1
|
Holmes MJ, Lewis RJ. Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera. Toxins (Basel) 2025; 17:195. [PMID: 40278692 PMCID: PMC12030847 DOI: 10.3390/toxins17040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The hypothesis that disturbance to coral reefs creates new surfaces that increase the risk of ciguatera is premised upon the increased algal substrates that develop on these surfaces being colonised by high ciguatoxin (CTX)-producing Gambierdiscus species that proliferate and enter the ciguatera food chain. Current evidence indicates that new algal substrates are indeed rapidly colonised by Gambierdiscus. However, the requirement that these Gambierdiscus species include at least one that is a significant (high) CTX-producer is more likely a limiting step. While ambient environmental conditions impact the capacity of Gambierdiscus to bloom, factors that limit the growth of the bloom could influence (typically increase) the flux of CTX entering marine food chains. Additionally, new algal substrates on damaged reefs can be preferentially grazed to funnel ciguatoxins from Gambierdiscus to herbivores in disturbed reef areas. In societies consuming second trophic level species (herbivores, grazers, and detritivores), such funnelling of CTX would increase the risk of ciguatera, although such risk would be partially offset over time by growth (toxin-dilution) and depuration. Here, we review evidence for six potential mechanisms to increase ciguatera risk from disturbance to coral reefs and suggest a hypothesis where ecosystem changes could increase the flux of CTX to groupers through a shift in predation from predominately feeding on planktonic-feeding prey to mostly feeding on benthic-feeding prey, increasing the potential for CTX to accumulate. Evidence for this hypothesis is stronger for the Pacific and Indian Oceans, and it may not apply to the Caribbean Sea/Atlantic Ocean.
Collapse
Affiliation(s)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia;
| |
Collapse
|
2
|
Wolfe K, Byrne M. Dead foundation species create coral rubble habitat that benefits a resilient pest species. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106740. [PMID: 39255629 DOI: 10.1016/j.marenvres.2024.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Critical loss of habitat is the greatest threat to biodiversity, yet some species are inherently plastic to and may even benefit from changes in ecosystem states. The crown-of-thorns sea star (CoTS; Acanthaster spp.) may be one such organism. CoTS are large corallivores native to the tropical Indo-Pacific and in unexplained high densities, can adversely affect entire coral reefs. Proximal causes of CoTS outbreaks remain elusive, so this phenomenon remains a daunting and costly challenge for reef conservation and management. Amplifying anthropogenic impacts and new empirical data point to the degraded reef hypothesis to explain the episodic nature of CoTS population outbreaks. We posit that loss of live coral paradoxically benefits CoTS juveniles, which accumulate in their rubble nursery habitat before conditions trigger their pulsed emergence as coral-eaters. We review trait plasticity across the CoTS life cycle and present the degraded reef hypothesis in an integrative understanding of their propensity to outbreak.
Collapse
Affiliation(s)
- Kennedy Wolfe
- School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Maire E, Robinson JPW, McLean M, Arif S, Zamborain-Mason J, Cinner JE, Ferse SCA, Graham NAJ, Hoey AS, MacNeil MA, Mouillot D, Hicks CC. Managing nutrition-biodiversity trade-offs on coral reefs. Curr Biol 2024; 34:4612-4622.e5. [PMID: 39293442 DOI: 10.1016/j.cub.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Coral reefs support an incredible abundance and diversity of fish species, with reef-associated fisheries providing important sources of income, food, and dietary micronutrients to millions of people across the tropics. However, the rapid degradation of the world's coral reefs and the decline in their biodiversity may limit their capacity to supply nutritious and affordable seafood while meeting conservation goals for sustainability. Here, we conduct a global-scale analysis of how the nutritional quality of reef fish assemblages (nutritional contribution to the recommended daily intake of calcium, iron, and zinc contained in an average 100 g fish on the reef) relates to key environmental, socioeconomic, and ecological conditions, including two key metrics of fish biodiversity. Our global analysis of more than 1,600 tropical reefs reveals that fish trophic composition is a more important driver of micronutrient concentrations than socioeconomic and environmental conditions. Specifically, micronutrient density increases as the relative biomass of herbivores and detritivores increases at lower overall biomass or under high human pressure. This suggests that the provision of essential micronutrients can be maintained or even increase where fish biomass decreases, reinforcing the need for policies that ensure sustainable fishing, and that these micronutrients are retained locally for nutrition. Furthermore, we found a negative association between micronutrient density and two metrics of fish biodiversity, revealing an important nutrition-biodiversity trade-off. Protecting reefs with high levels of biodiversity maintains key ecosystem functions, whereas sustainable fisheries management in locations with high micronutrient density could sustain the essential supply of micronutrients to coastal human communities.
