led to the formation of longer worm-like structures, with Glc7-b-Sol forming thicker diameters. Notably, interaction with Concanavalin A above the CMC resulted in complete agglutination. Pancreatic digestion with hog pancreas α-amylase resulted in morphological alterations, with Glc3- and Glc4-b-Sol emerging as the primary digestion products for Glc6- and Glc7-b-Sol, respectively.
Collapse
Affiliation(s)
- Weeranuch Lang
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sho Fukushima
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; ICReDD List-PF, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan; Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan.
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
14
|
Acharya N, Daniel E, Dao TP, Mulvey E, Kraut D, Roelofs J, Castañeda CA. STI1 domain dynamically engages transient helices in disordered regions to drive self-association and phase separation of yeast ubiquilin Dsk2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643327. [PMID: 40161686 PMCID: PMC11952510 DOI: 10.1101/2025.03.14.643327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ubiquitin-binding shuttle proteins are important components of stress-induced biomolecular condensates in cells. Yeast Dsk2 scaffolds proteasome-containing condensates via multivalent interactions with proteasomes and ubiquitinated substrates under azide-induced mitochondrial stress or extended growth conditions. However, the molecular mechanisms underlying how these shuttle proteins work are unknown. Here, we identify that the middle chaperone-binding STI1 domain is the main driver of Dsk2 self-association and phase separation in vitro. On a molecular level, we find that the STI1 domain interacts with three transient amphipathic helices within the intrinsically-disordered regions of Dsk2. Removal of either the STI1 domain or these helices significantly reduces the propensity for Dsk2 to phase separate. In vivo, removal of the STI1 domain in Dsk2 has the opposite effect, resulting in an increase of proteasome-containing condensates due to an accumulation of polyubiquitinated substrates. Modeling of STI1-helix interactions reveals a binding mode that is reminiscent of interactions between chaperone STI1/DP2 domains and client proteins containing amphipathic or transmembrane helices. Our findings support a model whereby STI1-helix interactions important for Dsk2 condensate formation can be replaced by STI1-client interactions for downstream chaperone or other protein quality control outcomes.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Emily Daniel
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuy P. Dao
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Erin Mulvey
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Daniel Kraut
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carlos A. Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
15
|
Zhang S, Ren D, Zhao Q, Peng M, Wang X, Zhang Z, Liu W, Huang F. Observation of topological hydrogen-bonding domains in physical hydrogel for excellent self-healing and elasticity. Nat Commun 2025; 16:2371. [PMID: 40064892 PMCID: PMC11894081 DOI: 10.1038/s41467-025-57692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Physical hydrogels, three-dimensional polymer networks with reversible cross-linking, have been widely used in many developments throughout the history of mankind. However, physical hydrogels face significant challenges in applications due to wound rupture and low elasticity. Some self-heal wounds with strong ionic bond throughout the network but struggle to immediately recover during cyclic operation. In light of this, a strategy that achieves both self-healing and elasticity has been developed through the construction of topological hydrogen-bonding domains. These domains are formed by entangled button-knot nanoscale colloids of polyacrylic-acid (PAA) with an ultra-high molecular weight up to 240,000, further guiding the polymerization of polyacrylamide to reinforce the hydrogel network. The key for such colloids is the self-assembly of PAA fibers, approximately 4 nm in diameter, and the interconnecting PAA colloids possess high strength, simultaneously acting as elastic scaffold and reversibly cross-linking near wounds. The hydrogel completely recovers mechanical properties within 5 h at room temperature and consistently maintains >85% toughness in cyclic loading. After swelling, the hydrogel has 96.1 wt% of water content and zero residual strain during cycling. Such physical hydrogel not only provides a model system for the microstructural engineering of hydrogels but also broadens the scope of potential applications.
Collapse
Affiliation(s)
- Shaoning Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Dayong Ren
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xia Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhitao Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Zhang S, Zhang Y, Chen T, Hu HY, Lu C. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Cells 2025; 14:383. [PMID: 40072111 PMCID: PMC11898529 DOI: 10.3390/cells14050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Ataxin-2 (Atx2), an RNA-binding protein, plays a pivotal role in the regulation of RNA, intracellular metabolism, and translation within the cellular environment. Although both the Sm-like (LSm) and LSm-associated (LSmAD) domains are considered to associated with RNA binding, there is still a lack of experimental evidence supporting their functions. To address this, we designed and constructed several recombinants containing the RNA-binding domain (RBD) of Atx2. By employing biophysical and biochemical techniques, such as EMSA and SHAPE chemical detection, we identified that LSm is responsible for RNA binding, whereas LSmAD alone does not bind RNA. NMR and small-angle X-ray scattering (SAXS) analyses have revealed that the LSmAD domain exhibits limited structural integrity and poor folding capability. The EMSA data confirmed that both LSm and LSm-LSmAD bind RNA, whereas LSmAD alone cannot, suggesting that LSmAD may serve as an auxiliary role to the LSm domain. SHAPE chemical probing further demonstrates that LSm binds to the AU-rich, GU-rich, or CU-rich sequence, but not to the CA-rich sequence. These findings indicate that Atx2 can interact with the U-rich sequences in the 3'-UTR, implicating its role in poly(A) tailing and the regulation of mRNA translation and degradation.
Collapse
Affiliation(s)
- Shengping Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Yunlong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Ting Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.Z.); (Y.Z.); (T.C.)
| |
Collapse
|
17
|
Beyens O, Corthaut S, Lambeir AM, Van Der Veken P, Sterckx YGJ, De Meester I, De Winter H. An Interdisciplinary Approach Provides Insights into the Pronounced Selectivity of Compound 42 for DPP9. ChemMedChem 2025; 20:e202400700. [PMID: 39552560 DOI: 10.1002/cmdc.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Dipeptidyl peptidase 8 (DPP8) and 9 (DPP9) are proteases gaining significant attention for their role in health and disease. Distinctive studies of these proteases are hampered by their close homology. Furthermore, designing selective compounds is a major challenge due to the highly conserved catalytic site. Here, we provide mechanistic insights underlying the DPP9-over-DPP8 selectivity of the semi-selective inhibitor "Compound 42". We performed enhanced sampling molecular dynamics simulations to investigate the binding pose of "Compound 42", which enabled the design of various DPP9 mutants that were characterized through a combination of biochemical (Ki determinations) and in silico approaches. Our findings show that DPP9 residue F253 is an important selectivity-determining factor. This work marks the discovery and validation of a structural feature that can be exploited for the design of DPP8 or DPP9 selective inhibitors.
