1
|
Paracini N, Correa Y, Del Giudice R, Moulin M, Pichler H, Bengtsson E, Forsyth VT, Skoda MWA, Clifton LA, Cárdenas M. The interaction of human serum components with model membranes containing phospholipids and lipopolysaccharides. J Colloid Interface Sci 2025; 688:150-160. [PMID: 39999488 DOI: 10.1016/j.jcis.2025.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Lipoproteins, key mediators of lipid transport, facilitate the bidirectional transfer of lipids such as fatty acids, triglycerides, and cholesterol between soluble particles and cell membranes. High-density lipoproteins (HDL) primarily engage in reverse cholesterol transport, while low-density lipoproteins (LDL) predominantly deposit lipids, affecting cardiovascular health with a well-known role in the formation of the atherosclerotic plaque. In addition, lipoproteins play an important role in neutralizing bacterial lipopolysaccharides (LPS), the major component of Gram-negative bacterial outer membranes, which act as potent TLR4 agonists and can trigger severe immune responses. Lipoproteins bind LPS in plasma, with HDL showing strong binding affinity and LDL contributing to LPS clearance under specific conditions. Here, we explore the interaction of LDL and human serum albumin (HSA), another serum lipid-binding protein, with model lipid bilayers containing either phospholipids or LPS. Using neutron reflectometry and attenuated total reflection infrared spectroscopy, we characterize lipid transfer processes influenced by calcium levels and lipid composition. Calcium plays a key role in receptor-mediated LDL binding, but less is known on its effect on LDL-mediated lipid transfer in the absence of LDL receptors. Our results show that elevated calcium levels enhance stable LDL adsorption onto mammalian phospholipid-cholesterol membranes, promoting lipid cargo deposition despite the absence of specific LDL-receptors. Conversely, LDL showed no stable binding to LPS reconstituted in asymmetric outer membrane models but was able to deposit phospholipids in the membrane. In contrast, HSA removed lipids from mammalian membranes and exhibited minimal interaction with LPS-containing models. The findings elucidate the distinct lipid exchange mechanisms of LDL and HSA and their roles in modulating lipid transfer at membrane interfaces. Receptor-free enhanced LDL lipid deposition in calcium-enriched environments may have implications for cardiovascular disease progression. Conversely, the minimal interaction of LDL with bacterial LPS suggests a limited ability to extract LPS from membrane environments. This study provides structural insights into the interplay between lipoproteins, calcium, and membrane composition, with relevance to atherosclerosis and systemic endotoxemia.
Collapse
Affiliation(s)
- Nicolò Paracini
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.
| | - Yubexi Correa
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Rita Del Giudice
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Martine Moulin
- Biology, Deuteration, Chemistry and Soft Matter Group, Institute Laue Langevin and Partnership for Structural Biology, Grenoble F-38042, France
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| | - Eva Bengtsson
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Department of Clinical Sciences Malmö, Lund University, Sweden
| | - V Trevor Forsyth
- Faculty of Medicine, Lund University, Sweden; LINXS Institute for Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| | - Maximilian W A Skoda
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Luke A Clifton
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, United Kingdom
| | - Marité Cárdenas
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Instituto Biofisika, Fundación Biofisika Bizkaia (UPV/CSIC), Leioa, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Starostin V, Dax M, Gerlach A, Hinderhofer A, Tejero-Cantero Á, Schreiber F. Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation. SCIENCE ADVANCES 2025; 11:eadr9668. [PMID: 40085716 DOI: 10.1126/sciadv.adr9668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Reconstructing the structure of thin films and multilayers from measurements of scattered x-rays or neutrons is key to progress in physics, chemistry, and biology. However, finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms, which typically results in unreliable analysis with only a single potential solution identified. We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds, redefining standards in reflectometry. Our method, prior-amortized neural posterior estimation (PANPE), combines simulation-based inference with adaptive priors that inform the inference network about known structural properties and controllable experimental conditions. PANPE networks support key scenarios such as high-throughput sample characterization, real-time monitoring of evolving structures, or the corefinement of several experimental datasets and can be adapted to provide fast, reliable, and flexible inference across many other inverse problems.
Collapse
Affiliation(s)
- Vladimir Starostin
- Cluster of Excellence Machine Learning for Science, University of Tübingen, Tübingen, Germany
| | - Maximilian Dax
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Alexander Gerlach
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | | | - Álvaro Tejero-Cantero
- Cluster of Excellence Machine Learning for Science, University of Tübingen, Tübingen, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Chen HY, Mo CL, Shyue JJ, Huang TY, Chen MJ. Probing Hf 0.5Zr 0.5O 2 Ferroelectricity: Neutron Reflectivity Reveals Critical Interface Effects. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16102-16110. [PMID: 40021470 PMCID: PMC11912186 DOI: 10.1021/acsami.4c18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
Ferroelectric Hf0.5Zr0.5O2 (HZO) thin films emerge as promising candidates for next-generation memory devices; however, the device performance is strongly correlated to the interfacial structure. In this study, neutron reflectivity was used for the first time to conduct an in-depth analysis of the ferroelectric W/HZO/W devices, leveraging the high sensitivity of neutron scattering length density (SLD) to the buried interfaces. We explored the impact of different atomic layer deposition (ALD) techniques─thermal, plasma, and atomic layer annealing (ALA)─on the structural and ferroelectric characteristics of HZO thin films, with a particular focus on interfacial structures. Analyses using neutron reflectivity, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy revealed the critical role of the bottom WOx interfacial layer. The ALA treatment contributes to significant enhancements in structural and ferroelectric properties, including an increase in film density and crystallinity, as well as a maximum neutron SLD due to reduced oxygen vacancies. This work elucidates the crucial role of interface engineering via interfacial layer formation in stabilizing the ferroelectric phase, providing valuable insights for the development of advanced ferroelectric devices.
Collapse
Affiliation(s)
- Hsing-Yang Chen
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei, Taiwan 10617, R.O.C.
| | - Chi-Lin Mo
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei, Taiwan 10617, R.O.C.
| | - Jing-Jong Shyue
- Research
Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 R.O.C.
| | - Tzu-Yen Huang
- Neutron
Group, National Synchrotron Radiation Research
Center, Hsinchu, Taiwan 300, R.O.C
| | - Miin-Jang Chen
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei, Taiwan 10617, R.O.C.
- Graduate
Institute of Electronics Engineering, National
Taiwan University, Taipei, Taiwan 10617, R.O.C.
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei, Taiwan 10617, R.O.C.
| |
Collapse
|
4
|
Horiike Y, Aoki H, Ouchi M, Terashima T. Water-Intercalated and Humidity-Responsive Lamellar Materials by Self-Assembly of Sodium Acrylate Random Copolymers. J Am Chem Soc 2025; 147:6727-6738. [PMID: 39950680 DOI: 10.1021/jacs.4c16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Herein, we report water-intercalated and humidity-responsive lamellar materials obtained from the self-assembly of sodium acrylate (ANa)/alkyl or oleyl acrylate (RA) random copolymers. The random copolymers efficiently absorbed water into the hydrophilic ANa/main chain phase from the outer environment to form lamellar structures consisting of the water-intercalated hydrophilic segments and the hydrophobic side chains. The lamellar formation involves controlling the weight fraction of hydrophilic segments containing water to 40-70 wt % by the RA content, hydrophobic side chains, and the amount of absorbed water. The domain spacing can be controlled in the range of 2-6 nm. More interestingly, the lamellar materials reversibly afford expansion and contraction of the domain spacing in the sub-1 nm level via the absorption and release of water, in response to relative humidity. The multilayered lamellar formation process via the intercalation of water was analyzed in situ by neutron reflectometry and atomic force microscopy measurements under humid conditions. The polymer film further served as a moisture-sensitive actuator that macroscopically induces deformation responsive to humidity.
Collapse
Affiliation(s)
- Yuki Horiike
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Miłogrodzka I, Le Brun AP, Banaszak Holl MM, van 't Hag L. The role of N-terminal acetylation of COVID fusion peptides in the interactions with liquid-ordered lipid bilayers. J Colloid Interface Sci 2025; 679:446-456. [PMID: 39490263 DOI: 10.1016/j.jcis.2024.10.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The partitioning of viral fusion peptides in lipid membranes with varying order was investigated due to the fusion mechanism being a potential therapeutic approach. Using a planar bilayer model and advanced techniques such as neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D), the structural aspects of peptide-lipid interactions were explored. The study focused on two target membranes: one forming a liquid-ordered domain and the other forming a liquid-disordered domain. Surprisingly, the COVID fusion peptide did not bind significantly to either membrane, as demonstrated by both QCM-D and NR data, suggesting negligible or no interaction with the bilayers. However, the acetylated COVID fusion peptide showed distinct behaviour, indicating a crucial role of N-terminal acetylation in binding to cholesterol-rich liquid-ordered domains. The acetylated peptide induced changes in the structure and thickness of the ordered bilayer with cholesterol whereas proteins and peptides commonly only bind to disordered phases. This study provides valuable insights into the mechanisms of viral membrane fusion and highlights the importance of acetylation in influencing peptide-lipid interactions, laying the groundwork for potential antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Izabela Miłogrodzka
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia; Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia; Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Johnson EC, Gregory KP, Robertson H, Gresham IJ, Nelson ARJ, Craig VSJ, Prescott SW, Page AJ, Webber GB, Wanless EJ. The inductive effect does not explain electron density in haloacetates: are our textbooks wrong? Chem Sci 2025; 16:2382-2390. [PMID: 39781218 PMCID: PMC11706273 DOI: 10.1039/d4sc04832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The inductive effect is a central concept in chemistry and is often exemplified by the pK a values of acetic acid derivatives. The reduction in pK a is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect. For a series of trihaloacetates (trichloro-, chlorodifluoro- and trifluoro-) we find that the trichloro group has the greatest reduction on the charge density of the carboxylate oxygen atoms; change in charge density is inversely related to substituent electronegativity. These puzzling results are experimentally supported by investigating three independent systems: literature gas phase acidities, specific ion effects in a model thermoresponsive polymer system, and nuclear magnetic resonance (NMR) spectroscopy of haloalkanes. Changes in the solubility of poly(N-isopropylacrylamide), PNIPAM, due to the presence of different (substituted) acetates allow ionic charge densities to be examined. These studies confirmed the unexpected charge density and substituent-electronegativity relationship. Further analysis of the literature showed anomalous charge densities for haloalkanes with 13C NMR spectroscopy and gas phase acidity of polyatomic acids. In summary, these independent results show that the induction effect does not explain pK a trends across the haloacetic acids.
