1
|
Ojansivu M, Barriga HMG, Holme MN, Morf S, Doutch JJ, Andaloussi SE, Kjellman T, Johnsson M, Barauskas J, Stevens MM. Formulation and Characterization of Novel Ionizable and Cationic Lipid Nanoparticles for the Delivery of Splice-Switching Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419538. [PMID: 40091434 DOI: 10.1002/adma.202419538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Despite increasing knowledge about the mechanistic aspects of lipid nanoparticles (LNPs) as oligonucleotide carriers, the structure-function relationship in LNPs has been generally overlooked. Understanding this correlation is critical in the rational design of LNPs. Here, a materials characterization approach is utilized, applying structural information from small-angle X-ray scattering experiments to design novel LNPs focusing on distinct lipid organizations with a minimal compositional variation. The lipid phase structures are characterized in these LNPs and their corresponding bulk lipid mixtures with small-angle scattering techniques, and the LNP-cell interactions in vitro with respect to cytotoxicity, hemolysis, cargo delivery, cell uptake, and lysosomal swelling. An LNP is identified that outperforms Onpattro lipid composition using lipid components and molar ratios which differ from the gold standard clinical LNPs. The base structure of these LNPs has an inverse micellar phase organization, whereas the LNPs with inverted hexagonal phases are not functional, suggesting that this phase formation may not be needed for LNP-mediated oligonucleotide delivery. The importance of stabilizer choice for the LNP function is demonstrated and super-resolution microscopy highlights the complexity of the delivery mechanisms, where lysosomal swelling for the majority of LNPs is observed. This study highlights the importance of advanced characterization for the rational design of LNPs to enable the study of structure-function relationships.
Collapse
Affiliation(s)
- Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - Stefanie Morf
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - James J Doutch
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, OX11 0QX, UK
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institute, Huddinge, 14152, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 141 86, Sweden
- Karolinska ATMP Center, Karolinska Institute, Huddinge, 14152, Stockholm, Sweden
| | | | | | | | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
2
|
Wang Y, Barbieri E, Zhang Y, Terrill N, Gupta HS. Integrating ultrastructural diffraction imaging and multiscale modelling to unveil the nanoscale mechanics of arthropod cuticle in bending. J R Soc Interface 2025; 22:20240601. [PMID: 40101778 PMCID: PMC11919523 DOI: 10.1098/rsif.2024.0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Determining the mechano-structural relations in biological materials with hierarchical structure is crucial to understanding natural optimization strategies and designing functional bioinspired composites. However, measuring the nanoscale mechanics and dynamic response is challenging when the specimen geometry and loading environment are physiologically complex. To overcome this challenge, we develop a combination of synchrotron X-ray diffraction testing and analytical modelling to explore the mechano-structural changes during bending loads on stomatopod cuticle. Stomatopod cuticle is an example of a hierarchical biomaterial optimized for high impact and bending resistance. Using models for large deformations of elastic continua, we measure cuticle strains from macroscopic deformations and combine diffraction-based fibril strains with stresses to quantify the local elastic moduli and nanoscale strain concentration factors, which are found to vary across cuticle sub-regions and under different flexion loading modes. This approach has the advantage of identifying constituent biomaterial properties and mechanisms in situ and is also suitable for studying time-dependent changes, such as concurrent strains of the nanofibrous phase that occur during physiological loading.
Collapse
Affiliation(s)
- Yanhong Wang
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Ettore Barbieri
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Research Institute for Value-Added-Information Generation (VAiG), Center for Mathematical Science and Advanced Technology (MAT), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan
| | - Yi Zhang
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, London, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Nick Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Himadri Shikhar Gupta
- School of Engineering and Materials Science and Institute of Bioengineering, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Ma Q, Riau AK, Young RD, Bell JS, Shebanova O, Terrill NJ, Yam GHF, Han E, Meek KM, Mehta JS, Boote C. Ultrastructural Aspects of Corneal Functional Recovery in Rats Following Intrastromal Keratocyte Injection. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 39964324 PMCID: PMC11838119 DOI: 10.1167/iovs.66.2.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
Purpose Donor tissue shortfalls and postsurgical complications are driving novel corneal tissue regeneration approaches. Corneal stromal keratocytes (CSKs) have shown promise in promoting corneal repair and restoring transparency. We investigated the impact of intrastromal CSK injection on corneal ultrastructure and proteoglycan (PG) distribution in a rat injury model. Methods Rats were divided into four groups: normal (n = 12), injured (irregular phototherapeutic keratectomy centrally; n = 6), CSK (injured + human CSK intrastromal injection; n = 6), and PBS (injured + PBS injection; n = 6). Three weeks after treatment, corneas were examined by slit-lamp and optical coherence tomography. Corneal ultrastructure was analysed via small-angle x-ray scattering (collagen fibril diameter, interfibrillar spacing and matrix order), transmission electron microscopy with cuprolinic blue before and after chondroitinase digestion (CS/DS and KS PGs), and immunofluorescence staining (lumican and decorin). Results Irregular phototherapeutic keratectomy caused corneal opacity and significantly disrupted stromal ultrastructure, characterized by increased haze density (P < 0.0001), change in central corneal thickness (P = 0.0005), and interfibrillar spacing (P < 0.0001), along with decreased fibril diameter (P < 0.0001), matrix order (P < 0.0001), CS/DS (P < 0.0001) and KS (P < 0.0001) PGs, lumican, and decorin. CSK injection recovered corneal clarity and native stromal ultrastructure, with haze density (P = 0.8086), change in central corneal thickness (P = 0.9503), fibril diameter (P = 0.1139), interfibrillar spacing (P = 0.5879), matrix order (P = 0.9999), CS/DS (P = 0.9969) and KS (P = 0.2877) PGs, lumican, and decorin returning to normal. In contrast, the PBS group exhibited similar corneal injury responses to the injured group. Conclusions CSK injection resolved early stage corneal scarring by restoring stromal collagen arrangement and PG distribution, further endorsing its potential for treating corneal opacities.
Collapse
Affiliation(s)
- Qian Ma
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Robert D. Young
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - James S. Bell
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Olga Shebanova
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Nicholas J. Terrill
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Gary H. F. Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Evelina Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Keith M. Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Cornea and External Disease Department, Singapore National Eye Centre, Singapore, Singapore
| | - Craig Boote
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Hyder M, Godleman J, Chippindale AM, Hallett JE, Zinn T, Harries JL, Hayes W. Thermally and Base-Triggered "Debond-on-Demand" Chain-Extended Polyurethane Adhesives. Macromolecules 2025; 58:681-696. [PMID: 39831293 PMCID: PMC11741135 DOI: 10.1021/acs.macromol.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
A series of novel chain-extended polyurethanes (CEPUs) featuring degradable sulfonyl ethyl urethane chain-extenders that permit degradation under base-triggered conditions to afford "debond-on-demand" elastomeric adhesives are reported. Exposure of the CEPUs to tetra-butylammonium fluoride (TBAF) triggered the degradation of the sulfonyl ethyl urethane chain-extenders. Lap shear adhesion tests of the CEPUs exposed to TBAF revealed reductions in shear strength of up to 65% for both aluminum and glass substrates, from 2.18 to 0.76 MPa and from 1.13 to 0.52 MPa, respectively. The selective depolymerization of these polymers makes them suitable candidates as debondable binders for inkjet inks and coatings, enabling removal of inks and adhesive residues from substrates before they enter the recycling process, to prevent surface contaminants decreasing the quality of the recycled material.
Collapse
Affiliation(s)
- Matthew
J. Hyder
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jessica Godleman
- Domino
UK Ltd., Trafalgar Way, Bar Hill, Cambridge CB23 8TU, U.K.
| | - Ann M. Chippindale
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - James E. Hallett
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Thomas Zinn
- Diamond
Light Source, Diamond Light Source Ltd., Harwell Science & Innovation
Campus, Didcot OX11 0DE, U.K.
| | | | - Wayne Hayes
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
5
|
Birkedal H, Sztucki M, Stammer M, Sadetskaia A, Burghammer MC, Grünewald TA. A micro-beamstop with transmission detection by fluorescence for scanning-beam synchrotron scattering beamlines. J Appl Crystallogr 2024; 57:2043-2047. [PMID: 39628877 PMCID: PMC11611290 DOI: 10.1107/s1600576724009129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 12/06/2024] Open
Abstract
Quantitative X-ray diffraction approaches require careful correction for sample transmission. Though this is a routine task at state-of-the-art small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) or diffraction beamlines at synchrotron facilities, the transmission signal cannot be recorded concurrently with SAXS/WAXS when using the small, sub-millimetre beamstops at many X-ray nanoprobes during SAXS/WAXS experiments due to the divergence-limited size of the beamstop and the generally tight geometry. This is detrimental to the data quality and often the only solution is to re-scan the sample with a PIN photodiode as a detector to obtain transmission values. In this manuscript, we present a simple yet effective solution to this problem in the form of a small beamstop with an inlaid metal target for optimal fluorescence yield. This fluorescence can be detected with a high-sensitivity avalanche photodiode and provides a linear counter to determine the sample transmission.
