1
|
Wang R, Cai J, Gao Y, Tang Y, Gao H, Qin L, Cai H, Yang F, Ren Y, Luo C, Feng S, Yin H, Zhang M, Luo C, Gong Q, Xiao X, Chen Q. Retinal biomarkers for the risk of Alzheimer's disease and frontotemporal dementia. Front Aging Neurosci 2025; 16:1513302. [PMID: 39868381 PMCID: PMC11759267 DOI: 10.3389/fnagi.2024.1513302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms. Methods We included a total of 3,0573 UK Biobank participants without dementia, ocular disorders, and diabetes who underwent baseline retinal optical coherence tomography (OCT) imaging. Cox proportional hazards models were used to estimate the associations between macular OCT parameters and the risk of AD and FTD. Mediation analysis was used to explore the underlying mechanisms affected by brain structures. Results The mean age at recruitment was 55.27, and 46.10% of the participants were male. During a mean follow-up of 9.15 ± 2.59 years, 148 patients with AD and eight patients with FTD were identified. Reduced thickness of the ganglion cell-inner plexiform layer (GC-IPL) at baseline was associated with an increased risk of AD (HR, 1.033; 95% CI, 1.001-1.066; P = 0.044), while thinner retinal pigment epithelial in the inner superior subfield at baseline was associated with an elevated risk of FTD (HR, 1.409; 95% CI, 1.060-1.871; P = 0.018). Structurally abnormal visual pathways, including cortical and subcortical gray matter volumes, as well as white matter integrity, mediated the association between the GC-IPL thickness and AD risk. Conclusion Our findings provide preliminary empirical support for a relationship between prodromal changes in retinal layers and a higher risk of AD or FTD, suggesting that macular OCT may serve as a non-invasive, sensitive biomarker of high-risk years before the onset of dementia.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiajie Cai
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Linyuan Qin
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hanlin Cai
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Feng Yang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yimeng Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Caimei Luo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Feng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Rathbone E, Fu D. Quantitative Optical Imaging of Oxygen in Brain Vasculature. J Phys Chem B 2024; 128:6975-6989. [PMID: 38991095 DOI: 10.1021/acs.jpcb.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The intimate relationship between neuronal activity and cerebral oxygenation underpins fundamental brain functions like cognition, sensation, and motor control. Optical imaging offers a noninvasive approach to assess brain oxygenation and often serves as an indirect proxy for neuronal activity. However, deciphering neurovascular coupling─the intricate interplay between neuronal activity, blood flow, and oxygen delivery─necessitates independent, high spatial resolution, and high temporal resolution measurements of both microvasculature oxygenation and neuronal activation. This Perspective examines the established optical techniques employed for brain oxygen imaging, specifically functional near-infrared spectroscopy, photoacoustic imaging, optical coherence tomography, and two-photon phosphorescent lifetime microscopy, highlighting their fundamental principles, strengths, and limitations. Several other emerging optical techniques are also introduced. Finally, we discuss key technological challenges and future directions for quantitative optical oxygen imaging, paving the way for a deeper understanding of oxygen metabolism in the brain.
Collapse
Affiliation(s)
- Emily Rathbone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Wu D, Cao J, Xu M, Zhang C, Wei Z, Li W, Chang Y. Fetal membrane imaging: current and future perspectives-a review. Front Physiol 2024; 15:1330702. [PMID: 38994451 PMCID: PMC11238276 DOI: 10.3389/fphys.2024.1330702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Fetal membrane providing mechanical support and immune protection for the growing fetus until it ruptures during parturition. The abnormalities of fetal membrane (thickening, separation, etc.) are related to adverse perinatal outcomes such as premature delivery, fetal deformities and fetal death. As a noninvasive method, imaging methods play an important role in prenatal examination. In this paper, we comprehensively reviewed the manuscripts on fetal membrane imaging method and their potential role in predicting adverse perinatal fetal prognosis. We also discussed the prospect of artificial intelligence in fetal membrane imaging in the future.
Collapse
Affiliation(s)
- Dan Wu
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jiasong Cao
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Meiyi Xu
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Cunling Zhang
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Zhuo Wei
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Wen Li
- Tianjin Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
4
|
Muñoz-Ortiz T, Alayeto I, Lifante J, Ortgies DH, Marin R, Martín Rodríguez E, Iglesias de la Cruz MDC, Lifante-Pedrola G, Rubio-Retama J, Jaque D. 3D Optical Coherence Thermometry Using Polymeric Nanogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301819. [PMID: 37352307 DOI: 10.1002/adma.202301819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Indexed: 06/25/2023]
Abstract
In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice.
Collapse
Affiliation(s)
- Tamara Muñoz-Ortiz
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Idoia Alayeto
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José Lifante
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid, 28029, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Dirk H Ortgies
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Riccardo Marin
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Emma Martín Rodríguez
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - María Del Carmen Iglesias de la Cruz
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid, 28029, Spain
| | - Ginés Lifante-Pedrola
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Daniel Jaque
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
5
|
Menzel M, Gräßel D, Rajkovic I, Zeineh MM, Georgiadis M. Using light and X-ray scattering to untangle complex neuronal orientations and validate diffusion MRI. eLife 2023; 12:e84024. [PMID: 37166005 PMCID: PMC10259419 DOI: 10.7554/elife.84024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023] Open
Abstract
Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.