Collapse
Affiliation(s)
- Edwin C Johnson
- Department of Chemistry, University of Sheffield Dainton Building, Brook Hill Sheffield S3 7HF UK
- College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia
| | - Kasimir P Gregory
- College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia
- School of Science and Technology, University of New England Armidale NSW 2351 Australia
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University Canberra ACT 0200 Australia
- Department of Materials Physics, Research School of Physics, Australian National University Canberra ACT 2614 Australia
| | - Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technische Universität Darmstadt 64289 Darmstadt Germany
| | - Isaac J Gresham
- School of Chemistry, University of Sydney Sydney NSW 2006 Australia
- School of Chemical Engineering, UNSW Sydney Sydney NSW 2052 Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO Locked Bag 2001 Kirrawee DC NSW 2232 Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University Canberra ACT 2614 Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney Sydney NSW 2052 Australia
| | - Alister J Page
- College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
7
|
Paracini N, Lakey JH, Clifton LA. Depth-Resolved Temperature-Dependent Penetration of Polymyxin B in Phospholipids/Lipopolysaccharide Asymmetric Bilayers. ACS OMEGA 2025; 10:2616-2627. [PMID: 39895715 PMCID: PMC11780448 DOI: 10.1021/acsomega.4c07648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/23/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
The lipid matrix of the outer membrane (OM) of Gram-negative bacteria consists of a highly asymmetric lipid bilayer containing phospholipids on the inner leaflet and lipopolysaccharides (LPS) in the outer layer. The latter ensures that harmful molecules do not permeate the bacterial cell, but polymyxin B (PmB), a last-resort antibiotic, is capable of interfering with the stability of the LPS layer and overcoming the OM barrier. We have previously shown that the efficacy of PmB in disrupting isotopically asymmetric OM models (2H-phospholipids and 1H-LPS) is regulated by the gel-to-fluid phase transition of the LPS layer. Here, we employ fully deuterated OM models (2H-phospholipids and 2H-LPS) to track the temperature-dependent penetration of PmB within the model membrane by using neutron reflectometry. We use a model-independent approach to quantify PmB penetration as a function of both concentration and temperature as well as a model-dependent analysis to localize PmB in the asymmetric bilayer. By leveraging the ability of neutrons to differentiate hydrogen from deuterium in structural biology we find that PmB hijacks LPS molecules and accumulates predominantly in the hydrophobic region of lipid A.
Collapse
Affiliation(s)
- Nicoló Paracini
- Institut
Laue-Langevin, Large Scale Structures Group, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Jeremy H. Lakey
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2
4HH, U.K.
| | - Luke A. Clifton
- ISIS
Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K.
| |
Collapse
|
8
|
Lafon S, Outerelo Corvo T, Grzelka M, Hélary A, Gutfreund P, Léger L, Chennevière A, Restagno F. Near-Surface Concentration Profile of Sheared Semidilute Polymer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1716-1721. [PMID: 39804720 DOI: 10.1021/acs.langmuir.4c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Controlling the structure of polymer solutions near a solid surface is crucial for many industrial processes as it significantly impacts solution flow and influences slip at the interface. To date, only a few techniques have been developed to experimentally investigate this type of interface at the nanometric scale of solid/liquid interactions. In this study, we probe the interface between a smooth sapphire surface and a semidilute polystyrene solution, using neutron reflectivity. A special setup for flow measurements under shear has been designed and optimized. Our results show that, at rest, polymer chains are globally depleted from the solid surface. Contrary to common assumptions, some polystyrene chains do adsorb onto the wall. Under flow conditions, we experimentally demonstrate that the depletion layer remains stable, a finding that has been hypothesized but is only vaguely confirmed in the literature.
Collapse
Affiliation(s)
- Suzanne Lafon
- Laboratoire de Physique des Solides, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Tiago Outerelo Corvo
- Laboratoire de Physique des Solides, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Marion Grzelka
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Arnaud Hélary
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | - Liliane Léger
- Laboratoire de Physique des Solides, CNRS, Université Paris Saclay, 91405 Orsay, France
| | | | - Frédéric Restagno
- Laboratoire de Physique des Solides, CNRS, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
9
|
Cozzolino S, Gutfreund P, Vorobiev A, Welbourn RJL, Greaves A, Zuttion F, Rutland MW, Luengo GS. Adsorption hierarchy of surfactants and polymers to a damaged hair model: effect of composition, order and polymer size. Phys Chem Chem Phys 2025; 27:1089-1099. [PMID: 39686856 DOI: 10.1039/d4cp03603d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A comprehensive understanding of chemical interactions at the surface of hair represents an important area of research within the cosmetic industry and is essential to obtain new products that exhibit both performance and sustainability. This paper aims at contributing to this research by applying a combination of surface techniques (neutron reflectometry, quartz-crystal microbalance and atomic force microscopy) to study adsorption of surface active ingredients onto hair-mimetic surfaces. The surface of hair is not homogeneous due to chemical and physical damage, and this work focuses on partly damaged hair models, in which both hydrophobic and charged moieties are present. Examples of such mixed-surface models are rare in the literature, despite the interest in the topic. The studied actives were an anionic surfactant (sodium dodecyl sulphate, SDS) and a natural polysaccharide (chitosan) of two different molecular weights, to represent soluble polymer-surfactant associations of cosmetic interest in hair-care rinsing applications. The effect of the concentration of SDS, the molecular weight of chitosan, and the order in which SDS and chitosan are introduced are studied, and compared to totally hydrophobic and totally hydrophilic surfaces. Results show that SDS can interact with the hydrophobic portions of the mixed surface, and its adsorption increases if associated with chitosan. Interestingly, differences have been found in the adsorption behaviour of chitosan depending on its chain size. Both types can deposit onto the surface, but when SDS is added, the lower molecular weight chitosan keeps its extended conformation in a ca. 70 Å thick layer, while the higher molecular weight chitosan collapses to form a layer of about 30 Å. This knowledge opens the door to developing hair-care formulations with improved performance and sustainability.
Collapse
Affiliation(s)
- Serena Cozzolino
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Alexei Vorobiev
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Department of Physics and Astronomy, Materials Physics, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Rebecca J L Welbourn
- ISIS Pulsed Neutron and Muon Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK
| | - Andrew Greaves
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Francesca Zuttion
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Bioeconomy and Health Department, Materials and Surface Design, RISE Research Institutes of Sweden, SE-114 28 Stockholm, Sweden
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, 69134 Ecully CEDEX, France
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| |
Collapse
|
10
|
Lai X, Yu L, Huang X, Gardner W, Bamford SE, Pigram PJ, Wang S, Brun APL, Muir BW, Song J, Wang Y, Hsu HY, Chan PWH, Shen HH. Enhanced Nitric Oxide Delivery Through Self-Assembling Nanoparticles for Eradicating Gram-Negative Bacteria. Adv Healthc Mater 2024; 13:e2403046. [PMID: 39263842 DOI: 10.1002/adhm.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In the current battle against antibiotic resistance, the resilience of Gram-negative bacteria against traditional antibiotics is due not only to their protective outer membranes but also to mechanisms like efflux pumps and enzymatic degradation of drugs, underscores the urgent need for innovative antimicrobial tactics. Herein, this study presents an innovative method involving the synthesis of three furoxan derivatives engineered to self-assemble into nitric oxide (NO) donor nanoparticles (FuNPs). These FuNPs, notably supplied together with polymyxin B (PMB), achieve markedly enhanced bactericidal efficacy against a wide spectrum of bacterial phenotypes at considerably lower NO concentrations (0.1-2.8 µg mL-1), which is at least ten times lower than the reported data for NO donors (≥200 µg mL-1). The bactericidal mechanism is elucidated using confocal, scanning, and transmission electron microscopy techniques. Neutron reflectometry confirms that FuNPs initiate membrane disruption by specifically engaging with the polysaccharides on bacterial surfaces, causing structural perturbations. Subsequently, PMB binds to lipid A on the outer membrane, enhancing permeability and resulting in a synergistic bactericidal action with FuNPs. This pioneering strategy underscores the utility of self-assembly in NO delivery as a groundbreaking paradigm to circumvent traditional antibiotic resistance barriers, marking a significant leap forward in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Xiangyi Huang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wil Gardner
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Sarah E Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Paul J Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, 3086, Australia
| | - Shuhong Wang
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2232, Australia
| | | | - Jiangning Song
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Shanghai, Wenzhou, 325027, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | | | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
11
|
Pawar N, Peña-Figueroa M, Verde-Sesto E, Maestro A, Alvarez-Fernandez A. Exploring the Interaction of Lipid Bilayers with Curcumin-Laponite Nanoparticles: Implications for Drug Delivery and Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406885. [PMID: 39466993 DOI: 10.1002/smll.202406885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Curcumin, the active compound in turmeric, is renowned for its anti-inflammatory, antioxidant, and antimicrobial properties, making it beneficial for treating conditions like arthritis, neurodegenerative diseases, and various cancers. Despite its promising therapeutic potential, curcumin's poor bioavailability-due to its rapid metabolism and low solubility-limits its clinical efficacy. To address this, recent research has focused on enhancing curcumin delivery using nanoparticles, liposomes, and novel nanomaterials. Among these, laponite, a synthetic nanoclay, has shown promise in improving curcumin delivery due to its unique properties, including large surface area, dual charge, and stability in solution. This study explores the use of curcumin-laponite nanoparticles as carrier vehicles for controlled delivery to in vitro model membranes. Utilizing advanced techniques such as neutron reflectometry, atomic force microscopy, quartz crystal microbalance with dissipation, and infrared spectroscopy, the interaction between curcumin-laponite nanoparticles and solid-supported lipid bilayers is monitored, revealing enhanced stability and controlled release of curcumin across the membrane. These findings pave the way for the development of curcumin-based therapies targeting cardiovascular, neurological, and oncological diseases, leveraging the synergistic effects of curcumin's biological activity and laponite's delivery capabilities.