Collapse
Affiliation(s)
- Henrik Birkedal
- Department of Chemistry and iNANOAarhus University14 Gustav Wieds Vej8000AarhusDenmark
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF)Avenue des Martyrs 71Grenoble38000France
| | - Moritz Stammer
- Aix-Marseille Univ., CNRS, Centrale Med, Institut FresnelMarseilleFrance
| | - Anastasiia Sadetskaia
- Department of Chemistry and iNANOAarhus University14 Gustav Wieds Vej8000AarhusDenmark
| | - Manfred C. Burghammer
- European Synchrotron Radiation Facility (ESRF)Avenue des Martyrs 71Grenoble38000France
| | | |
Collapse
|
6
|
Motta AM, Mariani P, Itri R, Spinozzi F. Self-assembling properties of mono and di-rhamnolipids characterized using small-angle X-ray scattering. Colloids Surf B Biointerfaces 2024; 241:114038. [PMID: 38905813 DOI: 10.1016/j.colsurfb.2024.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Rhamnolipids are glycolipid surfactants composed by a hydrophilic head of either one (mono-RL) or two (di-RL) rhamnose moieties coupled to hydroxyaliphatic chains that can be of different lengths. In spite of their importance in different fields of applications, as bioremediation processes for instance, self-aggregation physico-chemical properties of RLs are not unique. This because a variety of aggregates morphologies (shape and size) can either exist or coexist in aqueous dispersion due to mono-RL:di-RL molar ratio, hydrophobic tails length, pH and the presence of co-surfactants and additives. Recently, a theorethical approach reported the self-assembling morphologies of either pure mono or di-RL in aqueous environment, predicting the formation of spherical to ellipsoidal micelles to worm-like and disk-like aggregates depending on RL concentration and fatty acid chain length. In order to add new information to those previously available, the present work investigated the self-assembling properties of mono-RL-C10-C10 and di-RL-C10-C10 separately in aqueous dispersion by small angle X-Ray scattering (SAXS). A novel approach was applied to the data analysis coupling the scattering length density profiles of the RLs chemical groups and Monte Carlo simulations. Such an approach allowed us to infer about the preferred mono-RL and di-RL conformations that fit better in the self-assembling morphologies. In this way, we show that mono-RL-C10-C10 self-assembles into lamella-like aggregates coexisting with 30 % of multi-lamella aggregates (circa of 5 closed stacked lamella) from a concentration ranging from 10 to 50 mM, with hydrophobic thickness of about 12 Å, a hydrated polar head thickness of 10 Å, and an area per glycolipid of 76 Å2. On the other hand, di-RL prefers to self-associate into flexible cylinder-like aggregates, from 70 mM to 110 mM concentration, with hydrophobic radius on the order of 7.5 Å, a hydrated polar shell of 21.5 Å, with hydropobic/polar interface of 110 Å2 per glycolipid. Interestingly, the parameters obtained from the best fitting to the experimental data associated to the volume fraction distribution of the chemical groups within the aggregates revealed that the hydrophobic chains are more disordered in mono-RL planar aggregates than in di-RL worm-like aggregates, as well as the hydration properties. Further, the addition of 100 mM NaCl in di-RL aqueous dispersion leads to the formation of longer worm-like aggregates. Taking together, this work opens a new avenue regarding characterization of biosurfactants self-assembling properties by using SAXS, also contributing to prepare more efficient biosurfactant dispersions depending on the desired applications in industrial sectors and bioremediation.
Collapse
Affiliation(s)
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.
| | - Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Italy.
| |
Collapse
|
7
|
Tinajero-Díaz E, Judge N, Li B, Leigh T, Murphy RD, Topham PD, Derry MJ, Heise A. Poly(l-proline)-Stabilized Polypeptide Nanostructures via Ring-Opening Polymerization-Induced Self-Assembly (ROPISA). ACS Macro Lett 2024; 13:1031-1036. [PMID: 39074359 PMCID: PMC11340022 DOI: 10.1021/acsmacrolett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Poly(proline) II helical motifs located at the protein-water interface stabilize the three-dimensional structures of natural proteins. Reported here is the first example of synthetic biomimetic poly(proline)-stabilized polypeptide nanostructures obtained by a straightforward ring-opening polymerization-induced self-assembly (ROPISA) process through consecutive N-carboxyanhydride (NCA) polymerization. It was found that the use of multifunctional 8-arm initiators is critical for the formation of nanoparticles. Worm-like micelles as well as spherical morphologies were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS). The loading of the nanostructures with dyes is demonstrated. This fast and open-vessel procedure gives access to amino acids-based nanomaterials with potential for applications in nanomedicine.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Nicola Judge
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Bo Li
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Thomas Leigh
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Robert D. Murphy
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Paul D. Topham
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Matthew J. Derry
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Andreas Heise
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
- Science
Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
- AMBER, The
SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| |
Collapse
|
8
|
Parkinson SJ, Fielden SDP, Thomas M, Miller AJ, Topham PD, Derry MJ, O’Reilly RK. Harnessing Cytosine for Tunable Nanoparticle Self-Assembly Behavior Using Orthogonal Stimuli. Biomacromolecules 2024; 25:4905-4912. [PMID: 39008804 PMCID: PMC11323014 DOI: 10.1021/acs.biomac.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Nucleobases control the assembly of DNA, RNA, etc. due to hydrogen bond complementarity. By combining these unique molecules with state-of-the-art synthetic polymers, it is possible to form nanoparticles whose self-assembly behavior could be altered under orthogonal stimuli (pH and temperature). Herein, we report the synthesis of cytosine-containing nanoparticles via aqueous reversible addition-fragmentation chain transfer polymerization-induced self-assembly. A poly(N-acryloylmorpholine) macromolecular chain transfer agent (mCTA) was chain-extended with cytosine acrylamide, and a morphological phase diagram was constructed. By exploiting the ability of cytosine to form dimers via hydrogen bonding, the self-assembly behavior of cytosine-containing polymers was altered when performed under acidic conditions. Under these conditions, stable nanoparticles could be formed at longer polymer chain lengths. Furthermore, the resulting nanoparticles displayed different morphologies compared to those at pH 7. Additionally, particle stability post-assembly could be controlled by varying pH and temperature. Finally, small-angle X-ray scattering was performed to probe their dynamic behavior under thermal cycling.
Collapse
Affiliation(s)
- Sam J. Parkinson
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Stephen D. P. Fielden
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Marjolaine Thomas
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Alisha J. Miller
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Paul D. Topham
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United
Kingdom
| | - Matthew J. Derry
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| |
Collapse
|
9
|
Iskhakova K, Wieland DCF, Marek R, Schwarze UY, Davydok A, Cwieka H, AlBaraghtheh T, Reimers J, Hindenlang B, Sefa S, Lopes Marinho A, Willumeit-Römer R, Zeller-Plumhoff B. Sheep Bone Ultrastructure Analyses Reveal Differences in Bone Maturation around Mg-Based and Ti Implants. J Funct Biomater 2024; 15:192. [PMID: 39057313 PMCID: PMC11278010 DOI: 10.3390/jfb15070192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Magnesium alloys are some of the most convenient biodegradable materials for bone fracture treatment due to their tailorable degradation rate, biocompatibility, and mechanical properties resembling those of bone. Despite the fact that magnesium-based implants and ZX00 (Mg-0.45Zn-0.45Ca in wt.%), in particular, have been shown to have suitable degradation rates and good osseointegration, knowledge gaps remain in our understanding of the impact of their degradation properties on the bone's ultrastructure. Bone is a hierarchically structured material, where not only the microstructure but also the ultrastructure are important as properties like the local mechanical response are determined by it. This study presents the first comparative analysis of bone ultrastructure parameters with high spatial resolution around ZX00 and Ti implants after 6, 12, and 24 weeks of healing. The mineralization was investigated, revealing a significant decrease in the lattice spacing of the (002) Bragg's peak closer to the ZX00 implant in comparison to Ti, while no significant difference in the crystallite size was observed. The hydroxyapatite platelet thickness and osteon density demonstrated a decrease closer to the ZX00 implant interface. Correlative indentation and strain maps obtained by scanning X-ray diffraction measurements revealed a higher stiffness and faster mechanical adaptation of the bone surrounding Ti implants as compared to the ZX00 ones. Thus, the results suggest the incorporation of Mg2+ ions into the bone ultrastructure, as well as a lower degree of remodeling and stiffness of the bone in the presence of ZX00 implants than Ti.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - D. C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Romy Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
| | - Uwe Y. Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (R.M.); (U.Y.S.)
