1
|
Oyovwi MO, Chijiokwu EA, Ben-Azu B, Atere AD, Joseph UG, Ogbutor UG, Udi OA. Potential Roles of Natural Antioxidants in Modulating Neurodegenerative Disease Pathways. Mol Neurobiol 2025:10.1007/s12035-025-04874-w. [PMID: 40202704 DOI: 10.1007/s12035-025-04874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Neurodegenerative diseases, including Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, are increasingly prevalent among aging populations. Oxidative stress contributes to these diseases, leading to cellular damage and neuronal death. Natural antioxidants are being explored as preventive measures. This study aims to assess the effectiveness of natural antioxidants in delaying the onset or progression of neurodegenerative diseases by identifying their specific mechanisms of action. A comprehensive review of existing literature was conducted, focusing on studies that examine the role of natural antioxidants in neuroprotection. Key natural antioxidants, including flavonoids, polyphenls, vitamins C and E, and omega-3 fatty acids, were reviewed and analyzed for their bioavailability, mechanisms of action, and outcomes in both in vitro and in vivo studies. Additionally, clinical trials involving human subjects were considered to provide insights into the translational implications of antioxidant consumption. The findings suggest that several natural antioxidants exhibit neuroprotective properties by modulating oxidative stress, reducing inflammation, and promoting neuronal survival. For instance, flavonoids such as quercetin and resveratrol have shown promise in enhancing cognitive function and mitigating the pathophysiological alterations associated with neurodegeneration. In clinical studies, higher intakes of dietary antioxidants were correlated with a reduced risk of developing neurodegenerative disorders. Natural antioxidants offer potential for preventing neurodegenerative diseases by counteracting oxidative stress and maintaining cellular integrity. Overall, our report recommends that further research is needed to optimize dosages and understand their long-term benefits.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Ejime A Chijiokwu
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Adedeji David Atere
- Department of Medical Laboratory Science, College of Health Sciences, Osun State University, Osogbo, Nigeria
- Neurotoxicology Laboratory, Sefako Makgatho Health Sciences University, Molotlegi St, Ga-Rankuwa Zone 1, Ga-Rankuwa, 0208, South Africa
| | - Uchechukwu Gregory Joseph
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | | | - Onoriode Andrew Udi
- Department of Human Anatomy, Federal University Otuoke, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
2
|
Williamson G. Bioavailability of Food Polyphenols: Current State of Knowledge. Annu Rev Food Sci Technol 2025; 16:315-332. [PMID: 39899845 DOI: 10.1146/annurev-food-060721-023817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
(Poly)phenols, including flavonoids, phenolic acids, and tannins, are a diverse class of compounds found in plant-based foods and beverages. Their bioavailability has been extensively described and detailed metabolic pathways elucidated. Although some parent (poly)phenols are absorbed intact in the small intestine, most pass to the colon where they are extensively catabolized and their microbial products absorbed into the circulation. The sum of the metabolites absorbed can reach almost 100% in some cases and in some individuals. In recent years, there have been three major areas of advancement: (a) comprehensive and systematic reviews have brought together bioavailability data, including detailed metabolic pathways in humans, and quantitative estimates of absorption and excretion; (b) the action and importance of the gut microbiota in (poly)phenol metabolism have been better defined and our understanding of the important role of the microbiota in intra- and interindividual variation has greatly expanded; and (c) strategies to improve (poly)phenol bioavailability such as encapsulation employing various nanoformulations or cyclodextrins have been developed.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Victorian Heart Institute, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
3
|
Yuan H, Huang H, Du Y, Zhao J, Yu S, Lin Y, Chen Y, Shan C, Zhao Y, Belwal T, Fu X. Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota. Food Chem 2025; 469:142591. [PMID: 39721439 DOI: 10.1016/j.foodchem.2024.142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures. Additionally, polyphenols exhibit anti-inflammatory and immunomodulatory effects, promoting intestinal health. The interaction between polyphenols and intestinal flora plays a significant role in gastrointestinal health, supporting the composition and diversity of the gut microbiota. However, further research is needed to emphasize the importance of human trials and to explore the intricate relationship between SBP and gut microbiota, as these insights are crucial for understanding the mechanisms underlying SBP's benefits for the gastrointestinal tract (GIT).