Collapse
Affiliation(s)
- Nisha Pawar
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Miriam Peña-Figueroa
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Donostia-San, Sebastián, 20018, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Armando Maestro
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Alberto Alvarez-Fernandez
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
| |
Collapse
|
12
|
Bulut Y, Sochor B, Reck KA, Schummer B, Meinhardt A, Drewes J, Liang S, Guan T, Jeromin A, Stierle A, Keller TF, Strunskus T, Faupel F, Müller-Buschbaum P, Roth SV. Investigating Gold Deposition with High-Power Impulse Magnetron Sputtering and Direct-Current Magnetron Sputtering on Polystyrene, Poly-4-vinylpyridine, and Polystyrene Sulfonic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22591-22601. [PMID: 39402930 PMCID: PMC11526365 DOI: 10.1021/acs.langmuir.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Fabricating thin metal layers and particularly observing their formation process in situ is of fundamental interest to tailor the quality of such a layer on polymers for organic electronics. In particular, the process of high power impulse magnetron sputtering (HiPIMS) for establishing thin metal layers has sparsely been explored in situ. Hence, in this study, we investigate the growth of thin gold (Au) layers with HiPIMS and compare their growth with thin Au layers prepared by conventional direct current magnetron sputtering (dcMS). Au was chosen because it is an inert noble metal and has a high scattering length density. This allows us to track the growing nanostructures via grazing incidence scattering. In particular, Au deposition on the polymer polystyrene (PS) with the respective structural analogues poly-4-vinlypyridine (P4VP) and polystyrene sulfonic acid (PSS) is studied. Additionally, the nanostructured layers on these different polymer films are further probed by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray reflectometry (XRR), and four-point probe measurements. We report that HiPIMS leads to smaller island-to-island distances throughout the whole sputter process. Moreover, an increased cluster density and an earlier percolation threshold are achieved compared to dcMS. Additionally, in the early stage, we observe a significant increase in coverage by HiPIMS, which is favorable for the improvement of the polymer-metal interface.
Collapse
Affiliation(s)
- Yusuf Bulut
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
| | - Benedikt Sochor
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Kristian A. Reck
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Bernhard Schummer
- Fraunhofer
Institute for Integrated Circuits IIS, Development
Center for X-ray Technology EZRT, Flugplatzstr. 75, Fürth 90768, Germany
| | - Alexander Meinhardt
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, University of Hamburg, Notkestr. 9-11, Hamburg 22607, Germany
| | - Jonas Drewes
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Suzhe Liang
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
| | - Tianfu Guan
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
| | - Arno Jeromin
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Andreas Stierle
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, University of Hamburg, Notkestr. 9-11, Hamburg 22607, Germany
| | - Thomas F. Keller
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- Department
of Physics, University of Hamburg, Notkestr. 9-11, Hamburg 22607, Germany
| | - Thomas Strunskus
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Franz Faupel
- Chair
for Multicomponent Materials, Department for Materials Science, Faculty
of Engineering, Kiel University, Kaiserstr. 2, Kiel 24143, Germany
| | - Peter Müller-Buschbaum
- Department
of Physics, Chair for Functional Materials, Technical University of Munich, TUM School of Natural Sciences, James-Franck-Str. 1, Garching 85748, Germany
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technical
University of Munich, Lichtenbergstraße 1, Garching 85748, Germany
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- KTH
Royal Institute of Technology, Teknikringen 56-58, Stockholm 100 44, Sweden
| |
Collapse
|
13
|
Cozzolino S, Gutfreund P, Vorobiev A, Devishvili A, Greaves A, Nelson A, Yepuri N, Luengo GS, Rutland MW. Mimicking the hair surface for neutron reflectometry. SOFT MATTER 2024; 20:7634-7645. [PMID: 39291556 DOI: 10.1039/d4sm00784k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The surface of human hair is normally hydrophobic as it is covered by a lipid layer, mainly composed of 18-methyleicosanoic acid (18-MEA). When the hair is damaged, this layer can be partially or fully removed and more hydrophilic, mainly negatively charged surfaces are formed with a wide variety of physical and chemical characteristics. The cosmetic industry is currently embracing the opportunity of increasing the sustainability of their hair-care products whilst improving product performance. To do this, it is vital to have a deeper understanding of the hair surface and how it interacts with hair-care ingredients. This work contributes to this by harnessing the potential of neutron reflectometry (NR) with scattering contrast variation to describe hierarchical adsorption. Three types of hair-mimetic surfaces have been produced: two "healthy hair" models to probe the role of lipid structure, and one "damaged hair" model, to consider the effect of the surface charge. Adsorption of hair-care ingredients has then been studied. The results for these relatively short lipid models indicate that a methyl branch has little effect on adsorption. The "damaged hair" studies, however, reveal the unexpected apparent adsorption of an anionic surfactant to a negative surface. This preferential adsorption of the otherwise solubilised neutral components demonstrates a facile route to selectively deliver a protective film on a damaged hair fibre, without the need for a cationic species. On a more general note, this study also demonstrates the feasibility of using NR to characterize such complex systems.
Collapse
Affiliation(s)
- Serena Cozzolino
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
| | - Alexei Vorobiev
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
- Department of Physics and Astronomy, Materials Physics, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Anton Devishvili
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble cedex 9, France
- Department of Physics and Astronomy, Materials Physics, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Andrew Greaves
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Australian Centre for Neutron Scattering, New Illawarra Rd, Lucas Heights, New South Wales, Australia
| | - Nageshwar Yepuri
- Australian Nuclear Science and Technology Organisation, National Deuteration Facility, New Illawarra Rd, Lucas Heights, New South Wales, Australia
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Bioeconomy and Health Department, Materials and Surface Design, RISE Research Institutes of Sweden, SE-114 28 Stockholm, Sweden
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, 69134 Ecully CEDEX, France
| |
Collapse
|
14
|
Miłogrodzka I, Le Brun AP, Banaszak Holl MM, van 't Hag L. HIV and influenza fusion peptide interactions with (dis)ordered lipid bilayers: Understanding mechanisms and implications for antimicrobial and antiviral approaches. J Colloid Interface Sci 2024; 670:563-575. [PMID: 38776691 DOI: 10.1016/j.jcis.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The interactions of viral fusion peptides from influenza (E4K and Ac-E4K) and human immunodeficiency virus (gp41 and Ac-gp41) with planar lipid bilayers and monolayers was investigated herein. A combination of surface-sensitive techniques, including quartz crystal microbalance with dissipation (QCM-D), Langmuir-Blodgett area-pressure isotherms with Micro-Brewster angle microscopy, and neutron reflectometry, was employed. Differences in the interactions of the viral fusion peptides with lipid bilayers featuring ordered and disordered phases, as well as lipid rafts, were revealed. The HIV fusion peptide (gp41) exhibited strong binding to the DOPC/DOPS bilayer, comprising a liquid disordered phase, with neutron reflectometry (NR) showing interaction with the bilayer's headgroup area. Conversely, negligible binding was observed with lipid bilayers in a liquid ordered phase. Notably, the influenza peptide (E4K) demonstrated slower binding kinetics with DOPC/DOPS bilayers and distinct interactions compared to gp41, as observed through QCM-D. This suggests different mechanisms of interaction with the lipid bilayers: one peptide interacts more within the headgroup region, while the other is more involved in transmembrane interactions. These findings hold implications for understanding viral fusion mechanisms and developing antimicrobials and antivirals targeting membrane interactions. The differential binding behaviours of the viral fusion peptides underscore the importance of considering membrane composition and properties in therapeutic strategy design.
Collapse
Affiliation(s)
- Izabela Miłogrodzka
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia; Australian Synchrotron, Clayton, Victoria, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia; Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
15
|
Robertson H, Gresham IJ, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Illuminating the nanostructure of diffuse interfaces: Recent advances and future directions in reflectometry techniques. Adv Colloid Interface Sci 2024; 331:103238. [PMID: 38917595 DOI: 10.1016/j.cis.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Diffuse soft matter interfaces take many forms, from end-tethered polymer brushes or adsorbed surfactants to self-assembled layers of lipids. These interfaces play crucial roles across a multitude of fields, including materials science, biophysics, and nanotechnology. Understanding the nanostructure and properties of these interfaces is fundamental for optimising their performance and designing novel functional materials. In recent years, reflectometry techniques, in particular neutron reflectometry, have emerged as powerful tools for elucidating the intricate nanostructure of soft matter interfaces with remarkable precision and depth. This review provides an overview of selected recent developments in reflectometry and their applications for illuminating the nanostructure of diffuse interfaces. We explore various principles and methods of neutron and X-ray reflectometry, as well as ellipsometry, and discuss advances in their experimental setups and data analysis approaches. Improvements to experimental neutron reflectometry methods have enabled greater time resolution in kinetic measurements and elucidation of diffuse structure under shear or confinement, while innovation in analysis protocols has significantly reduced data processing times, facilitated co-refinement of reflectometry data from multiple instruments and provided greater-than-ever confidence in proposed structural models. Furthermore, we highlight some significant research findings enabled by these techniques, revealing the organisation, dynamics, and interfacial phenomena at the nanoscale. We also discuss future directions and potential advancements in reflectometry techniques. By shedding light on the nanostructure of diffuse interfaces, reflectometry techniques enable the rational design and tailoring of interfaces with enhanced properties and functionalities.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Soft Matter at Interfaces, Technical University of Darmstadt, Darmstadt D-64289, Germany
| | - Isaac J Gresham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
16
|
Uchida K, Masuda T, Hara S, Matsuo Y, Liu Y, Aoki H, Asano Y, Miyata K, Fukuma T, Ono T, Isoyama T, Takai M. Stability Enhancement by Hydrophobic Anchoring and a Cross-Linked Structure of a Phospholipid Copolymer Film for Medical Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39104-39116. [PMID: 39036941 DOI: 10.1021/acsami.4c07752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Surface modification using zwitterionic 2-methacryloyloxyethylphosphorylcholine (MPC) polymers is one of the most reasonable ways to prepare medical devices that can suppress undesired biological reactions such as blood coagulation. Usable MPC polymers are hydrophilic and water soluble, and their surface modification strategy involves exploiting the copolymer structures by adding physical or chemical bonding moieties. In this study, we developed copolymers composed of MPC, hydrophobic anchoring moiety, and chemical cross-linking unit to clarify the role of hydrophobic interactions in achieving biocompatible and long-term stable coatings. The four kinds of MPC copolymers with cross-linking units, such as 3-methacryloxypropyl trimethoxysilane (MPTMSi), and four different hydrophobic anchoring moieties, such as 3-(methacryloyloxy)propyltris(trimethylsiloxy)silane (MPTSSi) named as PMMMSi, n-butyl methacrylate (BMA) as PMBSi, 2-ethylhexyl methacrylate (EHMA) as PMESi, and lauryl methacrylate as PMLSi, were synthesized and coated on polydimethylsiloxane, polypropylene (PP), and polymethyl pentene. These copolymers were uniformly coated on the substrate materials PP and poly(methyl pentene) (PMP), to achieve hydrophilic and electrically neutral coatings. The results of the antibiofouling test showed that PMBSi repelled the adsorption of fluorescence-labeled bovine serum albumin the most, whereas PMLSi repelled it the least. Notably, all four copolymers suppressed platelet adhesion similarly. The variations in protein adsorption quantities among the four copolymer coatings were attributed to their distinct swelling behaviors in aqueous environments. Further investigations, including 3D scanning force microscopy and neutron reflectivity measurements, revealed that the PMLSi coating exhibited a higher water intake under aqueous conditions in comparison to the other coatings. Consequently, all copolymer coatings effectively prevented the invasion of platelets but the proteins penetrated the PMLSi network. Subsequently, the dynamic stability required to induce shear stress was evaluated using a circulation system. The results demonstrated that the PMMMSi and PMLSi coatings on PMP and PP exhibited exceptional platelet repellency and maintained high stability during circulation. This study highlights the potential of hydrophobic moieties to improve hemocompatibility and stability, offering potential applications in medical devices.
