1
|
Mafakher L, Rismani E, Teimoori-Toolabi L. Evolutionary and Structural Assessment of the Human Secreted Frizzled-Related Protein (SFRP) Family. J Mol Evol 2025:10.1007/s00239-025-10249-5. [PMID: 40372458 DOI: 10.1007/s00239-025-10249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/19/2025] [Indexed: 05/16/2025]
Abstract
It has been observed that five members of Secreted Frizzled-Related proteins act as antagonists for the Wnt signaling pathway in humans. These glycoproteins have two functional domains: the cysteine-rich domain (CRD) and the netrin-related domain (NTR), with a completely conserved disulfide bond in the CRD domain. Phylogenetic analysis revealed that this protein family can be divided into two subgroups, SFRP1/SFRP2/SFRP5 versus SFRP3/SFRP4. The SFRP3/SFRP4 group was found to be more closely related to the sponge Lubomirskia baicalensis, which is believed to represent the ancient origin of SFRPs. The model evaluation demonstrated high-quality conformational homology modeling in the predicted Human SFRP models compared to the Sizzled crystal structure of Xenopus laevis. The molecular dynamic simulation illustrated that SFRP1 and SFRP2 exhibit the most stable structures during 100 ns of simulation. Multiple sequence alignment and conservation analysis of Human SFRPs showed that the CRD domain of SFRPs is more conserved than the NTR domain. The docking result indicated that SFRP3 has the highest binding affinity to Wnt3, while SFRP1 and SFRP5 have the lowest. Despite the lower affinity of SFRP1/SFRP5 for Wnt3, a higher positive charge in their NTR domains leads to an increase in their local concentration near the secreting cells and an enhancement in the antagonistic activity. In contrast, SFRP3/SFRP4 can act as an antagonist in distant cells due to less positive regions in their NTR domain and weakly binding to the heparin of the intercellular matrix.
Collapse
Affiliation(s)
- Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69 th Pasteur Street, Kargar Avenue, Tehran, 1316943551, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69 th Pasteur Street, Kargar Avenue, Tehran, 1316943551, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69 th Pasteur Street, Kargar Avenue, Tehran, 1316943551, Iran.
| |
Collapse
|
2
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2025; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
3
|
Toms M, Heppell C, Owen N, Malka S, Moosajee M, Genomics England Research Consortium. A Novel De Novo Missense Variant in Netrin-1 (NTN1) Associated With Chorioretinal Coloboma, Sensorineural Hearing Loss and Polydactyly. Clin Genet 2025; 107:292-299. [PMID: 39648562 PMCID: PMC11790524 DOI: 10.1111/cge.14651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) comprise a highly heterogeneous spectrum of congenital ocular malformations with an estimated incidence of 1 in 5000 to 1 in 30 000 live births. Although there is likely to be a genetic component in the majority of cases, many remain without a molecular diagnosis. Netrin-1 was previously identified as a mediator of optic fissure closure from transcriptome analyses of chick and zebrafish and was shown to cause ocular coloboma when knocked out in both mouse and zebrafish. Here, we report the first patient with chorioretinal coloboma and microphthalmia harbouring a novel heterozygous likely pathogenic NTN1 missense variant, c.1483T>A p.(Tyr495Asn), validating a conserved gene function in ocular development. In addition, the patient displayed bilateral sensorineural hearing loss which was investigated by examining the sensory hair cells of ntn1a morphant zebrafish, suggesting a role for netrin-1 in hair cell development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and DiseaseUCL Institute of OphthalmologyLondonUK
- The Francis Crick InstituteLondonUK
| | - Cara Heppell
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | - Nicholas Owen
- Development, Ageing and DiseaseUCL Institute of OphthalmologyLondonUK
| | - Samantha Malka
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | - Mariya Moosajee
- Development, Ageing and DiseaseUCL Institute of OphthalmologyLondonUK
- The Francis Crick InstituteLondonUK
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| | | |
Collapse
|
4
|
Wong Y, Rosa BA, Becker L, Camberis M, LeGros G, Zhan B, Bottazzi ME, Fujiwara RT, Ritmejeryte E, Laha T, Chaiyadet S, Taweethavonsawat P, Brindley PJ, Bracken BK, Giacomin PR, Mitreva M, Loukas A. Proteomic characterization and comparison of the infective and adult life stage secretomes from Necator americanus and Ancylostoma ceylanicum. PLoS Negl Trop Dis 2025; 19:e0012780. [PMID: 39832284 PMCID: PMC11745416 DOI: 10.1371/journal.pntd.0012780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance. Subunit vaccines based on proteins excreted and secreted (ES) by hookworms that reduce worm numbers and associated disease burden are a promising management strategy to overcome these limitations. However, studies on the ES proteomes of hookworms have mainly described proteins from the adult life stage which may preclude the opportunity to target the infective larva. Here, we employed high resolution mass spectrometry to identify 103 and 57 ES proteins from the infective third larvae stage (L3) as well as 106 and 512 ES proteins from the adult N. americanus and A. ceylanicum respectively. Comparisons between these developmental stages identified 91 and 41 proteins uniquely expressed in the L3 ES products of N. americanus and A. ceylanicum, respectively. We characterized these proteins based on functional annotation, KEGG pathway analysis, InterProScan signature and gene ontology. We also performed reciprocal BLAST analysis to identify orthologs across species for both the L3 and adult stages and identified five orthologous proteins in both life stages and 15 proteins that could be detected only in the L3 stage of both species. Last, we performed a three-way reciprocal BLAST on the L3 proteomes from both hookworm species together with a previously reported L3 proteome from the rodent hookworm Nippostrongylus brasiliensis, and identified eight L3 proteins that could be readily deployed for testing using well established rodent models. This novel characterization of L3 proteins and taxonomic conservation across hookworm species provides a raft of potential candidates for vaccine discovery for prevention of hookworm infection and disease.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Australia
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Luke Becker
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham LeGros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo T. Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edita Ritmejeryte
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Bethany K. Bracken
- Charles River Analytics, Cambridge, Massachusetts, United States of America
| | - Paul R. Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| |
Collapse
|
5
|
Qin R, Li S, Wu B, Lin R, Yuan Y. Expression and Purification of ADAMTSL5 in E. coli and Validation of Activity in Psoriasis Serum. Immun Inflamm Dis 2024; 12:e70100. [PMID: 39670545 PMCID: PMC11638882 DOI: 10.1002/iid3.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
PURPOSE A disintegrin and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5), a protein linked to psoriasis, was obtained by prokaryotic expression and purification for potential utilization as a new auxiliary diagnostic marker for psoriasis. It was subsequently applied in psoriasis research. EXPERIMENTAL DESIGN The designed ADAMTSL5 gene was inserted into the pET-30a (+) vector and expressed in the BL21 (DE3) strain as a fusion protein. Following this, the recombinant ADAMTSL5 protein was purified using affinity chromatography. Purified ADAMTSL5, obtained in conjunction with magnetic beads, was directly employed in both psoriasis patients and healthy individuals. RESULTS The results indicated that the molecular weight of the ADAMTSL5 protein obtained through prokaryotic expression and purification was approximately 27 kDa, with a protein concentration of 0.96 mg/mL. Analysis of anti-ADAMTSL5 levels in the serum of both psoriasis patients and healthy individuals using magnetic microparticle chemiluminescence demonstrated that anti-ADAMTSL5 levels in the serum of psoriasis patients surpassed those of healthy individuals, showing a significant difference with p < 0.001. CONCLUSIONS The experimental findings presented here may contribute to the utilization of ADAMTSL5 as a marker for diagnosing psoriasis, offering novel insights and experimental avenues for further investigation.
Collapse
Affiliation(s)
- Ru Qin
- Department of Clinical MedicineGuilin Medical UniversityGuilinGuangxiChina
| | - Shangyang Li
- Department of Laboratory MedicineThe People's Hospital of Guangxi Zhuang Autonomous Region,The Guangxi Key Laboratory of intelligent precision medicineNanningGuangxi Zhuang Autonomous RegionChina
| | - Boheng Wu
- Department of Laboratory MedicineThe People's Hospital of Guangxi Zhuang Autonomous Region,The Guangxi Key Laboratory of intelligent precision medicineNanningGuangxi Zhuang Autonomous RegionChina
| | - Ruilan Lin
- Department of Clinical MedicineGuilin Medical UniversityGuilinGuangxiChina
| | - Yulin Yuan
- Department of Laboratory MedicineThe People's Hospital of Guangxi Zhuang Autonomous Region,The Guangxi Key Laboratory of intelligent precision medicineNanningGuangxi Zhuang Autonomous RegionChina
| |
Collapse
|
6
|
Thomas MJ, Xu H, Wang A, Beg MA, Sorci-Thomas MG. PCPE2: Expression of multifunctional extracellular glycoprotein associated with diverse cellular functions. J Lipid Res 2024; 65:100664. [PMID: 39374805 PMCID: PMC11567036 DOI: 10.1016/j.jlr.2024.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
Procollagen C-endopeptidase enhancer 2, known as PCPE2 or PCOC2 (gene name, PCOLCE2) is a glycoprotein that resides in the extracellular matrix, and is similar in domain organization to PCPE1/PCPE, PCOC1 (PCOLCE1/PCOLCE). Due to the many similarities between the two related proteins, PCPE2 has been assumed to have biological functions similar to PCPE. PCPE is a well-established enhancer of procollagen processing activating the enzyme, BMP-1. However, reports show that PCPE2 has a strikingly different tissue expression profile compared to PCPE. With that in mind and given the paucity of published studies on PCPE2, this review examines the current literature citing PCPE2 and its association with specific cell types and signaling pathways. Additionally, this review will present a brief history of PCPE2's discovery, highlighting structural and functional similarities and differences compared to PCPE. Considering the widespread use of RNA sequencing techniques to examine associations between cell-specific gene expression and disease states, we will show that PCPE2 is repeatedly found as a differentially regulated gene (DEG) significantly associated with a number of cellular processes, well beyond the scope of procollagen fibril processing.