- Department of Dental Medicine and Oral Health, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Anton Davydok
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Tamadur AlBaraghtheh
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Jan Reimers
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Birte Hindenlang
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - André Lopes Marinho
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthach, Germany; (H.C.); (T.A.); (J.R.); (B.H.); (S.S.); (A.L.M.); (R.W.-R.); (B.Z.-P.)
| |
Collapse
|
10
|
Bianco S, Hasan M, Ahmad A, Richards SJ, Dietrich B, Wallace M, Tang Q, Smith AJ, Gibson MI, Adams DJ. Mechanical release of homogenous proteins from supramolecular gels. Nature 2024; 631:544-548. [PMID: 39020036 PMCID: PMC11254749 DOI: 10.1038/s41586-024-07580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/17/2024] [Indexed: 07/19/2024]
Abstract
A long-standing challenge is how to formulate proteins and vaccines to retain function during storage and transport and to remove the burdens of cold-chain management. Any solution must be practical to use, with the protein being released or applied using clinically relevant triggers. Advanced biologic therapies are distributed cold, using substantial energy, limiting equitable distribution in low-resource countries and placing responsibility on the user for correct storage and handling. Cold-chain management is the best solution at present for protein transport but requires substantial infrastructure and energy. For example, in research laboratories, a single freezer at -80 °C consumes as much energy per day as a small household1. Of biological (protein or cell) therapies and all vaccines, 75% require cold-chain management; the cost of cold-chain management in clinical trials has increased by about 20% since 2015, reflecting this complexity. Bespoke formulations and excipients are now required, with trehalose2, sucrose or polymers3 widely used, which stabilize proteins by replacing surface water molecules and thereby make denaturation thermodynamically less likely; this has enabled both freeze-dried proteins and frozen proteins. For example, the human papilloma virus vaccine requires aluminium salt adjuvants to function, but these render it unstable against freeze-thaw4, leading to a very complex and expensive supply chain. Other ideas involve ensilication5 and chemical modification of proteins6. In short, protein stabilization is a challenge with no universal solution7,8. Here we designed a stiff hydrogel that stabilizes proteins against thermal denaturation even at 50 °C, and that can, unlike present technologies, deliver pure, excipient-free protein by mechanically releasing it from a syringe. Macromolecules can be loaded at up to 10 wt% without affecting the mechanism of release. This unique stabilization and excipient-free release synergy offers a practical, scalable and versatile solution to enable the low-cost, cold-chain-free and equitable delivery of therapies worldwide.
Collapse
Affiliation(s)
- Simona Bianco
- Department of Chemistry, University of Glasgow, Glasgow, UK
| | - Muhammad Hasan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ashfaq Ahmad
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Coventry, UK
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Bart Dietrich
- Department of Chemistry, University of Glasgow, Glasgow, UK
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Qiao Tang
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Andrew J Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Matthew I Gibson
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Dave J Adams
- Department of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
11
|
Dong S, Chapman SL, Pluen A, Richardson SM, Miller AF, Saiani A. Effect of Peptide-Polymer Host-Guest Electrostatic Interactions on Self-Assembling Peptide Hydrogels Structural and Mechanical Properties and Polymer Diffusivity. Biomacromolecules 2024; 25:3628-3641. [PMID: 38771115 PMCID: PMC11170954 DOI: 10.1021/acs.biomac.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Peptide-based supramolecular hydrogels are an attractive class of soft materials for biomedical applications when biocompatibility is a key requirement as they exploit the physical self-assembly of short self-assembling peptides avoiding the need for chemical cross-linking. Based on the knowledge developed through our previous work, we designed two novel peptides, E(FKFE)2 and K(FEFK)2, that form transparent hydrogels at pH 7. We characterized the phase behavior of these peptides and showed the clear link that exists between the charge carried by the peptides and the physical state of the samples. We subsequently demonstrate the cytocompatibility of the hydrogel and its suitability for 3D cell culture using 3T3 fibroblasts and human mesenchymal stem cells. We then loaded the hydrogels with two polymers, poly-l-lysine and dextran. When polymer and peptide fibers carry opposite charges, the size of the elemental fibril formed decreases, while the overall level of fiber aggregation and fiber bundle formation increases. This overall network topology change, and increase in cross-link stability and density, leads to an overall increase in the hydrogel mechanical properties and stability, i.e., resistance to swelling when placed in excess media. Finally, we investigate the diffusion of the polymers out of the hydrogels and show how electrostatic interactions can be used to control the release of large molecules. The work clearly shows how polymers can be used to tailor the properties of peptide hydrogels through guided intermolecular interactions and demonstrates the potential of these new soft hydrogels for use in the biomedical field in particular for delivery or large molecular payloads and cells as well as scaffolds for 3D cell culture.
Collapse
Affiliation(s)
- Siyuan Dong
- Department
of Chemical Engineering, School of Engineering, Faculty of Science
and Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology (MIB), Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Sam L. Chapman
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Alain Pluen
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Stephen M. Richardson
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, The University of
Manchester, Manchester M13 9PT, U.K.
| | - Aline F. Miller
- Department
of Chemical Engineering, School of Engineering, Faculty of Science
and Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology (MIB), Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Alberto Saiani
- Manchester
Institute of Biotechnology (MIB), Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| |
Collapse
|
12
|
Valério A, Trindade FJ, Penacchio RFS, Cisi B, Damasceno S, Estradiote MB, Rodella CB, Ferlauto AS, Kycia SW, Morelhão SL. Implications of size dispersion on X-ray scattering of crystalline nanoparticles: CeO 2 as a case study. J Appl Crystallogr 2024; 57:793-807. [PMID: 38846767 PMCID: PMC11151675 DOI: 10.1107/s1600576724003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/10/2024] [Indexed: 06/09/2024] Open
Abstract
Controlling the shape and size dispersivity and crystallinity of nanoparticles (NPs) has been a challenge in identifying these parameters' role in the physical and chemical properties of NPs. The need for reliable quantitative tools for analyzing the dispersivity and crystallinity of NPs is a considerable problem in optimizing scalable synthesis routes capable of controlling NP properties. The most common tools are electron microscopy (EM) and X-ray scattering techniques. However, each technique has different susceptibility to these parameters, implying that more than one technique is necessary to characterize NP systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is mandatory to access information on crystallinity. In contrast, EM or small-angle X-ray scattering (SAXS) is required to access information on whole NP sizes. EM provides average values on relatively small ensembles in contrast to the bulk values accessed by X-ray techniques. Besides the fact that the SAXS and WAXS techniques have different susceptibilities to size distributions, SAXS is easily affected by NP-NP interaction distances. Because of all the variables involved, there have yet to be proposed methodologies for cross-analyzing data from two techniques that can provide reliable quantitative results of dispersivity and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed for simultaneously quantifying size distribution and degree of crystallinity of NPs. The most reliable easy-to-access size result for each technique is demonstrated by computer simulation. Strategies on how to compare these results and how to identify NP-NP interaction effects underneath the SAXS intensity curve are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS size results from two analytical procedures are compared, line-profile fitting of individual diffraction peaks in opposition to whole pattern fitting. The impact of shape dispersivity is also evaluated. Extension of the proposed methodology for cross-analyzing EM and WAXS data is possible.
Collapse
Affiliation(s)
- Adriana Valério
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Fabiane J. Trindade
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | | | - Bria Cisi
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Sérgio Damasceno
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | | | - Cristiane B. Rodella
- Brazilian Synchrotron Light Laboratory – SIRIUS/CNPEM, Campinas, São Paulo, Brazil
| | - Andre S. Ferlauto
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Stefan W. Kycia
- Department of Physics, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
13
|
Milsom A, Squires AM, Macklin J, Wady P, Pfrang C. Acoustic levitation combined with laboratory-based small-angle X-ray scattering (SAXS) to probe changes in crystallinity and molecular organisation. RSC Adv 2024; 14:17519-17525. [PMID: 38818358 PMCID: PMC11138859 DOI: 10.1039/d4ra01418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Single particle levitation techniques allow us to probe samples in a contactless way, negating the effect that surfaces could have on processes such as crystallisation and phase transitions. Small-angle X-ray scattering (SAXS) is a common method characterising the nanoscale order in aggregates such as colloidal, crystalline and liquid crystalline systems. Here, we present a laboratory-based small-angle X-ray scattering (SAXS) setup combined with acoustic levitation. The capability of this technique is highlighted and compared with synchrotron-based levitation-SAXS and X-ray diffraction. We were able to follow the deliquescence and crystallisation of sucrose, a commonly used compound for the study of viscous atmospheric aerosols. The observed increased rate of the deliquescence-crystallisation transitions on repeated cycling could suggest the formation of a glassy sucrose phase. We also followed a reversible phase transition in an oleic acid-based lyotropic liquid crystal system under controlled humidity changes. Our results demonstrate that the coupling of acoustic levitation with an offline SAXS instrument is feasible, and that the time resolution and data quality are sufficient to draw physically meaningful conclusions. There is a wide range of potential applications including topics such as atmospheric aerosol chemistry, materials science, crystallisation and aerosol spray drying.