Collapse
Affiliation(s)
- Kazuto Uchida
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shintaro Hara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Clinical Engineering, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Youichi Matsuo
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuwei Liu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Yoshihiko Asano
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuki Miyata
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshiya Ono
- Department of Biomedical Engineering, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Isoyama
- Department of Biomedical Engineering, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Clinical Engineering, Kyorin University, 5-4-1 Shimorenjuku, Mitaka-shi, Tokyo 181-8612, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Han ML, Alsaadi Y, Zhao J, Zhu Y, Lu J, Jiang X, Ma W, Patil NA, Dunstan RA, Le Brun AP, Wickremasinghe H, Hu X, Wu Y, Yu HH, Wang J, Barlow CK, Bergen PJ, Shen HH, Lithgow T, Creek DJ, Velkov T, Li J. Arginine catabolism is essential to polymyxin dependence in Acinetobacter baumannii. Cell Rep 2024; 43:114410. [PMID: 38923457 PMCID: PMC11338987 DOI: 10.1016/j.celrep.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.
Collapse
Affiliation(s)
- Mei-Ling Han
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Yasser Alsaadi
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jinxin Zhao
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jing Lu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xukai Jiang
- National Glycoengineering Research Centre, Shandong University, Qingdao 266237, China
| | - Wendong Ma
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Nitin A Patil
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hasini Wickremasinghe
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xiaohan Hu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yimin Wu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jiping Wang
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Phillip J Bergen
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
18
|
Kee JY, Kim KT, Lee IH, Seo I, Chang JY, Lee AY, Noh WS, Chang YJ, Park SY, Choe SB, Kim DH, Kim KW, Choi Y, Lee DR, Choi JW. Additive roles of antiferromagnetically coupled elements in the magnetic proximity effect in the GdFeCo/Pt system. Sci Rep 2024; 14:9476. [PMID: 38658634 PMCID: PMC11043343 DOI: 10.1038/s41598-024-60076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Interfacial magnetic interactions between different elements are the origin of various spin-transport phenomena in multi-elemental magnetic systems. We investigate the coupling between the magnetic moments of the rare-earth, transition-metal, and heavy-metal elements across the interface in a GdFeCo/Pt thin film, an archetype system to investigate ferrimagnetic spintronics. The Pt magnetic moments induced by the antiferromagnetically aligned FeCo and Gd moments are measured using element-resolved x-ray measurements. It is revealed that the proximity-induced Pt magnetic moments are always aligned parallel to the FeCo magnetic moments, even below the ferrimagnetic compensation temperature where FeCo has a smaller moment than Gd. This is understood by a theoretical model showing distinct effects of the rare-earth Gd 4f and transition-metal FeCo 3d magnetic moments on the Pt electronic states. In particular, the Gd and FeCo work in-phase to align the Pt moment in the same direction, despite their antiferromagnetic configuration. The unexpected additive roles of the two antiferromagnetically coupled elements exemplify the importance of detailed interactions among the constituent elements in understanding magnetic and spintronic properties of thin film systems.
Collapse
Affiliation(s)
- Jung Yun Kee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Physics, Soongsil University, Seoul, 06978, Korea
| | - Kook Tae Kim
- Department of Physics, Soongsil University, Seoul, 06978, Korea
| | - In Hak Lee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Ilwan Seo
- Department of Physics, Soongsil University, Seoul, 06978, Korea
| | - Jun-Young Chang
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Ah-Yeon Lee
- Center for Research Equipment, Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Daejeon, 34133, Korea
| | - Woo-Suk Noh
- Korea Foundation for Max Planck POSTECH/Korea Research Initiative, Pohang, 37673, Korea
| | - Young Jun Chang
- Department of Physics, University of Seoul, Seoul, 02504, Korea
| | - Seung-Young Park
- Center for Scientific Instrumentation, Division of Scientific Instrumentation & Management, Korea Basic Science Institute (KBSI), Daejeon, 34133, Korea
| | - Sug-Bong Choe
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Duck-Ho Kim
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Kyoung-Whan Kim
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
- Department of Physics, Yonsei University, Seoul, 03722, Korea.
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA.
| | - Dong Ryeol Lee
- Department of Physics, Soongsil University, Seoul, 06978, Korea.
| | - Jun Woo Choi
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
19
|
Doucet M, Candeago R, Wang H, Browning JF, Su X. Studying Transient Phenomena in Thin Films with Reinforcement Learning. J Phys Chem Lett 2024; 15:4444-4450. [PMID: 38626466 DOI: 10.1021/acs.jpclett.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Neutron reflectometry has long been a powerful tool to study the interfacial properties of energy materials. Recently, time-resolved neutron reflectometry has been used to better understand transient phenomena in electrochemical systems. Those measurements often comprise a large number of reflectivity curves acquired over a narrow q range, with each individual curve having lower information content compared to a typical steady-state measurement. In this work, we present an approach that leverages existing reinforcement learning tools to model time-resolved data to extract the time evolution of structure parameters. By mapping the reflectivity curves taken at different times as individual states, we use the Soft Actor-Critic algorithm to optimize the time series of structure parameters that best represent the evolution of an electrochemical system. We show that this approach constitutes an elegant solution to the modeling of time-resolved neutron reflectometry data.
Collapse
Affiliation(s)
- Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Riccardo Candeago
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hanyu Wang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James F Browning
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Ikami T, Aoki H, Terashima T. Lamellar Microphase Separation and Phase Transition of Hydrogen-Bonding/Crystalline Statistical Copolymers: Amide Functionalization at the Interface. ACS Macro Lett 2024; 13:446-452. [PMID: 38547521 DOI: 10.1021/acsmacrolett.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Microphase separation of random copolymers, as well as that of high χ-low N block copolymers, is promising to construct sub-10-nm structures into materials. Herein, we designed statistical copolymers consisting of 2-hydroxyethyl acrylate (HEA) and N-octadecylacrylamide (ODAAm) to produce crystallization and hydrogen bond-assisted lamellar structure materials. The copolymers not only formed a crystalline lamellar structure with 3-4 nm domain spacing but also maintained an amorphous lamellar structure via phase transition above the melting temperature up to approximately 100 °C. The key is to introduce hydrogen-bonding amide junctions between the octadecyl groups and the polymer backbones, by which the polymer chains are physically fixed at the interface of lamellar structures even above the melting temperature. The stabilization of the lamellar structure by the amide units is also supported by the fact that the lamellar structure of all-acrylate random copolymers bearing hydroxyethyl and crystalline octadecyl groups is disordered above the melting temperature. By spin-coating on a silicon substrate, the HEA/ODAAm copolymer formed a multilayered lamellar thin film consisting of a hydrophilic hydroxyethyl/main chain phase and a hydrophobic octadecyl phase. The structure and order-disorder transition were analyzed by neutron reflectivity.
Collapse
Affiliation(s)
- Takaya Ikami
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
21
|
Munteanu V, Starostin V, Greco A, Pithan L, Gerlach A, Hinderhofer A, Kowarik S, Schreiber F. Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge. J Appl Crystallogr 2024; 57:456-469. [PMID: 38596736 PMCID: PMC11001411 DOI: 10.1107/s1600576724002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024] Open
Abstract
Due to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters.
Collapse
Affiliation(s)
- Valentin Munteanu
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Alessandro Greco
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Linus Pithan
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Gerlach
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | - Stefan Kowarik
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Frank Schreiber
- University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Schumi-Mareček D, Bertram F, Mikulík P, Varshney D, Novák J, Kowarik S. Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating. J Appl Crystallogr 2024; 57:314-323. [PMID: 38596729 PMCID: PMC11001405 DOI: 10.1107/s1600576724001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 04/11/2024] Open
Abstract
X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes.