Collapse
Affiliation(s)
- Michael J Thomas
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hao Xu
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela Wang
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mirza Ahmar Beg
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary G Sorci-Thomas
- Division of Endocrinology and Molecular Medicine, Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Research Center, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Dorta S, Alexandre-Silva V, Popolin CP, de Sousa DB, Grigoli MM, Pelegrini LNDC, Manzine PR, Camins A, Marcello E, Endres K, Cominetti MR. ADAM10 isoforms: Optimizing usage of antibodies based on protein regulation, structural features, biological activity and clinical relevance to Alzheimer's disease. Ageing Res Rev 2024; 101:102464. [PMID: 39173916 DOI: 10.1016/j.arr.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
A Disintegrin and Metalloproteinase 10 (ADAM10) is a crucial transmembrane protein involved in diverse cellular processes, including cell adhesion, migration, and proteolysis. ADAM10's ability to cleave over 100 substrates underscores its significance in physiological and pathological contexts, particularly in Alzheimer's disease (AD). This review comprehensively examines ADAM10's multifaceted roles, highlighting its critical function in the non-amyloidogenic processing of the amyloid precursor protein (APP), which mitigates amyloid beta (Aβ) production, a critical factor in AD development. We summarize the regulation of ADAM10 at multiple levels: transcriptional, translational, and post-translational, revealing the complexity and responsiveness of its expression to various cellular signals. A standardized nomenclature for ADAM10 isoforms is proposed to improve clarity and consistency in research, facilitating better comparison and replication of findings across studies. We address the challenges in detecting ADAM10 isoforms using antibodies, advocating for standardized detection protocols to resolve discrepancies in results from different biological matrices. By highlighting these issues, this review underscores the potential of ADAM10 as a biomarker for early diagnosis and a therapeutic target in AD. By consolidating current knowledge on ADAM10's regulation and function, we aim to provide insights that will guide future research and therapeutic strategies in the AD context.
Collapse
Affiliation(s)
- Sabrina Dorta
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | | | | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Li R, Liu S, Yeo K, Edwards S, Li MY, Santos R, Rad SK, Wu F, Maddern G, Young J, Tomita Y, Townsend A, Fenix K, Hauben E, Price T, Smith E. Diagnostic and prognostic significance of circulating secreted frizzled-related protein 5 in colorectal cancer. Cancer Med 2024; 13:e7352. [PMID: 38872420 PMCID: PMC11176579 DOI: 10.1002/cam4.7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Secreted Frizzled-Related Protein 5 (SFRP5) modulates Wnt signalling pathways, affecting diverse biological processes. We assessed the diagnostic and prognostic value of circulating SFRP5 (cSFRP5) in colorectal cancer (CRC) METHODS: Plasma cSFRP5 concentrations were measured using enzyme-linked immunosorbent assay (ELISA) in healthy donors (n = 133), individuals diagnosed with CRC (n = 449), colorectal polyps (n = 85), and medical conditions in other organs including cancer, inflammation, and benign states (n = 64). RESULTS Patients with CRC, polyps, and other conditions showed higher cSFRP5 levels than healthy individuals (p < 0.0001). Receiver operating characteristic curves comparing healthy donors with medical conditions, polyps and CRC were 0.814 (p < 0.0001), 0.763 (p < 0.0001) and 0.762 (p < 0.0001), respectively. In CRC, cSFRP5 correlated with patient age (p < 0.0001), tumour stage (p < 0.0001), and histological differentiation (p = 0.0273). Levels, adjusted for patient age, sex, plasma age and collection institution, peaked in stage II versus I (p < 0.0001), III (p = 0.0002) and IV (p < 0.0001), were lowest in stage I versus III (p = 0.0002) and IV (p = 0.0413), with no difference between stage III and IV. Elevated cSFRP5 levels predicted longer overall survival in stages II-III CRC (univariate: HR 1.82, 95% CI: 1.02-3.26, p = 0.024; multivariable: HR 2.34, 95% CI: 1.12-4.88, p = 0.015). CONCLUSION This study confirms cSFRP5 levels are elevated in CRC compared to healthy control and reveals a correlation between elevated cSFRP5 and overall survival in stages II-III disease.
Collapse
Affiliation(s)
- Runhao Li
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saifei Liu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kenny Yeo
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Suzanne Edwards
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Man Ying Li
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Ryan Santos
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Viral Immunology Group, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia
| | - Sima Kianpour Rad
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Fangmeinuo Wu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Guy Maddern
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Joanne Young
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Amanda Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Kevin Fenix
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Ehud Hauben
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Timothy Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| |
Collapse
|
9
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
10
|
Wang B, Zhong X, Fields L, Lu H, Zhu Z, Li L. Structural Proteomic Profiling of Cerebrospinal Fluids to Reveal Novel Conformational Biomarkers for Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:459-471. [PMID: 36745855 PMCID: PMC10276618 DOI: 10.1021/jasms.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alzheimer's disease (AD) is the most common representation of dementia, with brain pathological hallmarks of protein abnormal aggregation, such as with amyloid beta and tau protein. It is well established that posttranslational modifications on tau protein, particularly phosphorylation, increase the likelihood of its aggregation and subsequent formation of neurofibrillary tangles, another hallmark of AD. As additional misfolded proteins presumably exist distinctly in AD disease states, which would serve as potential source of AD biomarkers, we used limited proteolysis-coupled with mass spectrometry (LiP-MS) to probe protein structural changes. After optimizing the LiP-MS conditions, we further applied this method to human cerebrospinal fluid specimens collected from healthy control, mild cognitive impairment (MCI), and AD subject groups to characterize proteome-wide misfolding tendencies as a result of disease progression. The fully tryptic peptides embedding LiP sites were compared with the half-tryptic peptides generated from internal cleavage of the same region to determine any structural unfolding or misfolding. We discovered hundreds of significantly up- and down-regulated peptides associated with MCI and AD indicating their potential structural changes in AD progression. Moreover, we detected 53 structurally changed regions in 12 proteins with high confidence between the healthy control and disease groups, illustrating the functional relevance of these proteins with AD progression. These newly discovered conformational biomarker candidates establish valuable future directions for exploring the molecular mechanism of designing therapeutic targets for AD.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
11
|
Lai HY, Chiu CC, Kuo YH, Tsai HH, Wu LC, Tseng WH, Liu CL, Hsing CH, Huang SK, Li CF. High Stromal SFRP2 Expression in Urothelial Carcinoma Confers an Unfavorable Prognosis. Front Oncol 2022; 12:834249. [PMID: 35372028 PMCID: PMC8965759 DOI: 10.3389/fonc.2022.834249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) patients often bear clinical and genetic heterogeneity, which may differ in management and prognosis. Especially, patients with advanced/metastatic UC generally have a poor prognosis and survive for only few months. The Wnt/β-catenin signaling is found to be highly activated in several cancers, including UC. However, accumulated evidence has shown discordance between the Wnt/β-catenin signaling and UC carcinogenesis. Accordingly, we aim to get a better understanding of the molecular characterization of UC, focusing on the Wnt signaling, which may add value to guiding management more precisely. PATIENTS AND METHODS Clinical data and pathological features were retrospectively surveyed. The correlations of secreted Frizzled-related protein 2 (SFRP2) immunoexpression with clinicopathological features were analyzed by Pearson's chi-square test. The Kaplan-Meier method with a log-rank test was employed to plot survival curves. All significant features from the univariate analysis were incorporated into the Cox regression model for multivariate analysis. RESULTS Following data mining on a transcriptome dataset (GSE31684), we identified that 8 transcripts in relation to the Wnt signaling pathway (GO: 0016055) were significantly upregulated in advanced/metastatic bladder tumors. Among these transcripts, the SFRP2 level showed the most significant upregulation. Additionally, as SFRP2 is a putative Wnt inhibitor and may be expressed by stroma, we were interested in examining the immunoexpression and clinical relevance of stromal and tumoral SFRP2 in our urothelial carcinoma cohorts containing 295 urinary bladder UC (UBUC) and 340 upper urinary tract UC (UTUC) patients. We observed that high SFRP2 expression in stroma but not in tumors is significantly linked to aggressive UC features, including high tumor stage and histological grade, positive nodal metastasis, the presence of vascular and perineural invasion, and high mitotic activity in UBUC and UTUC. Moreover, high stromal SFRP2 expression significantly and independently predicted worse clinical outcomes in UBUC and UTUC. Utilizing bioinformatic analysis, we further noticed that stromal SFRP2 may link epithelial-mesenchymal transition (EMT) to UC progression. CONCLUSION Collectively, these results imply that stromal SFRP2 may exert oncogenic function beyond its Wnt antagonistic ability, and stromal SFRP2 expression can provide prognostic and therapeutic implications for UC patients.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | | | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Li-Ching Wu