Collapse
Affiliation(s)
- Olivier Beyens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
18
|
Martinez Grundman JE, Schultz TD, Schlessman JL, Johnson EA, Gillilan RE, Lecomte JTJ. Extremophilic hemoglobins: The structure of Shewanella benthica truncated hemoglobin N. J Biol Chem 2025; 301:108223. [PMID: 39864624 PMCID: PMC11904497 DOI: 10.1016/j.jbc.2025.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N). In the present work, we characterized the structure of this protein (SbHbN) with electronic absorption spectroscopy and X-ray crystallography and inspected its structural integrity under hydrostatic pressure with NMR spectroscopy and small-angle X-ray scattering. We found that SbHbN self-associates weakly in solution and contains an extensive network of hydrophobic tunnels connecting the active site to the surface. Amino acid replacements at the dimeric interface formed by helices G and H in the crystal confirmed this region to be the site of intermolecular interactions. High hydrostatic pressure dissociated the assemblies while the porous subunits resisted unfolding and heme loss. Preservation of structural integrity under pressure is also observed in nonpiezophilic TrHbs, which suggests that this ancient property is derived from functional requirements. Added to the inability of SbHbN to combine reversibly with dioxygen and a propensity to form heme d, the study broadens our perception of the TrHb lineage and the resistance of globins to extreme environmental conditions.
Collapse
Affiliation(s)
| | - Thomas D Schultz
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
19
|
Sachar K, Kanarek K, Colautti J, Kim Y, Bosis E, Prehna G, Salomon D, Whitney JC. A conserved chaperone protein is required for the formation of a noncanonical type VI secretion system spike tip complex. J Biol Chem 2025; 301:108242. [PMID: 39880087 PMCID: PMC11883445 DOI: 10.1016/j.jbc.2025.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Type VI secretion systems (T6SSs) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear. In this study, we set out to characterize the DUF2169 family of T6SS accessory proteins. Using gene co-occurrence analyses, we find that DUF2169-encoding genes strictly co-occur with genes encoding T6SS spike complexes formed by valine-glycine repeat protein G (VgrG) and DUF4150 domains. Although structurally similar to Pro-Ala-Ala-Arg (PAAR) domains, "PAAR-like" DUF4150 domains lack PAAR motifs and instead contain a conserved PIPY motif, leading us to designate them PIPY domains. Next, we present both genetic and biochemical evidence that PIPY domains require a cognate DUF2169 protein to form a functional T6SS spike complex with VgrG. This contrasts with canonical PAAR proteins, which bind VgrG on their own to form functional spike complexes. By solving the first crystal structure of a DUF2169 protein, we show that this T6SS accessory protein adopts a novel protein fold. Furthermore, biophysical and structural modeling data suggest that DUF2169 contains a dynamic loop that physically interacts with a hydrophobic patch on the surface of its cognate PIPY domain. Based on these findings, we propose a model whereby DUF2169 proteins function as molecular chaperones that maintain VgrG-PIPY spike complexes in a secretion-competent state prior to their export by the T6SS apparatus.
Collapse
Affiliation(s)
- Kartik Sachar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jake Colautti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
20
|
Dahiya D, Péter-Szabó Z, Senanayake M, Pingali SV, Leite WC, Byrnes J, Buchko GW, Sivan P, Vilaplana F, Master ER, O'Neill H. SANS investigation of fungal loosenins reveals substrate-dependent impacts of protein action on the inter-microfibril arrangement of cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:27. [PMID: 40022179 PMCID: PMC11869483 DOI: 10.1186/s13068-025-02618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples. RESULTS Whereas the SANS analysis of Spruce holocellulose revealed an increase in inter-microfibril spacing of neighboring cellulose microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL7, the analysis of Eucalyptus holocellulose revealed a reduction in the ordered arrangement of microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL9. Parallel SEC-SAXS characterization of PcaLOOL7, PcaLOOL9, and PcaLOOL12 indicated the proteins likely function as monomers; moreover, all appear to retain a flexible disordered N-terminus and folded C-terminal region. The comparatively high impact of PcaLOOL12 motivated its NMR structural characterization, revealing a double-psi β-barrel (DPBB) domain surrounded by three α-helices-the largest nestled against the DPBB core and the other two part of loops extending from the core. CONCLUSIONS The SANS analysis of PcaLOOL action on holocellulose samples confirms their ability to disrupt cellulose fiber networks and suggests a progression from reducing regular order in the microfibril arrangement to increasing inter-microfibril spacing. The most impactful PcaLOOL, PcaLOOL12, was previously observed to be the most highly expressed loosenin in P. carnosa. Its structural characterization herein reveals its stabilization through two disulfide linkages, and an extended N-terminal region distal to a negatively charged and surface accessible polysaccharide binding groove.
Collapse
Affiliation(s)
- Deepika Dahiya
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Zsuzsanna Péter-Szabó
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Manjula Senanayake
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington C Leite
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - James Byrnes
- Brookhaven National Laboratory, National Synchrotron Light Source II, Bldg. 745, P.O. Box 5000, Upton, NY, 11973-5000, USA
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Pramod Sivan
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Hugh O'Neill
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
21
|
Stagno J, Deme J, Dwivedi V, Lee YT, Lee HK, Yu P, Chen SY, Fan L, Degenhardt MS, Chari R, Young H, Lea S, Wang YX. Structural investigation of an RNA device that regulates PD-1 expression in mammalian cells. Nucleic Acids Res 2025; 53:gkaf156. [PMID: 40071935 PMCID: PMC11897892 DOI: 10.1093/nar/gkaf156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues. We then show the utility of CRISPR-integrated D43 in EL4 lymphocytes to regulate programmed cell death protein 1 (PD-1), a key receptor of immune checkpoints. Treatment of these cells with Tc showed a dose-dependent reduction in PD-1 by immunostaining and a decrease in messenger RNA levels by quantitative PCR as compared with wild type. PD-1 expression was recoverable upon removal of Tc. These results provide mechanistic insight into RNA devices with potential for cancer immunotherapy or other applications.
Collapse
Affiliation(s)
- Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Justin C Deme
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Vibha Dwivedi
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Szu-Yun Chen
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, United States
| | - Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Howard A Young
- Cellular and Molecular Immunology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Susan M Lea
- Molecular Basis of Disease Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
22
|
Taron W, Kasemphong T, Sunon P, Kaewket K, Kamonsutthipaijit N, Ketudat-Cairns JR, Bhakdisongkhram G, Tulalamba W, Sanguansuk S, Viprakasit V, Ngamchuea K. Bioanalytical method for NAD + detection in blood plasma utilizing solution-phase Candida boidinii formate dehydrogenase and electrochemical detection. Analyst 2025; 150:894-904. [PMID: 39878777 DOI: 10.1039/d4an01560f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase Candida boidinii formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD+) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD+ to NADH, facilitated by CbFDH in the presence of formate. This NADH is then quantified by electrochemical measurements at disposable carbon screen-printed electrodes. The reaction is completed within one minute. The assay exhibits a linear response range from 3.74 μM to 2.00 mM, a sensitivity of 8.98 ± 0.18 μA mM-1, and a limit of detection (3sb/m) of 1.12 μM. It demonstrates selectivity against common interferences found in plasma samples, including glucose, urea, creatinine, guanosine 5'-monophosphate, cytidine 5'-monophosphate, flavin adenine dinucleotide, adenosine 5'-triphosphate, and lactate, with interference levels below 5% relative to the unperturbed NAD+ signal. Recovery studies showed 98.0-104.4% recoveries, with further validation against a colorimetric alcohol dehydrogenase assay confirming accuracy in plasma samples.