Collapse
Affiliation(s)
- Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Suchinta Arif
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany; Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | | | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France; Institut Universitaire de France, Paris, France
| | - Christina C Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
4
|
Leung SK, Mumby PJ. Mapping the susceptibility of reefs to rubble accumulation across the Great Barrier Reef. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:211. [PMID: 38285268 PMCID: PMC10824869 DOI: 10.1007/s10661-024-12344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Disturbance-induced rubble accumulations are described as "killing fields" on coral reefs as coral recruits suffer high post-settlement mortality, creating a bottleneck for reef recovery. The increasing frequency of coral bleaching events, that can generate rubble once coral dies, has heightened concerns that rubble beds will become more widespread and persistent. But we currently lack the tools to predict where rubble is most likely to accumulate. Here, we developed a modelling framework to identify areas that are likely to accumulate rubble on forereef slopes across the Great Barrier Reef. The algorithm uses new high-resolution bathymetric and geomorphic datasets from satellite remote sensing. We found that 47 km of reef slope (3% of the entire reef surveyed), primarily in the southern region, could potentially reach 50% rubble cover. Despite being statistically significant (p < 0.001), the effects of depth and aspect on rubble cover were minimal, with a 0.2% difference in rubble cover between deeper and shallower regions, as well as a maximum difference of 0.8% among slopes facing various directions. Therefore, we conclude that the effects of depth and aspect were insufficient to influence ecological processes such as larval recruitment and recovery in different coral communities. Maps of potential rubble accumulation can be used to prioritise surveys and potential restoration, particularly after major disturbances have occurred.
Collapse
Affiliation(s)
- Shu Kiu Leung
- Marine Spatial Ecology Lab, School of the Environment, University of Queensland, Level 5, Goddard Building, St. Lucia, QLD, Brisbane, 4072, Australia.
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of the Environment, University of Queensland, Level 5, Goddard Building, St. Lucia, QLD, Brisbane, 4072, Australia
| |
Collapse
|
5
|
Ramos A, González-Díaz P, Banaszak AT, Perera O, Hernandez Delgado F, Delfín de León S, Vicente Castro P, Aguilera Pérez GC, Duran A. Seventeen-year study reveals fluctuations in key ecological indicators on two reef crests in Cuba. PeerJ 2024; 12:e16705. [PMID: 38282865 PMCID: PMC10812586 DOI: 10.7717/peerj.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Reef crests in the Caribbean have lost approximately 80% of the foundational habitat-forming coral Acropora palmata (Lamarck, 1816), with declines registered as early as the 1950s mainly from anthropogenic causes. We studied two reef crests in the northwestern region of Cuba over 17 years (2005 to 2021) to evaluate temporal changes in coral cover, dominated by A. palmata, and their potential drivers. The density of A. palmata generally showed a negative trend at both reefs, with the lowest density recorded in 2021 at 0.2 ± 0.05 col. m-2 at Playa Baracoa and 1.0 ± 0.1 col. m-2 at Rincon de Guanabo. The mean size of the colonies in the two reefs also decreased over time. In Playa Baracoa, the mean diameter of A. palmata colonies decreased from 2012 at 67 ± 5.9 cm to 2013 at 34 ± 2.2 cm, whereas in Rincon de Guanabo, a change in diameter was evident from 2015 at 44.3 ± 2.3 to 2021 at 21.6 ± 0.9 cm. Adult colonies (10 cm-50 cm diameter) predominated in most years on both reefs. The populations of A. palmata on both reefs were healthy, with an average of 70% colonies in good condition during the study period. However, A. palmata cover decreased by almost half by 2021, to 8.6% in Playa Baracoa and 16.8% in Rincon de Guanabo. By contrast, macroalgal cover increased two-fold to 87.1% in Playa Baracoa and four-fold to 77.2% in Rincon de Guanabo. The density of the sea urchin Diadema antillarum was higher in Playa Baracoa than in Rincon de Guanabo. The highest densities were 2.8 ± 0.2 ind. m-2 in Playa Baracoa in 2005 and 0.1 ± 0.03 ind. m-2 in Rincon de Guanabo in 2008. Although our results show an overall decline of A. palmata (density and percent cover) and an increase in macroalgae, these two reef crests are in better condition than most reefs in the Caribbean in terms of the density and health of A. palmata populations, and the density of D. antillarum at Playa Baracoa. Our results are important in establishing a management plan to ensure the condition of these reef crests does not degrade further.