Collapse
Affiliation(s)
- Miriam Menzel
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of TechnologyDelftNetherlands
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbHJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbHJülichGermany
| | - Ivan Rajkovic
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator LaboratoryStandfordUnited States
| | - Michael M Zeineh
- Department of Radiology, Stanford School of MedicineStanfordUnited States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of MedicineStanfordUnited States
| |
Collapse
|
6
|
Bian H, Wang J, Hong C, Liu L, Ji R, Cao S, Abdalla AN, Chen X. GPU-accelerated image registration algorithm in ophthalmic optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:194-207. [PMID: 36698653 PMCID: PMC9841998 DOI: 10.1364/boe.479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Limited to the power of the light source in ophthalmic optical coherence tomography (OCT), the signal-to-noise ratio (SNR) of the reconstructed images is usually lower than OCT used in other fields. As a result, improvement of the SNR is required. The traditional method is averaging several images at the same lateral position. However, the image registration average costs too much time, which limits its real-time imaging application. In response to this problem, graphics processing unit (GPU)-side kernel functions are applied to accelerate the reconstruction of the OCT signals in this paper. The SNR of the images reconstructed from different numbers of A-scans and B-scans were compared. The results demonstrated that: 1) There is no need to realize the axial registration with every A-scan. The number of the A-scans used to realize axial registration is suitable to set as ∼25, when the A-line speed was set as ∼12.5kHz. 2) On the basis of ensuring the quality of the reconstructed images, the GPU can achieve 43× speedup compared with CPU.
Collapse
Affiliation(s)
- Haiyi Bian
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, China
| | - Jingtao Wang
- School of Electronic and Information Engineering, Soochow University, 215006, Suzhou, China
| | - Chengjian Hong
- School of Electronic and Information Engineering, Soochow University, 215006, Suzhou, China
| | - Lei Liu
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, China
| | - Rendong Ji
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, China
| | - Suqun Cao
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, China
| | - Ahmed N. Abdalla
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, China
| | - Xinjian Chen
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, 223003, China
- School of Electronic and Information Engineering, Soochow University, 215006, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, 215123, Suzhou, China
| |
Collapse
|
7
|
Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research-A Review. Bioengineering (Basel) 2022; 10:5. [PMID: 36671577 PMCID: PMC9854701 DOI: 10.3390/bioengineering10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is an established vertebrae model in the field of biomedical research. With its small size, rapid maturation time and semi-transparency at early development stages, it has proven to be an important animal model, especially for high-throughput studies. Three-dimensional, high-resolution, non-destructive and label-free imaging techniques are perfectly suited to investigate these animals over various development stages. Optical coherence tomography (OCT) is an interferometric-based optical imaging technique that has revolutionized the diagnostic possibilities in the field of ophthalmology and has proven to be a powerful tool for many microscopic applications. Recently, OCT found its way into state-of-the-art zebrafish-based research. This review article gives an overview and a discussion of the relevant literature and an outlook for this emerging field.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
8
|
Bernardini A, Trovatelli M, Kłosowski MM, Pederzani M, Zani DD, Brizzola S, Porter A, Rodriguez Y Baena F, Dini D. Reconstruction of ovine axonal cytoarchitecture enables more accurate models of brain biomechanics. Commun Biol 2022; 5:1101. [PMID: 36253409 PMCID: PMC9576772 DOI: 10.1038/s42003-022-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
There is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports a systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibres, namely the corpus callosum, the fornix and the corona radiata, with the specific aim to map different regions of the tissue and provide essential information for the development of accurate models of brain biomechanics. Ovine samples are imaged using scanning electron microscopy combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution. Focus is placed on the characteristic cytological feature of the white matter: the axons and their alignment in the tissue. For each tract, a 3D reconstruction of relatively large volumes, including a significant number of axons, is performed and outer axonal ellipticity, outer axonal cross-sectional area and their relative perimeter are measured. The study of well-resolved microstructural features provides useful insight into the fibrous organization of the tissue, whose micromechanical behaviour is that of a composite material presenting elliptical tortuous tubular axonal structures embedded in the extra-cellular matrix. Drug flow can be captured through microstructurally-based models using 3D volumes, either reconstructed directly from images or generated in silico using parameters extracted from the database of images, leading to a workflow to enable physically-accurate simulations of drug delivery to the targeted tissue. Imaging and reconstruction of sheep brain axonal cytoarchitecture provides insight for brain biomechanics models that simulate drug delivery and other biological processes governed by interstitial fluid flow and transport.
