1
|
Nair B, Menon A, Rithwik Kalidas M, Nath LR, Calina D, Sharifi-Rad J. Modulating the JAK/STAT pathway with natural products: potential and challenges in cancer therapy. Discov Oncol 2025; 16:595. [PMID: 40268770 PMCID: PMC12018655 DOI: 10.1007/s12672-025-02369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway is a critical signaling network governing cellular functions such as immune responses, proliferation, and apoptosis. Dysregulation of this pathway is strongly implicated in cancer progression. This review explores the therapeutic potential of natural products, including Curcumin, Resveratrol, Apigenin, and Epigallocatechin Gallate (EGCG), as modulators of the JAK/STAT pathway. These phytochemicals exhibit anticancer activity by inhibiting JAK/STAT phosphorylation, blocking STAT dimerization, and interfering with STAT-DNA binding. A systematic evaluation of included peer-reviewed studies highlights their promise as complementary agents to conventional cancer therapies. However, challenges such as poor bioavailability and the need for robust clinical validation remain significant hurdles. Addressing these limitations through advanced drug delivery systems and rigorous trials could unlock their full potential in cancer treatment.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Anjana Menon
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - M Rithwik Kalidas
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
Mazur Ł, Balwierz R, Michalak K, Michalak W, Jasińska-Balwierz A, Shanaida M, Biernat P, Baj T, Jasicka-Misiak I. Green Tea Catechins: A Promising Anticancer Approach for Leukaemia. PLANTA MEDICA 2025; 91:173-188. [PMID: 39965645 DOI: 10.1055/a-2535-2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Green tea catechins are bioactive polyphenolic compounds that possess a number of biological activities and potential health benefits. This review will focus on discussing the effects of green tea catechins, with a particular emphasis on clinical studies that evaluate their anticancer potential. Epigallocatechin gallate (EGCG), either as a stand-alone treatment or in conjunction with conventional anticancer therapies, represents a promising alternative strategy for the management of leukaemia. This review was based on a search of the scientific sources indexed in the databases PubMed and Scopus using the following keywords: 'Camellia sinensis', 'tea catechins', 'anticancer', 'antioxidant', 'hematological cancer', and 'leukaemia' in combination. A deeper comprehension of the multifaceted mechanisms and findings of research could facilitate the development of novel strategies and the integration of green tea catechins into clinical practice, thus enhancing treatment outcomes for patients with leukaemia.
Collapse
Affiliation(s)
- Łukasz Mazur
- Institute of Chemistry, University of Opole, Opole, Poland
| | | | | | | | | | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Paweł Biernat
- Department of Drug Forms Technology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
4
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
5
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
6
|
Xu J, Xu S, Luo J, Zhang S, Wu D, Yang Q, Fang R, Shi C, Liu Q, Zhao J. Epigallocatechin-3-gallate Alleviates Ethanol-Induced Endothelia Cells Injury Partly through Alteration of NF-κB Translocation and Activation of the Nrf2 Signaling Pathway. Biol Pharm Bull 2024; 47:1248-1254. [PMID: 38866477 DOI: 10.1248/bpb.b23-00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.
Collapse
Affiliation(s)
- Jie Xu
- Department of Public Health, Shaanxi University of Chinese Medicine
- College of Life Sciences, Northwest University
| | - Shouzhu Xu
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Jiayin Luo
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Shihao Zhang
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Dongdong Wu
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Qifan Yang
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Rourou Fang
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Chuandao Shi
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Qiling Liu
- Department of Public Health, Shaanxi University of Chinese Medicine
| | - Jing Zhao
- Shaanxi Key Laboratory of Acupuncture & Medicine, Shaanxi University of Chinese Medicine
| |
Collapse
|
7
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Zhang X, Cui X, Li P, Zhao Y, Ren Y, Zhang H, Zhang S, Li C, Wang X, Shi L, Sun T, Hao J, Yao Z, Chen J, Gao X, Yang J. EGC enhances tumor antigen presentation and CD8 + T cell-mediated antitumor immunity via targeting oncoprotein SND1. Cancer Lett 2024; 592:216934. [PMID: 38710299 DOI: 10.1016/j.canlet.2024.216934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.