Collapse
Affiliation(s)
- Hexi Yuan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yinglin Du
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jiaqi Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shiyang Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yanhong Lin
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan Chen
- GOBI Memory Brand Management Co. Ltd, Ninth Division 170 Regiment Sea buckthorn Picking-garden, Tacheng 834700, China
| | - Chunhui Shan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yue Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | | | - Xizhe Fu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
4
|
Arndt H, Bachurski M, Yuanxiang P, Franke K, Wessjohann LA, Kreutz MR, Grochowska KM. A Screen of Plant-Based Natural Products Revealed That Quercetin Prevents Pyroglutamylated Amyloid-β (Aβ3(pE)-42) Uptake in Astrocytes As Well As Resulting Astrogliosis and Synaptic Dysfunction. Mol Neurobiol 2025; 62:3730-3745. [PMID: 39317890 PMCID: PMC11790700 DOI: 10.1007/s12035-024-04509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Two connected histopathological hallmarks of Alzheimer's disease (AD) are chronic neuroinflammation and synaptic dysfunction. The accumulation of the most prevalent posttranslationally modified form of Aβ1-42, pyroglutamylated amyloid-β (Aβ3(pE)-42) in astrocytes is directly linked to glial activation and the release of proinflammatory cytokines that in turn contribute to early synaptic dysfunction in AD. At present, the mechanisms of Aβ3(pE)-42 uptake to astrocytes are unknown and pharmacological interventions that interfere with this process are not available. Here we developed a simple screening assay to identify substances from a plant extract library that prevent astroglial Aβ3(pE)-42 uptake. We first show that this approach yields valid and reproducible results. Second, we show endocytosis of Aβ3(pE)-42 oligomers by astrocytes and that quercetin, a plant flavonol, is effective to specifically block astrocytic buildup of oligomeric Aβ3(pE)-42. Importantly, quercetin does not induce a general impairment of endocytosis. However, it efficiently protects against early synaptic dysfunction following exogenous Aβ3(pE)-42 application.
Collapse
Affiliation(s)
- Helene Arndt
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Mark Bachurski
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - PingAn Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06108, Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institut Für Chemie, Chair of Natural Products Chemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto Von Guericke University, 39120, Magdeburg, Germany.
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
5
|
Saadh MJ, Ahmed HH, Chandra M, Al-Hussainy AF, Hamid JA, Mishra A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA, Alsaikhan F, Farhood B, Akhavan-Sigari R. Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis. Cancer Cell Int 2025; 25:66. [PMID: 39994659 PMCID: PMC11854426 DOI: 10.1186/s12935-025-03694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE Oral malignancies are among the common head and neck cancers. Various therapeutic modalities are used for targeting oral cancers. It was shown that quercetin (a flavonoid) has an anti-cancer effect on different cancers. In the current study, the anti-cancer potentials of quercetin against oral cancer cells were summarized. METHODS The current systematic review was conducted in accordance with the PRISMA guideline for the identification of relevant studies in various electronic databases up to April 2023. After reviewing and screening 193 articles, 18 were chosen for this study based on our inclusion and exclusion criteria. RESULTS It was shown that quercetin significantly reduced cancer cell proliferation, cell viability, tumor volume, invasion, metastasis and migration. This anti-cancer agent induced oxidative stress and apoptosis in the cancer cells. Quercetin treatment could also induce some biochemical alterations in the cancer cells. CONCLUSION According to the results, it can be mentioned that quercetin administration has an anti-cancer effect against oral cancer cells. This agent exerts its anticancer effects via reduced cell viability and different mechanisms, including induce oxidative damage, apoptosis, and reduced invasion and metastasis. However, suggesting the use of quercetin as a therapeutic agent of oral cancer patients requires further clinical studies due to its poor absorption rates, and the exact molecular mechanisms are still not well understood.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | | | | | - Anurag Mishra