Collapse
Affiliation(s)
- Amanda Ramos
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, México
- Centro de Investigaciones Marinas, Universidad de La Habana, La Habana, Cuba
| | | | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Orlando Perera
- Centro de Investigaciones Marinas, Universidad de La Habana, La Habana, Cuba
| | | | | | | | | | - Alain Duran
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
| |
Collapse
|
6
|
Robinson JPW, Darling ES, Maire E, Hamilton M, Hicks CC, Jupiter SD, Aaron MacNeil M, Mangubhai S, McClanahan T, Nand Y, Graham NAJ. Trophic distribution of nutrient production in coral reef fisheries. Proc Biol Sci 2023; 290:20231601. [PMID: 37788704 PMCID: PMC10547557 DOI: 10.1098/rspb.2023.1601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Coral reef fisheries supply nutritious catch to tropical coastal communities, where the quality of reef seafood is determined by both the rate of biomass production and nutritional value of reef fishes. Yet our understanding of reef fisheries typically uses targets of total reef fish biomass rather than individual growth (i.e. biomass production) and nutrient content (i.e. nutritional value of reef fish), limiting the ability of management to sustain the productivity of nutritious catches. Here, we use modelled growth coefficients and nutrient concentrations to develop a new metric of nutrient productivity of coral reef fishes. We then evaluate this metric with underwater visual surveys of reef fish assemblages from four tropical countries to examine nutrient productivity of reef fish food webs. Species' growth coefficients were associated with nutrients that vary with body size (calcium, iron, selenium and zinc), but not total nutrient density. When integrated with fish abundance data, we find that herbivorous species typically dominate standing biomass, biomass turnover and nutrient production on coral reefs. Such bottom-heavy trophic distributions of nutrients were consistent across gradients of fishing pressure and benthic composition. We conclude that management restrictions that promote sustainability of herbivores and other low trophic-level species can sustain biomass and nutrient production from reef fisheries that is critical to the food security of over 500 million people in the tropics.
Collapse
Affiliation(s)
| | - Emily S. Darling
- Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Mark Hamilton
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Christina C. Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Stacy D. Jupiter
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
| | - M. Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Canada B3H 4R2
| | - Sangeeta Mangubhai
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
| | - Tim McClanahan
- Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460, USA
| | - Yashika Nand
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
7
|
Wolfe K, Desbiens AA, Mumby PJ. Emigration patterns of motile cryptofauna and their implications for trophic functioning in coral reefs. Ecol Evol 2023; 13:e9960. [PMID: 37006892 PMCID: PMC10049886 DOI: 10.1002/ece3.9960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species' interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa are greatest in dead coral and rubble, which are suggested to fuel food webs from the bottom up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13-4.5 ind cm-3) and biomass (0.14-5.2 mg cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species' interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandBrisbaneQueensland4072Australia
| | - Amelia A. Desbiens
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandBrisbaneQueensland4072Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
8
|
Cumming GS, Adamska M, Barnes ML, Barnett J, Bellwood DR, Cinner JE, Cohen PJ, Donelson JM, Fabricius K, Grafton RQ, Grech A, Gurney GG, Hoegh-Guldberg O, Hoey AS, Hoogenboom MO, Lau J, Lovelock CE, Lowe R, Miller DJ, Morrison TH, Mumby PJ, Nakata M, Pandolfi JM, Peterson GD, Pratchett MS, Ravasi T, Riginos C, Rummer JL, Schaffelke B, Wernberg T, Wilson SK. Research priorities for the sustainability of coral-rich western Pacific seascapes. REGIONAL ENVIRONMENTAL CHANGE 2023; 23:66. [PMID: 37125023 PMCID: PMC10119535 DOI: 10.1007/s10113-023-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/25/2023] [Indexed: 05/03/2023]
Abstract
Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia-Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds.
Collapse
Affiliation(s)
- Graeme S. Cumming
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Maja Adamska
- Australian Research Council Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, Australia
- Research School of Biology, Australian National University, Canberra, Australia
| | - Michele L. Barnes
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Jon Barnett
- School of Geography, Earth, and Atmospheric Sciences, University of Melbourne, Melbourne, Australia
| | - David R. Bellwood
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Joshua E. Cinner
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | | | - Jennifer M. Donelson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | | | - R. Quentin Grafton
- Crawford School of Public Policy, Australian National University, Canberra, Australia
| | - Alana Grech
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Georgina G. Gurney
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Ove Hoegh-Guldberg
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Andrew S. Hoey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Mia O. Hoogenboom
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Jacqueline Lau
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
- WorldFish, Penang, Malaysia
| | | | - Ryan Lowe
- Australian Research Council Centre of Excellence for Coral Reef Studies, University of Western Australia, Perth, Australia
- Oceans Institute, University of Western Australia, Perth, Australia
| | - David J. Miller
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, 4811 Australia
| | - Tiffany H. Morrison