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Hsin Tseng
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Division of Uro-Oncology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Steven K. Huang
- Division of Urology, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chien-Feng Li
- Center for Precision Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Wu M, Jia BB, Li MF. Complement C3 and Activated Fragment C3a Are Involved in Complement Activation and Anti-Bacterial Immunity. Front Immunol 2022; 13:813173. [PMID: 35281048 PMCID: PMC8913944 DOI: 10.3389/fimmu.2022.813173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
In the complement system, C3 is a central component in complement activation, immune defense and immune regulation. In all pathways of complement activation, the pivotal step is conversion of the component C3 to C3b and C3a, which is responsible to eliminate the pathogen and opsonization. In this study, we examined the immunological properties of C3 and its activated fragment C3a from Japanese flounder (Paralichthys olivaceus) (PoC3 and PoC3a), a teleost species with important economic value. PoC3 is composed of 1655 amino acid residues, contains the six domains and highly conserved GCGEQ sequence of the C3 family. We found that PoC3 expression occurred in nine different tissues and was upregulated by bacterial challenge. In serum, PoC3 was able to bind to a broad-spectrum of bacteria, and purified native PoC3 could directly kill specific pathogen. When PoC3 expression in Japanese flounder was knocked down by siRNA, serum complement activity was significantly decreased, and bacterial replication in fish tissues was significantly increased. Recombinant PoC3a (rPoC3a) exhibited apparent binding capacities to bacteria and Japanese flounder peripheral blood leukocytes (PBL) and induce chemotaxis of PBL. Japanese flounder administered rPoC3a exhibited enhanced resistance against bacterial infection. Taken together, these results indicate that PoC3 is likely a key factor of complement activation, and PoC3 and PoC3a are required for optimal defense against bacterial infection in teleost.
Collapse
Affiliation(s)
- Meng Wu
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bei-bei Jia
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo-fei Li
- Chinese Academy of Sciences (CAS) & Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Mo-fei Li,
| |
Collapse
|
13
|
Bonneel M, Hennebert E, Aranko AS, Hwang DS, Lefevre M, Pommier V, Wattiez R, Delroisse J, Flammang P. Molecular mechanisms mediating stiffening in the mechanically adaptable connective tissues of sea cucumbers. Matrix Biol 2022; 108:39-54. [DOI: 10.1016/j.matbio.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
|
14
|
Lagoutte P, Bettler E, Vadon-Le Goff S, Moali C. Procollagen C-proteinase enhancer-1 (PCPE-1), a potential biomarker and therapeutic target for fibrosis. Matrix Biol Plus 2021; 11:100062. [PMID: 34435180 PMCID: PMC8377038 DOI: 10.1016/j.mbplus.2021.100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The correct balance between collagen synthesis and degradation is essential for almost every aspect of life, from development to healthy aging, reproduction and wound healing. When this balance is compromised by external or internal stress signals, it very often leads to disease as is the case in fibrotic conditions. Fibrosis occurs in the context of defective tissue repair and is characterized by the excessive, aberrant and debilitating deposition of fibril-forming collagens. Therefore, the numerous proteins involved in the biosynthesis of fibrillar collagens represent a potential and still underexploited source of therapeutic targets to prevent fibrosis. One such target is procollagen C-proteinase enhancer-1 (PCPE-1) which has the unique ability to accelerate procollagen maturation by BMP-1/tolloid-like proteinases (BTPs) and contributes to trigger collagen fibrillogenesis, without interfering with other BTP functions or the activities of other extracellular metalloproteinases. This role is achieved through a fine-tuned mechanism of action that is close to being elucidated and offers promising perspectives for drug design. Finally, the in vivo data accumulated in recent years also confirm that PCPE-1 overexpression is a general feature and early marker of fibrosis. In this review, we describe the results which presently support the driving role of PCPE-1 in fibrosis and discuss the questions that remain to be solved to validate its use as a biomarker or therapeutic target.
Collapse
Key Words
- ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs
- AS, aortic valve stenosis
- BMP, bone morphogenetic protein
- Biomarker
- CKD, chronic kidney disease
- CP, C-propeptide
- CUB, complement, Uegf, BMP-1
- CVD, cardiovascular disease
- Collagen
- DMD, Duchenne muscular dystrophy
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- Fibrillogenesis
- Fibrosis
- HDL, high-density lipoprotein
- HSC, hepatic stellate cell
- HTS, hypertrophic scar
- IPF, idiopathic pulmonary fibrosis
- LDL, low-density lipoprotein
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- NASH, nonalcoholic steatohepatitis
- NTR, netrin
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A)-binding protein nuclear 1
- PCP, procollagen C-proteinase
- PCPE, procollagen C-proteinase enhancer
- PNP, procollagen N-proteinase
- Proteolysis
- SPC, subtilisin proprotein convertase
- TGF-β, transforming growth-factor β
- TIMP, tissue inhibitor of metalloproteinases
- TSPN, thrombospondin-like N-terminal
- Therapeutic target
- eGFR, estimated glomerular filtration rate
- mTLD, mammalian tolloid
- mTLL, mammalian tolloid-like
Collapse
Affiliation(s)
- Priscillia Lagoutte
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Emmanuel Bettler
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Catherine Moali
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| |
Collapse
|
15
|
Buitrago G, Pickering D, Ruscher R, Cobos Caceres C, Jones L, Cooper M, Van Waardenberg A, Ryan S, Miles K, Field M, Dredge K, Daly NL, Giacomin PR, Loukas A. A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis. Transl Res 2021; 232:88-102. [PMID: 33676036 DOI: 10.1016/j.trsl.2021.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
The symbiotic relationships shared between humans and their gastrointestinal parasites present opportunities to discover novel therapies for inflammatory diseases. A prime example of this phenomenon is the interaction of humans and roundworms such as the hookworm, Necator americanus. Epidemiological observations, animal studies and clinical trials using experimental human hookworm infection show that hookworms can suppress inflammation in a safe and well-tolerated way, and that the key to their immunomodulatory properties lies within their secreted proteome. Herein we describe the identification of 2 netrin domain-containing proteins from the N. americanus secretome, and explore their potential in treating intestinal inflammation in mouse models of ulcerative colitis. One of these proteins, subsequently named Na-AIP-1, was effective at suppressing disease when administered prophylactically in the acute TNBS-induced model of colitis. This protective effect was validated in the more robust CD4 T cell transfer model of chronic colitis, where prophylactic Na-AIP-1 reduced T-cell-dependent type-1 cytokine responses in the intestine and the associated intestinal pathology. Mechanistic studies revealed that depletion of CD11c+ cells abrogated the protective anticolitic effect of Na-AIP-1. Next generation sequencing of colon tissue in the T-cell transfer model of colitis revealed that Na-AIP-1 induced a transcriptomic profile associated with the downregulation of metabolic and signaling pathways involved in type-1 inflammation, notably TNF. Finally, co-culture of Na-AIP-1 with a human monocyte-derived M1 macrophage cell line resulted in significantly reduced secretion of TNF. Na-AIP-1 is now a candidate for clinical development as a novel therapeutic for the treatment of human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Darren Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Claudia Cobos Caceres
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Linda Jones
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Martha Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ashley Van Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Kim Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Keith Dredge
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
16
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
17
|
Guan H, Zhang J, Luan J, Xu H, Huang Z, Yu Q, Gou X, Xu L. Secreted Frizzled Related Proteins in Cardiovascular and Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:712217. [PMID: 34489867 PMCID: PMC8417734 DOI: 10.3389/fendo.2021.712217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.