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
6
|
Flamminii F, D’Alessio G, Chiarini M, Di Michele A, De Bruno A, Mastrocola D, Di Mattia CD. Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique. Foods 2025; 14:425. [PMID: 39942019 PMCID: PMC11816728 DOI: 10.3390/foods14030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
The increasing interest in sustainability has driven research into the utilization of food by-products. Onion by-products, rich in bioactive compounds, represent a valuable resource for developing functional ingredients; however, they are prone to degradation due to environmental factors such as light, heat, and oxygen, leading to reduced efficacy and increased spoilage. Microencapsulation represents an effective approach to meet important goals in the formulation of food products such as the protection against degradation or the control of interactions with other ingredients that may modify and impair their functionality. This study explores the microencapsulation of flavonoid-rich onion by-product extract through spray drying, employing various wall materials (maltodextrin and a mixture of maltodextrin/trehalose and maltodextrin/trehalose/inulin) and their effect on the chemical and physical properties of the powders such as encapsulation efficiency, total flavonoids content, moisture content, water activity, bulk density, and bulk tapped density. The storage stability was further evaluated. This research supports waste reduction and suggests strategies for developing functional ingredients with extended shelf life and controlled release properties.
Collapse
Affiliation(s)
- Federica Flamminii
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Giulia D’Alessio
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (G.D.); (M.C.); (D.M.)
| | - Marco Chiarini
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (G.D.); (M.C.); (D.M.)
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Alessandra De Bruno
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - Dino Mastrocola
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (G.D.); (M.C.); (D.M.)
| | - Carla Daniela Di Mattia
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (G.D.); (M.C.); (D.M.)
| |
Collapse
|
7
|
Kurtz JA, Feresin RG, Grazer J, Otis J, Wilson KE, Doyle JA, Zwetsloot KA. Effects of Quercetin and Citrulline on Nitric Oxide Metabolites and Antioxidant Biomarkers in Trained Cyclists. Nutrients 2025; 17:224. [PMID: 39861353 PMCID: PMC11767657 DOI: 10.3390/nu17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Quercetin (QCT) and citrulline (CIT) have been independently associated with improved antioxidant capacity and nitric oxide (NO) production, potentially enhancing cardiovascular function and exercise performance. This study aimed to evaluate the combined and independent effects of QCT and CIT supplementation on NO metabolites and antioxidant biomarkers in 50 trained cyclists undergoing a 20 km cycling time trial (TT). METHODS In a randomized, double-blind, placebo-controlled design, forty-two male and eight female trained cyclists were assigned to QCT + CIT, QCT, CIT, or placebo (PL) groups. Supplements were consumed twice daily for 28 days. Biochemical assessments included NO metabolites (nitrate/nitrite), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD) activity, and antioxidant capacity, measured pre- and post-TT. RESULTS NO metabolites were significantly elevated post-supplementation (p = 0.03); however, no significant interaction effects were observed for NO metabolites, FRAP, SOD, or antioxidant capacity across the groups (p > 0.05). Post-hoc analyses revealed that QCT significantly reduced FRAP concentrations compared to PL (p = 0.01), while no significant changes in SOD or antioxidant capacity were found across any groups. CONCLUSIONS These findings suggest that combined and independent QCT and CIT supplementation did not significantly improve these biomarkers, suggesting that baseline training adaptations, supplementation timing, and individual variability may influence the efficacy of these compounds in enhancing exercise performance and oxidative stress markers. The ergogenic efficacy of QCT + CIT on antioxidant-related markers remains inconclusive.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30203, USA;
| | - Jacob Grazer
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jeff Otis
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kathryn E. Wilson
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - J. Andrew Doyle
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA 30303, USA (K.E.W.); (J.A.D.)