Collapse
Affiliation(s)
- Wichit Taron
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Tharinda Kasemphong
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| | - Pachanuporn Sunon
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Keerakit Kaewket
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Nuntaporn Kamonsutthipaijit
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang District, Nakhon Ratchasima 30000, Thailand
| | - James R Ketudat-Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| | - Gun Bhakdisongkhram
- School of Medicine, Institute of Medicine, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Warut Tulalamba
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Vip Viprakasit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
23
|
Cory SA, Lin CW, Patra S, Havens SM, Putnam CD, Shirzadeh M, Russell DH, Barondeau DP. Frataxin Traps Low Abundance Quaternary Structure to Stimulate Human Fe-S Cluster Biosynthesis. Biochemistry 2025; 64:903-916. [PMID: 39909887 PMCID: PMC11840927 DOI: 10.1021/acs.biochem.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Iron-sulfur clusters are essential protein cofactors synthesized in human mitochondria by an NFS1-ISD11-ACP-ISCU2-FXN assembly complex. Surprisingly, researchers have discovered three distinct quaternary structures for cysteine desulfurase subcomplexes, which display similar interactions between NFS1-ISD11-ACP protomeric units but dramatically different dimeric interfaces between the protomers. Although the role of these different architectures is unclear, possible functions include regulating activity and promoting the biosynthesis of distinct sulfur-containing biomolecules. Here, crystallography, native ion-mobility mass spectrometry, and chromatography methods reveal the Fe-S assembly subcomplex exists as an equilibrium mixture of these different quaternary structures. Isotope labeling and native mass spectrometry experiments show that the NFS1-ISD11-ACP complexes disassemble into protomers, which can then undergo exchange reactions and dimerize to reform native complexes. Single crystals isolated in distinct architectures have the same activity profile and activation by the Friedreich's ataxia (FRDA) protein frataxin (FXN) when rinsed and dissolved in assay buffer. These results suggest FXN functions as a "molecular lock" and shifts the equilibrium toward one of the architectures to stimulate the cysteine desulfurase activity and promote iron-sulfur cluster biosynthesis. An NFS1-designed variant similarly shifts the equilibrium and partially replaces FXN in activating the complex. We propose that eukaryotic cysteine desulfurases are unusual members of the morpheein class of enzymes that control their activity through their oligomeric state. Overall, the findings support architectural switching as a regulatory mechanism linked to FXN activation of the human Fe-S cluster biosynthetic complex and provide new opportunities for therapeutic interventions of the fatal neurodegenerative disease FRDA.
Collapse
Affiliation(s)
- Seth A. Cory
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Cheng-Wei Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Shachin Patra
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven M. Havens
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Christopher D. Putnam
- Department
of Medicine, University of California School
of Medicine, La Jolla, California 92093-0660, United States
| | - Mehdi Shirzadeh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - David P. Barondeau
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
24
|
Nong J, Gong X, Dang QM, Tiwari S, Patel M, Wu J, Hanna A, Park WJ, Atochina-Vasserman EN, Huang HT, Marcos-Contreras OA, Morris-Blanco KC, Miner JJ, Weissman D, Muzykantov VR, Gupta K, Issadore D, Myerson JW, Wang Z, Brenner JS. Multi-stage-mixing to control the supramolecular structure of lipid nanoparticles, thereby creating a core-then-shell arrangement that improves performance by orders of magnitude. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.12.623321. [PMID: 39605450 PMCID: PMC11601355 DOI: 10.1101/2024.11.12.623321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As they became the dominant gene therapy platform, lipid nanoparticles (LNPs) experienced nearly all their innovation in varying the structure of individual molecules in LNPs. This ignored control of the spatial arrangement of molecules, which is suboptimal because supramolecular structure determines function in biology. To control LNPs' supramolecular structure, we introduce multi-stage-mixing (MSM) to successively add different molecules to LNPs. We first utilize MSM to create a core-then-shell (CTS) synthesis. CTS-LNPs display a clear core-shell structure, vastly lower frequency of LNPs containing no detectable mRNA, and improved mRNA-LNP expression. With DNA-loaded LNPs, which for decades lagged behind mRNA-LNPs due to low expression, CTS improved DNA-LNPs' protein expression by 2-3 orders of magnitude, bringing it within range of mRNA-LNPs. These results show that supramolecular arrangement is critical to LNP performance and can be controlled by mixing methodology. Further, MSM/CTS have finally made DNA-LNPs into a practical platform for long-term gene expression.
Collapse
|
25
|
Wang T, Hu Q, Fronhofer S, Pollack L. Nucleotide-specific RNA conformations and dynamics within ribonucleoprotein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636987. [PMID: 39975191 PMCID: PMC11839098 DOI: 10.1101/2025.02.06.636987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Ribonucleoprotein (RNP) condensates have distinct physiological and pathological significance, but the structure of RNA within them is not well understood. Using contrast-variation solution X-ray scattering, which discerns only the RNA structures within protein-RNA complexes, alongside ensemble-based structural modeling we characterize the conformational changes of flexible poly-A, poly-U and poly-C single stranded RNA as it interacts with polybasic peptides, eventually forming condensed coacervate mixtures. At high salt concentrations, where macromolecular association is weak, we probe association events that precede the formation of liquid-like droplets. Structural changes occur in RNA that reflect charge screening by the peptides as well as π - π interactions of the bases with basic residues. At lower salt concentrations, where association is enhanced, poly-A RNA within phase separated RNP mixtures exhibit a broad scattering peak, suggesting subtle ordering. Coarse-grained molecular dynamics simulations are used to elucidate the nucleotide-specific dynamics within RNP condensates. While adenine-rich condensates behave like stable semidilute solutions, uracil-rich RNA condensates appear to be compositionally fluctuating. This approach helps understand how RNA sequence contributes to the molecular grammar of RNA-protein phase separation.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Scout Fronhofer
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Thorlacius A, Rulev M, Sundberg O, Sundborger-Lunna A. Peripheral membrane protein endophilin B1 probes, perturbs and permeabilizes lipid bilayers. Commun Biol 2025; 8:182. [PMID: 39910321 PMCID: PMC11799418 DOI: 10.1038/s42003-025-07610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Bin/Amphiphysin/Rvs167 (BAR) domain containing proteins are peripheral membrane proteins that regulate intracellular membrane curvature. BAR protein endophilin B1 plays a key role in multiple cellular processes critical for oncogenesis, including autophagy and apoptosis. Amphipathic regions in endophilin B1 drive membrane association and tubulation through membrane scaffolding. Our understanding of exactly how BAR proteins like endophilin B1 promote highly diverse intracellular membrane remodeling events in the cell is severely limited due to lack of high-resolution structural information. Here we present the highest resolution cryo-EM structure of a BAR protein to date and the first structures of a BAR protein bound to a lipid bicelle. Using neural networks, we can effectively sort particle species of different stoichiometries, revealing the tremendous flexibility of post-membrane binding, pre-polymer BAR dimer organization and membrane deformation. We also show that endophilin B1 efficiently permeabilizes negatively charged liposomes that contain mitochondria-specific lipid cardiolipin and propose a new model for Bax-mediated cell death.