Collapse
Affiliation(s)
- Adam Milsom
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston B15 2TT Birmingham UK
| | - Adam M Squires
- Department of Chemistry, University of Bath South Building, Soldier Down Ln, Claverton Down BA2 7AX Bath UK
| | - Jack Macklin
- Department of Chemistry, University of Bath South Building, Soldier Down Ln, Claverton Down BA2 7AX Bath UK
| | - Paul Wady
- Diamond Light Source, Diamond House Harwell Science and Innovation Campus OX11 0DE Didcot UK
| | - Christian Pfrang
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston B15 2TT Birmingham UK
- Department of Meteorology, University of Reading Whiteknights, Earley Gate RG6 6BB Reading UK
| |
Collapse
|
14
|
Chen Z, Perez JPH, Smales GJ, Blukis R, Pauw BR, Stammeier JA, Radnik J, Smith AJ, Benning LG. Impact of organic phosphates on the structure and composition of short-range ordered iron nanophases. NANOSCALE ADVANCES 2024; 6:2656-2668. [PMID: 38752136 PMCID: PMC11093260 DOI: 10.1039/d3na01045g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY. Here, we document how β-glycerophosphate (GP), a model OP ligand, affects the structure and properties of GP-FHY nanoparticles synthesized by coprecipitation at variable nominal molar P/Fe ratios (0.01 to 0.5). All GP-FHY precipitates were characterized by a maximum solid P/Fe ratio of 0.22, irrespective of the nominal P/Fe ratio. With increasing nominal P/Fe ratio, the specific surface area of the GP-FHY precipitates decreased sharply from 290 to 3 m2 g-1, accompanied by the collapse of their pore structure. The Fe-P local bonding environment gradually transitioned from a bidentate binuclear geometry at low P/Fe ratios to monodentate mononuclear geometry at high P/Fe ratios. This transition was accompanied by a decrease in coordination number of edge-sharing Fe polyhedra, and the loss of the corner-sharing Fe polyhedra. We show that Fe(iii) polymerization is impeded by GP, and that the GP-FHY structure is highly dependent on the P/Fe ratio. We discuss the role that natural OP-bearing Fe(iii) nanophases have in biogeochemical reactions between Fe-P and C species in aquatic systems.
Collapse
Affiliation(s)
- Zhengzheng Chen
- GFZ German Research Center for Geosciences Telegrafenberg 14473 Potsdam Germany
- Department of Earth Sciences, Freie Universität Berlin Malteserstraße 74-100 12249 Berlin Germany
| | | | - Glen J Smales
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany
| | - Roberts Blukis
- GFZ German Research Center for Geosciences Telegrafenberg 14473 Potsdam Germany
| | - Brian R Pauw
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany
| | - Jessica A Stammeier
- GFZ German Research Center for Geosciences Telegrafenberg 14473 Potsdam Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und-prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany
| | - Andrew J Smith
- Diamond Light Source Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Liane G Benning
- GFZ German Research Center for Geosciences Telegrafenberg 14473 Potsdam Germany
- Department of Earth Sciences, Freie Universität Berlin Malteserstraße 74-100 12249 Berlin Germany
| |
Collapse
|
15
|
Nygård K, McDonald SA, González JB, Haghighat V, Appel C, Larsson E, Ghanbari R, Viljanen M, Silva J, Malki S, Li Y, Silva V, Weninger C, Engelmann F, Jeppsson T, Felcsuti G, Rosén T, Gordeyeva K, Söderberg L, Dierks H, Zhang Y, Yao Z, Yang R, Asimakopoulou EM, Rogalinski J, Wallentin J, Villanueva-Perez P, Krüger R, Dreier T, Bech M, Liebi M, Bek M, Kádár R, Terry AE, Tarawneh H, Ilinski P, Malmqvist J, Cerenius Y. ForMAX - a beamline for multiscale and multimodal structural characterization of hierarchical materials. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:363-377. [PMID: 38386565 PMCID: PMC10914163 DOI: 10.1107/s1600577524001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.
Collapse
Affiliation(s)
- K. Nygård
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | - V. Haghighat
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - C. Appel
- MAX IV Laboratory, Lund University, Lund, Sweden
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - E. Larsson
- MAX IV Laboratory, Lund University, Lund, Sweden
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - R. Ghanbari
- MAX IV Laboratory, Lund University, Lund, Sweden
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
| | - M. Viljanen
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - J. Silva
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - S. Malki
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Y. Li
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - V. Silva
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - C. Weninger
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - F. Engelmann
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - T. Jeppsson
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - G. Felcsuti
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - T. Rosén
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Center (WWSC), Royal Institute of Technology, Stockholm, Sweden
| | - K. Gordeyeva
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - L. D. Söderberg
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Center (WWSC), Royal Institute of Technology, Stockholm, Sweden
| | - H. Dierks
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | - Y. Zhang
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | - Z. Yao
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | - R. Yang
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | | | | | - J. Wallentin
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | | | - R. Krüger
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - T. Dreier
- Medical Radiation Physics, Lund University, Lund, Sweden
- Excillum AB, Kista, Sweden
| | - M. Bech
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - M. Liebi
- Paul Scherrer Institut, Villigen PSI, Switzerland
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - M. Bek
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
- FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - R. Kádár
- MAX IV Laboratory, Lund University, Lund, Sweden
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
- FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg, Sweden
| | - A. E. Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - H. Tarawneh
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - P. Ilinski
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - J. Malmqvist
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Y. Cerenius
- MAX IV Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Liao G, Derry MJ, Smith AJ, Armes SP, Mykhaylyk OO. Determination of Reaction Kinetics by Time-Resolved Small-Angle X-ray Scattering during Polymerization-Induced Self-Assembly: Direct Evidence for Monomer-Swollen Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202312119. [PMID: 37996999 PMCID: PMC10952692 DOI: 10.1002/anie.202312119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The kinetics of heterogeneous polymerization is determined directly using small-angle X-ray scattering (SAXS). This important advancement is exemplified for the synthesis of sterically-stabilized diblock copolymer nanoparticles by reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) in mineral oil at 90 °C. The principle of mass balance is invoked to derive a series of equations for the analysis of the resulting time-resolved SAXS patterns. Importantly, there is a continuous change in the X-ray scattering length density for the various components within the reaction mixture. This enables the volume fraction of unreacted BzMA monomer to be calculated at any given time point, which enables the polymerization kinetics to be monitored in situ directly without relying on supplementary characterization techniques. Moreover, SAXS enables the local concentration of both monomer and solvent within the growing swollen nanoparticles to be determined during the polymerization. Data analysis reveals that the instantaneous rate of BzMA polymerization is proportional to the local monomer concentration within the nanoparticles. In principle, this powerful new time-resolved SAXS approach can be applicable to other heterogeneous polymerization formulations.
Collapse
Affiliation(s)
- Guoxing Liao
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Emergent Soft MatterGuangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and DevicesSouth China University of TechnologyGuangzhou510640China
| | - Matthew J. Derry
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
- Aston Advanced Materials Research CentreAston UniversityAston TriangleBirminghamB4 7ETUK
| | - Andrew J. Smith
- Beamline I22Diamond Light Source LtdDiamond HouseDidcotOX11 0DEUK
| | - Steven P. Armes
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | | |
Collapse
|
17
|
Kortsen K, Reynolds-Green M, Hopkins B, McLellan A, Derry MJ, Topham PD, Titman JJ, Keddie DJ, Taresco V, Howdle SM. Synthesis of core-shell polymer particles in supercritical carbon dioxide via iterative monomer addition. Chem Commun (Camb) 2023; 59:14536-14539. [PMID: 37986574 DOI: 10.1039/d3cc04969h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A new, robust methodology for the synthesis of polystyrene-poly(methyl methacrylate) (PS-PMMA) core-shell particles using seeded dispersion polymerisation in supercritical carbon dioxide is reported, where the core-shell ratio can be controlled predictably via manipulation of reagent stoichiometry. The key development is the application of an iterative addition of the MMA shell monomer to the pre-prepared PS core. Analysis of the materials with differing core-shell ratios indicates that all are isolated as single particle populations with distinct and controllable core-shell morphologies.