| | - Kevin A. Zwetsloot
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA;
- Department of Biology, Appalachian State University, Boone, NC 28607, USA
| |
Collapse
|
8
|
Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024; 13:4131. [PMID: 39767073 PMCID: PMC11675957 DOI: 10.3390/foods13244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Though ubiquitous in nature, polyphenols gained scientific prominence only after the pioneering work of researchers like E. Fischer and K. Freudenberg, who demonstrated their potential beyond traditional applications, such as in the leather industry. Today, these bioactive compounds are recognized for their diverse therapeutic roles, including their use as adjuvants in cancer treatment, cancer prevention, and their anti-inflammatory and antioxidant properties. Additionally, polyphenols have demonstrated benefits in managing obesity, cardiovascular diseases, and neuromodulation. Their synthesis is influenced by environmental and genetic factors, with their concentrations varying based on the intensity of these variables, as well as the stage of ripening. This review provides a comprehensive overview of polyphenols, covering their classification, chemical structures, and bioavailability. The mechanisms influencing bioavailability, bioaccessibility, and bioactivity are explored in detail, alongside an introduction to their bioactive effects and associated metabolic pathways. Specific examples, such as the bioavailability of polyphenols in coffee and various types of onions, are analyzed. Despite their promising biological activities, a significant limitation of polyphenols lies in their inherently low oral bioavailability. However, their systemic circulation and the bioactive by-products formed during digestion present exciting opportunities for further research and application.
Collapse
Affiliation(s)
- Daria Ciupei
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Alexandru Colişar
- Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Zorița M. Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| |
Collapse
|
9
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
10
|
Tang S, Xu C, Zhou Y, Shen Y, Zeng Q, Su D. Akkermansia muciniphila Growth Promoted by Lychee Major Flavonoid through Bacteroides uniformis Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24552-24560. [PMID: 39436683 DOI: 10.1021/acs.jafc.4c07429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) possesses health-promoting properties. Nevertheless, A. muciniphila enrichment remains a challenging endeavor. Quercetin-3-O-rutinose-7-O-α-l-rhamnoside (QRR), a flavonoid found in lychee pulp, has a unique double-substituted glycosylated structure, requiring a specific intestinal microbiota for effective metabolism. Here, QRR was fermented using a coculture of Bacteroides uniformis and A. muciniphila, and the interactions between the two were elucidated in terms of QRR regulation of microbial growth changes and metabolic properties. The results demonstrated that QRR effectively promoted the proliferation of A. muciniphila based on the metabolic action of B. uniformis in vitro, which was evidenced by a notable increase in the number of viable bacteria. Furthermore, the coculture sample exhibited a significant increase in SCFAs. Qualitative analysis of metabolites by UPLC-ESI-Triple-TOF-MS/MS showed that B. uniformis could release sugars on QRR to produce quercetin-3-O-glucoside-7-O-α-rhamnoside and further quercetin. In the coculture and B. uniformis culture, quercetin was converted to taxifolin, which was identified as a crucial intermediate in the metabolism of QRR. Notably, the metabolite kaempferol was only detected in the coculture. The present study reveals the interaction between QRR and the coculture of A. muciniphila and B. uniformis, providing a practical basis for the potential prebiotic value of QRR.