Collapse
Affiliation(s)
- Arni Thorlacius
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Maksim Rulev
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Oscar Sundberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
27
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA structure and dynamics with deep learning and solution scattering. Biophys J 2025; 124:549-564. [PMID: 39722452 PMCID: PMC11866959 DOI: 10.1016/j.bpj.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle x-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce a solution conformation predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against 14 experimental data sets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
28
|
Nicholson V, Nguyen K, Gollub E, McCoy M, Yu F, Holehouse AS, Sukenik S, Boothby TC. LEA_4 motifs function alone and in conjunction with synergistic cosolutes to protect a labile enzyme during desiccation. Protein Sci 2025; 34:e70028. [PMID: 39840786 PMCID: PMC11751883 DOI: 10.1002/pro.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species. However, the role of these motifs in the function of LEA_4 proteins is unclear, with some studies finding that they recapitulate the function of full-length LEA_4 proteins in vivo, and other studies finding the opposite result. In this study, we characterize the ability of LEA_4 motifs to protect a desiccation-sensitive enzyme, citrate synthase (CS), from loss of function during desiccation. We show here that LEA_4 motifs not only prevent the loss of function of CS during desiccation but also that they can do so more robustly via synergistically interactions with cosolutes. Our analysis further suggests that cosolutes induce synergy with LEA_4 motifs in a manner that correlates with transfer free energy. This research advances our understanding of LEA_4 proteins by demonstrating that during desiccation their motifs can protect specific clients to varying degrees and that their protective capacity is modulated by their chemical environment. Our findings extend beyond the realm of desiccation tolerance, offering insights into the interplay between IDPs and cosolutes. By investigating the function of LEA_4 motifs, we highlight broader strategies for understanding protein stability and function.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Kenny Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Mary McCoy
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
29
|
Kurniyati K, Clark ND, Wang H, Deng Y, Sze CW, Visser MB, Malkowski MG, Li C. A bipartite bacterial virulence factor targets the complement system and neutrophil activation. EMBO J 2025; 44:1154-1184. [PMID: 39753953 PMCID: PMC11833123 DOI: 10.1038/s44318-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units. The N-terminal fragment has two immunoglobulin-like domains and binds with high affinity to the major neutrophil chemokine receptors FPR1 and CXCR1, blocking N-formyl-Met-Leu-Phe- and IL-8-induced neutrophil chemotaxis and activation. The C-terminal fragment functions as a cysteine protease with a unique proteolytic activity and structure, which degrades several components of the complement system, such as C3 and C3b. Murine infection studies further reveal a critical T-Mac role in tissue damage and inflammation caused by bacterial infection. Collectively, these results disclose a novel innate immunity-evasion strategy, and open avenues for investigating the role of cysteine proteases and immunoglobulin-like domains of gram-positive and -negative bacterial pathogens.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas D Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Hongxia Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yijie Deng
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Ching Wooen Sze
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dentistry, University of Buffalo, the State University of New York, Buffalo, NY, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, NY, USA.
| | - Chunhao Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
30
|
Padilla MS, Shepherd SJ, Hanna AR, Kurnik M, Zhang X, Chen M, Byrnes J, Joseph RA, Yamagata HM, Ricciardi AS, Mrksich K, Issadore D, Gupta K, Mitchell MJ. Solution biophysics identifies lipid nanoparticle non-sphericity, polydispersity, and dependence on internal ordering for efficacious mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.19.629496. [PMID: 39763759 PMCID: PMC11702722 DOI: 10.1101/2024.12.19.629496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Lipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use. However, our understanding of how the composition and mixing method influences the structural, biophysical, and biological properties of the resulting LNPs remains limited, hindering the development of LNPs. Our lack of structural understanding extends from the physical and compositional polydispersity of LNPs, which render traditional characterization methods, such as dynamic light scattering (DLS), unable to accurately quantitate the physicochemical characteristics of LNPs. In this study, we address the challenge of structurally characterizing polydisperse LNP formulations using emerging solution-based biophysical methods that have higher resolution and provide biophysical data beyond size and polydispersity. These techniques include sedimentation velocity analytical ultracentrifugation (SV-AUC), field-flow fractionation followed by multi-angle light scattering (FFF-MALS), and size-exclusion chromatography in-line with synchrotron small-angle X-ray scattering (SEC-SAXS). Here, we show that the LNPs have intrinsic polydispersity in size, RNA loading, and shape, and that these parameters are dependent on both the formulation technique and lipid composition. Lastly, we demonstrate that these biophysical methods can be employed to predict transfection in human primary T cells, intravenous administration, and intramuscular administration by examining the relationship between mRNA translation and physicochemical characteristics. We envision that employing solution-based biophysical methods will be essential for determining LNP structure-function relationships, facilitating the creation of new design rules for LNPs.
Collapse
Affiliation(s)
- Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J. Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew R. Hanna
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xujun Zhang
- Wyatt Technology, LLC, Goleta, CA 93117, USA
| | | | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryann A. Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah M. Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele S. Ricciardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Monsen R, Sabo T, Gray R, Hopkins J, Chaires J. Early events in G-quadruplex folding captured by time-resolved small-angle X-ray scattering. Nucleic Acids Res 2025; 53:gkaf043. [PMID: 39883009 PMCID: PMC11780883 DOI: 10.1093/nar/gkaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Time-resolved small-angle X-ray experiments are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in the folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 24.3 to 12.6 Å. The collapse is monophasic and is complete in <600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, showing that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| | - T Michael Sabo
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| | - Robert Gray
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jonathan B Chaires
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States
| |
Collapse
|
32
|
Baral R, Ho K, Kumar RP, Hopkins JB, Watkins MB, LaRussa S, Caban-Penix S, Calderone LA, Bradshaw N. A General Mechanism for Initiating the General Stress Response in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.16.580724. [PMID: 38405867 PMCID: PMC10889023 DOI: 10.1101/2024.02.16.580724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The General Stress Response promotes survival of bacteria in adverse conditions, but how sensor proteins transduce species-specific signals to initiate the response is not known. The serine/threonine phosphatase RsbU initiates the General Stress Response in B. subtilis upon binding a partner protein (RsbT) that is released from sequestration by environmental stresses. We report that RsbT activates RsbU by inducing otherwise flexible linkers of RsbU to form a short coiled-coil that dimerizes and activates the phosphatase domains. Importantly, we present evidence that related coiled-coil linkers and phosphatase dimers transduce signals from diverse sensor domains to control the General Stress Response and other signaling across bacterial phyla. This coiled-coil linker transduction mechanism additionally suggests a resolution to the mystery of how shared sensory domains control serine/threonine phosphatases, diguanylate cyclases and histidine kinases. We propose that this provides bacteria with a modularly exchangeable toolkit for the evolution of diverse signaling pathways.