Collapse
Affiliation(s)
- Hua Guan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Jin Zhang
- Department of Preventive Medicine, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jing Luan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Zhenghao Huang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| | - Lixian Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| |
Collapse
|
18
|
van Loon K, Huijbers EJM, Griffioen AW. Secreted frizzled-related protein 2: a key player in noncanonical Wnt signaling and tumor angiogenesis. Cancer Metastasis Rev 2020; 40:191-203. [PMID: 33140138 PMCID: PMC7897195 DOI: 10.1007/s10555-020-09941-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Secreted frizzled-related proteins (SFRP) are glycoproteins containing a so-called frizzled-like cysteine-rich domain. This domain enables them to bind to Wnt ligands or frizzled (FzD) receptors, making potent regulators of Wnt signaling. As Wnt signaling is often altered in cancer, it is not surprising that Wnt regulators such as SFRP proteins are often differentially expressed in the tumor microenvironment, both in a metastatic and non-metastatic setting. Indeed, SFRP2 is shown to be specifically upregulated in the tumor vasculature of several types of cancer. Several studies investigated the functional role of SFRP2 in the tumor vasculature, showing that SFRP2 binds to FzD receptors on the surface of tumor endothelial cells. This activates downstream Wnt signaling and which is, thereby, stimulating angiogenesis. Interestingly, not the well-known canonical Wnt signaling pathway, but the noncanonical Wnt/Ca2+ pathway seems to be a key player in this event. In tumor models, the pro-angiogenic effect of SFRP2 could be counteracted by antibodies targeting SFRP2, without the occurrence of toxicity. Since tumor angiogenesis is an important process in tumorigenesis and metastasis formation, specific tumor endothelial markers such as SFRP2 show great promise as targets for anti-cancer therapies. This review discusses the role of SFRP2 in noncanonical Wnt signaling and tumor angiogenesis, and highlights its potential as anti-angiogenic therapeutic target in cancer.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Bruikman CS, Vreeken D, Zhang H, van Gils MJ, Peter J, van Zonneveld AJ, Hovingh GK, van Gils JM. The identification and function of a Netrin-1 mutation in a pedigree with premature atherosclerosis. Atherosclerosis 2020; 301:84-92. [PMID: 32151395 DOI: 10.1016/j.atherosclerosis.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Neuroimmune guidance cues have been shown to play a role in atherosclerosis, but their exact role in human pathophysiology is largely unknown. In the current study, we investigated the role of a c.1769G > T variant in Netrin-1 in (premature) atherosclerosis. METHODS To determine the effect of the genetic variation, purified Netrin-1, either wild type (wtNetrin-1) or the patient observed variation (mutNetrin-1), was used for migration, adhesion, endothelial barrier function and bindings assays. Expression of adhesion molecules and transcription proteins was analyzed by RT-PCR, Western blot or ELISA. To further delineate how mutNetrin-1 mediates its effect on cell migration, lenti-viral knockdown of UNC5B or DCC was used. RESULTS Bindings assays revealed a decreased binding capacity of mutNetrin-1 to the receptors UNC5B, DCC and β3-integrin and an increased binding capacity to neogenin, heparin and heparan sulfate compared to wtNetrin-1. Exposure of endothelial cells to mutNetrin-1 resulted in enhanced monocyte adhesion and expression of IL-6, CCL2 and ICAM-1 compared to wtNetrin-1. In addition, mutNetrin-1 lacks the inhibitory effect on the NF-κB pathway that is observed for wtNetrin-1. Moreover, the presence of mutNetrin-1 diminished migration of macrophages and smooth muscle cells. Importantly, UNC5B or DCC specific knockdown showed that mutNetrin-1 is unable to act through DCC resulting in enhanced inhibition of migration. CONCLUSIONS Our data demonstrates that mutNetrin-1 fails to exert anti-inflammatory effects on endothelial cells and more strongly blocks macrophage migration compared to wtNetrin-1, suggesting that the carriers of this genetic molecular variant may well be at risk for premature atherosclerosis.
Collapse
Affiliation(s)
- Caroline S Bruikman
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Dianne Vreeken
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Huayu Zhang
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jorge Peter
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anton Jan van Zonneveld
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands
| | - G Kees Hovingh
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janine M van Gils
- Leiden University Medical Center, Department of Internal Medicine (Nephrology), Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden, the Netherlands.
| |
Collapse
|
20
|
Sunkar S, Aravind M, Reddy SSC, Neeharika D. Genetic variations and their impact on protein function: Study on deleterious nsSNPs in Cancer related genes of Wnt pathway. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
21
|
A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010069. [PMID: 31936127 PMCID: PMC7016707 DOI: 10.3390/genes11010069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.
Collapse
|
22
|
Claudel M, Jouzeau JY, Cailotto F. Secreted Frizzled-related proteins (sFRPs) in osteo-articular diseases: much more than simple antagonists of Wnt signaling? FEBS J 2019; 286:4832-4851. [PMID: 31677330 DOI: 10.1111/febs.15119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Osteo-articular diseases are characterized by a dysregulation of joint and/or bone homeostasis. These include diseases affecting the joints originally, such as osteoarthritis and rheumatoid arthritis, or the bone, such as osteoporosis. Inflammation and the involvement of Wingless-related integration site (Wnt) signaling pathways are key pathophysiological features of these diseases resulting in tissue degradation by matrix-degrading enzymes, namely matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTs), secreted by the joint resident cells and/or by infiltrating immune cells. Activation of Wnt signaling pathways is modulated by different families of proteins, including Dickkopfs and the secreted Frizzled-related proteins (sFRPs). The sFRP family is composed of five secreted glycoproteins in mammals that regulate Wnt signaling in the extracellular compartment. Indeed, sFRPs are able to bind both to the soluble Wnt ligands and to their cell membrane receptors, the Frizzled proteins. Their expression profile is altered in osteo-articular diseases, suggesting that they could account for the abnormal activation of Wnt pathways. In the present article, we review how sFRPs are more than simple antagonists of the Wnt signaling pathways and discuss their pathophysiological relevance in the context of osteo-articular diseases. We detail their Wnt-dependent and their Wnt-independent roles, with a particular emphasis on their ability to modulate the inflammatory response and extracellular matrix (ECM) remodeling. We also discuss their potential therapeutic use with a focus on bone remodeling, osteo-articular cancers, and tissue engineering.
Collapse
Affiliation(s)
- Marion Claudel
- UMR 7365 CNRS-UL IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-Les-Nancy, France
| | - Jean-Yves Jouzeau
- UMR 7365 CNRS-UL IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-Les-Nancy, France
| | - Frédéric Cailotto
- UMR 7365 CNRS-UL IMoPA, Biopôle de l'Université de Lorraine, Vandoeuvre-Les-Nancy, France
| |
Collapse
|
23
|
Analysis of Procollagen C-Proteinase Enhancer-1/Glycosaminoglycan Binding Sites and of the Potential Role of Calcium Ions in the Interaction. Int J Mol Sci 2019; 20:ijms20205021. [PMID: 31658765 PMCID: PMC6829435 DOI: 10.3390/ijms20205021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we characterize the interactions between the extracellular matrix protein, procollagen C-proteinase enhancer-1 (PCPE-1), and glycosaminoglycans (GAGs), which are linear anionic periodic polysaccharides. We applied molecular modeling approaches to build a structural model of full-length PCPE-1, which is not experimentally available, to predict GAG binding poses for various GAG lengths, types and sulfation patterns, and to determine the effect of calcium ions on the binding. The computational data are analyzed and discussed in the context of the experimental results previously obtained using surface plasmon resonance binding assays. We also provide experimental data on PCPE-1/GAG interactions obtained using inhibition assays with GAG oligosaccharides ranging from disaccharides to octadecasaccharides. Our results predict the localization of GAG-binding sites at the amino acid residue level onto PCPE-1 and is the first attempt to describe the effects of ions on protein-GAG binding using modeling approaches. In addition, this study allows us to get deeper insights into the in silico methodology challenges and limitations when applied to GAG-protein interactions.
Collapse
|
24
|
Parenté A, Di Meo F, Lapeyronie E, Al Mansi M, Delourme D, Pélissier P, Brémaud L, Trouillas P, Blanquet V. GASP-1 and GASP-2, two closely structurally related proteins with a functional duality in antitrypsin inhibition specificity: a mechanistic point of view. FEBS J 2019; 287:909-924. [PMID: 31556966 DOI: 10.1111/febs.15072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/05/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
While GASP-1 and GASP-2 proteins are known to regulate myogenesis by inhibiting myostatin, their structural organization suggests a putative role as multivalent protease inhibitors controlling different protease activities. In this study, we show the noncompetitive and competitive antitrypsin activities of the full-length GASP-1 and GASP-2 proteins, respectively, by using a bacterial system production and in vitro enzymatic experiments. The role of the second Kunitz domain in this functional duality is described by assessing the antitrypsin activity of GASP-1/2 chimeric proteins. Molecular dynamics simulations support the experimental data to rationalize differences in binding modes between trypsin and the GASP-1 and GASP-2 second Kunitz domains. A new inhibition mechanism was evidenced for the second Kunitz domain of GASP-2, in which the conventional cationic residue of trypsin inhibitors was substituted by the strongly interacting glutamine residue.