Collapse
Affiliation(s)
- Andrea Bernardini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Marco Trovatelli
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | | | - Matteo Pederzani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Davide Danilo Zani
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Stefano Brizzola
- Faculty of Veterinary Medicine, Università degli Studi di Milano Statale, 26900, Lodi, Italy
| | - Alexandra Porter
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Colboc H, Moguelet P, Letavernier E, Frochot V, Bernaudin JF, Weil R, Rouzière S, Senet P, Bachmeyer C, Laporte N, Lucas I, Descamps V, Amode R, Brunet-Possenti F, Kluger N, Deschamps L, Dubois A, Reguer S, Somogyi A, Medjoubi K, Refregiers M, Daudon M, Bazin D. Pathologies related to abnormal deposits in dermatology: a physico-chemical approach. CR CHIM 2022. [DOI: 10.5802/crchim.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Automated computation of nerve fibre inclinations from 3D polarised light imaging measurements of brain tissue. Sci Rep 2022; 12:4328. [PMID: 35288611 PMCID: PMC8921329 DOI: 10.1038/s41598-022-08140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The method 3D polarised light imaging (3D-PLI) measures the birefringence of histological brain sections to determine the spatial course of nerve fibres (myelinated axons). While the in-plane fibre directions can be determined with high accuracy, the computation of the out-of-plane fibre inclinations is more challenging because they are derived from the amplitude of the birefringence signals, which depends e.g. on the amount of nerve fibres. One possibility to improve the accuracy is to consider the average transmitted light intensity (transmittance weighting). The current procedure requires effortful manual adjustment of parameters and anatomical knowledge. Here, we introduce an automated, optimised computation of the fibre inclinations, allowing for a much faster, reproducible determination of fibre orientations in 3D-PLI. Depending on the degree of myelination, the algorithm uses different models (transmittance-weighted, unweighted, or a linear combination), allowing to account for regionally specific behaviour. As the algorithm is parallelised and GPU optimised, it can be applied to large data sets. Moreover, it only uses images from standard 3D-PLI measurements without tilting, and can therefore be applied to existing data sets from previous measurements. The functionality is demonstrated on unstained coronal and sagittal histological sections of vervet monkey and rat brains.
Collapse
|
11
|
Schurr R, Mezer AA. The glial framework reveals white matter fiber architecture in human and primate brains. Science 2021; 374:762-767. [PMID: 34618596 DOI: 10.1126/science.abj7960] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Roey Schurr
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Lee JM, Han I, Nam KH, Kim DH, Song S, Park H, Kim H, Kim M, Choi J, Lee JI. Preclinical mouse model of optical coherence tomography for subcortical brain imaging without dissection. JOURNAL OF BIOPHOTONICS 2021; 14:e202100143. [PMID: 34346171 DOI: 10.1002/jbio.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to investigate the feasibility of using optical coherence tomography (OCT) to identify internal brain lesions, specifically intracerebral hemorrhage, without dissection. Mice with artificially injected brain hematomas were used to test the OCT system, and the recorded images were compared with microscopic images of the same mouse brains after hematoxylin and eosin staining. The intracranial structures surrounding the hematomas were clearly visualized by the OCT system without dissection. These images reflect the ability of OCT to determine the extent of a lesion in several planes. OCT is a useful technology, and these findings could be used as a starting point for future research in intraoperative imaging.
Collapse
Affiliation(s)
- Jae Meen Lee
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Inho Han
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Kyoung Hyup Nam
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Dong Hwan Kim
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Seunghwan Song
- Department of Thoracic and Cardiovascular Surgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Heejeong Park
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Hongki Kim
- Kohyoung Technology, Inc, Seoul, South Korea
| | - Minkyu Kim
- Kohyoung Technology, Inc, Seoul, South Korea
| | | | - Jae Il Lee
- Department of Neurosurgery, Medical Research Institute, Pusan National University Hospital, Busan, South Korea
| |
Collapse
|
13
|
Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2021; 3:032002. [PMID: 37645660 PMCID: PMC10465117 DOI: 10.1088/2516-1091/abfeb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optical coherence tomography (OCT) is a powerful optical imaging technique capable of visualizing the internal structure of biological tissues at near cellular resolution. For years, OCT has been regarded as the standard of care in ophthalmology, acting as an invaluable tool for the assessment of retinal pathology. However, the costly nature of most current commercial OCT systems has limited its general accessibility, especially in low-resource environments. It is therefore timely to review the development of low-cost OCT systems as a route for applying this technology to population-scale disease screening. Low-cost, portable and easy to use OCT systems will be essential to facilitate widespread use at point of care settings while ensuring that they offer the necessary imaging performances needed for clinical detection of retinal pathology. The development of low-cost OCT also offers the potential to enable application in fields outside ophthalmology by lowering the barrier to entry. In this paper, we review the current development and applications of low-cost, portable and handheld OCT in both translational and research settings. Design and cost-reduction techniques are described for general low-cost OCT systems, including considerations regarding spectrometer-based detection, scanning optics, system control, signal processing, and the role of 3D printing technology. Lastly, a review of clinical applications enabled by low-cost OCT is presented, along with a detailed discussion of current limitations and outlook.
Collapse
Affiliation(s)
- Ge Song
- Author to whom any correspondence should be addressed.
| | | | - Kengyeh K Chu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Wesley Y Kendall
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
14
|
Ogien J, Daures A, Cazalas M, Perrot JL, Dubois A. Line-field confocal optical coherence tomography for three-dimensional skin imaging. FRONTIERS OF OPTOELECTRONICS 2020; 13:381-392. [PMID: 36641566 PMCID: PMC9743950 DOI: 10.1007/s12200-020-1096-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/29/2020] [Indexed: 05/26/2023]
Abstract
This paper reports on the latest advances in line-field confocal optical coherence tomography (LC-OCT), a recently invented imaging technology that now allows the generation of either horizontal (x × y) section images at an adjustable depth or vertical (x × z) section images at an adjustable lateral position, as well as three-dimensional images. For both two-dimensional imaging modes, images are acquired in real-time, with real-time control of the depth and lateral positions. Three-dimensional (x × y × z) images are acquired from a stack of horizontal section images. The device is in the form of a portable probe. The handle of the probe has a button and a scroll wheel allowing the user to control the imaging modes. Using a supercontinuum laser as a broadband light source and a high numerical microscope objective, an isotropic spatial resolution of ∼1 µm is achieved. The field of view of the three-dimensional images is 1.2 mm × 0.5 mm × 0.5 mm (x × y × z). Images of skin tissues are presented to demonstrate the potential of the technology in dermatology.