Collapse
Affiliation(s)
- Shuying Tang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, P.R. China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
11
|
Brodsky K, Petránková B, Petrásková L, Pelantová H, Křen V, Valentová K, Bojarová P. New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22208-22216. [PMID: 39351615 PMCID: PMC11468790 DOI: 10.1021/acs.jafc.4c06771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The preparation of pure metabolites of bioactive compounds, particularly (poly)phenols, is essential for the accurate determination of their pharmacological profiles in vivo. Since the extraction of these metabolites from biological material is tedious and impractical, they can be synthesized enzymatically in vitro by bacterial PAPS-independent aryl sulfotransferases (ASTs). However, only a few ASTs have been studied and used for (poly)phenol sulfation. This study introduces new fully characterized recombinant ASTs selected according to their similarity to the previously characterized ASTs. These enzymes, produced in Escherichia coli, were purified, biochemically characterized, and screened for the sulfation of nine flavonoids and two phenolic acids using p-nitrophenyl sulfate. All tested compounds were proved to be substrates for the new ASTs, with kaempferol and luteolin being the best converted acceptors. ASTs from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus (CfAST) showed the highest efficiency in the sulfation of tested polyphenols. To demonstrate the efficiency of the present sulfation approach, a series of new authentic metabolite standards, regioisomers of kaempferol sulfate, were enzymatically produced, isolated, and structurally characterized.
Collapse
Affiliation(s)
- Katerina Brodsky
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 3, Prague 6 CZ-166 28, Czech Republic
| | - Barbora Petránková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Albertov 6, Prague 2 CZ-128
43, Czech Republic
| | - Lucie Petrásková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Helena Pelantová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Kateřina Valentová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| |
Collapse
|
12
|
Toulou C, Chaudhari VS, Bose S. Extrusion 3D-printed tricalcium phosphate-polycaprolactone biocomposites for quercetin-KCl delivery in bone tissue engineering. J Biomed Mater Res A 2024; 112:1472-1483. [PMID: 38477071 PMCID: PMC11239310 DOI: 10.1002/jbm.a.37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Critical-sized bone defects pose a significant challenge in advanced healthcare due to limited bone tissue regenerative capacity. The complex interplay of numerous overlapping variables hinders the development of multifunctional biocomposites. Phytochemicals show promise in promoting bone growth, but their dose-dependent nature and physicochemical properties halt clinical use. To develop a comprehensive solution, a 3D-printed (3DP) extrusion-based tricalcium phosphate-polycaprolactone (TCP-PCL) scaffold is augmented with quercetin and potassium chloride (KCl). This composite material demonstrates a compressive strength of 30 MPa showing promising stability for low load-bearing applications. Quercetin release from the scaffold follows a biphasic pattern that persists for up to 28 days, driven via diffusion-mediated kinetics. The incorporation of KCl allows for tunable degradation rates of scaffolds and prevents the initial rapid release. Functionalization of scaffolds facilitates the attachment and proliferation of human fetal osteoblasts (hfOB), resulting in a 2.1-fold increase in cell viability. Treated scaffolds exhibit a 3-fold reduction in osteosarcoma (MG-63) cell viability as compared to untreated substrates. Ruptured cell morphology and decreased mitochondrial membrane potential indicate the antitumorigenic potential. Scaffolds loaded with quercetin and quercetin-KCl (Q-KCl) demonstrate 76% and 89% reduction in bacterial colonies of Staphylococcus aureus, respectively. This study provides valuable insights as a promising strategy for bone tissue engineering (BTE) in orthopedic repair.