Collapse
Affiliation(s)
- Rishika Baral
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts, USA
| | - Kristin Ho
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Ramasamy P. Kumar
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Jesse B. Hopkins
- Biophysics Collaborative Access Team (BioCAT), Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Maxwell B. Watkins
- Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Salvatore LaRussa
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts, USA
| | - Suhaily Caban-Penix
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Molecular and Cell Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Logan A. Calderone
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
- Graduate program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts, USA
| | - Niels Bradshaw
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
33
|
Koning H, Lai J, Marshall A, Stroeher E, Monahan G, Pullakhandam A, Knott G, Ryan T, Fox A, Whitten A, Lee M, Bond C. Structural plasticity of the coiled-coil interactions in human SFPQ. Nucleic Acids Res 2025; 53:gkae1198. [PMID: 39698821 PMCID: PMC11754644 DOI: 10.1093/nar/gkae1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma. The strength and competition of these interaction modes define the ability of DBHS proteins to dissociate from paraspeckles to fulfil functional roles throughout the nucleus or the cytoplasm. In this study, we define and dissect the coiled-coil interactions which promote the polymerisation of DBHS proteins, using a crystal structure of an SFPQ/NONO heterodimer which reveals a flexible coiled-coil interaction interface which differs from previous studies. We support this through extensive solution small-angle X-ray scattering experiments using a panel of SFPQ/NONO heterodimer variants which are capable of tetramerisation to varying extents. The QM mutant displayed a negligible amount of tetramerisation (quadruple loss of function coiled-coil mutant L535A/L539A/L546A/M549A), the Charged Single Alpha Helix (ΔCSAH) variant displayed a dimer-tetramer equilibrium interaction, and the disulfide-forming variant displayed constitutive tetramerisation (R542C which mimics the pathological Drosophila nonAdiss allele). We demonstrate that newly characterised coiled-coil interfaces play a role in the polymerisation of DBHS proteins in addition to the previously described canonical coiled-coil interface. The detail of these interactions provides insight into a process critical for the assembly of paraspeckles as well as the behaviour of SFPQ as a transcription factor, and general multipurpose auxiliary protein with functions essential to mammalian life. Our understanding of the coiled coil behaviour of SFPQ also enhances the explanatory power of mutations (often disease-associated) observed in the DBHS family, potentially allowing for the development of future medical options such as targeted gene therapy.
Collapse
Affiliation(s)
- Heidar J Koning
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jia Y Lai
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Elke Stroeher
- WA Proteomics Facility, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands WA 6009, Australia
| | - Anuradha Pullakhandam
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy M Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew Whitten
- ANSTONew Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Mihwa Lee
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
34
|
Ren Q, Li L, Liu L, Li J, Shi C, Sun Y, Yao X, Hou Z, Xiang S. The molecular mechanism of temperature-dependent phase separation of heat shock factor 1. Nat Chem Biol 2025:10.1038/s41589-024-01806-y. [PMID: 39794489 DOI: 10.1038/s41589-024-01806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Heat shock factor 1 (HSF1) is the critical orchestrator of cell responses to heat shock, and its dysfunction is linked to various diseases. HSF1 undergoes phase separation upon heat shock, and its activity is regulated by post-translational modifications (PTMs). The molecular details underlying HSF1 phase separation, temperature sensing and PTM regulation remain poorly understood. Here, we discovered that HSF1 exhibits temperature-dependent phase separation with a lower critical solution temperature behavior, providing a new conceptual mechanism accounting for HSF1 activation. We revealed the residue-level molecular details of the interactions driving the phase separation of wild-type HSF1 and its distinct PTM patterns at various temperatures. The mapped interfaces were validated experimentally and accounted for the reported HSF1 functions. Importantly, the molecular grammar of temperature-dependent HSF1 phase separation is species specific and physiologically relevant. These findings delineate a chemical code that integrates accurate phase separation with physiological body temperature control in animals.
Collapse
Affiliation(s)
- Qiunan Ren
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Linge Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Lei Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Juan Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chaowei Shi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yujie Sun
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- State Key Laboratory of Membrane Biology & Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
| | - Zhonghuai Hou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China.
| | - ShengQi Xiang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
35
|
Martín-González A, Méndez-Guzmán I, Zabala-Zearreta M, Quintanilla A, García-López A, Martínez-Lombardía E, Albesa-Jové D, Acosta JC, Lucas M. Selective cargo and membrane recognition by SNX17 regulates its interaction with Retriever. EMBO Rep 2025; 26:470-493. [PMID: 39653850 PMCID: PMC11772769 DOI: 10.1038/s44319-024-00340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025] Open
Abstract
The Retriever complex recycles a wide range of transmembrane proteins from endosomes to the plasma membrane. The cargo adapter protein SNX17 has been implicated in recruiting the Retriever complex to endosomal membranes, yet the details of this interaction have remained elusive. Through biophysical and structural model-guided mutagenesis studies with recombinant proteins and liposomes, we have gained a deeper understanding of this process. Here, we demonstrate a direct interaction between SNX17 and Retriever, specifically between the C-terminal region of SNX17 and the interface of the Retriever subunits VPS35L and VPS26C. This interaction is enhanced upon the binding of SNX17 to its cargo in solution, due to the disruption of an intramolecular autoinhibitory interaction between the C-terminal region of SNX17 and the cargo binding pocket. In addition, SNX17 binding to membranes containing phosphatidylinositol-3-phosphate also promotes Retriever recruitment in a cargo-independent manner. Therefore, this work provides evidence of the dual activation mechanisms by which SNX17 modulates Retriever recruitment to the proximity of cargo and membranes, offering significant insights into the regulatory mechanisms of protein recycling at endosomes.
Collapse
Affiliation(s)
- Aurora Martín-González
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Iván Méndez-Guzmán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Maialen Zabala-Zearreta
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Arturo García-López
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - Eva Martínez-Lombardía
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB) and Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Juan Carlos Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain
| | - María Lucas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, 39011, Spain.
| |
Collapse
|
36
|
Botting JM, Rahman MK, Xu H, Yue J, Guo W, Del Mundo JT, Hammel M, Motaleb MA, Liu J. FlbB forms a distinctive ring essential for periplasmic flagellar assembly and motility in Borrelia burgdorferi. PLoS Pathog 2025; 21:e1012812. [PMID: 39777417 PMCID: PMC11750108 DOI: 10.1371/journal.ppat.1012812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Spirochetes are a widespread group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi. Here, we deploy cryo-electron tomography and subtomogram averaging to determine high-resolution in-situ structures of the B. burgdorferi flagellar motor. Comparative analysis and molecular modeling of in-situ flagellar motor structures from B. burgdorferi mutants lacking each of the known collar proteins (FlcA, FlcB, FlcC, FlbB, and Bb0236/FlcD) uncover a complex protein network at the base of the collar. Importantly, our data suggest that FlbB forms a novel periplasmic ring around the rotor but also acts as a scaffold supporting collar assembly and subsequent recruitment of stator complexes. The complex protein network based on the FlbB ring effectively bridges the rotor and 16 torque-generating stator complexes in each flagellar motor, thus contributing to the specialized motility and lifestyle of spirochetes in complex environments.