Collapse
Affiliation(s)
- Xinxin Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peiying Li
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yan Zhao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shijie Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chufeng Li
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinting Wang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lei Shi
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhi Yao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin, China.
| | - Xingjie Gao
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Jie Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
9
|
Choi YR, Na HJ, Lee JA, Kim Y, Kim YS, Kim MJ. Discovery of (-)-epigallocatechin gallate, a novel olfactory receptor 2AT4 agonist that regulates proliferation and apoptosis in leukemia cells. Heliyon 2024; 10:e30298. [PMID: 38778941 PMCID: PMC11108860 DOI: 10.1016/j.heliyon.2024.e30298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Olfactory receptors (ORs), the largest family of G protein-coupled receptors (GPCRs), are ectopically expressed in cancer cells and are involved in cellular physiological processes, but their function as anticancer targets is still potential. OR2AT4 is expressed in leukemia cells, influencing the proliferation and apoptosis, yet the limited number of known OR2AT4 agonists makes it challenging to fully generalize the receptor's function. In this study, we aimed to identify new ligands for OR2AT4 and to investigate their functions and mechanisms in K562 leukemia cells. After producing the recombinant OR2AT4 protein, immobilizing it on a surface plasmon resonance chip, and conducting screening to confirm binding activity using 258 chemicals, five novel OR2AT4 ligands were discovered. As a result of examining changes in intracellular calcium by five ligands in OR2AT4-expressing cells and K562 cells, (-)-epigallocatechin gallate (EGCG) was identified as an OR2AT4 agonist in both cells. EGCG reduced the viability of K562 cells and induced apoptosis in K562 cells. EGCG increased the expression of cleaved caspase 3/8 and had no effect on the expression of Bax and Bcl-2, indicating that it induced apoptosis through the extrinsic pathway. Additionally, the initiation of the extrinsic apoptosis pathway in EGCG-induced K562 cells was due to the activation of OR2AT4, using an OR2AT4 antagonist. This study highlights the potential of EGCG as an anti-cancer agent against leukemia and OR2AT4 as a target, making it a new anti-cancer drug.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jin-Ah Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yiseul Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
10
|
Zou JY, Chen QL, Luo XC, Damdinjav D, Abdelmohsen UR, Li HY, Battulga T, Chen HB, Wang YQ, Zhang JY. Natural products reverse cancer multidrug resistance. Front Pharmacol 2024; 15:1348076. [PMID: 38572428 PMCID: PMC10988293 DOI: 10.3389/fphar.2024.1348076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.
Collapse
Affiliation(s)
- Jia-Yu Zou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiao-Ci Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hong-Yan Li
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, Xianyang, China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yu-Qing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated TCM Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
11
|
|
12
|
Sun ZG, Yao CJ, Ullah I, Zhu HL. Recent Advances in Natural Products with Anti-Leukemia and Anti- Lymphoma Activities. Mini Rev Med Chem 2024; 24:664-671. [PMID: 37855279 DOI: 10.2174/0113895575258798230927061557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023]
Abstract
Leukemia and lymphoma are the most common blood cancers, which pose a critical threat to the health of adults and children. The total incidence and mortality rates of both are approximately 6% globally. Compared with the expensive cost of CAR T cell therapy, natural products from animals, plants and microorganisms have the characteristics of wide-range sources and costeffectiveness in the treatment of cancer. Moreover, the drug resistance that emerged in leukemia and lymphoma treatments shows an urgent need for new drugs. However, in addition to the natural products that have been marketed in the treatment of leukemia and lymphoma, there have been a large number of studies on natural products that fight blood cancer in recent years. This review summarized the recent studies on natural compounds with anti-lymphoma and anti-leukemia activities, hoping to provide novel weapons into the drug development arsenal.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi, 276400, China
| | - Cheng-Jie Yao
- Yishui Juncheng Sika Deer Wildlife Research Institute, Longshan Guanzhuang Village, Mount Huangshan Pu Town, Linyi, 276400, China
| | - Inam Ullah
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China
| |
Collapse
|
13
|
Jiang K, Bai L, Wang C, Xiao X, Cheng Z, Peng H, Liu S. The Aurora kinase inhibitor AT9283 inhibits Burkitt lymphoma growth by regulating Warburg effect. PeerJ 2023; 11:e16581. [PMID: 38099309 PMCID: PMC10720464 DOI: 10.7717/peerj.16581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To investigate the effect of the kinase inhibitor AT9283 on Burkitt lymphoma (BL) cells and elucidate the underlying mechanisms. Methods The effect of AT9283 on the proliferation of BL cell lines was tested using the MTT assay. Apoptosis and cell cycle were measured by flow cytometry. The proteins associated with the cell cycle, apoptosis, and the Warburg effect were detected using Western blotting. Alterations in glycolytic metabolism in terms of glucose intake and lactate concentrations were determined by glucose and lactate assays. Results The current study utilized the GEPIA, the Human Protein Atlas (HAP) database and immunohistochemistry to conduct analyses, which revealed a high expression of Aurora kinases and Warburg effect-related proteins in malignant B-cell lymphoma tissues. AT9283 significantly inhibited the cell proliferation of BL cells and induced G2/M arrest. Additionally, AT9283 induced apoptosis in BL cells and reversed the Warburg effect by increasing glucose uptake and reducing lactate production. Moreover, the protein expression of hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase A was significantly suppressed by AT9283, possibly through the inhibition of c-Myc and HIF-1α protein expression. Conclusion The reversal of the Warburg effect in BL cells and the subsequent inhibition of cell proliferation and induction of apoptosis were observed by targeting Aurora A and Aurora B with AT9283. This finding may present new therapeutic options and targets for BL.