Collapse
Affiliation(s)
- Kristoffer Kortsen
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Morgan Reynolds-Green
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Bradley Hopkins
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alison McLellan
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Matthew J Derry
- Aston Advanced Materials Research Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Paul D Topham
- Aston Advanced Materials Research Centre, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jeremy J Titman
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Daniel J Keddie
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
18
|
Lerebours A, Regini J, Quinlan RA, Wada T, Pierscionek B, Devonshire M, Kalligeraki AA, Uwineza A, Young L, Girkin JM, Warwick P, Smith K, Hoshino M, Uesugi K, Yagi N, Terrill N, Shebanova O, Snow T, Smith JT. Evaluation of cataract formation in fish exposed to environmental radiation at Chernobyl and Fukushima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165957. [PMID: 37543314 DOI: 10.1016/j.scitotenv.2023.165957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom; School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Justyn Regini
- School of Optometry and Vision Sciences, University of Cardiff, Cardiff CA10 3AT, United Kingdom
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Japan
| | - Barbara Pierscionek
- Medical Technology Research Centre, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, United Kingdom
| | - Martin Devonshire
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Alexia A Kalligeraki
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Alice Uwineza
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Laura Young
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - John M Girkin
- Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Phil Warwick
- GAU-Radioanalytical, University of Southampton, NOCS, European way, SO14 6HT Southampton,United Kingdom
| | - Kurt Smith
- Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Nick Terrill
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Olga Shebanova
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Tim Snow
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom.
| |
Collapse
|
19
|
Milsom A, Squires AM, Ward AD, Pfrang C. Molecular Self-Organization in Surfactant Atmospheric Aerosol Proxies. Acc Chem Res 2023; 56:2555-2568. [PMID: 37688543 PMCID: PMC10552546 DOI: 10.1021/acs.accounts.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 09/11/2023]
Abstract
ConspectusAerosols are ubiquitous in the atmosphere. Outdoors, they take part in the climate system via cloud droplet formation, and they contribute to indoor and outdoor air pollution, impacting human health and man-made environmental change. In the indoor environment, aerosols are formed by common activities such as cooking and cleaning. People can spend up to ca. 90% of their time indoors, especially in the western world. Therefore, there is a need to understand how indoor aerosols are processed in addition to outdoor aerosols.Surfactants make significant contributions to aerosol emissions, with sources ranging from cooking to sea spray. These molecules alter the cloud droplet formation potential by changing the surface tension of aqueous droplets and thus increasing their ability to grow. They can also coat solid surfaces such as windows ("window grime") and dust particles. Such surface films are more important indoors due to the higher surface-to-volume ratio compared to the outdoor environment, increasing the likelihood of surface film-pollutant interactions.A common cooking and marine emission, oleic acid, is known to self-organize into a range of 3-D nanostructures. These nanostructures are highly viscous and as such can impact the kinetics of aerosol and film aging (i.e., water uptake and oxidation). There is still a discrepancy between the longer atmospheric lifetime of oleic acid compared with laboratory experiment-based predictions.We have created a body of experimental and modeling work focusing on the novel proposition of surfactant self-organization in the atmosphere. Self-organized proxies were studied as nanometer-to-micrometer films, levitated droplets, and bulk mixtures. This access to a wide range of geometries and scales has resulted in the following main conclusions: (i) an atmospherically abundant surfactant can self-organize into a range of viscous nanostructures in the presence of other compounds commonly encountered in atmospheric aerosols; (ii) surfactant self-organization significantly reduces the reactivity of the organic phase, increasing the chemical lifetime of these surfactant molecules and other particle constituents; (iii) while self-assembly was found over a wide range of conditions and compositions, the specific, observed nanostructure is highly sensitive to mixture composition; and (iv) a "crust" of product material forms on the surface of reacting particles and films, limiting the diffusion of reactive gases to the particle or film bulk and subsequent reactivity. These findings suggest that hazardous, reactive materials may be protected in aerosol matrixes underneath a highly viscous shell, thus extending the atmospheric residence times of otherwise short-lived species.
Collapse
Affiliation(s)
- Adam Milsom
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Adam M. Squires
- Department
of Chemistry, University of Bath, South Building, Soldier Down Ln,
Claverton Down, Bath BA2
7AY, U.K.
| | - Andrew D. Ward
- STFC
Rutherford Appleton Laboratory, Central
Laser Facility, Didcot OX11 0FA, U.K.
| | - Christian Pfrang
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Meteorology, University of Reading, Whiteknights, Earley Gate, Reading RG6 6UR, U.K.
| |
Collapse
|
20
|
Tants JN, Schlundt A. Advances, Applications, and Perspectives in Small-Angle X-ray Scattering of RNA. Chembiochem 2023; 24:e202300110. [PMID: 37466350 DOI: 10.1002/cbic.202300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Indexed: 07/20/2023]
Abstract
RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms. Owing to the inherent dynamics, size, and instability of RNA, its structure determination remains challenging. Methods such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy can provide high-resolution structures; however, their limitations make structure determination, even for small RNAs, cumbersome, if at all possible. Although at a low resolution, small-angle X-ray scattering (SAXS) has proven valuable in advancing structure determination of RNAs as a complementary method, which is also applicable to large-sized RNAs. Here, we review the technological and methodological advancements of RNA SAXS. We provide examples of the powerful inclusion of SAXS in structural biology and discuss possible future applications to large RNAs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
21
|
Houghton C, Bloomer C, Bobb L. A direct experimental comparison of single-crystal CVD diamond and silicon carbide X-ray beam position monitors. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:876-884. [PMID: 37462689 PMCID: PMC10481272 DOI: 10.1107/s1600577523005623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/26/2023] [Indexed: 09/07/2023]
Abstract
Single-crystal chemical vapour deposition (CVD) diamond detectors are an established transmissive synchrotron beamline diagnostic instrument used for beam position and beam intensity monitoring. A recently commercialized alternative is silicon carbide (4H-SiC) devices. These have the potential to provide the same diagnostic information as commercially available single-crystal CVD diamond X-ray beam position monitors, but with a much larger transmissive aperture. At Diamond Light Source an experimental comparison of the performance of single-crystal CVD diamond and 4H-SiC X-ray beam position monitors has been carried out. A quantitative comparison of their performance is presented in this paper. The single-crystal diamond and 4H-SiC beam position monitors were installed in-line along the synchrotron X-ray beam path enabling synchronous measurements at kilohertz rates of the beam motion from both devices. The results of several tests of the two position monitors' performance are presented: comparing signal uniformity across the surface of the detectors, comparing kHz intensity measurements, and comparing kHz beam position measurements from the detectors. Each test is performed with a range of applied external bias voltages. A discussion of the benefits and limitations of 4H-SiC and single-crystal CVD diamond detectors is included.
Collapse
Affiliation(s)
- C. Houghton
- Diamond Light Source Ltd, Diamond House Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, United Kingdom
| | - C. Bloomer
- Diamond Light Source Ltd, Diamond House Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, United Kingdom
| | - L. Bobb
- Diamond Light Source Ltd, Diamond House Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
22
|
Paez-Perez M, Dent MR, Brooks NJ, Kuimova MK. Viscosity-Sensitive Membrane Dyes as Tools To Estimate the Crystalline Structure of Lipid Bilayers. Anal Chem 2023; 95:12006-12014. [PMID: 37526607 PMCID: PMC10433245 DOI: 10.1021/acs.analchem.3c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Lipid membranes are crucial for cellular integrity and regulation, and tight control of their structural and mechanical properties is vital to ensure that they function properly. Fluorescent probes sensitive to the membrane's microenvironment are useful for investigating lipid membrane properties; however, there is currently a lack of quantitative correlation between the exact parameters of lipid organization and a readout from these dyes. Here, we investigate this relationship for "molecular rotors", or microviscosity sensors, by simultaneously measuring their fluorescence lifetime to determine the membrane viscosity, while using X-ray diffraction to determine the membrane's structural properties. Our results reveal a phase-dependent correlation between the membrane's structural parameters and mechanical properties measured by a BODIPY-based molecular rotor, giving excellent predictive power for the structural descriptors of the lipid bilayer. We also demonstrate that differences in membrane thickness between different lipid phases are not a prerequisite for the formation of lipid microdomains and that this requirement can be disrupted by the presence of line-active molecules. Our results underpin the use of membrane-sensitive dyes as reporters of the structure of lipid membranes.
Collapse
Affiliation(s)
- Miguel Paez-Perez
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Michael R. Dent
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Nicholas J. Brooks
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| | - Marina K. Kuimova
- MSRH, Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
23
|
Stavri R, Tay T, Wiles CC, Di Federico E, Boughton O, Ma S, Karunaratne A, Churchwell JH, Bhattacharya R, Terrill NJ, Cobb JP, Hansen U, Abel RL. A Cross-Sectional Study of Bone Nanomechanics in Hip Fracture and Aging. Life (Basel) 2023; 13:1378. [PMID: 37374160 DOI: 10.3390/life13061378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Bone mechanics is well understood at every length scale except the nano-level. We aimed to investigate the relationship between bone nanoscale and tissue-level mechanics experimentally. We tested two hypotheses: (1) nanoscale strains were lower in hip fracture patients versus controls, and (2) nanoscale mineral and fibril strains were inversely correlated with aging and fracture. A cross-sectional sample of trabecular bone sections was prepared from the proximal femora of two human donor groups (aged 44-94 years): an aging non-fracture control group (n = 17) and a hip-fracture group (n = 20). Tissue, fibril, and mineral strain were measured simultaneously using synchrotron X-ray diffraction during tensile load to failure, then compared between groups using unpaired t-tests and correlated with age using Pearson's correlation. Controls exhibited significantly greater peak tissue, mineral, and fibril strains than the hip fracture (all p < 0.05). Age was associated with a decrease in peak tissue (p = 0.099) and mineral (p = 0.004) strain, but not fibril strain (p = 0.260). Overall, hip fracture and aging were associated with changes in the nanoscale strain that are reflected at the tissue level. Data must be interpreted within the limitations of the observational cross-sectional study design, so we propose two new hypotheses on the importance of nanomechanics. (1) Hip fracture risk is increased by low tissue strain, which can be caused by low collagen or mineral strain. (2) Age-related loss of tissue strain is dependent on the loss of mineral but not fibril strain. Novel insights into bone nano- and tissue-level mechanics could provide a platform for the development of bone health diagnostics and interventions based on failure mechanisms from the nanoscale up.