Collapse
Affiliation(s)
- Jack M. Botting
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Md Khalesur Rahman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jian Yue
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wangbiao Guo
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Joshua T. Del Mundo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
37
|
Holla A, Martin EW, Dannenhoffer-Lafage T, Ruff KM, König SLB, Nüesch MF, Chowdhury A, Louis JM, Soranno A, Nettels D, Pappu RV, Best RB, Mittag T, Schuler B. Identifying Sequence Effects on Chain Dimensions of Disordered Proteins by Integrating Experiments and Simulations. JACS AU 2024; 4:4729-4743. [PMID: 39735932 PMCID: PMC11672150 DOI: 10.1021/jacsau.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS). The set of disordered proteins shows a strong dependence of the chain dimensions on sequence composition, with chain volumes differing by up to a factor of 6. The residue-specific intrachain interaction networks that underlie these pronounced differences were identified using atomistic simulations combined with ensemble reweighting, revealing the important role of charged, aromatic, and polar residues. To advance a transferable description of disordered protein regions, we further employed the experimental data to parametrize a coarse-grained model for disordered proteins that includes an explicit representation of the FRET fluorophores and successfully describes experiments with different dye pairs. Our findings demonstrate the value of integrating experiments and simulations for advancing our quantitative understanding of the sequence features that determine the conformational ensembles of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Andrea Holla
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Erik W. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Thomas Dannenhoffer-Lafage
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Kiersten M. Ruff
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sebastian L. B. König
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark F. Nüesch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Aritra Chowdhury
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John M. Louis
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Andrea Soranno
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Biochemistry and Molecular Biophysics, Center for Biomolecular
Condensates, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rohit V. Pappu
- Department
of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892-0520, United States
| | - Tanja Mittag
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
38
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598075. [PMID: 39764023 PMCID: PMC11702515 DOI: 10.1101/2024.06.08.598075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle X-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce Solution Conformation Predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep-learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against fourteen experimental datasets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
39
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
40
|
Myers MJ, Xu Z, Ryan BJ, DeMars ZR, Ridder MJ, Johnson DK, Krute CN, Flynn TS, Kashipathy MM, Battaile KP, Schnicker N, Lovell S, Freudenthal BD, Bose JL. Molecular insights into the structure and function of the Staphylococcus aureus fatty acid kinase. J Biol Chem 2024; 300:107920. [PMID: 39454961 PMCID: PMC11617999 DOI: 10.1016/j.jbc.2024.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. This complex consists of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, and is known to impact virulence and disease outcomes. Despite some recent studies, there remain many outstanding questions as to the enzymatic mechanism and structure of FAK. To better address this knowledge gap, we used a combination of modeling, biochemical, and cell-based approaches to build on prior proposed models and identify critical details of FAK activity. Using bio-layer interferometry, we demonstrated nanomolar affinity between FakA and FakB which also indicates that FakA is dimer when binding FakB. Additionally, targeted mutagenesis of the FakA Middle domain demonstrates it possesses a metal binding pocket that is critical for FakA dimer stability and FAK function in vitro and in vivo. Lastly, we solved structures of the apo and ligand-bound FakA kinase domain to capture the molecular changes in the protein following ATP binding and hydrolysis. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.
Collapse
Affiliation(s)
- Megan J Myers
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zachary R DeMars
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Miranda J Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - David K Johnson
- Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tony S Flynn
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maithri M Kashipathy
- Protein Structure & X-Ray Crystallography Laboratory, University of Kansas, Lawrence, Kansas, USA
| | | | - Nicholas Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, Iowa, USA
| | - Scott Lovell
- Protein Structure & X-Ray Crystallography Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
41
|
Wang T, He W, Pabit SA, Pollack L, Kirmizialtin S. Sequence-dependent conformational preferences of disordered single-stranded RNA. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102264. [PMID: 39726808 PMCID: PMC11671127 DOI: 10.1016/j.xcrp.2024.102264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure. Here, we adopt an integrated approach that combines solution-based measurements, including small-angle X-ray scattering (SAXS) and Förster resonance energy transfer (FRET), with experimentally guided all-atom molecular dynamics (MD) simulations, to construct structural ensembles of a 30-nucleotide RNA homopolymer (rU30) and a 30-nucleotide RNA heteropolymer with an A-/C-rich sequence. We compare the size, shape, and flexibility of the two different ssRNAs. While the average properties align with polymer-physics descriptions of flexible polymers, we discern distinct, sequence-dependent conformations at the molecular level that demand a more detailed representation than provided by polymer models. These findings emphasize the role of sequence in shaping the overall properties of ssRNA.
Collapse
Affiliation(s)
- Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- Department of Chemistry, New York University, New York, NY 10003, USA
- These authors contributed equally
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- Department of Chemistry, New York University, New York, NY 10003, USA
- Lead contact
| |
Collapse
|
42
|
Zhu Y, Chaubey B, Olsen GL, Varani G. Structure of Essential RNA Regulatory Elements in the West Nile Virus 3'-Terminal Stem Loop. J Mol Biol 2024; 436:168767. [PMID: 39214284 PMCID: PMC11563921 DOI: 10.1016/j.jmb.2024.168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Flaviviruses, such as West Nile and Dengue Virus, pose a significant and growing threat to global health. Central to the flavivirus life cycle are highly structured 5'- and 3'-untranslated regions (UTRs), which harbor conserved cis-acting RNA elements critical for viral replication and host adaptation. Despite their essential roles, detailed molecular insights into these RNA elements have been limited. By employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with SAXS experiments, we determined the three-dimensional structure of the West Nile Virus (WNV) 3'-terminal stem-loop core, a highly conserved element critical for viral genome cyclization and replication. Single nucleotide mutations at several sites within this RNA abolish the ability of the virus to replicate. These critical sites are located within a short 18-nucleotide hairpin stem, a substructure notable for its conformational flexibility, while the adjoining main stem-loop adopts a well-defined extended helix interrupted by three non-Watson-Crick pairs. This study enhances our understanding of several metastable RNA structures that play key roles in regulating the flavivirus lifecycle, and thereby also opens up potential new avenues for the development of antivirals targeting these conserved RNA structures. In particular, the structure we observe suggests that the plastic junction between the small hairpin and the tail of the longer stem-loop could provide a binding pocket for small molecules, for example potentially stabilizing the RNA in a conformation which hinders the conformational rearrangements critical for viral replication.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Cottom CO, Stephenson R, Ricci D, Yang L, Gumbart JC, Noinaj N. Structural characterization of the POTRA domains from A. baumannii reveals new conformations in BamA. Structure 2024; 32:2038-2048.e3. [PMID: 39293443 PMCID: PMC11560574 DOI: 10.1016/j.str.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Recent studies have demonstrated BamA, the central component of the β-barrel assembly machinery (BAM), as an important therapeutic target to combat infections caused by Acinetobacter baumannii and other Gram-negative pathogens. Homology modeling indicates BamA in A. baumannii consists of five polypeptide transport-associated (POTRA) domains and a β-barrel membrane domain. We characterized the POTRA domains of BamA from A. baumannii in solution using size-exclusion chromatography small angle X-ray scattering (SEC-SAXS) analysis and determined crystal structures in two conformational states that are drastically different than those previously observed in BamA from other bacteria, indicating that the POTRA domains are even more conformationally dynamic than has been observed previously. Molecular dynamics simulations of the POTRA domains from A. baumannii and Escherichia coli allowed us to identify key structural features that contribute to the observed novel states. Together, these studies expand on our current understanding of the conformational plasticity within BamA across differing bacterial species.