Collapse
Affiliation(s)
- Alexis Parenté
- University of Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, France
| | | | - Eric Lapeyronie
- University of Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, France
| | | | - Didier Delourme
- University of Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, France
| | | | - Laure Brémaud
- University of Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, France
| | - Patrick Trouillas
- University of Limoges, INSERM, UMR 1248 IPPRITT, France.,RCPTM, Palacký University, Olomouc, Czech Republic
| | | |
Collapse
|
25
|
Gohar O, Weiss T, Wineman E, Kessler E. Ascorbic Acid Promotes Procollagen C‐Proteinase Enhancer 1 Expression, Secretion, and Cell Membrane Localization. Anat Rec (Hoboken) 2019; 303:1670-1679. [DOI: 10.1002/ar.24182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/31/2018] [Accepted: 01/18/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Ofra Gohar
- Tel Aviv University Sackler Faculty of MedicineMaurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center Tel‐Hashomer Israel
| | - Tali Weiss
- Tel Aviv University Sackler Faculty of MedicineMaurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center Tel‐Hashomer Israel
| | - Eitan Wineman
- Tel Aviv University Sackler Faculty of MedicineMaurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center Tel‐Hashomer Israel
| | - Efrat Kessler
- Tel Aviv University Sackler Faculty of MedicineMaurice and Gabriela Goldschleger Eye Research Institute, Sheba Medical Center Tel‐Hashomer Israel
| |
Collapse
|
26
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
27
|
Abstract
Jawed vertebrates (Gnathostomes) have 4 tissue inhibitors of metalloproteinases (TIMPs), multifunctional proteins that all inhibit members of the large matrix metalloproteinase (MMP) family but differ in their other roles, including the regulation of pro-MMP activation, cell growth, apoptosis and angiogenesis, and the structure of extracellular matrices (ECMs). Molecular phylogeny analyses indicate that vertebrate TIMP genes arose from an invertebrate ancestor through 3 successive duplications, possibly including 2 whole genome duplications, during early vertebrate phylogeny. TIMPs from invertebrates also inhibit metalloproteinases, bind to pro-MMPs, and contribute to ECM structures but are not orthologs of any particular vertebrate TIMP. The most ancient vertebrate superclass, the Agnatha (jawless fish), seems to provide a snapshot of a stage in TIMP evolution preceding the third gene duplication. This review examines the structures of TIMPs from different vertebrate orders using information relating to the structural basis of their various functions. Provisional conclusions are that during their evolutionary divergence, various TIMPs lost inhibitory activity toward some metalloproteinases, specialized in effects on different pro-MMPs, and developed new interactions with discrete targets (including integrins and receptors), while recapitulating a role in ECM structure. The analysis is limited by the sparse information available regarding the functional properties of nonmammalian TIMPs.-Brew, K. Reflections on the evolution of the vertebrate tissue inhibitors of metalloproteinases.
Collapse
Affiliation(s)
- Keith Brew
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
28
|
Méneret A, Franz EA, Trouillard O, Oliver TC, Zagar Y, Robertson SP, Welniarz Q, Gardner RJM, Gallea C, Srour M, Depienne C, Jasoni CL, Dubacq C, Riant F, Lamy JC, Morel MP, Guérois R, Andreani J, Fouquet C, Doulazmi M, Vidailhet M, Rouleau GA, Brice A, Chédotal A, Dusart I, Roze E, Markie D. Mutations in the netrin-1 gene cause congenital mirror movements. J Clin Invest 2017; 127:3923-3936. [PMID: 28945198 DOI: 10.1172/jci95442] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.
Collapse
Affiliation(s)
- Aurélie Méneret
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Elizabeth A Franz
- Department of Psychology and fMRIotago, , University of Otago, Dunedin, New Zealand
| | - Oriane Trouillard
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Thomas C Oliver
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yvrick Zagar
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Quentin Welniarz
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - R J MacKinlay Gardner
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Cécile Gallea
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Myriam Srour
- Department of Neurology and Neurosurgery, and.,Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Christel Depienne
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Institut de Génétique et de Biologie moléculaire et cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine L Jasoni
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Caroline Dubacq
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Florence Riant
- AP-HP, Groupe hospitalier Lariboisière-Fernand Widal, Laboratoire de Génétique, Paris, France.,INSERM, UMR S740, Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Charles Lamy
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Marie-Pierre Morel
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Raphael Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Coralie Fouquet
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et Vieillissement, Paris, France
| | - Marie Vidailhet
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, and.,Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Fédération de Génétique, Département de Génétique et de Cytogénétique, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Emmanuel Roze
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - David Markie
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Delaney MA, Wan YW, Kim GE, Creighton CJ, Taylor MG, Masand R, Park A, Valdes C, Gibbons W, Liu Z, Anderson ML. A Role for Progesterone-Regulated sFRP4 Expression in Uterine Leiomyomas. J Clin Endocrinol Metab 2017; 102. [PMID: 28637297 PMCID: PMC5587057 DOI: 10.1210/jc.2016-4014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CONTEXT Despite progesterone's key role in uterine smooth muscle tumorigenesis, the mechanisms by which it promotes the growth of uterine leiomyomas remain poorly understood. OBJECTIVE The aim of this study was to identify gene products mediating the effects of progesterone in uterine leiomyomas. DESIGN Gene expression profiling was used to identify putative progesterone-regulated genes differentially expressed in uterine leiomyomas, which were then studied in vitro. METHODS Gene expression was comprehensively profiled with the Illumina WG BeadChip (version 2.6) and analyzed with a bioinformatic algorithm that integrates known protein-protein interactions. Genomic binding sites for progesterone receptor (PR) were interrogated by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). Small interfering RNA was used to study gene function in primary cell lines. RESULTS Our analyses identified secreted Frizzled-related protein 4 (sFRP4) as a key gene product functionally linked to PR activation whose expression was 2.6 times higher in leiomyomas than myometrium (n = 26, P < 0.01) and 2.5 times higher during the proliferative phase of the menstrual cycle (n = 26, P < 0.01). Direct binding between PR and sFRP4 promoter was observed by ChIP-qPCR. Robust overexpression of sFRP4 was also observed in primary cultures derived from leiomyoma. Progesterone preferentially inhibited sFRP4 expression and secretion in leiomyoma cultures in a dose-dependent manner sensitized by estradiol. Knockdown of sFRP4 inhibited proliferation and apoptosis in primary cultures of both myometrium and leiomyoma. CONCLUSIONS Overexpression of sFRP4 is a robust, progesterone-regulated feature of leiomyomas that increases smooth muscle proliferation. More work is needed to elucidate how progesterone's ability to modulate sFRP4 expression contributes to uterine smooth muscle tumorigenesis.
Collapse
Affiliation(s)
- Meaghan A. Delaney
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Ying-Wooi Wan
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Gyoung-Eun Kim
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Margaret G. Taylor
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Ramya Masand
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Andrew Park
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Cecilia Valdes
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - William Gibbons
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhandong Liu
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew L. Anderson
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
30
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
31
|
Gopal AA, Rappaz B, Rouger V, Martyn IB, Dahlberg PD, Meland RJ, Beamish IV, Kennedy TE, Wiseman PW. Netrin-1-Regulated Distribution of UNC5B and DCC in Live Cells Revealed by TICCS. Biophys J 2017; 110:623-634. [PMID: 26840727 DOI: 10.1016/j.bpj.2015.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/01/2023] Open
Abstract
Netrins are secreted proteins that direct cell migration and adhesion during development. Netrin-1 binds its receptors deleted in colorectal cancer (DCC) and the UNC5 homologs (UNC5A-D) to activate downstream signaling that ultimately directs cytoskeletal reorganization. To investigate how netrin-1 regulates the dynamic distribution of DCC and UNC5 homologs, we applied fluorescence confocal and total internal reflection fluorescence microscopy, and sliding window temporal image cross correlation spectroscopy, to measure time profiles of the plasma membrane distribution, aggregation state, and interaction fractions of fluorescently tagged netrin receptors expressed in HEK293T cells. Our measurements reveal changes in receptor aggregation that are consistent with netrin-1-induced recruitment of DCC-enhanced green fluorescent protein (EGFP) from intracellular vesicles to the plasma membrane. Netrin-1 also induced colocalization of coexpressed full-length DCC-EGFP with DCC-T-mCherry, a putative DCC dominant negative that replaces the DCC intracellular domain with mCherry, consistent with netrin-1-induced receptor oligomerization, but with no change in aggregation state with time, providing evidence that signaling via the DCC intracellular domain triggers DCC recruitment to the plasma membrane. UNC5B expressed alone was also recruited by netrin-1 to the plasma membrane. Coexpressed DCC and UNC5 homologs are proposed to form a heteromeric netrin-receptor complex to mediate a chemorepellent response. Application of temporal image cross correlation spectroscopy to image series of cells coexpressing UNC5B-mCherry and DCC-EGFP revealed a netrin-1-induced increase in colocalization, with both receptors recruited to the plasma membrane from preexisting clusters, consistent with vesicular recruitment and receptor heterooligomerization. Plasma membrane recruitment of DCC or UNC5B was blocked by application of the netrin-1 VI-V peptide, which fails to activate chemoattraction, or by pharmacological block of Src family kinase signaling, consistent with receptor recruitment requiring netrin-1-activated signaling. Our findings reveal a mechanism activated by netrin-1 that recruits DCC and UNC5B to the plasma membrane.