Collapse
Affiliation(s)
| | | | | | - Jean-Luc Perrot
- CHU St-Etienne, Service Dermatologie, Saint-Etienne, 42055, France
| | - Arnaud Dubois
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, 91127, France.
| |
Collapse
|
15
|
Schoborg TA. Whole Animal Imaging of Drosophila melanogaster using Microcomputed Tomography. J Vis Exp 2020. [PMID: 32955492 DOI: 10.3791/61515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biomedical imaging tools permit investigation of molecular mechanisms across spatial scales, from genes to organisms. Drosophila melanogaster, a well-characterized model organism, has benefited from the use of light and electron microscopy to understand gene function at the level of cells and tissues. The application of imaging platforms that allow for an understanding of gene function at the level of the entire intact organism would further enhance our knowledge of genetic mechanisms. Here a whole animal imaging method is presented that outlines the steps needed to visualize Drosophila at any developmental stage using microcomputed tomography (µ-CT). The advantages of µ-CT include commercially available instrumentation and minimal hands-on time to produce accurate 3D information at micron-level resolution without the need for tissue dissection or clearing methods. Paired with software that accelerate image analysis and 3D rendering, detailed morphometric analysis of any tissue or organ system can be performed to better understand mechanisms of development, physiology, and anatomy for both descriptive and hypothesis testing studies. By utilizing an imaging workflow that incorporates the use of electron microscopy, light microscopy, and µ-CT, a thorough evaluation of gene function can be performed, thus furthering the usefulness of this powerful model organism.
Collapse
|
16
|
Raghunathan R, Liu CH, Ambekar YS, Singh M, Miranda RC, Larin KV. Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine. BIOMEDICAL OPTICS EXPRESS 2020; 11:3618-3632. [PMID: 33014555 PMCID: PMC7510910 DOI: 10.1364/boe.394905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Maternal smoking causes several defects ranging from intrauterine growth restriction to sudden infant death syndrome and spontaneous abortion. While several studies have documented the effects of prenatal nicotine exposure in development and behavior, acute vasculature changes in the fetal brain due to prenatal nicotine exposure have not been evaluated yet. This study uses correlation mapping optical coherence angiography to evaluate changes in fetal brain vasculature flow caused by maternal exposure to nicotine during the second trimester-equivalent of gestation in a mouse model. The effects of two different doses of nicotine were evaluated. Results showed a decrease in the vasculature for both doses of nicotine, which was not seen in the case of the sham group.
Collapse
Affiliation(s)
- Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Houston, TX 77204, USA
| | - Chih-Hao Liu
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Houston, TX 77204, USA
| | - Yogeshwari S Ambekar
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Houston, TX 77204, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, 8441 Riverside Parkway, Bryan, TX 77807, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77206, USA
| |
Collapse
|
17
|
Lichtenegger A, Gesperger J, Niederleithner M, Ginner L, Woehrer A, Drexler W, Baumann B, Leitgeb RA, Salas M. Ex-vivo Alzheimer's disease brain tissue investigation: a multiscale approach using 1060-nm swept source optical coherence tomography for a direct correlation to histology. NEUROPHOTONICS 2020; 7:035004. [PMID: 32855993 PMCID: PMC7441220 DOI: 10.1117/1.nph.7.3.035004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Significance: Amyloid-beta ( A - β ) plaques are pathological protein deposits formed in the brain of Alzheimer's disease (AD) patients upon disease progression. Further research is needed to elucidate the complex underlying mechanisms involved in their formation using label-free, tissue preserving, and volumetric techniques. Aim: The aim is to achieve a one-to-one correlation of optical coherence tomography (OCT) data to histological micrographs of brain tissue using 1060-nm swept source OCT. Approach: A - β plaques were investigated in ex-vivo AD brain tissue using OCT with the capability of switching between two magnifications. For the exact correlation to histology, a 3D-printed tool was designed to generate samples with parallel flat surfaces. Large field-of-view (FoV) and sequentially high-resolution volumes at different locations were acquired. The large FoV served to align the OCT to histology images; the high-resolution images were used to visualize fine details. Results: The instrument and the presented method enabled an accurate correlation of histological micrographs with OCT data. A - β plaques were identified as hyperscattering features in both FoV OCT modalities. The plaques identified in volumetric OCT data were in good agreement with immunohistochemically derived micrographs. Conclusion: OCT combined with the 3D-printed tool is a promising approach for label-free, nondestructive, volumetric, and fast tissue analysis.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Division of Neuropathology and Neurochemistry, Department of Neurology, Vienna, Austria
| | - Michael Niederleithner
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Laurin Ginner
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Adelheid Woehrer
- Medical University of Vienna, Division of Neuropathology and Neurochemistry, Department of Neurology, Vienna, Austria
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Rainer A. Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to Medicine, Vienna, Austria
| | - Matthias Salas
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Division of Neuropathology and Neurochemistry, Department of Neurology, Vienna, Austria
| |
Collapse
|
18
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
19
|
Dong Z, Men J, Yang Z, Jerwick J, Li A, Tanzi RE, Zhou C. FlyNet 2.0: drosophila heart 3D (2D + time) segmentation in optical coherence microscopy images using a convolutional long short-term memory neural network. BIOMEDICAL OPTICS EXPRESS 2020; 11:1568-1579. [PMID: 32206429 PMCID: PMC7075608 DOI: 10.1364/boe.385968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 05/06/2023]
Abstract
A custom convolutional neural network (CNN) integrated with convolutional long short-term memory (LSTM) achieves accurate 3D (2D + time) segmentation in cross-sectional videos of the Drosophila heart acquired by an optical coherence microscopy (OCM) system. While our previous FlyNet 1.0 model utilized regular CNNs to extract 2D spatial information from individual video frames, convolutional LSTM, FlyNet 2.0, utilizes both spatial and temporal information to improve segmentation performance further. To train and test FlyNet 2.0, we used 100 datasets including 500,000 fly heart OCM images. OCM videos in three developmental stages and two heartbeat situations were segmented achieving an intersection over union (IOU) accuracy of 92%. This increased segmentation accuracy allows morphological and dynamic cardiac parameters to be better quantified.