Collapse
Affiliation(s)
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dante Ricci
- Achaogen, Inc., South San Francisco, CA, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
44
|
Smith KP, Chakravarthy S, Rahi A, Chakraborty M, Vosberg KM, Tonelli M, Plach MG, Grigorescu AA, Curtis JE, Varma D. SEC-SAXS/MC Ensemble Structural Studies of the Microtubule Binding Protein Cdt1 Show Monomeric, Folded-Over Conformations. Cytoskeleton (Hoboken) 2024. [PMID: 39503309 DOI: 10.1002/cm.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Cdt1 is a mixed folded protein critical for DNA replication licensing and it also has a "moonlighting" role at the kinetochore via direct binding to microtubules and the Ndc80 complex. However, it is unknown how the structure and conformations of Cdt1 could allow it to participate in these multiple, unique sets of protein complexes. While robust methods exist to study entirely folded or unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. In this work, we employ orthogonal biophysical and computational techniques to provide structural characterization of mitosis-competent human Cdt1. Thermal stability analyses shows that both folded winged helix domains1 are unstable. CD and NMR show that the N-terminal and linker regions are intrinsically disordered. DLS shows that Cdt1 is monomeric and polydisperse, while SEC-MALS confirms that it is monomeric at high concentrations, but without any apparent inter-molecular self-association. SEC-SAXS enabled computational modeling of the protein structures. Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble of structures. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with SAXS. The best-fit models have the N-terminal and linker disordered regions extended into the solution and the two folded domains close to each other in apparent "folded over" conformations. We hypothesize the best-fit Cdt1 conformations could be consistent with a function as a scaffold protein that may be sterically blocked without binding partners. Our study also provides a template for combining experimental and computational techniques to study mixed-folded proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, USA
| | - Amit Rahi
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Manas Chakraborty
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen M Vosberg
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Arabela A Grigorescu
- Keck Biophysics Facility, Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Dileep Varma
- Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
45
|
Pettitt AJ, Shukla VK, Figueiredo AM, Newton LS, McCarthy S, Tabor AB, Heller GT, Lorenz CD, Hansen DF. An integrative characterization of proline cis and trans conformers in a disordered peptide. Biophys J 2024; 123:3798-3811. [PMID: 39340152 PMCID: PMC11560310 DOI: 10.1016/j.bpj.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) often contain proline residues that undergo cis/trans isomerization. While molecular dynamics (MD) simulations have the potential to fully characterize the proline cis and trans subensembles, they are limited by the slow timescales of isomerization and force field inaccuracies. NMR spectroscopy can report on ensemble-averaged observables for both the cis-proline and trans-proline states, but a full atomistic characterization of these conformers is challenging. Given the importance of proline cis/trans isomerization for influencing the conformational sampling of disordered proteins, we employed a combination of all-atom MD simulations with enhanced sampling (metadynamics), NMR, and small-angle x-ray scattering (SAXS) to characterize the two subensembles of the ORF6 C-terminal region (ORF6CTR) from SARS-CoV-2 corresponding to the proline-57 (P57) cis and trans states. We performed MD simulations in three distinct force fields: AMBER03ws, AMBER99SB-disp, and CHARMM36m, which are all optimized for disordered proteins. Each simulation was run for an accumulated time of 180-220 μs until convergence was reached, as assessed by blocking analysis. A good agreement between the cis-P57 populations predicted from metadynamic simulations in AMBER03ws was observed with populations obtained from experimental NMR data. Moreover, we observed good agreement between the radius of gyration predicted from the metadynamic simulations in AMBER03ws and that measured using SAXS. Our findings suggest that both the cis-P57 and trans-P57 conformations of ORF6CTR are extremely dynamic and that interdisciplinary approaches combining both multiscale computations and experiments offer avenues to explore highly dynamic states that cannot be reliably characterized by either approach in isolation.
Collapse
Affiliation(s)
- Alice J Pettitt
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | | | - Lydia S Newton
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, London, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, London, United Kingdom
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom
| | - Christian D Lorenz
- Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
46
|
Monge N, Amini MR, Deschamps A. Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models. Acta Crystallogr A Found Adv 2024; 80:405-413. [PMID: 39311060 PMCID: PMC11532926 DOI: 10.1107/s2053273324007988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 11/05/2024] Open
Abstract
Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle characterization. A common approach to analysing nanoparticles in solution by SAXS involves fitting the curve using a parametric model that relates real-space parameters, such as nanoparticle size and electron density, to intensity values in reciprocal space. Selecting the optimal model is a crucial step in terms of analysis quality and can be time-consuming and complex. Several studies have proposed effective methods, based on machine learning, to automate the model selection step. Deploying these methods in software intended for both researchers and industry raises several issues. The diversity of SAXS instrumentation requires assessment of the robustness of these methods on data from various machine configurations, involving significant variations in the q-space ranges and highly variable signal-to-noise ratios (SNR) from one data set to another. In the case of laboratory instrumentation, data acquisition can be time-consuming and there is no universal criterion for defining an optimal acquisition time. This paper presents an approach that revisits the nanoparticle model selection method proposed by Monge et al. [Acta Cryst. (2024), A80, 202-212], evaluating and enhancing its robustness on data from device configurations not seen during training, by expanding the data set used for training. The influence of SNR on predictor robustness is then assessed, improved, and used to propose a stopping criterion for optimizing the trade-off between exposure time and data quality.