Collapse
Affiliation(s)
- Connor Toulou
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Rosal RJZ, Paderes MC. Inhibiting SARS-CoV-2 viral entry by targeting spike:ACE2 interaction with O-modified quercetin derivatives. RSC Med Chem 2024:d4md00286e. [PMID: 39165908 PMCID: PMC11331306 DOI: 10.1039/d4md00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
The cell entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction between the receptor-binding domain of its spike (S) protein and human angiotensin-converting enzyme 2 (ACE2). Quercetin, a flavonoid found abundantly in plants, shows potential as a SARS-CoV-2 S:ACE2 inhibitor but is known to have low bioavailability. Modification of quercetin by capping its hydroxyl moieties could enhance the metabolic stability, solubility, and bioavailability, and reduce toxicity. In this study, sixteen (16) O-modified quercetin derivatives were synthesized by incorporating alkyl and acyl moieties of varying lengths, sizes, and polarities to the hydroxyl groups. The SARS-CoV-2 S:ACE2 inhibitory activity and toxicity of the synthesized derivatives were assessed in vitro, and their physicochemical properties, pharmacokinetics, and drug-likeness were predicted and evaluated using the SwissADME web tool. Results showed that functionalization of the hydroxyl moieties of quercetin generally resulted in more potent inhibitors (>50% inhibition). Five (5) derivatives displayed a dose-dependent inhibition against the SARS-CoV-2 S:ACE2 interaction with promising IC50 values (i.e., 2e (IC50 = 7.52 μM), 3a (IC50 = 5.00 μM), 3b (IC50 = 25.70 μM), 3c (IC50 = 2.22 μM), and 4b (IC50 = 3.28 μM)). Moreover, these compounds exhibited low hepato-, nephro-, and cardiotoxicity, and their SwissADME profiles indicated favorable physicochemical, pharmacokinetic, and drug-like properties, suggesting their potential as promising lead SARS-CoV-2 S:ACE2 inhibitors.
Collapse
Affiliation(s)
- Reuben James Z Rosal
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City 1101 Philippines
| | - Monissa C Paderes
- Institute of Chemistry, College of Science, University of the Philippines Diliman Quezon City 1101 Philippines
| |
Collapse
|
14
|
Van TTT, Chang HS, Wu HC, Lu CK, Huang HC, Korinek M, Hsiao HH, Yen CH. The SAR analysis of dietary polyphenols and their antagonistic effects on bortezomib at physiological concentrations. Front Pharmacol 2024; 15:1403424. [PMID: 39119616 PMCID: PMC11306019 DOI: 10.3389/fphar.2024.1403424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Bortezomib (BTZ), a primary treatment for MM, but its effectiveness can be reduced by interactions with vicinal diol moieties (VDMs) in polyphenols. Despite this, it's debated whether BTZ therapy necessitates avoiding polyphenol-rich products, given the low bioavailability of polyphenols. Additionally, it remains unclear whether the structure of polyphenols contributes to their BTZ antagonism. Therefore, our study aims to unravel the structure-activity relationship of dietary polyphenols and their BTZ antagonism at daily diet-achievable physiological concentrations. Methods: We assessed the antagonistic effects of 25 polyphenols against BTZ using cell viability assays in RPMI 8226 cells. ChemGPS-NP helped analyze the structural similarity. Additionally, long-term cytotoxicity assays evaluated these effects at physiologically relevant concentrations. Results: By cell viability assays, we found a positive correlation between the number of VDMs in gallotannins and their BTZ antagonism. Moreover, the origin and configuration of VDMs, rather than the total VDM concentration, play a pivotal role in the combined antagonistic effects against BTZ in gallotannins. Additionally, ChemGPS-NP analysis indicated that the aromaticity and C-3 hydroxyl group in flavonoids' C-rings enhance their BTZ antagonism. Finally, long-term cytotoxicity assays reveal that gallic acid (GA), epigallocatechin (EGC), and epigallocatechin gallate (EGCG), at their physiological concentrations-attainable through tea consumption-significantly and synergistically antagonize BTZ. Conclusion: Due to the potential for these polyphenols to reduce the effectiveness of BTZ, it is advisable for MM patients undergoing BTZ treatment to reduce their consumption of foods high in VDM-containing polyphenols.