Collapse
Affiliation(s)
- Angelica A Gopal
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Benjamin Rappaz
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vincent Rouger
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Iain B Martyn
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Peter D Dahlberg
- Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel J Meland
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ian V Beamish
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Chemistry, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; McGill Program in Neuroengineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Physics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Ylivinkka I, Keski-Oja J, Hyytiäinen M. Netrin-1: A regulator of cancer cell motility? Eur J Cell Biol 2016; 95:513-520. [PMID: 27793362 DOI: 10.1016/j.ejcb.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 02/01/2023] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins, netrin-1 being the prototype and most investigated member of the family. The major physiological functions of netrin-1 lie in the regulation of axonal development as well as morphogenesis of different branched organs, by promoting the polarity of migratory/invasive front of the cell. On the other hand, netrin-1 acts as a factor preventing cell apoptosis. These events are mediated via a range of different receptors, including UNC5 and DCC-families. Cancer cells often employ developmental pathways to gain survival and motility advantage. Within recent years, there has been increasing number of observations of upregulation of netrin-1 expression in different forms of cancer, and the increased expression of netrin-1 has been linked to its functions as a survival and invasion promoting factor. We review here recent advances in the netrin-1 related developmental processes that may be of special interest in tumor biology, in addition to the known functions of netrin-1 in tumor biology with special focus on cancer cell migration.
Collapse
Affiliation(s)
- Irene Ylivinkka
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland; The Hospital District of Helsinki and Uusimaa, Finland
| | - Jorma Keski-Oja
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland; The Hospital District of Helsinki and Uusimaa, Finland
| | - Marko Hyytiäinen
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
33
|
Miloudi K, Binet F, Wilson A, Cerani A, Oubaha M, Menard C, Henriques S, Mawambo G, Dejda A, Nguyen PT, Rezende FA, Bourgault S, Kennedy TE, Sapieha P. Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy. J Clin Invest 2016; 126:3006-22. [PMID: 27400127 DOI: 10.1172/jci84767] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness in the working-age population. Impaired blood-retinal barrier function leads to macular edema that is closely associated with the deterioration of central vision. We previously demonstrated that the neuronal guidance cue netrin-1 activates a program of reparative angiogenesis in microglia within the ischemic retina. Here, we provide evidence in both vitreous humor of diabetic patients and in retina of a murine model of diabetes that netrin-1 is metabolized into a bioactive fragment corresponding to domains VI and V of the full-length molecule. In contrast to the protective effects of full-length netrin-1 on retinal microvasculature, the VI-V fragment promoted vascular permeability through the uncoordinated 5B (UNC5B) receptor. The collagenase matrix metalloprotease 9 (MMP-9), which is increased in patients with diabetic macular edema, was capable of cleaving netrin-1 into the VI-V fragment. Thus, MMP-9 may release netrin-1 fragments from the extracellular matrix and facilitate diffusion. Nonspecific inhibition of collagenases or selective inhibition of MMP-9 decreased pathological vascular permeability in a murine model of diabetic retinal edema. This study reveals that netrin-1 degradation products are capable of modulating vascular permeability, suggesting that these fragments are of potential therapeutic interest for the treatment of DR.
Collapse
|
34
|
Qin CL, Pan QD, Qi Q, Fan MH, Sun JJ, Li NN, Liao Z. In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus. J Proteomics 2016; 144:87-98. [DOI: 10.1016/j.jprot.2016.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
|
35
|
Monestier O, Blanquet V. WFIKKN1 and WFIKKN2: "Companion" proteins regulating TGFB activity. Cytokine Growth Factor Rev 2016; 32:75-84. [PMID: 27325460 DOI: 10.1016/j.cytogfr.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/14/2023]
Abstract
The WFIKKN (WAP, Follistatin/kazal, Immunoglobulin, Kunitz and Netrin domain-containing) protein family is composed of two multidomain proteins: WFIKKN1 and WFIKKN2. They were formed by domain shuffling and are likely present in deuterostoms. The WFIKKN (also called GASP) proteins are well known for their function in muscle and skeletal tissues, namely, inhibition of certain members of the transforming growth factor beta (TGFB) superfamily such as myostatin (MSTN) and growth and differentiation factor 11 (GDF11). However, the role of the WFIKKN proteins in other tissues is still poorly understood in spite of evidence suggesting possible action in the inner ear, brain and reproduction. Further, several recent studies based on next generation technologies revealed differential expression of WFIKKN1 and WFIKKN2 in various tissues suggesting that their function is not limited to MSTN and GDF11 inhibition in musculoskeletal tissue. In this review, we summarize current knowledge about the WFIKKN proteins and propose that they are "companion" proteins for various growth factors by providing localized and sustained presentation of TGFB proteins to their respective receptors, thus regulating the balance between the activation of Smad and non-Smad pathways by TGFB.
Collapse
Affiliation(s)
- Olivier Monestier
- INRA, UR1037 Laboratory of Fish Physiology and Genomic, Growth and Flesh Quality Group, Campus de Beaulieu, 35000 Rennes, France.
| | - Véronique Blanquet
- INRA, UMR1061 Unité de Génétique Moléculaire Animale, 87060 Limoges, France; Université de Limoges, 87060 Limoges, France.
| |
Collapse
|
36
|
Bastin BR, Chou HC, Pruitt MM, Schneider SQ. Structure, phylogeny, and expression of the frizzled-related gene family in the lophotrochozoan annelid Platynereis dumerilii. EvoDevo 2015; 6:37. [PMID: 26640641 PMCID: PMC4669655 DOI: 10.1186/s13227-015-0032-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background Wnt signaling pathways are highly conserved signal transduction pathways important for axis formation, cell fate specification, and organogenesis throughout metazoan development. Within the various Wnt pathways, the frizzled transmembrane receptors (Fzs) and secreted frizzled-related proteins (sFRPs) play central roles in receiving and antagonizing Wnt signals, respectively. Despite their importance, very little is known about the frizzled-related gene family (fzs & sfrps) in lophotrochozoans, especially during early stages of spiralian development. Here we ascertain the frizzled-related gene complement in six lophotrochozoan species, and determine their spatial and temporal expression pattern during early embryogenesis and larval stages of the marine annelid Platynereis dumerilii. Results Phylogenetic analyses confirm conserved homologs for four frizzled receptors (Fz1/2/7, Fz4, Fz5/8, Fz9/10) and sFRP1/2/5 in five of six lophotrochozoan species. The sfrp3/4 gene is conserved in one, divergent in two, and evidently lost in three lophotrochozoan species. Three novel fz-related genes (fzCRD1-3) are unique to Platynereis. Transcriptional profiling and in situ hybridization identified high maternal expression of fz1/2/7, expression of fz9/10 and fz1/2/7 within animal and dorsal cell lineages after the 32-cell stage, localization of fz5/8, sfrp1/2/5, and fzCRD-1 to animal-pole cell lineages after the 80-cell stage, and no expression for fz4, sfrp3/4, and fzCRD-2, and -3 in early Platynereis embryos. In later larval stages, all frizzled-related genes are expressed in distinct patterns preferentially in the anterior hemisphere and less in the developing trunk. Conclusions Lophotrochozoans have retained a generally conserved ancestral bilaterian frizzled-related gene complement (four Fzs and two sFRPs). Maternal expression of fz1/2/7, and animal lineage-specific expression of fz5/8 and sfrp1/2/5 in early embryos of Platynereis suggest evolutionary conserved roles of these genes to perform Wnt pathway functions during early cleavage stages, and the early establishment of a Wnt inhibitory center at the animal pole, respectively. Numerous frizzled receptor-expressing cells and embryonic territories were identified that might indicate competence to receive Wnt signals during annelid development. An anterior bias for frizzled-related gene expression in embryos and larvae might point to a polarity of Wnt patterning systems along the anterior–posterior axis of this annelid. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0032-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | | | | | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| |
Collapse
|
37
|
Huang J, Hu W, Lin X, Wang X, Jin K. FRZB up-regulated in hepatocellular carcinoma bone metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13353-13359. [PMID: 26722540 PMCID: PMC4680485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The clinical relevance of frizzled-related protein (FRZB) in hepatocellular carcinoma (HCC) bone metastasis remains uncertain. The aim of this study was to assess the clinical relationship of FRZB in patients with HCC bone metastasis after surgical resection. FRZB expression was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) HCC and paired bone metastasis tissues from 13 patients that underwent surgical resection. The clinical characteristics of 13 HCC patients with synchronous or metachronous bone metastasis received surgery were retrospectively reviewed. We found that FRZB was positive in 9 HCC tissues (69.2%) and in 11 paired bone metastatic tissues (84.6%) among these 13 paired samples. The expression of FRZB in the bone metastases was noticeably higher than that in the paired HCC tissues. The expression of FRZB was up-regulated in 10 (76.9%) paired bone metastases tissues. FRZB expression was up-regulated in HCC bone metastasis tissue, which suggested that FRZB might play a key role in the HCC bone metastasis.