Collapse
Affiliation(s)
- Kaiming Jiang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Bai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, Bader GN. Flavonoids as promising molecules in the cancer therapy: An insight. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 6:100167. [PMID: 38144883 PMCID: PMC10733705 DOI: 10.1016/j.crphar.2023.100167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer continues to increase global morbidity and mortality rates. Despite substantial progress in the development of various chemically synthesized anti-cancer drugs, the poor prognosis of the disease still remains a big challenge. The most common drawback of conventional cancer therapies is the emergence of drug resistance eventually leading to the discontinuation of chemotherapy. Moreover, advanced target-specific therapies including immunotherapy and stem cell therapy are expensive enough and are unaffordable for most patients in poorer nations. Therefore, alternative and cheaper therapeutic strategies are needed to complement the current cancer treatment approaches. Phytochemicals are bioactive compounds produced naturally by plants and have great potential in human health and disease. These compounds possess antiproliferative, anti-oxidant, and immunomodulatory properties. Among the phytochemicals, flavonoids are very effective in treating a wide range of diseases from cardiovascular diseases and immunological disorders to cancer. They scavenge reactive oxygen species (ROS), inhibit cancer metastasis, modulate the immune system and induce apoptotic or autophagic cell death in cancers. This review will discuss the potential of various phytochemicals particularly flavonoids in attempts to target various cancers.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Nasir Nisar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, India
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| |
Collapse
|
15
|
Della Via FI, Alvarez MC, Basting RT, Saad STO. The Effects of Green Tea Catechins in Hematological Malignancies. Pharmaceuticals (Basel) 2023; 16:1021. [PMID: 37513933 PMCID: PMC10385775 DOI: 10.3390/ph16071021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Green tea catechins are bioactive polyphenol compounds which have attracted significant attention for their diverse biological activities and potential health benefits. Notably, epigallocatechin-3-gallate (EGCG) has emerged as a potent apoptosis inducer through mechanisms involving caspase activation, modulation of Bcl-2 family proteins, disruption of survival signaling pathways and by regulating the redox balance, inducing oxidative stress. Furthermore, emerging evidence suggests that green tea catechins can modulate epigenetic alterations, including DNA methylation and histone modifications. In addition to their apoptotic actions, ROS signaling effects and reversal of epigenetic alterations, green tea catechins have shown promising results in promoting the differentiation of leukemia cells. This review highlights the comprehensive actions of green tea catechins and provides valuable insights from clinical trials investigating the therapeutic potential of green tea catechins in leukemia treatment. Understanding these multifaceted mechanisms and the outcomes of clinical trials may pave the way for the development of innovative strategies and the integration of green tea catechins into clinical practice for improving leukemia patient outcomes.