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Peter J. Mumby
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Martin Nakata
- Indigenous Education and Research Centre, James Cook University, Townsville, 4811 Australia
| | - John M. Pandolfi
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Garry D. Peterson
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Morgan S. Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-Son, Okinawa Japan
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | | | - Thomas Wernberg
- Oceans Institute, University of Western Australia, Perth, Australia
- Institute of Marine Research, Floedevigen Research Station, Nis, Norway
| | - Shaun K. Wilson
- Oceans Institute, University of Western Australia, Perth, Australia
- Western Australia Government Department of Biodiversity, Conservation and Attractions, Perth, Australia
| |
Collapse
|
9
|
Mellin C, Hicks CC, Fordham DA, Golden CD, Kjellevold M, MacNeil MA, Maire E, Mangubhai S, Mouillot D, Nash KL, Omukoto JO, Robinson JPW, Stuart-Smith RD, Zamborain-Mason J, Edgar GJ, Graham NAJ. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 2022; 6:1808-1817. [PMID: 36192542 DOI: 10.1038/s41559-022-01878-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher D Golden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, MARBEC, Montpellier, France
| | - Kirsty L Nash
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Johnstone O Omukoto
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
10
|
Bosch NE, Pessarrodona A, Filbee-Dexter K, Tuya F, Mulders Y, Bell S, Langlois T, Wernberg T. Habitat configurations shape the trophic and energetic dynamics of reef fishes in a tropical-temperate transition zone: implications under a warming future. Oecologia 2022; 200:455-470. [PMID: 36344837 PMCID: PMC9675646 DOI: 10.1007/s00442-022-05278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Understanding the extent to which species' traits mediate patterns of community assembly is key to predict the effect of natural and anthropogenic disturbances on ecosystem functioning. Here, we apply a trait-based community assembly framework to understand how four different habitat configurations (kelp forests, Sargassum spp. beds, hard corals, and turfs) shape the trophic and energetic dynamics of reef fish assemblages in a tropical-temperate transition zone. Specifically, we tested (i) the degree of trait divergence and convergence in each habitat, (ii) which traits explained variation in species' abundances, and (iii) differences in standing biomass (kg ha-1), secondary productivity (kg ha-1 day-1) and turnover (% day-1). Fish assemblages in coral and kelp habitats displayed greater evidence of trait convergence, while turf and Sargassum spp. habitats displayed a higher degree of trait divergence, a pattern that was mostly driven by traits related to resource use and thermal affinity. This filtering effect had an imprint on the trophic and energetic dynamics of reef fishes, with turf habitats supporting higher fish biomass and productivity. However, these gains were strongly dependent on trophic guild, with herbivores/detritivores disproportionately contributing to among-habitat differences. Despite these perceived overall gains, turnover was decoupled for fishes that act as conduit of energy to higher trophic levels (i.e. microinvertivores), with coral habitats displaying higher rates of fish biomass replenishment than turf despite their lower productivity. This has important implications for biodiversity conservation and fisheries management, questioning the long-term sustainability of ecological processes and fisheries yields in increasingly altered marine habitats.
Collapse
Affiliation(s)
- Nestor E Bosch
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Albert Pessarrodona
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Karen Filbee-Dexter
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/N, 35214, Telde, Spain
| | - Yannick Mulders
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Sahira Bell
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Tim Langlois
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Thomas Wernberg
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| |
Collapse
|
11
|
Collins WP, Bellwood DR, Morais RA. The role of nocturnal fishes on coral reefs: A quantitative functional evaluation. Ecol Evol 2022; 12:e9249. [PMID: 36052298 PMCID: PMC9412246 DOI: 10.1002/ece3.9249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The ecological functions of nocturnal coral reef fishes are poorly known. Yet, nocturnal resources for coral reef consumers are theoretically as abundant and productive, if not more so, than their diurnal counterparts. In this study, we quantify and contrast the energetic dynamics of nocturnal and diurnal fishes in a model coral reef ecosystem, evaluating whether they attain similar levels of biomass production. We integrated a detailed dataset of coral reef fish counts, comprising diurnal and nocturnal species, in sites sheltered and exposed to wave action. We combined somatic growth and mortality models to estimate rates of consumer biomass production, a key ecosystem function. We found that diurnal fish assemblages have a higher biomass than nocturnal fishes: 104% more in sheltered sites and 271% more in exposed sites. Differences in productivity were even more pronounced, with diurnal fishes contributing 163% more productivity in sheltered locations, and 558% more in exposed locations. Apogonidae dominated biomass production within the nocturnal fish assemblage, comprising 54% of total nocturnal fish productivity, which is proportionally more than any diurnal fish family. The substantially lower contributions of nocturnal fishes to biomass and biomass production likely indicate constraints on resource accessibility. Taxa that overcome these constraints may thrive, as evidenced by apogonids. This study highlights the importance of nocturnal fishes in underpinning the flow of energy and nutrients from nocturnal resources to reef communities; a process driven mainly by small, cryptic fishes.