Collapse
Affiliation(s)
- Zhao Dong
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Jing Men
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Zhiwen Yang
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- ShenYuan Honors College, Beihang University, Beijing 100191, China
| | - Jason Jerwick
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
| | - Airong Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, 27 Memorial Drive W, Bethlehem, PA 18015, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
- Department of Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
20
|
Raghunathan R, Liu CH, Kouka A, Singh M, Miranda RC, Larin KV. Assessing the acute effects of prenatal synthetic cannabinoid exposure on murine fetal brain vasculature using optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900050. [PMID: 30887665 PMCID: PMC10039318 DOI: 10.1002/jbio.201900050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 05/02/2023]
Abstract
Marijuana is one of the most commonly abused substances during pregnancy. Synthetic cannabinoids (SCBs) are a group of heterogeneous compounds that are 40- to 600-fold more potent than Δ9 -tetrahydrocannabinol, the major psychoactive component of marijuana. With SCBs being legally available for purchase and the prevalence of unplanned pregnancies, the possibility of prenatal exposure to SCBs is high. However, the effects of prenatal SCB exposure on embryonic brain development are not well understood. In this study, we use complex correlation mapping optical coherence angiography to evaluate changes in murine fetal brain vasculature in utero, minutes after maternal exposure to an SCB, CP-55940. Results showed a significant decrease (P < 0.05) in fetal brain vessel diameter, length fraction and area density when compared to the sham group. This preliminary study shows that acute prenatal exposure to an SCB resulted in significant fetal brain vasoconstriction during the peak period for brain development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Chih-Hao Liu
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Amur Kouka
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, Texas
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
21
|
Kiseleva EB, Yashin KS, Moiseev AA, Timofeeva LB, Kudelkina VV, Alekseeva AI, Meshkova SV, Polozova AV, Gelikonov GV, Zagaynova EV, Gladkova ND. Optical coefficients as tools for increasing the optical coherence tomography contrast for normal brain visualization and glioblastoma detection. NEUROPHOTONICS 2019; 6:035003. [PMID: 31312669 PMCID: PMC6630098 DOI: 10.1117/1.nph.6.3.035003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/27/2019] [Indexed: 05/14/2023]
Abstract
The methods used for digital processing of optical coherence tomography (OCT) and crosspolarization (CP) OCT images are focused on improving the contrast ratio of native structural OCT images. Such advances are particularly important for the intraoperative detection of glioma margins where the visual assessment of OCT images can be difficult and lead to errors. The aim of the study was to investigate the application of optical coefficients obtained from CP OCT data for the differentiation of glial tumorous tissue from a normal brain. Pseudocolor en-face OCT maps based on two optical coefficients (the commonly used rate of attenuation in the cochannel, and in addition, the interchannel attenuation difference) were constructed for normal rat brain coronal cross sections and for brains with a 101.8 rat glioblastoma model. It was shown that the use of optical coefficients significantly increased the available information from the OCT data in comparison with unprocessed images. As a result, this allowed contrasting of the white matter from the gray matter and tumorous tissue ex vivo, and for this purpose, the interchannel attenuation difference worked better. The interchannel attenuation difference values of white matter were at least seven and two times higher than corresponding values of the cortex and tumorous tissue, whereas the same parameter for cochannel attenuation coefficient values of white matter are about 4 and 1.4. However, quantitative analysis shows that both coefficients are suitable for the purpose of glioblastoma detection from normal brain tissue regardless of whether a necrotic component was present (in all compared groups p < 0.001 ).