Collapse
Affiliation(s)
- Fernanda Isabel Della Via
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marisa Claudia Alvarez
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Rosanna Tarkany Basting
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| |
Collapse
|
16
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
17
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
18
|
Bernitsa S, Dayan R, Stephanou A, Tzvetanova ID, Patrikios IS. Natural biomolecules and derivatives as anticancer immunomodulatory agents. Front Immunol 2023; 13:1070367. [PMID: 36700235 PMCID: PMC9868674 DOI: 10.3389/fimmu.2022.1070367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Despite advancements in chemotherapy, the issue of resistance and non-responsiveness to many chemotherapeutic drugs that are currently in clinical use still remains. Recently, cancer immunotherapy has gathered attention as a novel treatment against select cancers. Immunomodulation is also emerging as an effective strategy to improve efficacy. Natural phytochemicals, with known anticancer properties, been reported to mediate their effects by modulating both traditional cancer pathways and immunity. The mechanism of phytochemical mediated-immunomodulatory activity may be attributed to the remodeling of the tumor immunosuppressive microenvironment and the sensitization of the immune system. This allows for improved recognition and targeting of cancer cells by the immune system and synergy with chemotherapeutics. In this review, we will discuss several well-known plant-derived biomolecules and examine their potential as immunomodulators, and therefore, as novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
| | - Rotem Dayan
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
19
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
20
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
21
|
The JAK2 inhibitor TG101209 exhibits anti-tumor and chemotherapeutic sensitizing effects on Burkitt lymphoma cells by inhibiting the JAK2/STAT3/c-MYB signaling axis. Cell Death Discov 2021; 7:268. [PMID: 34588425 PMCID: PMC8481535 DOI: 10.1038/s41420-021-00655-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022] Open
Abstract
Constitutive activation of JAK2/STAT3 is a major oncogenic signaling event involved in the development of Burkitt lymphoma (BL). In the present study, we investigated the antilymphoma activity of TG101209, a specific JAK2 inhibitor, on EBV-positive and EBV-negative Burkitt lymphoma cell lines and primary BL cells. The results showed that TG101209 had a significant antilymphoma effect by inhibiting BL cell growth and inducing apoptosis along with cell differentiation toward mature B cells in vitro. We also found that TG101209 displayed significant synergistic action and a sensitizing effect on the anti-Burkitt lymphoma activity of doxorubicin. In vivo experiments indicated that TG101209 could suppress tumor growth and prolong the overall survival of BL cell-bearing mice. The mechanistic study indicated that TG101209, by suppressing the JAK2/STAT3/c-MYB signaling axis and crosstalk between the downstream signaling pathways, plays an antilymphoma role. These data suggested that TG101209 may be a promising agent or alternative choice for the treatment of BL.
Collapse
|
22
|
The Anti-Leukemic Activity of Natural Compounds. Molecules 2021; 26:molecules26092709. [PMID: 34063044 PMCID: PMC8124534 DOI: 10.3390/molecules26092709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biologically active compounds has become a realistic option for the treatment of malignant tumors due to their cost-effectiveness and safety. In this review, we aimed to highlight the main natural biocompounds that target leukemic cells, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their therapeutic potential in the treatment of leukemia: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). It provides a basis for researchers and hematologists in improving basic and clinical research on the development of new alternative therapies in the fight against leukemia, a harmful hematological cancer and the leading cause of death among patients.
Collapse
|
23
|
Alaswad HA, Mahbub AA, Le Maitre CL, Jordan-Mahy N. Molecular Action of Polyphenols in Leukaemia and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22063085. [PMID: 33802972 PMCID: PMC8002821 DOI: 10.3390/ijms22063085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leukaemia is a malignant disease of the blood. Current treatments for leukaemia are associated with serious side-effects. Plant-derived polyphenols have been identified as potent anti-cancer agents and have been shown to work synergistically with standard chemotherapy agents in leukaemia cell lines. Polyphenols have multiple mechanisms of action and have been reported to decrease cell proliferation, arrest cell cycle and induce apoptosis via the activation of caspase (3, 8 and 9); the loss of mitochondrial membrane potential and the release of cytochrome c. Polyphenols have been shown to suppress activation of transcription factors, including NF-kB and STAT3. Furthermore, polyphenols have pro-oxidant properties, with increasing evidence that polyphenols inhibit the antioxidant activity of glutathione, causing oxidative DNA damage. Polyphenols also induce autophagy-driven cancer cell death and regulate multidrug resistance proteins, and thus may be able to reverse resistance to chemotherapy agents. This review examines the molecular mechanism of action of polyphenols and discusses their potential therapeutic targets. Here, we discuss the pharmacological properties of polyphenols, including their anti-inflammatory, antioxidant, anti-proliferative, and anti-tumour activities, and suggest that polyphenols are potent natural agents that can be useful therapeutically; and discuss why data on bioavailability, toxicity and metabolism are essential to evaluate their clinical use.
Collapse
Affiliation(s)
- Hamza A. Alaswad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Amani A. Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia;
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, The Owen Building, City Campus, Howard Street, Sheffield S1 1WB, UK; (H.A.A.); (C.L.L.M.)