Collapse
Affiliation(s)
- William P. Collins
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
12
|
Komyakova V, Jaffrés JBD, Strain EMA, Cullen-Knox C, Fudge M, Langhamer O, Bender A, Yaakub SM, Wilson E, Allan BJM, Sella I, Haward M. Conceptualisation of multiple impacts interacting in the marine environment using marine infrastructure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154748. [PMID: 35337877 DOI: 10.1016/j.scitotenv.2022.154748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The human population is increasingly reliant on the marine environment for food, trade, tourism, transport, communication and other vital ecosystem services. These services require extensive marine infrastructure, all of which have direct or indirect ecological impacts on marine environments. The rise in global marine infrastructure has led to light, noise and chemical pollution, as well as facilitation of biological invasions. As a result, marine systems and associated species are under increased pressure from habitat loss and degradation, formation of ecological traps and increased mortality, all of which can lead to reduced resilience and consequently increased invasive species establishment. Whereas the cumulative bearings of collective human impacts on marine populations have previously been demonstrated, the multiple impacts associated with marine infrastructure have not been well explored. Here, building on ecological literature, we explore the impacts that are associated with marine infrastructure, conceptualising the notion of correlative, interactive and cumulative effects of anthropogenic activities on the marine environment. By reviewing the range of mitigation approaches that are currently available, we consider the role that eco-engineering, marine spatial planning and agent-based modelling plays in complementing the design and placement of marine structures to incorporate the existing connectivity pathways, ecological principles and complexity of the environment. Because the effect of human-induced, rapid environmental change is predicted to increase in response to the growth of the human population, this study demonstrates that the development and implementation of legislative framework, innovative technologies and nature-informed solutions are vital, preventative measures to mitigate the multiple impacts associated with marine infrastructure.
Collapse
Affiliation(s)
- Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia.
| | - Jasmine B D Jaffrés
- C&R Consulting, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Coco Cullen-Knox
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Maree Fudge
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; College of Business and Economics, University of Tasmania, Australia
| | - Olivia Langhamer
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Anke Bender
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Siti M Yaakub
- Sustainability & Climate Solutions Department, DHI Water & Environment (S), Singapore
| | - Eloise Wilson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | | | - Marcus Haward
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; Blue Economy Cooperative Research Centre, PO Box 897, Launceston, Tasmania 7250, Australia
| |
Collapse
|
13
|
Tsai CH, Sweatman HPA, Thibaut LM, Connolly SR. Volatility in coral cover erodes niche structure, but not diversity, in reef fish assemblages. SCIENCE ADVANCES 2022; 8:eabm6858. [PMID: 35704577 PMCID: PMC9200288 DOI: 10.1126/sciadv.abm6858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/02/2022] [Indexed: 05/26/2023]
Abstract
The world's coral reefs are experiencing increasing volatility in coral cover, largely because of anthropogenic environmental change, highlighting the need to understand how such volatility will influence the structure and dynamics of reef assemblages. These changes may influence not only richness or evenness but also the temporal stability of species' relative abundances (temporal beta-diversity). Here, we analyzed reef fish assemblage time series from the Great Barrier Reef to show that, overall, 75% of the variance in abundance among species was attributable to persistent differences in species' long-term mean abundances. However, the relative importance of stochastic fluctuations in abundance was higher on reefs that experienced greater volatility in coral cover, whereas it did not vary with drivers of alpha-diversity. These findings imply that increased coral cover volatility decreases temporal stability in relative abundances of fishes, a transformation that is not detectable from static measures of biodiversity.
Collapse
Affiliation(s)
- Cheng-Han Tsai
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Marine Science, Townsville MC, QLD 4810, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
| | | | - Loïc M. Thibaut
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Sean R. Connolly
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
14
|
Hemingson CR, Mihalitsis M, Bellwood DR. Are fish communities on coral reefs becoming less colourful? GLOBAL CHANGE BIOLOGY 2022; 28:3321-3332. [PMID: 35294088 DOI: 10.1111/gcb.16095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
An organism's colouration is often linked to the environment in which it lives. The fishes that inhabit coral reefs are extremely diverse in colouration, but the specific environmental factors that support this extreme diversity remain unclear. Interestingly, much of the aesthetic and intrinsic value humans place on coral reefs (a core ecosystem service they provide) is based on this extreme diversity of colours. However, like many processes on coral reefs, the relationship between colouration and the environment is likely to be impacted by global environmental change. Using a novel community-level measure of fish colouration, as perceived by humans, we explore the potential links between fish community colouration and the environment. We then asked if this relationship is impacted by human-induced environmental disturbances, e.g. mass coral bleaching events, using a community-level dataset spanning 27 years on the Great Barrier Reef. We found that the diversity of colours found within a fish community is directly related to the composition of the local environment. Areas with a higher cover of structurally complex corals contained fish species with more diverse and brighter colourations. Most notably, fish community colouration contracted significantly in the years following the 1998 global coral bleaching event. Fishes with colouration directly appealing to human aesthetics are becoming increasingly rare, with the potential for marked declines in the perceived colour of reef fish communities in the near future. Future reefs may not be the colourful ecosystems we recognize today, representing the loss of a culturally significant ecosystem service.