Collapse
Affiliation(s)
- Richard Stavri
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W6 8PR, UK
| | - Tabitha Tay
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W6 8PR, UK
| | - Crispin C Wiles
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Erica Di Federico
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Oliver Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W6 8PR, UK
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - John H Churchwell
- Department of Medical Physics and Biomedical Engineering, University College London, London WCIE 6BT, UK
| | - Rajarshi Bhattacharya
- St. Mary's Hospital, Northwest London Major Trauma Centre, Imperial College London, London W2 1NY, UK
| | - Nicholas J Terrill
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Justin P Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W6 8PR, UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - Richard L Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W6 8PR, UK
| |
Collapse
|
24
|
Seneviratne R, Coates G, Xu Z, Cornell CE, Thompson RF, Sadeghpour A, Maskell DP, Jeuken LJC, Rappolt M, Beales PA. High Resolution Membrane Structures within Hybrid Lipid-Polymer Vesicles Revealed by Combining X-Ray Scattering and Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206267. [PMID: 36866488 DOI: 10.1002/smll.202206267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.
Collapse
Affiliation(s)
- Rashmi Seneviratne
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Georgina Coates
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Zexi Xu
- School of Food Science and Nutrition, School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Caitlin E Cornell
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Rebecca F Thompson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, Leiden, 2300 RA, Netherlands
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
25
|
Allen AJ. Selected advances in small-angle scattering and applications they serve in manufacturing, energy and climate change. J Appl Crystallogr 2023; 56:787-800. [PMID: 37284276 PMCID: PMC10241057 DOI: 10.1107/s1600576723003898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Innovations in small-angle X-ray and neutron scattering (SAXS and SANS) at major X-ray and neutron facilities offer new characterization tools for researching materials phenomena relevant to advanced applications. For SAXS, the new generation of diffraction-limited storage rings, incorporating multi-bend achromat concepts, dramatically decrease electron beam emittance and significantly increase X-ray brilliance over previous third-generation sources. This results in intense X-ray incident beams that are more compact in the horizontal plane, allowing significantly improved spatial resolution, better time resolution, and a new era for coherent-beam SAXS methods such as X-ray photon correlation spectroscopy. Elsewhere, X-ray free-electron laser sources provide extremely bright, fully coherent, X-ray pulses of <100 fs and can support SAXS studies of material processes where entire SAXS data sets are collected in a single pulse train. Meanwhile, SANS at both steady-state reactor and pulsed spallation neutron sources has significantly evolved. Developments in neutron optics and multiple detector carriages now enable data collection in a few minutes for materials characterization over nanometre-to-micrometre scale ranges, opening up real-time studies of multi-scale materials phenomena. SANS at pulsed neutron sources is becoming more integrated with neutron diffraction methods for simultaneous structure characterization of complex materials. In this paper, selected developments are highlighted and some recent state-of-the-art studies discussed, relevant to hard matter applications in advanced manufacturing, energy and climate change.
Collapse
Affiliation(s)
- Andrew J. Allen
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
26
|
Yuan Y, Shi Y, Banerjee J, Sadeghpour A, Azevedo HS. Structuring supramolecular hyaluronan hydrogels via peptide self-assembly for modulating the cell microenvironment. Mater Today Bio 2023; 19:100598. [PMID: 36942310 PMCID: PMC10024175 DOI: 10.1016/j.mtbio.2023.100598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The use of synthetic extracellular matrices (ECMs) in fundamental in vitro cell culture studies has been instrumental for investigating the interplay between cells and matrix components. To provide cells with a more native environment in vitro, it is desirable to design matrices that are biomimetic and emulate compositional and structural features of natural ECMs. Here, the supramolecular fabrication of peptide-hyaluronan (HA) hydrogels is presented as potential ECM surrogates, combining native HA and rationally designed cationic amphipatic peptides [(KI)nK, lysine (K), isoleucine (I), n = 2-6] whose mechanical properties and microstructure are tunable by the peptide sequence. (KI)nK peptides adopt β-sheet configuration and self-assemble into filamentous nanostructures triggered by pH or ionic strength. The self-assembly propensity of (KI)nK peptides increases with the sequence length, forming single phase hydrogels (shorter peptides) or with phase separation (longer peptides) in presence of the anionic polyelectrolyte HA through electrostatic complexations. The gel phase formed in (KI)nK-HA complexes exhibits viscoelastic behavior and triggers the formation of human mesenchymal stem cell (MSC) spheroids which disassemble over the time. It is anticipated that these (KI)nK-HA hydrogels with tunable physical and biochemical properties offer a promising platform for in vitro applications and in stem cell therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- Zhejiang Lab, Hangzhou, 311121, Zhejiang, PR China
| | - Yejiao Shi
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Jayati Banerjee
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Helena S. Azevedo
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary University of London, London, E1 4NS, UK
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-180, Porto, Portugal
| |
Collapse
|
27
|
Fielden SDP, Derry MJ, Miller A, Topham PD, O’Reilly RK. Triggered Polymersome Fusion. J Am Chem Soc 2023; 145:5824-5833. [PMID: 36877655 PMCID: PMC10021019 DOI: 10.1021/jacs.2c13049] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The contents of biological cells are retained within compartments formed of phospholipid membranes. The movement of material within and between cells is often mediated by the fusion of phospholipid membranes, which allows mixing of contents or excretion of material into the surrounding environment. Biological membrane fusion is a highly regulated process that is catalyzed by proteins and often triggered by cellular signaling. In contrast, the controlled fusion of polymer-based membranes is largely unexplored, despite the potential application of this process in nanomedicine, smart materials, and reagent trafficking. Here, we demonstrate triggered polymersome fusion. Out-of-equilibrium polymersomes were formed by ring-opening metathesis polymerization-induced self-assembly and persist until a specific chemical signal (pH change) triggers their fusion. Characterization of polymersomes was performed by a variety of techniques, including dynamic light scattering, dry-state/cryogenic-transmission electron microscopy, and small-angle X-ray scattering (SAXS). The fusion process was followed by time-resolved SAXS analysis. Developing elementary methods of communication between polymersomes, such as fusion, will prove essential for emulating life-like behaviors in synthetic nanotechnology.
Collapse
Affiliation(s)
| | - Matthew J. Derry
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Alisha
J. Miller
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Paul D. Topham
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
28
|
Koutsoukos S, Avila J, Brooks NJ, Costa Gomes M, Welton T. Physical properties and nanostructuring of long-chained homobaric imidazolium ionic liquids. Phys Chem Chem Phys 2023; 25:6316-6325. [PMID: 36779289 DOI: 10.1039/d2cp05783b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Understanding the structure-property relationship and nanoscopic behaviour of ionic liquids is of utmost importance for their potential applications. Focusing these studies on sets of homobaric ionic liquids could provide important insight into the effects of specific chemical groups on the overall interaction profile, bringing researchers one step closer to succesfully designing ionic liquids which are tailor-made for specific applications. This work focuses on ionic liquids with 12 total carbons on their side chains, studying both their bulk physical properties (such as densities and viscosities) and their nanostructuring. The results reveal that by keeping the total number of carbons constant, but arranging them differently around the imidazolium ring, either in a linear or in a branched-chain formation, can result in compounds with quite distinct properties. Some of those (such as diffusivity) appear to be more sensitive to symmetry variations, while others (such as density) are not significantly affected. X-ray scattering is used in order to get a clearer understanding of the nanostructuring of the studied compounds and to investigate to what extent the observed macroscopic properties are directly linked to the nanoscale ordering.
Collapse
Affiliation(s)
- Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | - Jocasta Avila
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Nicholas J Brooks
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| |
Collapse
|
29
|
Directly imaging emergence of phase separation in peroxidized lipid membranes. Commun Chem 2023; 6:15. [PMID: 36697756 PMCID: PMC9845225 DOI: 10.1038/s42004-022-00809-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.
Collapse
|
30
|
González-Jiménez M, Barnard T, Russell BA, Tukachev NV, Javornik U, Hayes LA, Farrell AJ, Guinane S, Senn HM, Smith AJ, Wilding M, Mali G, Nakano M, Miyazaki Y, McMillan P, Sosso GC, Wynne K. Understanding the emergence of the boson peak in molecular glasses. Nat Commun 2023; 14:215. [PMID: 36639380 PMCID: PMC9839737 DOI: 10.1038/s41467-023-35878-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
A common feature of glasses is the "boson peak", observed as an excess in the heat capacity over the crystal or as an additional peak in the terahertz vibrational spectrum. The microscopic origins of this peak are not well understood; the emergence of locally ordered structures has been put forward as a possible candidate. Here, we show that depolarised Raman scattering in liquids consisting of highly symmetric molecules can be used to isolate the boson peak, allowing its detailed observation from the liquid into the glass. The boson peak in the vibrational spectrum matches the excess heat capacity. As the boson peak intensifies on cooling, wide-angle x-ray scattering shows the simultaneous appearance of a pre-peak due to molecular clusters consisting of circa 20 molecules. Atomistic molecular dynamics simulations indicate that these are caused by over-coordinated molecules. These findings represent an essential step toward our understanding of the physics of vitrification.