- Correspondence: ; Tel.: +44-0114-225-3120
| |
Collapse
|
24
|
Gonzalez Suarez N, Rodriguez Torres S, Ouanouki A, El Cheikh-Hussein L, Annabi B. EGCG Inhibits Adipose-Derived Mesenchymal Stem Cells Differentiation into Adipocytes and Prevents a STAT3-Mediated Paracrine Oncogenic Control of Triple-Negative Breast Cancer Cell Invasive Phenotype. Molecules 2021; 26:1506. [PMID: 33801973 PMCID: PMC7998295 DOI: 10.3390/molecules26061506] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Obese subjects have an increased risk of developing triple-negative breast cancer (TNBC), in part associated with the chronic low-grade inflammation state. On the other hand, epidemiological data indicates that increased consumption of polyphenol-rich fruits and vegetables plays a key role in reducing incidence of some cancer types. Here, we tested whether green tea-derived epigallocatechin-3-gallate (EGCG) could alter adipose-derived mesenchymal stem cell differentiation into adipocytes, and how this impacts the secretome profile and paracrine regulation of the TNBC invasive phenotype. Here, cell differentiation was performed and conditioned media (CM) from preadipocytes and mature adipocytes harvested. Human TNBC-derived MDA-MB-231 real-time cell migration was performed using the exCELLigence system. Differential gene arrays and RT-qPCR were used to assess gene expression levels. Western blotting was used to assess protein expression and phosphorylation status levels. In vitro vasculogenic mimicry (VM) was assessed with Matrigel. EGCG was found to inhibit the induction of key adipogenic biomarkers, including lipoprotein lipase, adiponectin, leptin, fatty acid synthase, and fatty acid binding protein 4. Increased TNBC-derived MDA-MB-231 cell chemotaxis and vasculogenic mimicry were observed in response to mature adipocytes secretome, and this was correlated with increased STAT3 phosphorylation status. This invasive phenotype was prevented by EGCG, the JAK/STAT inhibitors Tofacitinib and AG490, as well as upon STAT3 gene silencing. In conclusion, dietary catechin-mediated interventions could, in part through the inhibition of adipogenesis and modulation of adipocytes secretome profile, prevent the onset of an obesogenic environment that favors TNBC development.
Collapse
Affiliation(s)
| | | | | | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Centre de Recherche CERMO-FC, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada; (N.G.S.); (S.R.T.); (A.O.); (L.E.C.-H.)
| |
Collapse
|
25
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
26
|
Luo KW, Xia J, Cheng BH, Gao HC, Fu LW, Luo XL. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep (Oxf) 2020; 9:59-70. [PMID: 33747527 PMCID: PMC7962736 DOI: 10.1093/gastro/goaa072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Green tea is a popular beverage worldwide and epigallocatechin-3-gallate (EGCG) is the most bioactive polyphenol in green tea. Our study aims to investigate the anti-proliferation and anti-migration effects of EGCG against colorectal-cancer SW480, SW620, and LS411N cells, and elucidate the underlying mechanism. Methods The in vitro anti-proliferation and anti-migration effects of EGCG against colon-cancer cells were evaluated using MTT, scratch-wound-healing, and transwell-migration assays. The effects of EGCG on apoptosis were assessed by Annexin V-FITC/PI double staining and JC-1 staining. Besides, Western blotting was employed to detect the protein-expression level and elucidate the underlying pathways. Real-time qPCR and dual-luciferase reporter assay were adopted to determine the mRNA level and promoter activity. Results Our results demonstrated that treatment with EGCG resulted in significant inhibition of cell proliferation by the induction of apoptosis. EGCG also inhibited SW480 cell migration in a dose-dependent manner as assessed by wound-healing and transwell-migration assays. Western blot confirmed that EGCG induced apoptosis by the activation of Caspase-3 and PARP. In addition, both STAT3 and phosphorylated STAT3 (p-STAT3) were downregulated significantly by EGCG in three selected colorectal-cancer cell lines. EGCG treatment also resulted in a significant decrease in Bcl-2, MCL-1, and Vimentin, and an increase in E-cadherin. When STAT3 was inhibited, EGCG showed no obvious effect on cell proliferation and migration. Further investigation by luciferase-reporter-activity assay showed that EGCG suppressed the promoter activity of STAT3 and downregulated the transcription of STAT3. Conclusion Our study presents evidence on the anti-proliferation and anti-migration effects of EGCG against colorectal-cancer SW480, SW620, and LS411N cells by downregulating the expression of STAT3 and suggests that EGCG could be an effective and natural supplement for colon-cancer treatment.