Collapse
Affiliation(s)
- Elena B. Kiseleva
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Address all correspondence to Elena B. Kiseleva, E-mail:
| | | | - Alexander A. Moiseev
- Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod, Russia
| | | | | | | | | | | | - Grigory V. Gelikonov
- Russian Academy of Sciences, Institute of Applied Physics, Nizhny Novgorod, Russia
| | | | | |
Collapse
|
22
|
Duan L, Qin X, He Y, Sang X, Pan J, Xu T, Men J, Tanzi RE, Li A, Ma Y, Zhou C. Segmentation of Drosophila heart in optical coherence microscopy images using convolutional neural networks. JOURNAL OF BIOPHOTONICS 2018; 11:e201800146. [PMID: 29992766 PMCID: PMC6289629 DOI: 10.1002/jbio.201800146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/08/2018] [Indexed: 05/06/2023]
Abstract
Convolutional neural networks (CNNs) are powerful tools for image segmentation and classification. Here, we use this method to identify and mark the heart region of Drosophila at different developmental stages in the cross-sectional images acquired by a custom optical coherence microscopy (OCM) system. With our well-trained CNN model, the heart regions through multiple heartbeat cycles can be marked with an intersection over union of ~86%. Various morphological and dynamical cardiac parameters can be quantified accurately with automatically segmented heart regions. This study demonstrates an efficient heart segmentation method to analyze OCM images of the beating heart in Drosophila.
Collapse
Affiliation(s)
- Lian Duan
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Xi Qin
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Yuanhao He
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| | - Xialin Sang
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical Engineering and Computer Science, Hainan University, Haikou, China
| | - Jinda Pan
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Tao Xu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
- State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China
| | - Jing Men
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Yutao Ma
- State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Correspondence: Chao Zhou, Department of Electrical and Computer Engineering, Lehigh University, 19 Memorial Drive West, 18015, Bethlehem, PA, USA
| |
Collapse
|
23
|
The State of the NIH BRAIN Initiative. J Neurosci 2018; 38:6427-6438. [PMID: 29921715 DOI: 10.1523/jneurosci.3174-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The BRAIN Initiative arose from a grand challenge to "accelerate the development and application of new technologies that will enable researchers to produce dynamic pictures of the brain that show how individual brain cells and complex neural circuits interact at the speed of thought." The BRAIN Initiative is a public-private effort focused on the development and use of powerful tools for acquiring fundamental insights about how information processing occurs in the central nervous system (CNS). As the Initiative enters its fifth year, NIH has supported >500 principal investigators, who have answered the Initiative's challenge via hundreds of publications describing novel tools, methods, and discoveries that address the Initiative's seven scientific priorities. We describe scientific advances produced by individual laboratories, multi-investigator teams, and entire consortia that, over the coming decades, will produce more comprehensive and dynamic maps of the brain, deepen our understanding of how circuit activity can produce a rich tapestry of behaviors, and lay the foundation for understanding how its circuitry is disrupted in brain disorders. Much more work remains to bring this vision to fruition, and the National Institutes of Health continues to look to the diverse scientific community, from mathematics, to physics, chemistry, engineering, neuroethics, and neuroscience, to ensure that the greatest scientific benefit arises from this unique research Initiative.
Collapse
|
24
|
Raghunathan R, Wu C, Singh M, Liu CH, Miranda RC, Larin KV. Evaluating the effects of maternal alcohol consumption on murine fetal brain vasculature using optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700238. [PMID: 29292845 PMCID: PMC6292438 DOI: 10.1002/jbio.201700238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
Prenatal alcohol exposure (PAE) can result in a range of anomalies including brain and behavioral dysfunctions, collectively termed fetal alcohol spectrum disorder. PAE during the 1st and 2nd trimester is common, and research in animal models has documented significant neural developmental deficits associated with PAE during this period. However, little is known about the immediate effects of PAE on fetal brain vasculature. In this study, we used in utero speckle variance optical coherence tomography, a high spatial- and temporal-resolution imaging modality, to evaluate dynamic changes in microvasculature of the 2nd trimester equivalent murine fetal brain, minutes after binge-like maternal alcohol exposure. Acute binge-like PAE resulted in a rapid (<1 hour) and significant decrease (P < .001) in vessel diameter as compared to the sham group. The data show that a single binge-like maternal alcohol exposure resulted in swift vasoconstriction in fetal brain vessels during the critical period of neurogenesis.
Collapse
Affiliation(s)
- Raksha Raghunathan
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Chih-Hao Liu
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College of Medicine, College Station, Texas
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
- Correspondence: Kirill V. Larin, Department of Biomedical Engineering, University of Houston, Houston, TX.
| |
Collapse
|
25
|
Choi G, Lee J, Kim H, Jang J, Im C, Jeon N, Jung W. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice. JOURNAL OF BIOPHOTONICS 2018; 11:e201700243. [PMID: 29215208 DOI: 10.1002/jbio.201700243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies.
Collapse
Affiliation(s)
- Geonho Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jeonghyeon Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyeongeun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jaemyung Jang
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Changkyun Im
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Nooli Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
26
|
Fan Y, Xia Y, Zhang X, Sun Y, Tang J, Zhang L, Liao H. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Biosci Trends 2018; 12:12-23. [PMID: 29332928 DOI: 10.5582/bst.2017.01258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review focuses on optical coherence tomography (OCT)-based neurosurgical application for imaging and treatment of brain tumors. OCT has emerged as one of the most innovative and successful translational biomedical-diagnostic techniques. It is a useful imaging tool for noninvasive, in vivo, in situ and real-time imaging in soft biological tissues, such as brain tumor imaging. OCT can detect the structure of biological tissue in a micrometer scale, and functional OCT has some clinical researches and applications, such as nerve fiber tracts and neurovascular imaging. OCT is able to identify tumor margins, and it gives intraoperative precision identification and resection guidance. OCT-based theranostics is introduced into preclinical neurosurgical resection, such as the integration of OCT and laser ablation. We discuss the challenges and opportunities of OCT-based system in the field of combination of intraoperative structural and functional imaging, neurosurgical guidance and minimally invasive theranostics. We point out that OCT and laser ablation-based theranostics can give more precision and intelligence for intraoperative diagnosis and therapeutics in clinical applications. The theranostics can precisely locate, or specifically target cancerous tissues, and then as much as possiblly eliminate them.