Collapse
Affiliation(s)
| | - Trent Barnard
- Department of Chemistry, University of Warwick, Warwick, UK
| | - Ben A Russell
- School of Chemistry, University of Glasgow, Glasgow, UK
| | | | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Sarah Guinane
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Andrew J Smith
- Diamond Light Source, Harwell Science and Innovation Campus, Harwell, UK
| | | | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Motohiro Nakano
- Research Center for Thermal and Entropic Science, Osaka University, Osaka, Japan
| | - Yuji Miyazaki
- Research Center for Thermal and Entropic Science, Osaka University, Osaka, Japan
| | - Paul McMillan
- Department of Chemistry, University College London, London, UK
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Czajka A, Lovell PA, Armes SP. Time-Resolved Small-Angle X-ray Scattering Studies during the Aqueous Emulsion Polymerization of Methyl Methacrylate. Macromolecules 2022; 55:10188-10196. [PMID: 36438596 PMCID: PMC9686128 DOI: 10.1021/acs.macromol.2c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Indexed: 11/10/2022]
Abstract
![]()
Recently, we reported time-resolved synchrotron small-angle
X-ray
scattering (TR-SAXS) studies during aqueous emulsion polymerization
using a bespoke stirrable reaction cell (J. Am. Chem. Soc.2021, 143, 1474–1484). This
proof-of-concept study utilized a semifluorinated specialty monomer
(2,2,2-trifluoroethyl methacrylate) to ensure high X-ray contrast
relative to water. Herein, we extend this approach to emulsion polymerization
of methyl methacrylate (MMA) in the presence or absence of sodium
dodecyl sulfate (SDS) at 70 °C. Solution conductivity measurements
for this anionic surfactant indicated a critical micelle concentration
(CMC) of 10.9 mM at this temperature. Thus, SDS was employed at either
1.0 or 20.0 mM, which corresponds to well below or well above its
CMC. Postmortem analysis by 1H NMR spectroscopy indicated
MMA conversions of 93–95% for these three formulations. We
demonstrate that the X-ray contrast between water and PMMA is sufficiently
large to produce high-quality scattering patterns during TR-SAXS experiments.
Such patterns were fitted using a hard-sphere scattering model to
monitor the evolution in particle diameter. This enabled (i) determination
of the time point for the onset of nucleation and (ii) the evolution
in particle size to be monitored during the MMA polymerization. The
final particle diameters obtained from such TR-SAXS studies were consistent
with postmortem DLS analyses, while TEM studies confirmed that near-monodisperse
latex particles were formed. Micellar nucleation occurs within just
2 min when the SDS concentration is well above its CMC, resulting
in a high particle number concentration and relatively small latex
particles. In contrast, when SDS is either absent or present below
its CMC, particle nuclei are formed by homogeneous nucleation over
significantly longer time scales (14–15 min). In the latter
case, adsorption of SDS onto nascent particles reduces their coagulation,
giving rise to a larger number of smaller particles compared to the
surfactant-free polymerization. However, the characteristic time required
for the onset of nucleation is barely affected because this is mainly
controlled by the kinetics of homogeneous polymerization of the relatively
water-soluble MMA monomer within the aqueous phase. These results
suggest that the aqueous emulsion polymerization of several other
(meth)acrylic monomers, and perhaps also vinyl acetate, may be amenable
to TR-SAXS studies.
Collapse
Affiliation(s)
- Adam Czajka
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Peter A. Lovell
- Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| |
Collapse
|
32
|
Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Badar W, Ali H, Brooker ON, Newham E, Snow T, Terrill NJ, Tozzi G, Fratzl P, Knight MM, Gupta HS. Collagen pre-strain discontinuity at the bone—Cartilage interface. PLoS One 2022; 17:e0273832. [PMID: 36108273 PMCID: PMC9477506 DOI: 10.1371/journal.pone.0273832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
The bone-cartilage unit (BCU) is a universal feature in diarthrodial joints, which is mechanically-graded and subjected to shear and compressive strains. Changes in the BCU have been linked to osteoarthritis (OA) progression. Here we report existence of a physiological internal strain gradient (pre-strain) across the BCU at the ultrastructural scale of the extracellular matrix (ECM) constituents, specifically the collagen fibril. We use X-ray scattering that probes changes in the axial periodicity of fibril-level D-stagger of tropocollagen molecules in the matrix fibrils, as a measure of microscopic pre-strain. We find that mineralized collagen nanofibrils in the calcified plate are in tensile pre-strain relative to the underlying trabecular bone. This behaviour contrasts with the previously accepted notion that fibrillar pre-strain (or D-stagger) in collagenous tissues always reduces with mineralization, via reduced hydration and associated swelling pressure. Within the calcified part of the BCU, a finer-scale gradient in pre-strain (0.6% increase over ~50μm) is observed. The increased fibrillar pre-strain is linked to prior research reporting large tissue-level residual strains under compression. The findings may have biomechanical adaptative significance: higher in-built molecular level resilience/damage resistance to physiological compression, and disruption of the molecular-level pre-strains during remodelling of the bone-cartilage interface may be potential factors in osteoarthritis-based degeneration.
Collapse
Affiliation(s)
- Waqas Badar
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Husna Ali
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Olivia N. Brooker
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Elis Newham
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Tim Snow
- Harwell Science and Innovation Campus, Diamond Light Source, Harwell, Didcot, United Kingdom
| | - Nicholas J. Terrill
- Harwell Science and Innovation Campus, Diamond Light Source, Harwell, Didcot, United Kingdom
| | - Gianluca Tozzi
- School of Engineering, University of Greenwich, Chatham Maritime ME4 4TB, UK
| | - Peter Fratzl
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Potsdam Wissenschaftspark, Golm, Germany
| | - Martin M. Knight
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Himadri S. Gupta
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Barriga HM, Pence IJ, Holme MN, Doutch JJ, Penders J, Nele V, Thomas MR, Carroni M, Stevens MM. Coupling Lipid Nanoparticle Structure and Automated Single-Particle Composition Analysis to Design Phospholipase-Responsive Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200839. [PMID: 35358374 PMCID: PMC7615489 DOI: 10.1002/adma.202200839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.
Collapse
Affiliation(s)
- Hanna M.G. Barriga
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Isaac J. Pence
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory Didcot OX11 ODE, UK
| | - Jelle Penders
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Valeria Nele
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Michael R. Thomas
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory Stockholm University, Stockholm 171 65, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
35
|
Utterström J, Barriga HMG, Holme MN, Selegård R, Stevens MM, Aili D. Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles. Bioconjug Chem 2022; 33:736-746. [PMID: 35362952 PMCID: PMC9026255 DOI: 10.1021/acs.bioconjchem.2c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Liposome-based drug
delivery systems are widely used to improve
drug pharmacokinetics but can suffer from slow and unspecific release
of encapsulated drugs. Membrane-active peptides, based on sequences
derived or inspired from antimicrobial peptides (AMPs), could offer
means to trigger and control the release. Cholesterol is used in most
liposomal drug delivery systems (DDS) to improve the stability of
the formulation, but the activity of AMPs on cholesterol-rich membranes
tends to be very low, complicating peptide-triggered release strategies.
Here, we show a de novo designed AMP-mimetic peptide that efficiently
triggers content release from cholesterol-containing lipid vesicles
when covalently conjugated to headgroup-functionalized lipids. Binding
to vesicles induces peptide folding and triggers a lipid phase separation,
which in the presence of cholesterol results in high local peptide
concentrations at the lipid bilayer surface and rapid content release.
We anticipate that these results will facilitate the development of
peptide-based strategies for controlling and triggering drug release
from liposomal drug delivery systems.