Collapse
Affiliation(s)
- David Schumi-Mareček
- Physikalische Chemie, Graz University, Heinrichstraße 28, Graz, Steiermark 8010, Austria
| | - Florian Bertram
- Deutsche Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Petr Mikulík
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czechia
| | - Devanshu Varshney
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czechia
| | - Jiří Novák
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137, Czechia
- Central European Institute of Technology, Purkyňova 123, Brno 621 00, Czechia
| | - Stefan Kowarik
- Physikalische Chemie, Graz University, Heinrichstraße 28, Graz, Steiermark 8010, Austria
| |
Collapse
|
23
|
Higgins AM, Gutfreund P, Italia V, Nelson A, Cabral JT, Hynes EL. Hysteresis in phase volumes, compositions and interfacial roughness in model OPV-small-molecule/polymer thin-films. SOFT MATTER 2024; 20:2532-2546. [PMID: 38407462 DOI: 10.1039/d3sm01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Domain morphology and composition, and the structure of interfaces between domains are key factors in the performance and stability of organic photovoltaics (OPVs) fabricated from polymer/small-molecule blends. In this study, we investigate the evolution of composition, phase-volume and interfacial roughness in model polymer/small-molecule bilayers, in response to thermal annealing. Polystyrene/fullerene mixing is studied as a function of annealing temperature, using in situ neutron reflectivity, in thin-film bilayer samples comprising pure component or mixed layers. Remarkably, we discover that thermal annealing at temperatures around or above the reported glass transition temperatures, Tg, of the components can result in extensive mass-transfer between layers, that has the superficial appearance of equilibration, but leaves the layer compositions, thicknesses, and/or the interfacial composition profile in a non-equilibrium state. This is not merely a case of slow kinetics near Tg, as subsequent heating to higher temperatures, followed by cooling, reveals pronounced hysteresis in these systems. This has important implications for the measurement of equilibrium compositions in polymer/small-molecule mixtures for OPV applications, and for device stability during operation.
Collapse
Affiliation(s)
- A M Higgins
- School of Engineering and Applied Science, Swansea University, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, Wales, UK.
| | - P Gutfreund
- Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - V Italia
- Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - A Nelson
- ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - J T Cabral
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - E L Hynes
- School of Engineering and Applied Science, Swansea University, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, Wales, UK.
| |
Collapse
|
24
|
Muthwill MS, Bina M, Paracini N, Coats JP, Merget S, Yorulmaz Avsar S, Messmer D, Tiefenbacher K, Palivan CG. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422470 DOI: 10.1021/acsami.3c18687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| | - Maryame Bina
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Nicolò Paracini
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - John Peter Coats
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Severin Merget
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Daniel Messmer
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Lai X, Chow SH, Le Brun AP, Muir BW, Bergen PJ, White J, Yu HH, Wang J, Danne J, Jiang JH, Short FL, Han ML, Strugnell RA, Song J, Cameron NR, Peleg AY, Li J, Shen HH. Polysaccharide-Targeting Lipid Nanoparticles to Kill Gram-Negative Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305052. [PMID: 37798622 DOI: 10.1002/smll.202305052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Indexed: 10/07/2023]
Abstract
The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Xiangfeng Lai
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Seong Hoong Chow
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, New South Wales, 2232, Australia
| | | | - Phillip J Bergen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacinta White
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia
| | - Heidi H Yu
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jiping Wang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jill Danne
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, A Node of Microscopy Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Jhih-Hang Jiang
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Francesca L Short
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mei-Ling Han
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Li
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Dolores Merchán M, Pawar N, Santamaria A, Sánchez-Fernández R, Konovalov O, Maestro A, Mercedes Velázquez M. Structure of graphene oxide-phospholipid monolayers: A grazing incidence X-ray diffraction and neutron and X-ray reflectivity study. J Colloid Interface Sci 2024; 655:664-675. [PMID: 37972452 DOI: 10.1016/j.jcis.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
HYPOTHESIS Graphene oxide-based nanotechnology has aroused a great interest due to its applications in the biomedical and optoelectronic fields. The wide use of these materials makes it necessary to study its potential toxicity associated with the inhalation of Graphene Oxide (GO) nanoparticles and its interaction with the lung surfactant. Langmuir monolayers have proven to be an excellent tool for studying the properties of the lung surfactant and the effect of intercalation of nanoparticles on its structure and properties. Therefore, to know the origin of the phospholipids/GO interaction and the structure of the lipid layer with GO, in this work we study the effect of the insertion of GO sheets on a Langmuir film of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC). EXPERIMENTS Surface pressure-area isotherms, Neutron (NR) and X-ray Reflectivity (XRR) and Grazing Incidence X-ray Diffraction (GIXD) measurements of hydrogenated and deuterated DPPC monolayers with and without GO have been carried out. FINDINGS The results outline a strong interaction between the GO and the zwitterionic form of DPPC and prove that GO is in three regions of the DPPC monolayer, the aliphatic chains of DPPC, the head groups and water in the subphase. Comparison between results obtained with hydrogenated and deuterated DPPC allows concluding that both, electrostatic attractions, and dispersion forces are responsible of the interaction GO/DPPC. Results also demonstrated that the insertion of GO into the DPPC aliphatic chains does not induce significant changes on unit cell of DPPC.
Collapse
Affiliation(s)
- M Dolores Merchán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain
| | - Nisha Pawar
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain
| | | | - Rosalía Sánchez-Fernández
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Institut Max von Laue and Paul Langevin, 38042 Grenoble, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, 48009 Bilbao, Spain.
| | - M Mercedes Velázquez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E37008 Salamanca, Spain; Grupo de Nanotecnología, Universidad de Salamanca, E37008 Salamanca, Spain; Laboratorio de Nanoelectrónica and Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain.
| |
Collapse
|
27
|
Gresham IJ, Johnson EC, Robertson H, Willott JD, Webber GB, Wanless EJ, Nelson ARJ, Prescott SW. Comparing polymer-surfactant complexes to polyelectrolytes. J Colloid Interface Sci 2024; 655:262-272. [PMID: 37944374 DOI: 10.1016/j.jcis.2023.10.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS Understanding the complex interactions between polymers and surfactants is required to optimise commercially relevant systems such as paint, toothpaste and detergent. Neutral polymers complex with surfactants, forming 'pearl necklace' structures that are often conceptualised as pseudo-polyelectrolytes. Here we pose two questions to test the limits of this analogy: Firstly, in the presence of salt, do these polymer-surfactant systems behave like polyelectrolytes? Secondly, do polymer-surfactant complexes resist geometric confinement like polyelectrolytes? EXPERIMENTS We test the limits of the pseudo-polyelectrolyte analogy through studying a poly(N-isopropylacrylamide) (PNIPAM) brush in the presence of sodium dodecylsulfate (SDS). Brushes are ideal for interrogating pseudo-polyelectrolytes, as neutral and polyelectrolyte brushes exhibit distinct and well understood behaviours. Spectroscopic ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and neutron reflectometry (NR) were used to monitor the behaviour and structure of the PNIPAM-SDS system as a function of NaCl concentration. The ability of the PNIPAM-SDS complex to resist geometric confinement was probed with NR. FINDINGS At a fixed SDS concentration below the zero-salt CMC, increasing NaCl concentration <100 mM promoted brush swelling due to an increase in osmotic pressure, not dissimilar to a weak polyelectrolyte. At these salt concentrations, the swelling of the brush could be described by a single parameter: the effective CMC. However, at high NaCl concentrations (e.g., 500 mM) no brush collapse was observed at all (non-zero) concentrations of SDS studied, contrary to what is seen for many polyelectrolytes. Study of the polymer-surfactant system under confinement revealed that the physical volume of surfactant dominates the structure of the strongly confined system, which further differentiates it from the polyelectrolyte case.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Edwin C Johnson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | | | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, NSW, Australia.
| |
Collapse
|
28
|
Armstrong AJ, Apóstolo RFG, McCoy TM, Allen FJ, Doutch J, Cattoz BN, Dowding PJ, Welbourn RJL, Routh AF, Camp PJ. Experimental and simulation study of self-assembly and adsorption of glycerol monooleate in n-dodecane with varying water content onto iron oxide. NANOSCALE 2024; 16:1952-1970. [PMID: 38175178 DOI: 10.1039/d3nr05080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The self-assembly and surface adsorption of glycerol monooleate (GMO) in n-dodecane are studied using a combination of experimental and molecular dynamics simulation techniques. The self-assembly of GMO to form reverse micelles, with and without added water, is studied using small-angle neutron scattering and simulations. A large-scale simulation is also used to investigate the self-assembly kinetics. GMO adsorption onto iron oxide is studied using depletion isotherms, neutron reflectometry, and simulations. The adsorbed amounts of GMO, and any added water, are determined experimentally, and the structures of the adsorbed films are investigated using reflectometry. Detailed fitting and analysis of the reflectometry measurements are presented, taking into account various factors such as surface roughness, and the presence of impurities. The reflectometry measurements are complemented by molecular dynamics simulations, and good consistency between both approaches is demonstrated by direct comparison of measured and simulated reflectivity and scattering length density profiles. The results of this analysis are that in dry systems, GMO adsorbs as self-assembled reverse micelles with some molecules adsorbing directly to the surface through the polar head groups, while in wet systems, the GMO is adsorbed onto a thin layer of water. Only at high surface coverage is some water trapped inside a reverse-micelle structure; at lower surface coverages, the GMO molecules associate primarily with the water layer, rather than self-assemble.
Collapse
Affiliation(s)
- Alexander J Armstrong
- ISIS Neutron and Muon Source, Didcot, UK
- Institute for Energy & Environmental Flows and Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Rui F G Apóstolo
- EPCC, Bayes Centre, 47 Potterrow, Edinburgh EH8 9BT, Scotland, UK
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| | - Thomas M McCoy
- Institute for Energy & Environmental Flows and Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Alexander F Routh
- Institute for Energy & Environmental Flows and Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Philip J Camp
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| |
Collapse
|
29
|
Pradeepkumar A, Cortie D, Smyth E, Le Brun AP, Iacopi F. Epitaxial graphene growth on cubic silicon carbide on silicon with high temperature neutron reflectometry: an operando study. RSC Adv 2024; 14:3232-3240. [PMID: 38249665 PMCID: PMC10797600 DOI: 10.1039/d3ra08289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The growth of graphene on silicon carbide on silicon offers a very attractive route towards novel wafer-scale photonic and electronic devices that are easy to fabricate and can be integrated in silicon manufacturing. Using a Ni/Cu catalyst for the epitaxial growth of graphene has been successful in the mitigation of the very defective nature of the underlying silicon carbide on silicon, leading to a consistent graphene coverage over large scales. A more detailed understanding of this growth mechanism is warranted in order to further optimise the catalyst composition, preferably via the use of operando characterization measurements. Here, we report in situ neutron reflectometry measurements of (Ni, Cu)/SiC films on silicon wafers, annealed from room temperature to 1100 °C, which initiates graphene formation at the buried (Ni, Cu)/SiC interface. Detailed modelling of the high temperature neutron reflectometry and corresponding scattering length density profiles yield insights into the distinct physical mechanisms within the different temperature regimes. The initially smooth solid metallic layers undergo intermixing and roughening transitions at relatively low temperatures below 500 °C, and then metal silicides begin to form above 600 °C from interfacial reactions with the SiC, releasing atomic carbon. At the highest temperature range of 600-1100 °C, the low neutron scattering length density at high temperature is consistent with a silicon-rich, liquid surface phase corresponding to molten nickel silicides and copper. This liquid catalyst layer promotes the liquid-phase epitaxial growth of a graphene layer by precipitating the excess carbon available at the SiC/metal interface.