Collapse
Affiliation(s)
- Jia Huang
- Department of Cancer Chemotherapy and Radiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Wenhao Hu
- Department of Cancer Chemotherapy and Radiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Xiangjin Lin
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang, P. R. China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang Province, P. R. China
| |
Collapse
|
38
|
Sorci-Thomas MG, Pollard RD, Thomas MJ. What does procollagen C-endopeptidase enhancer protein 2 have to do with HDL-cholesteryl ester uptake? Or how I learned to stop worrying and love reverse cholesterol transport? Curr Opin Lipidol 2015; 26. [PMID: 26218419 PMCID: PMC4564020 DOI: 10.1097/mol.0000000000000211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study is to provide an update on the role HDL apolipoprotein A-I plays in reducing the risk of cardiovascular disease (CVD) and how it relates to reverse cholesterol transport (RCT). RECENT FINDINGS Despite numerous studies showing that plasma HDL cholesterol concentrations are correlated with a reduced risk of CVD, pharmacologic elevation of HDL has not shown any beneficial effects to date. In contrast, studies correlating the measure of an individual's plasma cholesterol efflux capacity show greater promise as a tool for assessing CVD risk. Although ATP-binding cassette transporter 1-mediated lipidation of apoA-I is considered the principal source of plasma HDL, it represents only one side of the RCT pathway. Equally important is the second half of the RCT pathway in which the liver scavenger receptor class B1 selectively removes HDL cholesteryl esters for excretion. The combined action of the two enzyme systems is reflected in the overall steady-state concentration of plasma HDL cholesterol. For example, reduced ATP-binding cassette transporter 1-mediated production of nascent HDL lowers plasma HDL concentration, just as an increase in cholesteryl ester uptake by scavenger receptor class B1 reduces HDL levels. Thus, the complexity of intravascular HDL metabolism suggests that steady-state plasma HDL concentrations do not provide adequate information regarding an individual's HDL quality or function. Herein, we describe a new player, procollagen C-endopeptidase enhancer 2, which shows atheroprotective function and influences both sides of RCT by enhancing production and catabolism of HDL cholesteryl esters. SUMMARY The discovery of a new molecule, procollagen C-endopeptidase enhancer 2, implicated in the regulation of HDL cholesteryl ester concentrations suggests that the extracellular matrix and the proteins that regulate its function represent a new and as yet unexplored realm of HDL cholesterol metabolism.
Collapse
Affiliation(s)
- Mary G. Sorci-Thomas
- Department of Medicine and Endocrinology
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ricquita D. Pollard
- formerly of Wake Forest School of Medicine, Department of Molecular Medicine, Winston-Salem, North Carolina, USA
| | - Michael J. Thomas
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
39
|
Secreted Frizzled-related protein 3 (sFRP3)-mediated suppression of interleukin-6 receptor release by A disintegrin and metalloprotease 17 (ADAM17) is abrogated in the osteoarthritis-associated rare double variant of sFRP3. Biochem J 2015; 468:507-18. [DOI: 10.1042/bj20141231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
A disintegrin and metalloprotease 17 (ADAM17) activity and secreted Frizzled-related protein 3 (sFRP3) down-regulation or expression of its rare double variant is associated with arthritis. sFRP3 interacts with interleukin-6 receptor (IL-6R) and ADAM17 and suppresses ADAM17 activity, whereas the rare variant does not; these findings provide explanation for their opposing pathogenic associations.
Collapse
|
40
|
Shen Y, Zhang F, Lan H, Chen K, Zhang Q, Xie G, Teng L, Jin K. FRZB up-regulation is correlated with hepatic metastasis and poor prognosis in colon carcinoma patients with hepatic metastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4083-4090. [PMID: 26097596 PMCID: PMC4466983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
Frizzled-related protein (FRZB) was up-regulated in hepatic metastasis samples compared with primary colon cancer samples in our previous work. However, the clinical relevance of FRZB in colon cancer hepatic metastasis remains uncertain. The aim of this study was to assess the prognostic value of FRZB in patients with colon carcinoma hepatic metastasis after hepatic resection. FRZB expression was evaluated by immunohistochemistry in formalin-fixed paraffin embedded (FFPE) primary colon carcinoma and paired hepatic metastasis tissues from 136 patients with liver metastasis from colon carcinoma that underwent hepatic resection. The relation between FRZB expression and clinicopathologic factors and long-term prognosis in these 136 patients was retrospectively examined. The prognostic significance of negative or positive FRZB expression in colon carcinoma hepatic metastasis was assessed using Kaplan-Meier survival analysis and log-rank tests. Positive expression of FRZB was correlated with liver metastasis of colon cancer. Univariate analysis indicated significantly worse overall survival (OS) for patients with a positive FRZB expression in colon carcinoma hepatic metastasis than for patients with a negative FRZB expression. Multivariate analysis showed positive-FRZB in colon carcinoma hepatic metastasis to be an independent prognostic factor for OS after hepatic resection (P = 0.001). Positive expression of FRZB was statistically significantly associated with poor prognosis of patients with colon carcinoma hepatic metastasis. FRZB could be a novel predictor for poor prognosis of patients with colon carcinoma hepatic metastasis after hepatic resection.
Collapse
Affiliation(s)
- Yanping Shen
- Department of Cancer Chemotherapy and Radiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Fang Zhang
- Department of Gynecology and Obstetrics, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Huanrong Lan
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang Province, P. R. China
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical UniversityLinhai 317000, Zhejiang Province, P.R. China
| | - Ke Chen
- Department of Cancer Chemotherapy and Radiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Qi Zhang
- Department of Cancer Chemotherapy and Radiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Guoming Xie
- Department of Cancer Chemotherapy and Radiotherapy, Yinzhou Hospital Affiliated to Medical School of Ningbo UniversityNingbo 315040, Zhejiang Province, P. R. China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P.R. China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang Province, P. R. China
- Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical UniversityLinhai 317000, Zhejiang Province, P.R. China
| |
Collapse
|
41
|
Identification of genome-wide SNP-SNP and SNP-clinical Boolean interactions in age-related macular degeneration. Methods Mol Biol 2015; 1253:217-55. [PMID: 25403535 DOI: 10.1007/978-1-4939-2155-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We propose here a methodology to uncover modularities in the network of SNP-SNP interactions most associated with disease. We start by computing all possible Boolean binary SNP interactions across the whole genome. By constructing a weighted graph of the most relevant interactions and via a combinatorial optimization approach, we find the most highly interconnected SNPs. We show that the method can be easily extended to find SNP/environment interactions. Using a modestly sized GWAS dataset of age-related macular degeneration (AMD), we identify a group of only 19 SNPs, which include those in previously reported regions associated to AMD. We also uncover a larger set of loci pointing to a matrix of key processes and functions that are affected. The proposed integrative methodology extends and overlaps traditional statistical analysis in a natural way. Combinatorial optimization techniques allow us to find the kernel of the most central interactions, complementing current methods of GWAS analysis and also enhancing the search for gene-environment interaction.
Collapse
|
42
|
The NTR domain of procollagen C-proteinase enhancer-1 (PCPE-1) mediates PCPE-1 binding to syndecans-1, -2 and -4 as well as fibronectin. Int J Biochem Cell Biol 2014; 57:45-53. [PMID: 25286301 DOI: 10.1016/j.biocel.2014.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/14/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022]
Abstract
Procollagen C-proteinase enhancer 1 (PCPE-1) is an extracellular matrix glycoprotein that can stimulate procollagen processing by procollagen C-proteinases (PCPs) such as bone morphogenetic protein-1 (BMP-1). PCPE-1 consists of two CUB domains that bind to the procollagen C-propeptide and are responsible for enhancing activity and a netrin-like (NTR) domain that binds to BMP-1 as well as heparin and heparan sulfate. The NTR domain also mediates binding of PCPE-1 to cells, an interaction inhibited by heparin, thus suggesting involvement of cell membrane heparan-sulfate proteoglycans (HSPGs). Using pull-down experiments and an ELISA type binding assay we show here that PCPE-1 binds to three cell membrane HSPGs, syndecans-1, -2 and -4. We also demonstrate that this binding is mediated by the NTR domain and depends on the glycosaminoglycan chains of the syndecans. Using co-immunoprecipitation and an ELISA type binding assay we show that PCPE-1 can also bind fibronectin (an established binding partner of BMP-1), another interaction involving the NTR domain. Consistently, fibronectin inhibits cell attachment to PCPE-1 although it does not affect PCPE-1 enhancing activity. PCPE-1 is not an adhesive protein since cell attachment to PCPE-1 is not associated with cell spreading and/or actin filaments formation. The results suggest that PCPE-1 binding to syndecans and/or fibronectin may control collagen fibril assembly on the cell surface. Further characterization of these interactions may pave the way for future design of new means to modulate collagen deposition in pathological conditions such as fibrosis.