Collapse
Affiliation(s)
- Christopher R Hemingson
- Research Hub for Coral Reef Ecosystem Function, ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem Function, ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Function, ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
15
|
Pessarrodona A, Vergés A, Bosch NE, Bell S, Smith S, Sgarlatta MP, Wernberg T. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences University of Western Australia Crawley WA Australia
| | - Adriana Vergés
- Centre for Marine Science and Innovation, Ecology and Evolution Research Centre School of Biological Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Sydney Institute of Marine Science Mosman NSW Australia
| | - Néstor E. Bosch
- UWA Oceans Institute and School of Biological Sciences University of Western Australia Crawley WA Australia
| | - Sahira Bell
- UWA Oceans Institute and School of Biological Sciences University of Western Australia Crawley WA Australia
| | - Shannen Smith
- Centre for Marine Science and Innovation, Ecology and Evolution Research Centre School of Biological Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - María P. Sgarlatta
- Centre for Marine Science and Innovation, Ecology and Evolution Research Centre School of Biological Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences University of Western Australia Crawley WA Australia
- Institute of Marine Research His Norway
- Roskilde University Roskilde Denmark
| |
Collapse
|
16
|
Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol 2021; 19:e3001435. [PMID: 34727097 PMCID: PMC8562822 DOI: 10.1371/journal.pbio.3001435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
Collapse
Affiliation(s)
- Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alexandre C. Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Patrick F. Smallhorn-West
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- WorldFish, Bayan Lepas, Malaysia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
17
|
Parrotfish corallivory on stress-tolerant corals in the Anthropocene. PLoS One 2021; 16:e0250725. [PMID: 34499664 PMCID: PMC8428567 DOI: 10.1371/journal.pone.0250725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cumulative anthropogenic stressors on tropical reefs are modifying the physical and community structure of coral assemblages, altering the rich biological communities that depend on this critical habitat. As a consequence, new reef configurations are often characterized by low coral cover and a shift in coral species towards massive and encrusting corals. Given that coral numbers are dwindling in these new reef systems, it is important to evaluate the potential influence of coral predation on these remaining corals. We examined the effect of a key group of coral predators (parrotfishes) on one of the emerging dominant coral taxa on Anthropocene reefs, massive Porites. Specifically, we evaluate whether the intensity of parrotfish predation on this key reef-building coral has changed in response to severe coral reef degradation. We found evidence that coral predation rates may have decreased, despite only minor changes in parrotfish abundance. However, higher scar densities on small Porites colonies, compared to large colonies, suggests that the observed decrease in scarring rates may be a reflection of colony-size specific rates of feeding scars. Reduced parrotfish corallivory may reflect the loss of small Porites colonies, or changing foraging opportunities for parrotfishes. The reduction in scar density on massive Porites suggests that the remaining stress-tolerant corals may have passed the vulnerable small colony stage. These results highlight the potential for shifts in ecological functions on ecosystems facing high levels of environmental stress.
Collapse
|
18
|
Capitani L, de Araujo JN, Vieira EA, Angelini R, Longo GO. Ocean Warming Will Reduce Standing Biomass in a Tropical Western Atlantic Reef Ecosystem. Ecosystems 2021. [DOI: 10.1007/s10021-021-00691-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Froehlich CYM, Klanten
OS, Hing ML, Dowton M, Wong MYL. Uneven declines between corals and cryptobenthic fish symbionts from multiple disturbances. Sci Rep 2021; 11:16420. [PMID: 34385506 PMCID: PMC8361158 DOI: 10.1038/s41598-021-95778-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
With the onset and increasing frequency of multiple disturbances, the recovery potential of critical ecosystem-building species and their mutual symbionts is threatened. Similar effects to both hosts and their symbionts following disturbances have been assumed. However, we report unequal declines between hosts and symbionts throughout multiple climate-driven disturbances in reef-building Acropora corals and cryptobenthic coral-dwelling Gobiodon gobies. Communities were surveyed before and after consecutive cyclones (2014, 2015) and heatwaves (2016, 2017). After cyclones, coral diameter and goby group size (i.e., the number of gobies within each coral) decreased similarly by 28-30%. After heatwave-induced bleaching, coral diameter decreased substantially (47%) and gobies mostly inhabited corals singly. Despite several coral species persisting after bleaching, all goby species declined, leaving 78% of corals uninhabited. These findings suggest that gobies, which are important mutual symbionts for corals, are unable to cope with consecutive disturbances. This disproportionate decline could lead to ecosystem-level disruptions through loss of key symbiont services to corals.