Collapse
Affiliation(s)
- Aiswarya Pradeepkumar
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia
| | - David Cortie
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies Melbourne Victoria 3800 Australia
| | - Erin Smyth
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies Melbourne Victoria 3800 Australia
| |
Collapse
|
30
|
Robertson H, Gresham IJ, Nelson ARJ, Gregory KP, Johnson EC, Willott JD, Prescott SW, Webber GB, Wanless EJ. Solvent-Modulated Specific Ion Effects: Poly( N-isopropylacrylamide) Brushes in Nonaqueous Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:335-347. [PMID: 38117209 PMCID: PMC10910595 DOI: 10.1021/acs.langmuir.3c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Pertinent to cryopreservation as well as energy storage and batteries, nonaqueous electrolytes and their mixtures with water were investigated. In particular, specific ion-induced effects on the modulation of a poly(N-isopropylacrylamide) (PNIPAM) brush were investigated in various dimethyl sulfoxide (DMSO)-water solvent mixtures. Spectroscopic ellipsometry and neutron reflectometry were employed to probe changes in brush swelling and structure, respectively. In water-rich solvents (i.e., pure water and 6 mol % DMSO), PNIPAM undergoes a swollen to collapsed thermotransition with increasing temperature, whereby a forward Hofmeister series was noted; K+ and Li+ electrolytes composed of SCN- and I- salted-in (stabilized) PNIPAM chains, and electrolytes of Cl- and Br- salted-out (destabilized) the polymer. The cation was seen to play a lesser role than that of the anion, merely modulating the magnitude of the anion effect. In 70 mol % DMSO, a collapsed to swollen thermotransition was noted for PNIPAM. Here, concentration-dependent specific ion effects were observed; a forward series was observed in 0.2 mol % electrolytes, whereas increasing the electrolyte concentration to 0.9 mol % led to a series reversal. While no thermotransition was observed in pure DMSO, a solvent-induced specific ion series reversal was noted; SCN- destabilized the brush and Cl- stabilized the brush. Both series reversals are attributed to the delicate balance of interactions between the solvent, solute (ion), and substrate (brush). Namely, the stability of the solvent clusters was hypothesized to drive polymer solvation.
Collapse
Affiliation(s)
- Hayden Robertson
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Isaac J. Gresham
- School
of Chemistry, University of Sydney, Sydney 2052, Australia
| | - Andrew R. J. Nelson
- Australian
Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Kasimir P. Gregory
- Division
of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital
Territory 0200, Australia
| | - Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Joshua D. Willott
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Stuart W. Prescott
- School of
Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Grant B. Webber
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J. Wanless
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
31
|
Hurtado C, Andreoli T, Le Brun AP, MacGregor M, Darwish N, Ciampi S. Galinstan Liquid Metal Electrical Contacts for Monolayer-Modified Silicon Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:201-210. [PMID: 38101331 DOI: 10.1021/acs.langmuir.3c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Galinstan is the brand name for a low-melting gallium-based alloy, which is a promising nontoxic alternative to mercury, the only elemental metal found in the liquid state at room temperature. Liquid alloys such as Galinstan have found applications as electromechanical actuators, sensors, and soft contacts for molecular electronics. In this work, we validate the scope of Galinstan top contacts to probe the electrical characteristics of Schottky junctions made on Si(111) and Si(211) crystals modified with Si-C-bound organic monolayers. We show that the surface-to-volume ratio of the Galinstan drop used as a macroscopic contact defines the junction stability. Further, we explore chemical strategies to increase Galinstan surface tension to obtain control over the junction area, hence improving the repeatability and reproducibility of current-voltage (I-V) measurements. We explore Galinstan top contacts as a means to monitor changes in rectification ratios caused by surface reactions and use these data, most notably the static junction leakage, toward making qualitative predictions on the DC outputs recorded when these semiconductor systems are incorporated in Schottky-based triboelectric nanogenerators. We found that the introduction of iron particles leads to poor data repeatability for capacitance-voltage (C-V) measurements but has only a small negative impact in a dynamic current measurement (I-V).
Collapse
Affiliation(s)
- Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Tony Andreoli
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
32
|
Gilbert J, Ermilova I, Fornasier M, Skoda M, Fragneto G, Swenson J, Nylander T. On the interactions between RNA and titrateable lipid layers: implications for RNA delivery with lipid nanoparticles. NANOSCALE 2024; 16:777-794. [PMID: 38088740 DOI: 10.1039/d3nr03308b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Characterising the interaction between cationic ionisable lipids (CIL) and nucleic acids (NAs) is key to understanding the process of RNA lipid nanoparticle (LNP) formation and release of NAs from LNPs. Here, we have used different surface techniques to reveal the effect of pH and NA type on the interaction with a model system of DOPC and the CIL DLin-MC3-DMA (MC3). At only 5% MC3, differences in the structure and dynamics of the lipid layer were observed. Both pH and %MC3 were shown to affect the absorption behaviour of erythropoietin mRNA, polyadenylic acid (polyA) and polyuridylic acid (polyU). The adsorbed amount of all studied NAs was found to increase with decreasing pH and increasing %MC3 but with different effects on the lipid layer, which could be linked to the NA secondary structure. For polyA at pH 6, adsorption to the surface of the layer was observed, whereas for other conditions and NAs, penetration of the NA into the layer resulted in the formation of a multilayer structure. By comparison to simulations excluding the secondary structure, differences in adsorption behaviours between polyA and polyU could be observed, indicating that the NA's secondary structure also affected the MC3-NA interactions.
Collapse
Affiliation(s)
- Jennifer Gilbert
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marco Fornasier
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
| | - Maximilian Skoda
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX, UK
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tommy Nylander
- Division of Physical Chemistry, Department of Chemistry, Naturvetarvägen 14, Lund University, 22362 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
- Lund Institute of Advanced Neutron and X-Ray Science, Scheelevägen 19, 223 70 Lund, Sweden
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
33
|
Lankage U, Holt SA, Bridge S, Cornell B, Cranfield CG. Triglyceride-Tethered Membrane Lipase Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37931023 PMCID: PMC10658451 DOI: 10.1021/acsami.3c11767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Sensors that can quickly measure the lipase activity from biological samples are useful in enzyme production and medical diagnostics. However, current lipase sensors have limitations such as requiring fluorescent labels, pH control of buffer vehicles, or lengthy assay preparation. We introduce a sparsely tethered triglyceride substrate anchored off of a gold electrode for the impedance sensing of real-time lipase activity. The tethered substrate is self-assembled using a rapid solvent exchange technique and can form an anchored bilayer 1 nm off the gold electrode. This allows for an aqueous reservoir region, providing access to ions transported through membrane defects caused by triglyceride enzymatic hydrolysis. Electrical impedance spectroscopy techniques can readily detect the decrease in resistance caused by enzymatically induced defects. This rapid and reliable lipase detection method can have potential applications in disease studies, monitoring of lipase production, and as point-of-care diagnostic devices.
Collapse
Affiliation(s)
| | - Stephen A. Holt
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
- Australian
Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Samara Bridge
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
| | - Bruce Cornell
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
- SDx
Surgical Diagnostics Pty Ltd., U6 30-32 Barcoo Street, Roseville, NSW 2069, Australia
| | - Charles G. Cranfield
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
34
|
Grava M, Ibrahim M, Sudarsan A, Pusterla J, Philipp J, Rädler JO, Schwierz N, Schneck E. Combining molecular dynamics simulations and x-ray scattering techniques for the accurate treatment of protonation degree and packing of ionizable lipids in monolayers. J Chem Phys 2023; 159:154706. [PMID: 37861119 DOI: 10.1063/5.0172552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The pH-dependent change in protonation of ionizable lipids is crucial for the success of lipid-based nanoparticles as mRNA delivery systems. Despite their widespread application in vaccines, the structural changes upon acidification are not well understood. Molecular dynamics simulations support structure prediction but require an a priori knowledge of the lipid packing and protonation degree. The presetting of the protonation degree is a challenging task in the case of ionizable lipids since it depends on pH and on the local lipid environment and often lacks experimental validation. Here, we introduce a methodology of combining all-atom molecular dynamics simulations with experimental total-reflection x-ray fluorescence and scattering measurements for the ionizable lipid Dlin-MC3-DMA (MC3) in POPC monolayers. This joint approach allows us to simultaneously determine the lipid packing and the protonation degree of MC3. The consistent parameterization is expected to be useful for further predictive modeling of the action of MC3-based lipid nanoparticles.
Collapse
Affiliation(s)
- Miriam Grava
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Mohd Ibrahim
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Akhil Sudarsan
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Julio Pusterla
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Julian Philipp
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), München, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), München, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
35
|
Bulut Y, Sochor B, Harder C, Reck K, Drewes J, Xu Z, Jiang X, Meinhardt A, Jeromin A, Kohantorabi M, Noei H, Keller TF, Strunskus T, Faupel F, Müller-Buschbaum P, Roth SV. Diblock copolymer pattern protection by silver cluster reinforcement. NANOSCALE 2023; 15:15768-15774. [PMID: 37740389 DOI: 10.1039/d3nr03215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.