Collapse
|
43
|
Williams M, Baxter R. The structure and function of thioester-containing proteins in arthropods. Biophys Rev 2014; 6:261-272. [PMID: 28510031 DOI: 10.1007/s12551-014-0142-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022] Open
Abstract
Thioester-containing proteins (TEPs) form an ancient and diverse family of secreted proteins that play central roles in the innate immune response. Two families of TEPs, complement factors and α2-macroglobulins, have been known and studied in vertebrates for many years, but only in the last decade have crystal structures become available. In the same period, the presence of two additional classes of TEPs has been revealed in arthropods. In this review, we discuss the common structural features TEPs and how this knowledge can be applied to the many arthropod TEPs of unknown function. TEPs perform a wide variety of functions that are driven by different quaternary structures and protein-protein interactions between a common set of folded domains. A common theme is regulated conformational change triggered by proteolysis. Structure-function analysis of the diverse arthropod TEPs may identify not just new mechanisms in innate immunity but also interfaces between immunity, development and cell death.
Collapse
Affiliation(s)
- Marni Williams
- Department. of Chemistry, Yale University, New Haven, CT, USA
| | - Richard Baxter
- Department. of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
44
|
Qin S, Zhang Z, Li J, Zang L. FRZB knockdown upregulates β-catenin activity and enhances cell aggressiveness in gastric cancer. Oncol Rep 2014; 31:2351-7. [PMID: 24676361 DOI: 10.3892/or.2014.3109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 11/06/2022] Open
Abstract
Studies have shown that FRZB correlates with gastric tumorigenicity and may play role in regulating the Wnt/β‑catenin signaling pathway. In the present study, we investigated the correlation between FRZB and the Wnt/β‑catenin signaling pathway using gastric cancer tissues and an FRZB‑knockdown gastric cancer cell line model. The protein levels of FRZB and β‑catenin were examined using immunohistochemical staining. FRZB-specific shRNAs were used to generate FRZB‑knockdown MKN45 gastric cancer cells. Cell proliferation assay, suspending culture and Annexin V/PI double staining analysis were used to investigate the role of FRZB knockdown in cell growth. In vitro migration/invasion assays were performed. The expression of Wnt/β‑catenin downstream targets was analyzed by RT-PCR. FRZB mRNA levels showed negative correlation with β‑catenin levels in paired non-tumor and tumor tissues. FRZB protein levels were negatively correlated with β‑catenin levels analyzed by IHC staining. Furthermore, high FRZB protein levels were correlated with membrane localization of β‑catenin. FRZB knockdown increased gastric cancer cell growth in monolayer and soft agar culture; it increased cell aggregates in suspending culture and rendered less apoptosis which indicated increased anti-anoikis growth. FRZB knockdown increased cell migration and invasion and increased the expression of Wnt/β‑catenin downstream targets such as MMP7 and cyclin D1. Our studies revealed that FRZB levels were correlated with β‑catenin subcellular localization. Knockdown of FRZB in gastric cancer cells increased cell growth and migration/invasion which was also accompanied by activation of Wnt/β‑catenin downstream targets. FRZB knockdown may upregulate the Wnt/β‑catenin pathway and promote aggressiveness in gastric cancer.
Collapse
Affiliation(s)
- Shuai Qin
- Department of Intensive Care Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhuo Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jianfang Li
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Lu Zang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
45
|
Bongo JB, Peng DQ. The neuroimmune guidance cue netrin-1: a new therapeutic target in cardiovascular disease. J Cardiol 2013; 63:95-8. [PMID: 24262644 DOI: 10.1016/j.jjcc.2013.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/30/2013] [Accepted: 10/06/2013] [Indexed: 02/01/2023]
Abstract
Netrins are a family of proteins involved in cell migration and axon guidance during embryogenesis. The different functions and mechanisms of action of this family of proteins have been better characterized with the study of netrin-1. They are chemotropic and act as a bifunctional regulator of neuron migration. Apart from its role in the central nervous system, researchers have proven that netrin-1 plays a role in the development and formation of non-neural tissue; netrin-1 is thereby involved in regulation of cancers, cardiovascular diseases, kidney diseases, and other diseases. Concerning the cardiovascular realm, netrin-1 promotes angiogenesis and accelerates atherosclerosis, protects the heart against ischemia-reperfusion injury, and reduces the infarct size. These findings make the neuroimmune guidance cue netrin-1 an important therapeutic target. This work seeks to review the subject based on studies that have been conducted over the past decade to identify the perspectives and extent of the research on this protein in the field of cardiology.
Collapse
Affiliation(s)
- Joseph Bertrand Bongo
- Department of cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Dao Quan Peng
- Department of cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
46
|
Joseph BB, Quan PD. The neuroimmune guidance cue netrin-1: a new therapeutic target in cardiovascular disease. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2013; 3:129-34. [PMID: 23991347 PMCID: PMC3751678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
Netrins are a family of proteins involved in cell migration and axon guidance during embryogenesis. The different functions and mechanisms of action of this family of proteins have been better characterized with the study of the netrin-1. They are chemotropic and act as a bifunctional regulator of neuron migration. Apart from its role in the central nervous system, researchers have proven that netrin-1 plays a role in the development and formation of non-neural tissue, thus netrin-1 is involved in regulation of cancers, cardiovascular diseases, kidney diseases and other diseases. Concerning the cardio-vascular realm, netrin-1 promotes angiogenesis and accelerates atherosclerosis, protects the heart against ischemia-reperfusion injury and reduces the infarct size. These findings make the neuroimmune guidance cue netrin-1 an important therapeutic target. This work seeks to review the subject based on studies that have been conducted over the past decade to identify the perspectives and extent of the research on this protein in the field of cardiology.
Collapse
Affiliation(s)
- Bongo Bertrand Joseph
- Department of cardiovascular diseases, Second Xiangya Hospital, Central South University Changsha, Hunan 410011, PR China
| | | |
Collapse
|
47
|
Sassi N, Laadhar L, Allouche M, Zandieh-Doulabi B, Hamdoun M, Klein-Nulend J, Makni S, Sellami S. The roles of canonical and non-canonical Wnt signaling in human de-differentiated articular chondrocytes. Biotech Histochem 2013; 89:53-65. [PMID: 23901950 DOI: 10.3109/10520295.2013.819123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.
Collapse
Affiliation(s)
- N Sassi
- Immuno-Rheumatology research laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cantacessi C, Hofmann A, Pickering D, Navarro S, Mitreva M, Loukas A. TIMPs of parasitic helminths - a large-scale analysis of high-throughput sequence datasets. Parasit Vectors 2013; 6:156. [PMID: 23721526 PMCID: PMC3679795 DOI: 10.1186/1756-3305-6-156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/28/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tissue inhibitors of metalloproteases (TIMPs) are a multifunctional family of proteins that orchestrate extracellular matrix turnover, tissue remodelling and other cellular processes. In parasitic helminths, such as hookworms, TIMPs have been proposed to play key roles in the host-parasite interplay, including invasion of and establishment in the vertebrate animal hosts. Currently, knowledge of helminth TIMPs is limited to a small number of studies on canine hookworms, whereas no information is available on the occurrence of TIMPs in other parasitic helminths causing neglected diseases. METHODS In the present study, we conducted a large-scale investigation of TIMP proteins of a range of neglected human parasites including the hookworm Necator americanus, the roundworm Ascaris suum, the liver flukes Clonorchis sinensis and Opisthorchis viverrini, as well as the schistosome blood flukes. This entailed mining available transcriptomic and/or genomic sequence datasets for the presence of homologues of known TIMPs, predicting secondary structures of defined protein sequences, systematic phylogenetic analyses and assessment of differential expression of genes encoding putative TIMPs in the developmental stages of A. suum, N. americanus and Schistosoma haematobium which infect the mammalian hosts. RESULTS A total of 15 protein sequences with high homology to known eukaryotic TIMPs were predicted from the complement of sequence data available for parasitic helminths and subjected to in-depth bioinformatic analyses. CONCLUSIONS Supported by the availability of gene manipulation technologies such as RNA interference and/or transgenesis, this work provides a basis for future functional explorations of helminth TIMPs and, in particular, of their role/s in fundamental biological pathways linked to long-term establishment in the vertebrate hosts, with a view towards the development of novel approaches for the control of neglected helminthiases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland, Australia
| | - Darren Pickering
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Severine Navarro
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Loukas
- Center for Biodiscovery and Molecular Development of Therapeutics, Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
49
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
50
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|