Collapse
Affiliation(s)
- Johanna Utterström
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, SE-581 83 Linköping, Sweden
| |
Collapse
|
36
|
Tropocollagen springs allow collagen fibrils to stretch elastically. Acta Biomater 2022; 142:185-193. [PMID: 35081430 PMCID: PMC8982519 DOI: 10.1016/j.actbio.2022.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The mechanical properties of connective tissues are tailored to their specific function, and changes can lead to dysfunction and pathology. In most mammalian tissues the mechanical environment is governed by the micro- and nano-scale structure of collagen and its interaction with other tissue components, however these hierarchical properties remain poorly understood. In this study we use the human cornea as a model system to characterise and quantify the dominant deformation mechanisms of connective tissue in response to cyclic loads of physiological magnitude. Synchronised biomechanical testing, x-ray scattering and 3D digital image correlation revealed the presence of two dominant mechanisms: collagen fibril elongation due to a largely elastic, spring-like straightening of tropocollagen supramolecular twist, and a more viscous straightening of fibril crimp that gradually increased over successive loading cycles. The distinct mechanical properties of the two mechanisms suggest they have separate roles in vivo. The elastic, spring-like mechanism is fast-acting and likely responds to stresses associated with the cardiac cycle, while the more viscous crimp mechanism will respond to slower processes, such as postural stresses. It is anticipated that these findings will have broad applicability to understanding the normal and pathological functioning of other connective tissues such as skin and blood vessels that exhibit both helical structures and crimp. Statement of significance The tropocollagen spring mechanism allows collagen fibrils from some tissues to elongate significantly under small loads, and its recent discovery has the potential to change our fundamental understanding of how tissue deforms. This time-resolved study quantifies the contribution of the spring mechanism to the local strain in stretched tissue and compares it to the contribution associated with the straightening of fibril waviness, the widely accepted primary low-load strain mechanism. The spring mechanism contributed more to the local tissue strain than fibril straightening, and was found to be elastic while fibril straightening was more viscous. The results suggest that the viscoelastic behaviour of a biomaterial is controlled, at least in part, by the relative amount of fibril-scale crimp and tropocollagen supramolecular twist.
Collapse
|
37
|
Zhang Y, Hollis D, Ross R, Snow T, Terrill NJ, Lu Y, Wang W, Connelly J, Tozzi G, Gupta HS. Investigating the Fibrillar Ultrastructure and Mechanics in Keloid Scars Using In Situ Synchrotron X-ray Nanomechanical Imaging. MATERIALS 2022; 15:ma15051836. [PMID: 35269067 PMCID: PMC8911729 DOI: 10.3390/ma15051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/24/2021] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
Fibrotic scarring is prevalent in a range of collagenous tissue disorders. Understanding the role of matrix biophysics in contributing to fibrotic progression is important to develop therapies, as well as to elucidate biological mechanisms. Here, we demonstrate how microfocus small-angle X-ray scattering (SAXS), with in situ mechanics and correlative imaging, can provide quantitative and position-resolved information on the fibrotic matrix nanostructure and its mechanical properties. We use as an example the case of keloid scarring in skin. SAXS mapping reveals heterogeneous gradients in collagen fibrillar concentration, fibril pre-strain (variations in D-period) and a new interfibrillar component likely linked to proteoglycans, indicating evidence of a complex 3D structure at the nanoscale. Furthermore, we demonstrate a proof-of-principle for a diffraction-contrast correlative imaging technique, incorporating, for the first time, DIC and SAXS, and providing an initial estimate for measuring spatially resolved fibrillar-level strain and reorientation in such heterogeneous tissues. By application of the method, we quantify (at the microscale) fibrillar reorientations, increases in fibrillar D-period variance, and increases in mean D-period under macroscopic tissue strains of ~20%. Our results open the opportunity of using synchrotron X-ray nanomechanical imaging as a quantitative tool to probe structure–function relations in keloid and other fibrotic disorders in situ.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
| | - Dave Hollis
- LaVision UK, 2 Minton Place, Victoria Road, Bicester OX26 6QB, UK;
| | - Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (R.R.); (J.C.)
| | - Tim Snow
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (T.S.); (N.J.T.)
| | - Nick J. Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (T.S.); (N.J.T.)
| | - Yongjie Lu
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 5PZ, UK;
| | - Wen Wang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
| | - John Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (R.R.); (J.C.)
| | - Gianluca Tozzi
- School of Engineering, London South Bank University, London SE1 0AA, UK;
| | - Himadri S. Gupta
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
- Correspondence:
| |
Collapse
|
38
|
Unraveling agglomeration and deagglomeration in aqueous colloidal dispersions of very small tin dioxide nanoparticles. J Colloid Interface Sci 2022; 608:2681-2693. [PMID: 34838316 DOI: 10.1016/j.jcis.2021.10.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Understanding deagglomeration, agglomerate formation and structure for very small nanoparticles (NPs), due to their more facile agglomeration, is critical for processing or tailoring agglomerates for nanostructured materials. We propose that by controlling and fine-tuning the interplay of agglomeration (colloidal interaction) and deagglomeration (hydrodynamic forces), the design of agglomerate size, microstructure and morphology is possible even for very small NPs. EXPERIMENTS Here, we investigate very small SnO2 NPs (10 nm) generated in the gas phase as model system. Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) are used to study dispersions in aqueous media across the entire pH range (2-12) at various NaCl concentrations treated with ultrasound. Parallel to size and size distribution, agglomerate morphology and microstructure are analyzed by means of the mass fractal dimension, dm and modeled with ab initio shape simulations. The critical coagulation concentration (CCC) is determined for the alkaline region where the SnO2 NPs are highly charged. FINDINGS Quantitative analysis of SAXS and DLS data reveals that size and size distribution of the agglomerates depend similarly on the electrostatic interaction influenced by pH and salinity as observed by the zeta potential. In contrast dm is mainly influenced by the salt concentration. Ab initio shape simulations support these experimental findings.
Collapse
|
39
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
40
|
Data Mining of Polymer Phase Transitions upon Temperature Changes by Small and Wide-Angle X-ray Scattering Combined with Raman Spectroscopy. Polymers (Basel) 2021; 13:polym13234203. [PMID: 34883710 PMCID: PMC8659756 DOI: 10.3390/polym13234203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The complex physical transformations of polymers upon external thermodynamic changes are related to the molecular length of the polymer and its associated multifaceted energetic balance. The understanding of subtle transitions or multistep phase transformation requires real-time phenomenological studies using a multi-technique approach that covers several length-scales and chemical states. A combination of X-ray scattering techniques with Raman spectroscopy and Differential Scanning Calorimetry was conducted to correlate the structural changes from the conformational chain to the polymer crystal and mesoscale organization. Current research applications and the experimental combination of Raman spectroscopy with simultaneous SAXS/WAXS measurements coupled to a DSC is discussed. In particular, we show that in order to obtain the maximum benefit from simultaneously obtained high-quality data sets from different techniques, one should look beyond traditional analysis techniques and instead apply multivariate analysis. Data mining strategies can be applied to develop methods to control polymer processing in an industrial context. Crystallization studies of a PVDF blend with a fluoroelastomer, known to feature complex phase transitions, were used to validate the combined approach and further analyzed by MVA.
Collapse
|
41
|
Terrill NJ, Dent AJ, Dobson B, Beale AM, Allen L, Bras W. Past, present and future-sample environments for materials research studies in scattering and spectroscopy; a UK perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:483002. [PMID: 34479225 DOI: 10.1088/1361-648x/ac2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Small angle x-ray scattering and x-ray absorption fine structure are two techniques that have been employed at synchrotron sources ever since their inception. Over the course of the development of the techniques, the introduction of sample environments for added value experiments has grown dramatically. This article reviews past successes, current developments and an exploration of future possibilities for these two x-ray techniques with an emphasis on the developments in the United Kingdom between 1980-2020.
Collapse
Affiliation(s)
| | - Andrew J Dent
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Barry Dobson
- Sagentia Ltd, Harston Mill, Harston Mill, CB22 7GG, United Kingdom
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
- The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Lisa Allen
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
- The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, One Bethel Valley Road TN 37831, United States of America
| |
Collapse
|
42
|
Pauw BR, Smith AJ, Snow T, Shebanova O, Sutter JP, Ilavsky J, Hermida-Merino D, Smales GJ, Terrill NJ, Thünemann AF, Bras W. Extending synchrotron SAXS instrument ranges through addition of a portable, inexpensive USAXS module with vertical rotation axes. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:824-833. [PMID: 33949990 PMCID: PMC8127376 DOI: 10.1107/s1600577521003313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/29/2021] [Indexed: 06/08/2023]
Abstract
Ultra-SAXS can enhance the capabilities of existing synchrotron SAXS/WAXS beamlines. A compact ultra-SAXS module has been developed, which extends the measurable q-range with 0.0015 ≤ q (nm-1) ≤ 0.2, allowing structural dimensions in the range 30 ≤ D (nm) ≤ 4000 to be probed in addition to the range covered by a high-end SAXS/WAXS instrument. By shifting the module components in and out on their respective motor stages, SAXS/WAXS measurements can be easily and rapidly interleaved with USAXS measurements. The use of vertical crystal rotation axes (horizontal diffraction) greatly simplifies the construction, at minimal cost to efficiency. In this paper, the design considerations, realization and synchrotron findings are presented. Measurements of silica spheres, an alumina membrane, and a porous carbon catalyst are provided as application examples.
Collapse
Affiliation(s)
- Brian R. Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Andrew J. Smith
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Tim Snow
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Olga Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - John P. Sutter
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Jan Ilavsky
- Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL 60439, USA
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), Dutch–Belgian Beamlines at the ESRF, Grenoble, France
| | - Glen J. Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Nicholas J. Terrill
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | | | - Wim Bras
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|