Collapse
Affiliation(s)
- Yusuf Bulut
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Benedikt Sochor
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Constantin Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Kristian Reck
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Jonas Drewes
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Zhuijun Xu
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiongzhuo Jiang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alexander Meinhardt
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Arno Jeromin
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Mona Kohantorabi
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Heshmat Noei
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas F Keller
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Thomas Strunskus
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Franz Faupel
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergerstraße 1, 85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
36
|
Robertson H, Elliott GR, Nelson ARJ, Le Brun AP, Webber GB, Prescott SW, Craig VSJ, Wanless EJ, Willott JD. Underscreening in concentrated electrolytes: re-entrant swelling in polyelectrolyte brushes. Phys Chem Chem Phys 2023; 25:24770-24782. [PMID: 37671535 DOI: 10.1039/d3cp02206d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hypersaline environments are ubiquitous in nature and are found in myriad technological processes. Recent empirical studies have revealed a significant discrepancy between predicted and observed screening lengths at high salt concentrations, a phenomenon referred to as underscreening. Herein we investigate underscreening using a cationic polyelectrolyte brush as an exemplar. Poly(2-(methacryloyloxy)ethyl)trimethylammonium (PMETAC) brushes were synthesised and their internal structural changes and swelling response was monitored with neutron reflectometry and spectroscopic ellipsometry. Both techniques revealed a monotonic brush collapse as the concentration of symmetric monovalent electrolyte increased. However, a non-monotonic change in brush thickness was observed in all multivalent electrolytes at higher concentrations, known as re-entrant swelling; indicative of underscreening. For all electrolytes, numerical self-consistent field theory predictions align with experimental studies in the low-to-moderate salt concentration regions. Analysis suggests that the classical theory of electrolytes is insufficient to describe the screening lengths observed at high salt concentrations and that the re-entrant polyelectrolyte brush swelling seen herein is consistent with the so-called regular underscreening phenomenon.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Gareth R Elliott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
37
|
Uyama M, Steitz R, Trapp M, Noirez L, Bayer S, Gradzielski M. Microscopic Analysis of the Water/Glycerol/EO30PS System in Bulk and on a Solid Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12206-12215. [PMID: 37589758 DOI: 10.1021/acs.langmuir.3c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Surfactant systems are often employed in cosmetic formulations where they dry on skin as a surface, thereby becoming increasingly concentrated systems. To better understand this drying process, we focused on the difference of self-assembled structures of the water/glycerol/polyoxyethylene (30) phytosteryl ether (EO30PS) system in bulk and on a solid substrate because the interaction between the substrate and the surfactant may have a substantial effect on the self-assembly, which may be related to the bulk structure but in detail may also differ strongly from the bulk situation. In bulk, small-angle neutron scattering (SANS) experiments showed that with increasing loss of water, the degree of ordering increases but changes of the aggregate structure are rather small. The results indicate that ellipsoidal micelles of EO30PS are densely packed and simply become more ordered in bulk during the drying process. On the other hand, neutron reflectometry revealed that EO30PS molecules adsorb onto a Si surface in the form of bilayers and analysis indicates that at a high concentration (c = 20 wt %), there are on average two bilayers (a double bilayer) on the Si substrate. The adsorbed membrane structure of EO30PS is rather thin with respect to its hydrophobic part, indicating tilted molecules, containing only some solvent, and being not highly ordered. These experimental results then allow for a much deeper understanding of the structural properties of practical formulations as they are applied, for instance, in cosmetic lotions.
Collapse
Affiliation(s)
- Makoto Uyama
- Shiseido Co., Ltd. MIRAI Technology Institute, Yokohama, Kanagawa 220-0011, Japan
| | - Roland Steitz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marcus Trapp
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Laurence Noirez
- Laboratoire Léon Brillouin CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - Sebastian Bayer
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124, Sekr. TC7, 10623 Berlin, Germany
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124, Sekr. TC7, 10623 Berlin, Germany
| |
Collapse
|
38
|
Ferron T, Fiori ME, Ediger MD, DeLongchamp DM, Sunday DF. Composition Dictates Molecular Orientation at the Heterointerfaces of Vapor-Deposited Glasses. JACS AU 2023; 3:1931-1938. [PMID: 37502150 PMCID: PMC10369407 DOI: 10.1021/jacsau.3c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023]
Abstract
Physical vapor deposition (PVD) can prepare organic glasses with a preferred molecular orientation. The relationships between deposition conditions and orientation have been extensively investigated in the film bulk. The role of interfaces on the structure is less well understood and remains a key knowledge gap, as the interfacial region can govern glass stability and optoelectronic properties. Robust experimental characterization has remained elusive due to complexities in interrogating molecular organization in amorphous, organic materials. Polarized soft X-rays are sensitive to both the composition and the orientation of transition dipole moments in the film, making them uniquely suited to probe molecular orientation in amorphous soft matter. Here, we utilize polarized resonant soft X-ray reflectivity (P-RSoXR) to simultaneously depth profile the composition and molecular orientation of a bilayer prepared through the physical vapor deposition of 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) on a film of aluminum-tris(8-hydroxyquinoline) (Alq3). The bulk orientation of the DSA-Ph layer is controlled by varying deposition conditions. Utilizing P-RSoXR to depth profile the films enables determination of both the bulk orientation of DSA-Ph and the orientation near the Alq3 interface. At the Alq3 surface, DSA-Ph always lies with its long axis parallel to the interface, before transitioning into the bulk orientation. This is likely due to the lower mobility and higher glass transition of Alq3, as the first several monolayers of DSA-Ph deposited on Alq3 appear to behave as a blend. We further show how orientation at the interface correlates with the bulk behavior of a codeposited glass of similar blend composition, demonstrating a straightforward approach to predicting molecular orientation at heterointerfaces. This work provides key insights into how molecules orient during vapor deposition and offers methods to predict this property, a critical step toward controlling interfacial behavior in soft matter.
Collapse
Affiliation(s)
- Thomas
J. Ferron
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marie E. Fiori
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - M. D. Ediger
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dean M. DeLongchamp
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel F. Sunday
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
39
|
Warias JE, Reise F, Hövelmann SC, Giri RP, Röhrl M, Kuhn J, Jacobsen M, Chatterjee K, Arnold T, Shen C, Festersen S, Sartori A, Jordt P, Magnussen OM, Lindhorst TK, Murphy BM. Photoinduced bidirectional switching in lipid membranes containing azobenzene glycolipids. Sci Rep 2023; 13:11480. [PMID: 37455299 PMCID: PMC10350456 DOI: 10.1038/s41598-023-38336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Following the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation. Interestingly, for monolayers containing azobenzene glycolipids, along with the expected DPPC phase transitions an additional discontinuity is observed. The associated reorintation represents a crossover point, with the surface pressure and layer thickness changing in opposite directions above and below. This is evidence that the azobenzene glycolipids themselves change orientation within the monolayer. Such behaviour suggests that azobenzene glycolipids can act as a bidirectional switch in DPPC monolayers providing a tool to investigate membrane structure-function relationships in depth.
Collapse
Affiliation(s)
- Jonas E Warias
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Franziska Reise
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Svenja C Hövelmann
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| | - Rajendra P Giri
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| | - Michael Röhrl
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Jule Kuhn
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Malte Jacobsen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Kuntal Chatterjee
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Barkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Thomas Arnold
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 ODE, UK
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- European Spallation Source ERIC, P.O Box 176, 221 00, Lund, Sweden
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sven Festersen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Andrea Sartori
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- ESRF-The European Synchrotron, 38043, Grenoble, France
| | - Philipp Jordt
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
| | - Olaf M Magnussen
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, 24118, Kiel, Germany.
- Ruprecht Haensel Laboratory, Kiel University, 24118, Kiel, Germany.
| |
Collapse
|
40
|
Ibrahim M, Gilbert J, Heinz M, Nylander T, Schwierz N. Structural insights on ionizable Dlin-MC3-DMA lipids in DOPC layers by combining accurate atomistic force fields, molecular dynamics simulations and neutron reflectivity. NANOSCALE 2023. [PMID: 37377412 DOI: 10.1039/d3nr00987d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Ionizable lipids such as the promising Dlin-MC3-DMA (MC3) are essential for the successful design of lipid nanoparticles (LNPs) as drug delivery agents. Combining molecular dynamics simulations with experimental data, such as neutron reflectivity experiments and other scattering techniques, is essential to provide insights into the internal structure of LNPs, which is not fully understood to date. However, the accuracy of the simulations relies on the choice of force field parameters and high-quality experimental data is indispensable to verify the parametrization. For MC3, different parameterizations in combination with the CHARMM and the Slipids force fields have recently emerged. Here, we complement the existing efforts by providing parameters for cationic and neutral MC3 compatible with the AMBER Lipid17 force field. Subsequently, we carefully assess the accuracy of the different force fields by providing a direct comparison to neutron reflectivity experiments of mixed lipid bilayers consisting of MC3 and DOPC at different pHs. At low pH (cationic MC3) and at high pH (neutral MC3) the newly developed MC3 parameters in combination with AMBER Lipid17 for DOPC give good agreement with the experiments. Overall, the agreement is similar compared to the Park-Im parameters for MC3 in combination with the CHARMM36 force field for DOPC. The Ermilova-Swenson MC3 parameters in combination with the Slipids force field underestimate the bilayer thickness. While the distribution of cationic MC3 is very similar, the different force fields for neutral MC3 reveal distinct differences ranging from strong accumulation in the membrane center (current MC3/AMBER Lipid17 DOPC), over mild accumulation (Park-Im MC3/CHARMM36 DOPC) to surface accumulation (Ermilova-Swenson MC3/Slipids DOPC). These pronounced differences highlight the importance of accurate force field parameters and their experimental validation.
Collapse
Affiliation(s)
- Mohd Ibrahim
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jennifer Gilbert
- Physical Chemistry, Department of Chemistry Lund University, P.O Box 124, SE-22100 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
| | - Marcel Heinz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry Lund University, P.O Box 124, SE-22100 Lund, Sweden.