Collapse
Affiliation(s)
- Ke-Wang Luo
- Key Laboratory, People's Hospital of Longhua, Shenzhen, Guangdong, P. R. China.,Key Laboratory of Medical Programming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P. R. China
| | - Jun Xia
- Key Laboratory, People's Hospital of Longhua, Shenzhen, Guangdong, P. R. China
| | - Bao-Hui Cheng
- Shenzhen Key Laboratory of ENT, Longgang ENT Hospital and Institute of ENT, Shenzhen, Guangdong, P. R. China
| | - Han-Chao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Xin-Le Luo
- Key Laboratory, People's Hospital of Longhua, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
27
|
Garg M, Shanmugam MK, Bhardwaj V, Goel A, Gupta R, Sharma A, Baligar P, Kumar AP, Goh BC, Wang L, Sethi G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med Res Rev 2020; 41:1291-1336. [PMID: 33289118 DOI: 10.1002/med.21761] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors, responsible for regulating cellular proliferation, cellular differentiation, migration, programmed cell death, inflammatory response, angiogenesis, and immune activation. In this review, we have discussed the classical regulation of STAT3 via diverse growth factors, cytokines, G-protein-coupled receptors, as well as toll-like receptors. We have also highlighted the potential role of noncoding RNAs in regulating STAT3 signaling. However, the deregulation of STAT3 signaling has been found to be associated with the initiation and progression of both solid and hematological malignancies. Additionally, hyperactivation of STAT3 signaling can maintain the cancer stem cell phenotype by modulating the tumor microenvironment, cellular metabolism, and immune responses to favor drug resistance and metastasis. Finally, we have also discussed several plausible ways to target oncogenic STAT3 signaling using various small molecules derived from natural products.
Collapse
Affiliation(s)
- Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vipul Bhardwaj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Akul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Arundhiti Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Health System, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Bose S, Banerjee S, Mondal A, Chakraborty U, Pumarol J, Croley CR, Bishayee A. Targeting the JAK/STAT Signaling Pathway Using Phytocompounds for Cancer Prevention and Therapy. Cells 2020; 9:E1451. [PMID: 32545187 PMCID: PMC7348822 DOI: 10.3390/cells9061451] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a prevalent cause of mortality around the world. Aberrated activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway promotes tumorigenesis. Natural agents, including phytochemicals, exhibit potent anticancer activities via various mechanisms. However, the therapeutic potency of phytoconstituents as inhibitors of JAK/STAT signaling against cancer has only come into focus in recent days. The current review highlights phytochemicals that can suppress the JAK/STAT pathway in order to impede cancer cell growth. Various databases, such as PubMed, ScienceDirect, Web of Science, SpringerLink, Scopus, and Google Scholar, were searched using relevant keywords. Once the authors were in agreement regarding the suitability of a study, a full-length form of the relevant article was obtained, and the information was gathered and cited. All the complete articles that were incorporated after the literature collection rejection criteria were applied were perused in-depth and material was extracted based on the importance, relevance, and advancement of the apprehending of the JAK/STAT pathway and their relation to phytochemicals. Based on the critical and comprehensive analysis of literature presented in this review, phytochemicals from diverse plant origins exert therapeutic and cancer preventive effects, at least in part, through regulation of the JAK/STAT pathway. Nevertheless, more preclinical and clinical research is necessary to completely comprehend the capability of modulating JAK/STAT signaling to achieve efficient cancer control and treatment.
Collapse
Affiliation(s)
- Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Chuchura 712 102, India;
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731 123, India
| | - Utsab Chakraborty
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol 713 301, India; (S.B.); (U.C.)
| | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Courtney R. Croley
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (J.P.); (C.R.C.)
| |
Collapse
|
29
|
Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, Sabitaliyevich UY, Xu B, Ahmad A. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel) 2020; 12:951. [PMID: 32290543 PMCID: PMC7226503 DOI: 10.3390/cancers12040951] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have enabled us to develop a better and sharper understanding of multifaceted nature of cancer. Next-generation sequencing technologies have leveraged our existing knowledge related to intra- and inter-tumor heterogeneity to the next level. Functional genomics have opened new horizons to explore deregulated signaling pathways in different cancers. Therapeutic targeting of deregulated oncogenic signaling cascades by products obtained from natural sources has shown promising results. Epigallocatechin-3-gallate (EGCG) has emerged as a distinguished chemopreventive product because of its ability to regulate a myriad of oncogenic signaling pathways. Based on its scientifically approved anticancer activity