Collapse
Affiliation(s)
- Yingwei Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Yan Xia
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Xinran Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Yu Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Jie Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| |
Collapse
|
27
|
Wu C, Le H, Ran S, Singh M, Larina IV, Mayerich D, Dickinson ME, Larin KV. Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study. BIOMEDICAL OPTICS EXPRESS 2017; 8:4629-4639. [PMID: 29082090 PMCID: PMC5654805 DOI: 10.1364/boe.8.004629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 05/04/2023]
Abstract
Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from multiple angles. SPIM enables high-resolution, 3D imaging with less phototoxicity and photobleaching than laser scanning confocal microscopy (LSCM) by illuminating the sample with a focused sheet of light. Side by side comparisons are supplemented with co-registered images. The results demonstrate that SPIM and RI-OCT are highly complementary and could provide more comprehensive tissue characterization for mouse embryonic research.
Collapse
Affiliation(s)
- Chen Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Henry Le
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - Shihao Ran
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Equal contribution
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77584, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia
- Equal contribution
| |
Collapse
|
28
|
Abstract
OBJECTIVE This article aims to address the need to rethink the classification of mental illness and to draw attention to the current use of quantum biology and its likely future use in understanding the nature of mental illness. CONCLUSION It is desirable to separate out neuroscience and clinical research and to become better acquainted with the concepts of quantum mechanical/quantum biological theory and its contribution to medicine.
Collapse
|
29
|
Abdurashitov A, Bragina O, Sindeeva O, Sergey S, Semyachkina-Glushkovskaya OV, Tuchin VV. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:91514. [PMID: 28444152 DOI: 10.1117/1.jbo.22.9.091514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 ?? ? m of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.
Collapse
Affiliation(s)
- Arkady Abdurashitov
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Olga Bragina
- Saratov National Research State University, Department of Human and Animal Physiology, Saratov, RussiacUniversity of New Mexico School of Medicine, Department of Neurosurgery, Albuquerque, New Mexico, United States
| | - Olga Sindeeva
- Saratov National Research State University, Department of Human and Animal Physiology, Saratov, RussiadQueen Mary University of London, School of Engineering and Materials Science, London, United KingdomeSaratov National Research State University, Remote Controlled Theranostic Systems Laboratory, Saratov, Russia
| | - Sindeev Sergey
- Saratov National Research State University, Department of Human and Animal Physiology, Saratov, Russia
| | | | - Valery V Tuchin
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, Saratov, RussiafInstitute of Precision Mechanics and Control RAS, Laboratory of Laser Diagnostics of Technical and Living Systems, Saratov, RussiagNational Research Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| |
Collapse
|
30
|
Grishina OA, Wang S, Larina IV. Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart. JOURNAL OF BIOPHOTONICS 2017; 10:735-743. [PMID: 28417585 PMCID: PMC5565627 DOI: 10.1002/jbio.201600293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 05/19/2023]
Abstract
Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo.
Collapse
Affiliation(s)
| | | | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| |
Collapse
|
31
|
Peterson LM, Gu S, Karunamuni G, Jenkins MW, Watanabe M, Rollins AM. Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1823-1837. [PMID: 28663868 PMCID: PMC5480583 DOI: 10.1364/boe.8.001823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
The great arteries develop from symmetrical aortic arch arteries which are extensively remodeled. These events are vulnerable to perturbations. Hemodynamic forces have a significant role in this remodeling. In this study, optical coherence tomography (OCT) visualized live avian embryos for staging and measuring pharyngeal arch morphology. Measurements acquired with our orientation-independent, dual-angle Doppler OCT technique revealed that ethanol exposure leads to higher absolute blood flow, shear stress, and retrograde flow. Ethanol-exposed embryos had smaller cardiac neural crest (CNC) derived pharyngeal arch mesenchyme and fewer migrating CNC-derived cells. These differences in forces and CNC cell numbers could explain the abnormal aortic arch remodeling.
Collapse
Affiliation(s)
- Lindsy M. Peterson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ganga Karunamuni
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
32
|
Vasefi F, MacKinnon N, Farkas DL, Kateb B. Review of the potential of optical technologies for cancer diagnosis in neurosurgery: a step toward intraoperative neurophotonics. NEUROPHOTONICS 2017; 4:011010. [PMID: 28042588 PMCID: PMC5184765 DOI: 10.1117/1.nph.4.1.011010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/07/2016] [Indexed: 05/06/2023]
Abstract
Advances in image-guided therapy enable physicians to obtain real-time information on neurological disorders such as brain tumors to improve resection accuracy. Image guidance data include the location, size, shape, type, and extent of tumors. Recent technological advances in neurophotonic engineering have enabled the development of techniques for minimally invasive neurosurgery. Incorporation of these methods in intraoperative imaging decreases surgical procedure time and allows neurosurgeons to find remaining or hidden tumor or epileptic lesions. This facilitates more complete resection and improved topology information for postsurgical therapy (i.e., radiation). We review the clinical application of recent advances in neurophotonic technologies including Raman spectroscopy, thermal imaging, optical coherence tomography, and fluorescence spectroscopy, highlighting the importance of these technologies in live intraoperative tissue mapping during neurosurgery. While these technologies need further validation in larger clinical trials, they show remarkable promise in their ability to help surgeons to better visualize the areas of abnormality and enable safe and successful removal of malignancies.