Collapse
Affiliation(s)
- Catheline Y. M. Froehlich
- grid.1007.60000 0004 0486 528XFaculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2500 Australia
| | - O. Selma Klanten
- grid.117476.20000 0004 1936 7611School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Martin L. Hing
- grid.1007.60000 0004 0486 528XFaculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2500 Australia
| | - Mark Dowton
- grid.1007.60000 0004 0486 528XFaculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2500 Australia
| | - Marian Y. L. Wong
- grid.1007.60000 0004 0486 528XFaculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2500 Australia
| |
Collapse
|
20
|
Holmes MJ, Venables B, Lewis RJ. Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins (Basel) 2021; 13:toxins13080515. [PMID: 34437386 PMCID: PMC8402393 DOI: 10.3390/toxins13080515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023] Open
Abstract
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
Collapse
Affiliation(s)
- Michael J. Holmes
- Queensland Department of Environment and Science, Brisbane 4102, Australia;
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
- Correspondence:
| |
Collapse
|
21
|
Tebbett SB, Morais RA, Goatley CHR, Bellwood DR. Collapsing ecosystem functions on an inshore coral reef. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112471. [PMID: 33812145 DOI: 10.1016/j.jenvman.2021.112471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Ecosystem functions underpin productivity and key services to humans, such as food provision. However, as the severity of environmental stressors intensifies, it is becoming increasingly unclear if, and to what extent, critical functions and services can be sustained. This issue is epitomised on coral reefs, an ecosystem at the forefront of environmental transitions. We provide a functional profile of a coral reef ecosystem, linking time-series data to quantified processes. The data reveal a prolonged collapse of ecosystem functions in this previously resilient system. The results suggest that sediment accumulation in algal turfs has led to a decline in resource yields to herbivorous fishes and a decrease in fish-based ecosystem functions, including a collapse of both fish biomass and productivity. Unfortunately, at present, algal turf sediment accumulation is rarely monitored nor managed in coral reef systems. Our examination of functions through time highlights the value of directly assessing functions, their potential vulnerability, and the capacity of algal turf sediments to overwhelm productive high-diversity coral reef ecosystems.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia; Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales, 2010, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
22
|
Dutra LXC, Haywood MDE, Singh S, Ferreira M, Johnson JE, Veitayaki J, Kininmonth S, Morris CW, Piovano S. Synergies between local and climate-driven impacts on coral reefs in the Tropical Pacific: A review of issues and adaptation opportunities. MARINE POLLUTION BULLETIN 2021; 164:111922. [PMID: 33632532 DOI: 10.1016/j.marpolbul.2020.111922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Coral reefs in the tropical Pacific region are exposed to a range of anthropogenic local pressures. Climate change is exacerbating local impacts, causing unprecedented declines in coral reef habitats and bringing negative socio-economic consequences to Pacific communities who depend heavily on coral reefs for food, income and livelihoods. Continued increases in greenhouse gas emissions will drive future climate change, which will accelerate coral reef degradation. Traditional systems of resource governance in Pacific island nations provide a foundation to address local pressures and build reef resilience to climate change. Management and adaptation options should build on the regional diversity of governance systems and traditional knowledge to support community-based initiatives and cross-sectoral cooperation to address local pressures and minimize climate change impacts. Such an inclusive approach will offer enhanced opportunities to develop and implement transformative adaptation solutions, particularly in remote and regional areas where centralized management does not extend.
Collapse
Affiliation(s)
- Leo X C Dutra
- CSIRO Oceans and Atmosphere Business Unit, Queensland BioSciences Precinct, St Lucia, Brisbane, QLD 4072, Australia; School of Marine Studies, Faculty of Science, Technology & Environment, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, The University of the South Pacific, Laucala Bay Road, Suva, Fiji.
| | - Michael D E Haywood
- CSIRO Oceans and Atmosphere Business Unit, Queensland BioSciences Precinct, St Lucia, Brisbane, QLD 4072, Australia
| | - Shubha Singh
- School of Marine Studies, Faculty of Science, Technology & Environment, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Marta Ferreira
- School of Marine Studies, Faculty of Science, Technology & Environment, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, The University of the South Pacific, Laucala Bay Road, Suva, Fiji; CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Johanna E Johnson
- C(2)O Pacific, Vanuatu & Australia; College of Marine & Environmental Studies, James Cook University, Cairns, QLD 4870, Australia.
| | - Joeli Veitayaki
- School of Marine Studies, Faculty of Science, Technology & Environment, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, The University of the South Pacific, Laucala Bay Road, Suva, Fiji; The University of the South Pacific, Alafua Campus, Private Bag, Apia, Samoa
| | - Stuart Kininmonth
- School of Marine Studies, Faculty of Science, Technology & Environment, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, The University of the South Pacific, Laucala Bay Road, Suva, Fiji; Centre for Ecology and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Cherrie W Morris
- Institute of Marine Resources, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Susanna Piovano
- School of Marine Studies, Faculty of Science, Technology & Environment, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| |
Collapse
|
23
|
Nicholson GM, Clements KD. Ecomorphological divergence and trophic resource partitioning in 15 syntopic Indo-Pacific parrotfishes (Labridae: Scarini). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Adaptive diversification is a product of both phylogenetic constraint and ecological opportunity. The species-rich parrotfish genera Scarus and Chlorurus display considerable variation in trophic cranial morphology, but these parrotfishes are often described as generalist herbivores. Recent work has suggested that parrotfish partition trophic resources at very fine spatial scales, raising the question of whether interspecific differences in cranial morphology reflect trophic partitioning. We tested this hypothesis by comparing targeted feeding substrata with a previously published dataset of nine cranial morphological traits. We sampled feeding substrata of 15 parrotfish species at Lizard Island, Great Barrier Reef, Australia, by following individuals until focused biting was observed, then extracting a bite core 22 mm in diameter. Three indices were parameterized for each bite core: substratum taphonomy, maximum turf height and cover of crustose coralline algae. Parrotfish species were spread along a single axis of variation in feeding substrata: successional status of the substratum taphonomy and epilithic and endolithic biota. This axis of trophic variation was significantly correlated with cranial morphology, indicating that morphological disparity within this clade is associated with interspecific partitioning of feeding substrata. Phylogenetic signal and phylomorphospace analyses revealed that the evolution of this clade involved a hitherto-unrecognized level of trophic diversification.