and encouraging results obtained from preclinical trials, it is also being tested in various phases of clinical trials. A series of clinical trials associated with green tea extracts and EGCG are providing clues about significant potential of EGCG to mechanistically modulate wide ranging signal transduction cascades. In this review, we comprehensively analyzed regulation of JAK/STAT, Wnt/β-catenin, TGF/SMAD, SHH/GLI, NOTCH pathways by EGCG. We also discussed most recent evidence related to the ability of EGCG to modulate non-coding RNAs in different cancers. Methylation of the genome is also a widely studied mechanism and EGCG has been shown to modulate DNA methyltransferases (DNMTs) and protein enhancer of zeste-2 (EZH2) in multiple cancers. Moreover, the use of nanoformulations to increase the bioavailability and thus efficacy of EGCG will be also addressed. Better understanding of the pleiotropic abilities of EGCG to modulate intracellular pathways along with the development of effective EGCG delivery vehicles will be helpful in getting a step closer to individualized medicines.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Ataşehir/İstanbul 34755, Turkey;
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty 050004, Kazakhstan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| |
Collapse
|
30
|
Zhu J, Ou L, Zhou Y, Yang Z, Bie M. (-)-Epigallocatechin-3-gallate induces interferon-λ2 expression to anti-influenza A virus in human bronchial epithelial cells (BEAS-2B) through p38 MAPK signaling pathway. J Thorac Dis 2020; 12:989-997. [PMID: 32274168 PMCID: PMC7139080 DOI: 10.21037/jtd.2020.03.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background (-)-Epigallocatechin-3-gallate (EGCG), a major component of green tea, has been found to inhibit the influenza virus. However, the mechanism of EGCG anti-influenza virus effect needs to be further explored. Methods BEAS-2B cells were treated with different concentrations of EGCG or were treated with EGCG for different times. CCK8 assay was used to detect the cell viability, and quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay were employed to measure the interferon (IFN)-λ2 mRNA and protein expression levels. The phospho-p38 mitogen-activated protein kinase (P-p38 MAPK), phospho-extracellular signal-regulated kinase (P-ERK), and phospho-c-Jun N-terminal kinase (P-JNK) expression were tested by western blot. Then, p38 MAPK, ERK, and JNK inhibitor were used to study the effect of p38 MAPK, ERK, and JNK signaling pathways on IFN-λ2 expression. The BEAS-2B cells were treated with EGCG, EGCG and IFN λ2 neutralizing antibody or control antibody for 12 h, and were infected with influenza A virus (IAV) (H1N1) for 1 h. After 12 h, nucleoprotein (NP) mRNA and protein expression levels of H1N1 were assessed by qRT-PCR and western blot. Results The IFN-λ2 mRNA and protein expression levels in BEAS-2B cells were up-regulated after EGCG (treatment in time- and dose-dependent manners the concentration range from 0 to 50 µg/mL had no cytotoxicity). Meanwhile, the P-p38 MAPK, P-ERK, and P-JNK expression levels were up-regulated. IFN-λ2 mRNA and protein expression was inhibited after p38 MAPK inhibitor pre-treatment, but not by ERK and JNK inhibitors. Furthermore, the expression of H1N1 NP gene and protein decreased after EGCG pre-treatment, while IFN-λ2 neutralizing antibody attenuated the effect of EGCG inhibiting the expression of H1N1 NP gene and protein. Conclusions EGCG inhibited IAV H1N1 by inducing the expression of IFN-λ2 in BEAS-2B cells through the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Microbiology, School of Basic Medical Science, Guizhou Medical University, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Province Department of Education, Guiyang 550025, China
| | - Li Ou
- Department of Pulmonary and Critical Care Medicine, Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu 610041, China
| | - Yongjun Zhou
- Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Mingjiang Bie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.,Editorial Board of Journal of Sichuan University (Medical Science Edition), Chengdu 610041, China
| |
Collapse
|
31
|
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020; 25:467. [PMID: 31979082 PMCID: PMC7037968 DOI: 10.3390/molecules25030467] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
32
|
Ma H, Qu J, Luo J, Qi T, Tan H, Jiang Z, Zhang H, Qu Q. Super-Enhancer-Associated Hub Genes In Chronic Myeloid Leukemia Identified Using Weighted Gene Co-Expression Network Analysis. Cancer Manag Res 2019; 11:10705-10718. [PMID: 31920381 PMCID: PMC6934127 DOI: 10.2147/cmar.s214614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose Super-enhancer (SE)-associated oncogenes extensively potentiate the uncontrolled proliferation capacity of cancer cells. In this study, we aimed to identify the SE-associated hub genes associated with the clinical characteristics of chronic myeloid leukemia (CML). Methods Eigengenes from CML clinical modules were determined using weighted gene co-expression network analysis (WGCNA). Overlapping genes between eigengenes and SE-associated genes were used to construct protein–protein interaction (PPI) networks and annotate for pathway enrichment analysis. Expression patterns of the top-ranked SE-associated hub genes were further determined in CML patients and healthy controls via real-time PCR. After treatment of K562 cells with the BRD4 inhibitor, JQ1, for 24 hrs, mRNA and protein