- NanoLund, Lund University, Professorsgatan 1, 223 63 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-Ray Science, Scheelevägen 19, 223 70, Lund, Sweden
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|
41
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
42
|
Correa Y, Del Giudice R, Waldie S, Thépaut M, Micciula S, Gerelli Y, Moulin M, Delaunay C, Fieschi F, Pichler H, Haertlein M, Forsyth VT, Le Brun A, Moir M, Russell RA, Darwish T, Brinck J, Wodaje T, Jansen M, Martín C, Roosen-Runge F, Cárdenas M. High-Density Lipoprotein function is modulated by the SARS-CoV-2 spike protein in a lipid-type dependent manner. J Colloid Interface Sci 2023; 645:627-638. [PMID: 37167912 PMCID: PMC10147446 DOI: 10.1016/j.jcis.2023.04.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Rita Del Giudice
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Sarah Waldie
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Samantha Micciula
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France
| | - Yuri Gerelli
- Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche 12, 60131 Ancona, Italy; CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, Rome, Italy
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Clara Delaunay
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Franck Fieschi
- Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France; Institut universitaire de France (IUF), Paris, France
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Medicine, Lund University, 22184 Lund, Sweden; LINXS Institute for Advanced Neutron and X-ray Science, Scheelevagen 19, 22370 Lund, Sweden
| | - Anton Le Brun
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Michael Moir
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | | | | | - Martin Jansen
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre, University of Freiburg, Freiburg Im Breisgau, Germany
| | - César Martín
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain
| | - Felix Roosen-Runge
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Biofilm - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), 48940 Leioa, Spain; School of Biological Sciences, Nanyang Technological University, Singapore; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
43
|
Eby D, Jakowski M, Lauter V, Doucet M, Ganesh P, Fuentes-Cabrera M, Kumar R. Extraction of interaction parameters from specular neutron reflectivity in thin films of diblock copolymers: an "inverse problem". NANOSCALE 2023; 15:7280-7291. [PMID: 36946328 DOI: 10.1039/d2nr07173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Diblock copolymers have been shown to undergo microphase separation due to an interplay of repulsive interactions between dissimilar monomers, which leads to the stretching of chains and entropic loss due to the stretching. In thin films, additional effects due to confinement and monomer-surface interactions make microphase separation much more complicated than in that in bulks (i.e., without substrates). Previously, physics-based models have been used to interpret and extract various interaction parameters from the specular neutron reflectivities of annealed thin films containing diblock copolymers (J. P. Mahalik, J. W. Dugger, S. W. Sides, B. G. Sumpter, V. Lauter and R. Kumar, Interpreting neutron reflectivity profiles of diblock copolymer nanocomposite thin films using hybrid particle-field simulations, Macromolecules, 2018, 51(8), 3116; J. P. Mahalik, W. Li, A. T. Savici, S. Hahn, H. Lauter, H. Ambaye, B. G. Sumpter, V. Lauter and R. Kumar, Dispersity-driven stabilization of coexisting morphologies in asymmetric diblock copolymer thin films, Macromolecules, 2021, 54(1), 450). However, extracting Flory-Huggins χ parameters characterizing monomer-monomer, monomer-substrate, and monomer-air interactions has been labor-intensive and prone to errors, requiring the use of alternative methods for practical purposes. In this work, we have developed such an alternative method by employing a multi-layer perceptron, an autoencoder, and a variational autoencoder. These neural networks are used to extract interaction parameters not only from neutron scattering length density profiles constructed using self-consistent field theory-based simulations, but also from a noisy ad hoc model constructed previously. In particular, the variational autoencoder is shown to be the most promising tool when it comes to the reconstruction and extraction of parameters from an ad hoc neutron scattering length density profile of a thin film containing a symmetric di-block copolymer (poly(deuterated styrene-b-n-butyl methacrylate)). This work paves the way for automated analysis of specular neutron reflectivities from thin films of copolymers using machine learning tools.
Collapse
Affiliation(s)
- Dustin Eby
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
| | - Mikolaj Jakowski
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
| | - Valeria Lauter
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA.
| |
Collapse
|
44
|
Andersson J, Kleinheinz D, Ramach U, Kiesenhofer N, Ashenden A, Valtiner M, Holt S, Koeper I, Schmidpeter PAM, Knoll W. Native Function of the Bacterial Ion Channel SthK in a Sparsely Tethered Lipid Bilayer Membrane Architecture. J Phys Chem B 2023; 127:3641-3650. [PMID: 37072125 PMCID: PMC10150356 DOI: 10.1021/acs.jpcb.2c07252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine.
Collapse
Affiliation(s)
- Jakob Andersson
- Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - David Kleinheinz
- Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Ulrich Ramach
- Technische Universität Wien, Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria
- CEST Kompetenzzentrum für Oberflächentechnologie, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | | | - Alex Ashenden
- Flinders University of South Australia, Bedford Park SA, 5042 Adelaide, Australia
| | - Markus Valtiner
- Technische Universität Wien, Wiedner Hauptstr. 8-10/134, 1040 Wien, Austria
- CEST Kompetenzzentrum für Oberflächentechnologie, Viktor Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | - Stephen Holt
- Australian Nuclear Science and Technology Organization, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Ingo Koeper
- Flinders University of South Australia, Bedford Park SA, 5042 Adelaide, Australia
| | - Philipp A M Schmidpeter
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, New York 10065, United States
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
- Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| |
Collapse
|
45
|
Robertson H, Willott JD, Gregory KP, Johnson EC, Gresham IJ, Nelson ARJ, Craig VSJ, Prescott SW, Chapman R, Webber GB, Wanless EJ. From Hofmeister to hydrotrope: Effect of anion hydrocarbon chain length on a polymer brush. J Colloid Interface Sci 2023; 634:983-994. [PMID: 36571860 DOI: 10.1016/j.jcis.2022.12.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kasimir P Gregory
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Edwin C Johnson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Chemistry, The University of Sheffield, Sheffield, UK
| | - Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Robert Chapman
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
46
|
Vagias A, Nelson A, Wang P, Reitenbach J, Geiger C, Kreuzer LP, Saerbeck T, Cubitt R, Benetti EM, Müller-Buschbaum P. The Topology of Polymer Brushes Determines Their Nanoscale Hydration. Macromol Rapid Commun 2023; 44:e2300035. [PMID: 36815590 DOI: 10.1002/marc.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Time-of-flight neutron reflectometry (ToF-NR) performed under different relative humidity conditions demonstrates that polymer brushes constituted by hydrophilic, cyclic macromolecules exhibit a more compact conformation with lower roughness as compared to linear brush analogues, due to the absence of dangling chain ends extending at the polymer-vapor interface. In addition, cyclic brushes feature a larger swelling ratio and an increased solvent uptake with respect to their linear counterparts as a consequence of the increased interchain steric repulsions. It is proposed that differences in swelling ratios between linear and cyclic brushes come from differences in osmotic pressure experienced by each brush topology. These differences stem from entropic constraints. The findings suggest that to correlate the equilibrium swelling ratios at different relative humidity for different topologies a new form of the Flory-like expression for equilibrium thicknesses of grafted brushes is needed.
Collapse
Affiliation(s)
- Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Andrew Nelson
- ANSTO, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Peixi Wang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Julija Reitenbach
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Christina Geiger
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Lucas Philipp Kreuzer
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany.,Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Thomas Saerbeck
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Robert Cubitt
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Edmondo Maria Benetti
- Polymer Surfaces Group, Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35122, Italy.,Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, 8093, Switzerland
| | - Peter Müller-Buschbaum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany.,Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
47
|
Le Brun AP, Huang TY, Pullen S, Nelson ARJ, Spedding J, Holt SA. Spatz: the time-of-flight neutron reflectometer with vertical sample geometry at the OPAL research reactor. J Appl Crystallogr 2023; 56:18-25. [PMID: 36777140 PMCID: PMC9901927 DOI: 10.1107/s160057672201086x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
The Spatz neutron beam instrument is the second time-of-flight neutron reflectometer to be installed at the OPAL research reactor. The instrument was formerly the V18 BioRef reflectometer at the BER-II reactor in Berlin and was transferred to Australia in 2016. Subsequently the instrument was re-installed in the neutron guide hall of the OPAL reactor at the end position of the CG2B cold-neutron guide and recommissioned. The instrument performance has not been compromised by the move, with reflectivity achieved down to 10-7 and good counting statistics within a reasonable time frame using a wavelength range of 2-20 Å. Several different samples at the solid-air interface and the solid-liquid interface have been measured to demonstrate the instrument's capabilities.
Collapse
Affiliation(s)
- Anton P. Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Tzu-Yen Huang
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Stewart Pullen
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Andrew R. J. Nelson
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - James Spedding
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Stephen A. Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
48
|
McCluskey AR, Caruana AJ, Kinane CJ, Armstrong AJ, Arnold T, Cooper JFK, Cortie DL, Hughes AV, Moulin JF, Nelson ARJ, Potrzebowski W, Starostin V. Advice on describing Bayesian analysis of neutron and X-ray reflectometry. J Appl Crystallogr 2023; 56:12-17. [PMID: 36777146 PMCID: PMC9901928 DOI: 10.1107/s1600576722011426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/18/2023] Open
Abstract
As a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial starting conditions, the prior probabilities, the results of any analysis and the posterior probabilities that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding. It is believed that this advice, grounded in the authors' experience working in the field, will enable greater analytical reproducibility in the work of the reflectometry community, and improve the quality and usability of results.
Collapse
Affiliation(s)
| | - Andrew J. Caruana
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Christy J. Kinane
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Alexander J. Armstrong
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Thomas Arnold
- European Spallation Source ERIC, PO Box 176, Lund, SE-22100, Sweden
| | - Joshaniel F. K. Cooper
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - David L. Cortie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Arwel V. Hughes
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jean-Francois Moulin
- German Engineering Material Science at Heinz Maier-Leibnitz Zentrum, Helmholtz-Zentrum Hereon, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Andrew R. J. Nelson
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | | | - Vladimir Starostin
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
49
|
Robertson H, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Cosolvent effects on the structure and thermoresponse of a polymer brush: PNIPAM in DMSO–water mixtures. Polym Chem 2023. [DOI: 10.1039/d2py01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Structural characterisation of thermoresponsive polymer brushes in binary DMSO–water mixtures reveals both LCST and UCST behaviour.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| | | | | | - Grant B. Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| | - Erica J. Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| |
Collapse
|
50
|
Taßler S, Bonatout N, Eusébio TM, Valente RM, Rego T, Ibrahim H, Morgado P, J. M. Filipe E, Goldmann M, Fontaine P. Surface behaviour of 1-alkyl-3-methylimidazolium ionic liquids at the air-water-interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|