Collapse
Affiliation(s)
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Heather FJ, Blanchard JL, Edgar GJ, Trebilco R, Stuart‐Smith RD. Globally consistent reef size spectra integrating fishes and invertebrates. Ecol Lett 2020; 24:572-579. [DOI: 10.1111/ele.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Freddie J. Heather
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| | - Rowan Trebilco
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
- CSIRO Oceans and Atmosphere Battery Point Hobart TAS7004Australia
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| |
Collapse
|
25
|
Marshall DJ, McQuaid CD. Metabolic Regulation, Oxygen Limitation and Heat Tolerance in a Subtidal Marine Gastropod Reveal the Complexity of Predicting Climate Change Vulnerability. Front Physiol 2020; 11:1106. [PMID: 33101046 PMCID: PMC7556210 DOI: 10.3389/fphys.2020.01106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Predictions for climate vulnerability of ectotherms have focused on performance-enhancing physiology, even though an organism’s energetic state can also be balanced by lowering resting maintenance costs. Adaptive metabolic depression (hypometabolism) enables animals to endure food scarcity, and physically extreme and variable environmental conditions. Hypometabolism is common in terrestrial and intertidal marine gastropod species, though this physiology and tolerance of environmental change are poorly understood in subtidal benthic gastropods. We investigated oxygen limitation tolerance, hypometabolism and thermal performance in the subtidal, tropical snail Turritella bacillum. Survival, cardiac activity and oxygen debt repayment were determined when oxygen uptake was limited by gill function impairment (air exposure) or exposure to hypoxic seawater. Thermal performance and tolerance were assessed from survival and cardiac performance when heated. The ability of snails to regulate metabolism during oxygen limitation was demonstrated by their tolerance of air exposure (>36 h) and hypoxia (>16 h), rhythmicity and reversibility of bradycardia, and inconsistent anaerobic compensation. Under acute heating, mean heart rate was temperature-insensitive in water and temperature-dependent in air. Converging or peaking of individual heart rates during heating suggest maximization of thermal performance at 38–39°C, whereas survival and heartbeat flatlining suggest an upper thermal limit exceeding 42°C. Snails survived 16 h in seawater at 38°C. Their metabolic regulation complies with the oxygen-limiting, sediment-burrowing lifestyle of the species. Although a tropical organism, the species’ thermal tolerance so far exceeds present habitat temperatures as to question its susceptibility to centennial climate warming. Our findings reveal the importance of knowing the metabolic regulatory capabilities and conserved physiological attributes of species used in climate vulnerability tests. Studies of ectotherm climate vulnerability that identify generalized trends based on physiologically similar animals may be misleading by missing information on physiological diversity.
Collapse
Affiliation(s)
- David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | | |
Collapse
|
26
|
Brandl SJ, Johansen JL, Casey JM, Tornabene L, Morais RA, Burt JA. Extreme environmental conditions reduce coral reef fish biodiversity and productivity. Nat Commun 2020; 11:3832. [PMID: 32737315 PMCID: PMC7395083 DOI: 10.1038/s41467-020-17731-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Tropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world’s hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth’s hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss. Brandl, Johansen et al. compare organismal traits, community structure, and productivity dynamics of cryptobenthic reef fishes across two locations, the Arabian Gulf and the Gulf of Oman, the former of which harbors the world’s hottest coral reefs. They show that environmental extremes in the Arabian Gulf result in dramatically less diverse, abundant, and productive cryptobenthic fish assemblages, which could foreshadow the future of coral reef biodiversity and functioning.
Collapse
Affiliation(s)
- Simon J Brandl
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada. .,CESAB-FRB, 5 Rue de l'École de Médecine, 34000, Montpellier, France. .,PSL Université Paris: CNRS-EPHE-UPVD USR3278 CRIOBE, Université de Perpignan, Perpignan, France. .,Laboratoire d'Excellence "CORAIL,", Perpignan, France.
| | - Jacob L Johansen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kane'ohe, HI, USA. .,Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jordan M Casey
- PSL Université Paris: CNRS-EPHE-UPVD USR3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence "CORAIL,", Perpignan, France
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Renato A Morais
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - John A Burt
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|