Collapse
Affiliation(s)
- Fartash Vasefi
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
- Brain Mapping Foundation, 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
- Society for Brain Mapping and Therapeutics (SBMT), 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
| | - Nicholas MacKinnon
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
| | - Daniel L. Farkas
- Spectral Molecular Imaging Inc., 13412 Ventura Boulevard, Suite 250, Sherman Oaks, California 91423, United States
- University of Southern California, Department of Biomedical Engineering, 1042 Downey Way, Los Angeles, California 90089, United States
| | - Babak Kateb
- Brain Mapping Foundation, 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
- Society for Brain Mapping and Therapeutics (SBMT), 8159 Santa Monica Boulevard, Suite 200, West Hollywood, California 90046, United States
- California Neurosurgical Institute, 25751 McBean Pkwy #305, Santa Clarita, California 91355, United States
- National Center for Nano-Bio-Electronics (NCNBE), NASA Research Park, P.O.Box 23, Moffett Field, California 94035, United States
| |
Collapse
|
33
|
Wang S, Garcia MD, Lopez AL, Overbeek PA, Larin KV, Larina IV. Dynamic imaging and quantitative analysis of cranial neural tube closure in the mouse embryo using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:407-419. [PMID: 28101427 PMCID: PMC5231309 DOI: 10.1364/boe.8.000407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Neural tube closure is a critical feature of central nervous system morphogenesis during embryonic development. Failure of this process leads to neural tube defects, one of the most common forms of human congenital defects. Although molecular and genetic studies in model organisms have provided insights into the genes and proteins that are required for normal neural tube development, complications associated with live imaging of neural tube closure in mammals limit efficient morphological analyses. Here, we report the use of optical coherence tomography (OCT) for dynamic imaging and quantitative assessment of cranial neural tube closure in live mouse embryos in culture. Through time-lapse imaging, we captured two neural tube closure mechanisms in different cranial regions, zipper-like closure of the hindbrain region and button-like closure of the midbrain region. We also used OCT imaging for phenotypic characterization of a neural tube defect in a mouse mutant. These results suggest that the described approach is a useful tool for live dynamic analysis of normal neural tube closure and neural tube defects in the mouse model.
Collapse
Affiliation(s)
- Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Equal Contribution
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Equal Contribution
| | - Andrew L. Lopez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Paul A. Overbeek
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
34
|
Men J, Jerwick J, Wu P, Chen M, Alex A, Ma Y, Tanzi RE, Li A, Zhou C. Drosophila Preparation and Longitudinal Imaging of Heart Function In Vivo Using Optical Coherence Microscopy (OCM). J Vis Exp 2016. [PMID: 28060288 DOI: 10.3791/55002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Longitudinal study of the heartbeat in small animals contributes to understanding structural and functional changes during heart development. Optical coherence microscopy (OCM) has been demonstrated to be capable of imaging small animal hearts with high spatial resolution and ultrahigh imaging speed. The high image contrast and noninvasive properties make OCM ideal for performing longitudinal studies without requiring tissue dissections or staining. Drosophila has been widely used as a model organism in cardiac developmental studies due to its high number of orthologous human disease genes, its similarity of molecular mechanisms and genetic pathways with vertebrates, its short life cycle, and its low culture cost. Here, the experimental protocols are described for the preparation of Drosophila and optical imaging of the heartbeat with a custom OCM system throughout the life cycle of the specimen. By following the steps provided in this report, transverse M-mode and 3D OCM images can be acquired to conduct longitudinal studies of the Drosophila cardiac morphology and function. The en face and axial sectional OCM images and the heart rate (HR) and cardiac activity period (CAP) histograms, were also shown to analyze the heart structural changes and to quantify the heart dynamics during Drosophila metamorphosis, combined with the videos constructed with M-mode images to trace cardiac activity intuitively. Due to the genetic similarity between Drosophila and vertebrates, longitudinal study of heart morphology and dynamics in fruit flies could help reveal the origins of human heart diseases. The protocol here would provide an effective method to perform a wide range of studies to understand the mechanisms of cardiac diseases in humans.
Collapse
Affiliation(s)
- Jing Men
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University
| | - Jason Jerwick
- Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University
| | - Penghe Wu
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University
| | - Mingming Chen
- Department of Electrical and Computer Engineering, Lehigh University; State Key Laboratory of Software Engineering, Wuhan University
| | - Aneesh Alex
- Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University
| | - Yutao Ma
- State Key Laboratory of Software Engineering, Wuhan University
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School
| | - Chao Zhou
- Bioengineering Program, Lehigh University; Center for Photonics and Nanoelectronics, Lehigh University; Department of Electrical and Computer Engineering, Lehigh University;
| |
Collapse
|
35
|
Raghunathan R, Singh M, Dickinson ME, Larin KV. Optical coherence tomography for embryonic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50902. [PMID: 27228503 PMCID: PMC4881290 DOI: 10.1117/1.jbo.21.5.050902] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3517 Cullen Boulevard, Room 2027, Houston, Texas 77204-5060, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza- BCM335, Houston, Texas 77030, United States
| |
Collapse
|