Collapse
Affiliation(s)
- Nicolas Monge
- Xenocs, Grenoble, France
- LIG, University of Grenoble Alpes, CNRS, Grenoble, France
- SIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
| | | | - Alexis Deschamps
- SIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
| |
Collapse
|
47
|
Khan SA, Hicks A, Leite WC, Byrnes J, Gorai B, Mroginski MA, O'Neill H, Miller AF. Extended conformations of bifurcating electron transfer flavoprotein constitute up to half the population, possibly mediating conformational change. Chem Sci 2024:d4sc04544k. [PMID: 39512923 PMCID: PMC11536132 DOI: 10.1039/d4sc04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Electron transfer bifurcation enables biological systems to drive unfavourable (endergonic) electron transfer by coupling it to favourable (exergonic) transfer of a second electron. In electron transfer flavoproteins (ETFs), a domain-scale conformational change is believed to sever the favourable pathway after a single electron has used it, thereby preventing the energy dissipation that would accompany exergonic transfer of the second electron. To understand the conformation change that participates in turnover, we have deployed small-angle neutron scattering (SANS) and computational techniques to characterize the bifurcating ETF from Acidaminococcus fermentans (AfeETF). SANS data reveal an overall radius of gyration (R g) of 30.1 ± 0.2 Å and a maximum dimension (D max) of 100 Å for oxidized AfeETF. These measurements are 4 Å and 30 Å larger, respectively, than those of any published bifurcating ETF structure. Thus, we find that none of the reported ETF structures can explain the observed scattering, nor can any individual conformation generated by either of our molecular dynamics protocols. To optimize ensembles best able to explain the SANS data, we adapted a genetic algorithm. Successful ensembles contained a compact conformation comparable to one of the crystallographically documented conformations, accompanied by a much more extended one, and these two conformations sufficed to account for the data. The extended conformations identified all have R gs at least 4 Å larger than those of any currently published ETF structures. However, they are strongly populated, constituting 20% of the population of reduced ETF and over 50% of the population of oxidized AfeETF. Thus, the published (compact) structures provide a seriously incomplete picture of the conformation of AfeETF in solution. Moreover, because the composition of the conformational ensemble changes upon reduction of AfeETF's flavins, interconversion of the conformations may contribute to turnover. We propose that the extended conformations can provide energetically accessible paths for rapid interconversion of the open and closed compact conformations that are believed essential at alternating points in turnover.
Collapse
Affiliation(s)
- Sharique A Khan
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alan Hicks
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Biswajit Gorai
- Department of Chemistry, Technische Universität Berlin 10623 Berlin Germany
| | | | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | | |
Collapse
|
48
|
Ko YH, Lokareddy RK, Doll SG, Yeggoni DP, Girdhar A, Mawn I, Klim JR, Rizvi NF, Meyers R, Gillilan RE, Guo L, Cingolani G. Single Acetylation-mimetic Mutation in TDP-43 Nuclear Localization Signal Disrupts Importin α1/β Signaling. J Mol Biol 2024; 436:168751. [PMID: 39181183 PMCID: PMC11443512 DOI: 10.1016/j.jmb.2024.168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/19/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Cytoplasmic aggregation of the TAR-DNA binding protein of 43 kDa (TDP-43) is the hallmark of sporadic amyotrophic lateral sclerosis (ALS). Most ALS patients with TDP-43 aggregates in neurons and glia do not have mutations in the TDP-43 gene but contain aberrantly post-translationally modified TDP-43. Here, we found that a single acetylation-mimetic mutation (K82Q) near the TDP-43 minor Nuclear Localization Signal (NLS) box, which mimics a post-translational modification identified in an ALS patient, can lead to TDP-43 mislocalization to the cytoplasm and irreversible aggregation. We demonstrate that the acetylation mimetic disrupts binding to importins, halting nuclear import and preventing importin α1/β anti-aggregation activity. We propose that perturbations near the NLS are an additional mechanism by which a cellular insult other than a genetically inherited mutation leads to TDP-43 aggregation and loss of function. Our findings are relevant to deciphering the molecular etiology of sporadic ALS.
Collapse
Affiliation(s)
- Ying-Hui Ko
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Ravi K Lokareddy
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Steven G Doll
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; Dept. of Neurology, Johns Hopkins University School of Medicine, 1800 Orleans St Baltimore, Baltimore, MD 21287, USA
| | - Daniel P Yeggoni
- Dept. of Cell Biology, UConn Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Amandeep Girdhar
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Ian Mawn
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Lin Guo
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Gino Cingolani
- Dept. of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
49
|
Hall I, Zablock K, Sobetski R, Weidmann CA, Keane SC. Functional Validation of SAM Riboswitch Element A from Listeria monocytogenes. Biochemistry 2024; 63:2621-2631. [PMID: 39323220 DOI: 10.1021/acs.biochem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
SreA is one of seven candidate S-adenosyl methionine (SAM) class I riboswitches identified in Listeria monocytogenes, a saprophyte and opportunistic foodborne pathogen. SreA precedes genes encoding a methionine ATP-binding cassette (ABC) transporter, which imports methionine and is presumed to regulate transcription of its downstream genes in a SAM-dependent manner. The proposed role of SreA in controlling the transcription of genes encoding an ABC transporter complex may have important implications for how the bacteria senses and responds to the availability of the metabolite SAM in the diverse environments in which L. monocytogenes persists. Here we validate SreA as a functional SAM-I riboswitch through ligand binding studies, structure characterization, and transcription termination assays. We determined that SreA has both a structure and SAM binding properties similar to those of other well-characterized SAM-I riboswitches. Despite the apparent structural similarities to previously described SAM-I riboswitches, SreA induces transcription termination in response to comparatively lower (nanomolar) ligand concentrations. Furthermore, SreA is a leaky riboswitch that permits some transcription of the downstream gene even in the presence of millimolar SAM, suggesting that L. monocytogenes may "dampen" the expression of genes for methionine import but likely does not turn them "OFF".
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlyn Zablock
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raeleen Sobetski
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Mohammed ASA, Soloviov D, Jeffries CM. Perspectives on solution-based small angle X-ray scattering for protein and biological macromolecule structural biology. Phys Chem Chem Phys 2024; 26:25268-25286. [PMID: 39323216 DOI: 10.1039/d4cp02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Small-angle X-ray scattering (SAXS) is used to extract structural information from a wide variety of non-crystalline samples in different fields (e.g., materials science, physics, chemistry, and biology). This review provides an overview of SAXS as applied to structural biology, specifically for proteins and other biomacromolecules in solution with an emphasis on extracting key structural parameters and the interpretation of SAXS data using a diverse array of techniques. These techniques cover aspects of building and assessing models to describe data measured from monodispersed and ideal dilute samples through to more complicated structurally polydisperse systems. Ab initio modelling, rigid body modelling as well as normal-mode analysis, molecular dynamics, mixed component and structural ensemble modelling are discussed. Dealing with polydispersity both physically in terms of component separation as well as approaching the analysis and modelling of data of mixtures and evolving systems are described, including methods for data decomposition such as single value decomposition/principle component analysis and evolving factor analysis. This review aims to highlight that solution SAXS, with the cohort of developments in data analysis and modelling, is well positioned to build upon the traditional 'single particle view' foundation of structural biology to take the field into new areas for interpreting the structures of proteins and biomacromolecules as population-states and dynamic structural systems.
Collapse
Affiliation(s)
- Ahmed S A Mohammed
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, co/DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
- Physics Department, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt
- Department of Biomedical Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Dmytro Soloviov
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, co/DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, co/DESY, Notkestrasse 85, D-22607 Hamburg, Germany.
| |
Collapse
|