levels of SE-associated hub genes were evaluated using real-time PCR and Western blotting, respectively. H3K27ac, H3K4me1 and BRD4 ChIP-seq signal peaks were used to predict and identify SEs visualized by the Integrative Genomics Viewer. Results The yellow module was significantly related to the status and pathological phase of CML. SE-associated hub candidate genes were mainly enriched in the cell cycle pathway. Based on the PPI networks of hub genes and the top rank of degree, five SE-associated genes were identified: specifically, BUB1, CENPO, KIF2C, ORC1, and RRM2. Elevated expression of these five genes was not only related to CML status and phase but also positively regulated by SE and suppressed by the BRD4 inhibitor, JQ1, in K562 cells. Strong signal peaks of H3K27ac, H3K4me1 and BRD4 ChIP-seq of the five genes were additionally observed close to the predicted SE regions. Conclusion This is the first study to characterize SE-associated genes linked to clinical characteristics of CML via weighted gene co-expression network analysis. Our results support a novel mechanism involving aberrant expression of hub SE-associated genes in CML patients and K562 cells, and these genes will be potential new therapeutic targets for human leukemia.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410078, Hunan, People's Republic of China
| | - Huanmiao Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, People's Republic of China
| | - Zhaohui Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Haiwen Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| |
Collapse
|
33
|
Yu Z, Li Q, Zhang G, Lv C, Dong Q, Fu C, Kong C, Zeng Y. PLEKHO1 knockdown inhibits RCC cell viability in vitro and in vivo, potentially by the Hippo and MAPK/JNK pathways. Int J Oncol 2019; 55:81-92. [PMID: 31180521 PMCID: PMC6561616 DOI: 10.3892/ijo.2019.4819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer. By analysing The Cancer Genome Atlas (TCGA) database, 16 genes were identified to be consistently highly expressed in RCC tissues compared with the matched para‑tumour tissues. Using a high‑throughput cell viability screening method, it was found that downregulation of only two genes significantly inhibited the viability of 786‑O cells. Among the two genes, pleckstrin homology domain containing O1 (PLEKHO1) has never been studied in RCC, to the best of our knowledge, and its expression level was shown to be associated with the prognosis of patients with RCC in TCGA dataset. The upregulation of PLEKHO1 in RCC was first confirmed in 30 paired tumour and para‑tumour tissues. Then, the effect of PLEKHO1 on cell proliferation and apoptosis was assessed in vitro. Additionally, xenograft tumour models were established to investigate the function of PLEKHO1 in vivo. The results showed that PLEKHO1 knockdown significantly inhibited cell viability and facilitated apoptosis in vitro and impaired tumour formation in vivo. Thus, PLEKHO1 is likely to be associated with the viability of RCC cells in vitro and in vivo. Further gene expression microarray and co‑expression analyses showed that PLEKHO1 may be involved in the serine/threonine‑protein kinase hippo and JNK signalling pathways. Together, the results of the present study suggest that PLEKHO1 may contribute to the development of RCC, and therefore, further study is needed to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zi Yu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Gejun Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
| | - Qingzhuo Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Cheng Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042
| |
Collapse
|
34
|
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting Cancer with Phytochemicals via Their Fine Tuning of the Cell Survival Signaling Pathways. Int J Mol Sci 2018; 19:ijms19113568. [PMID: 30424557 PMCID: PMC6274856 DOI: 10.3390/ijms19113568] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The role of phytochemicals as potential prodrugs or therapeutic substances against tumors has come in the spotlight in the very recent years, thanks to the huge mass of encouraging and promising results of the in vitro activity of many phenolic compounds from plant raw extracts against many cancer cell lines. Little but important evidence can be retrieved from the clinical and nutritional scientific literature, where flavonoids are investigated as major pro-apoptotic and anti-metastatic compounds. However, the actual role of these compounds in cancer is still far to be fully elucidated. Many of these phytochemicals act in a pleiotropic and poorly specific manner, but, more importantly, they are able to tune the reactive oxygen species (ROS) signaling to activate a survival or a pro-autophagic and pro-apoptosis mechanism, depending on the oxidative stress-responsive endowment of the targeted cell. This review will try to focus on this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy.
- Scientific Secretary-Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway.
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, DanyloHalytskyLviv National Medical University, 79007 Lviv, Ukraine.
| | - Antonio Vella
- AOUI Verona, University Hospital, Section of Immunology, 37134 Verona, Italy.
| | - Larysa Lenchyk
- Department of Chemistry of Natural Compounds, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| | - Taras Upyr
- Department of Pharmacognosy, National University of Pharmacy, 61168 Kharkiv, Ukraine.
| |
Collapse
|