Collapse
Affiliation(s)
- Tran Tran Thi Van
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ho-Cheng Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hua Hsiao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Wen Y, Weng P, Li Y, Yang L, Li C, Chen Q, He Y, Zhang W, Hu H, Yuan Z, Yu C. Triglyceride-Targeted Molecularly Imprinted Polymers Activate Lipophagy via Cargo Exchange for Nonalcoholic Fatty Liver Disease Treatment. ACS APPLIED POLYMER MATERIALS 2024; 6:7265-7277. [DOI: 10.1021/acsapm.4c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yilin Wen
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ping Weng
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yueyue Li
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liming Yang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chengju Li
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qingyang Chen
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yanni He
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wanping Zhang
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hui Hu
- Pharmaceutical and Nanomedicine Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhiyi Yuan
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Yu
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Liu WY, Yu Y, Zang J, Liu Y, Li FR, Zhang L, Guo RB, Kong L, Ma LY, Li XT. Menthol-Modified Quercetin Liposomes with Brain-Targeting Function for the Treatment of Senescent Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2283-2295. [PMID: 38780450 DOI: 10.1021/acschemneuro.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Oxidative stress and neuroinflammation in the aging brain are correlated with the development of neurodegenerative diseases, such as Alzheimer's disease (AD). The blood-brain barrier (BBB) poses a significant challenge to the effective delivery of therapeutics for AD. Prior research has demonstrated that menthol (Men) can augment the permeability of the BBB. Consequently, in the current study, we modified Men on the surface of liposomes to construct menthol-modified quercetin liposomes (Men-Qu-Lips), designed to cross the BBB and enhance quercetin (Qu) concentration in the brain for improved therapeutic efficacy. The experimental findings indicate that Men-Qu-Lips exhibited good encapsulation efficiency and stability, successfully crossed the BBB, improved oxidative stress and neuroinflammation in the brains of aged mice, protected neurons, and enhanced their learning and memory abilities.
Collapse
Affiliation(s)
- Wan-Ying Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Feng-Rui Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui-Bo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
17
|
Li T, Zhu J, Yu Q, Zhu Y, Wu C, Zheng X, Chen N, Pei P, Yang K, Wang K, Hu L. Dietary Flavonoid Quercetin Supplement Promotes Antiviral Innate Responses Against Vesicular Stomatitis Virus Infection by Reshaping the Bacteriome and Host Metabolome in Mice. Mol Nutr Food Res 2024; 68:e2300898. [PMID: 38752791 DOI: 10.1002/mnfr.202300898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Indexed: 07/21/2024]
Abstract
SCOPE Active ingredients in functional foods exhibit broad-spectrum antiviral activity. The objective of this study is to investigate the protective effect of quercetin derived from bee propolis, a natural product with antiviral activity and modulating effects on the gut microbiota, against vesicular stomatitis virus (VSV) infection. METHODS AND RESULTS Through a cellular-based study, this study demonstrates that quercetin can modulate the activity of interferon-regulating factor 3 (IRF3). In vivo, it shows that quercetin protects mice from VSV infection by enhancing interferon production and inhibiting the production of proinflammatory cytokines. The study conducts 16S rRNA-based gut microbiota and nontargets metabolomics analyses to elucidate the mechanisms underlying quercetin-mediated bidirectional communication between the gut microbiome and host metabolome during viral infection. Quercetin not only ameliorates VSV-induced dysbiosis of the intestinal flora but also alters serum metabolites related to lipid metabolism. Cross-correlations between the gut bacteriome and the serum metabolome indicate that quercetin can modulate phosphatidylcholine (16:0/0:0) and 5-acetylamino-6-formylamino-3-methyluracil to prevent VSV infection. CONCLUSION This study systematically elucidates the anti-VSV mechanism of quercetin through gut bacteriome and host metabolome assays, offering new insights into VSV treatment and revealing the mechanisms behind a novel disease management strategy using dietary flavonoid supplements.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Qifeng Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Yinrui Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chao Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xing Zheng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| |
Collapse
|
18
|
Kostić AŽ, Arserim-Uçar DK, Materska M, Sawicka B, Skiba D, Milinčić DD, Pešić MB, Pszczółkowski P, Moradi D, Ziarati P, Bienia B, Barbaś P, Sudagıdan M, Kaur P, Sharifi-Rad J. Unlocking Quercetin's Neuroprotective Potential: A Focus on Bee-Collected Pollen. Chem Biodivers 2024; 21:e202400114. [PMID: 38386539 DOI: 10.1002/cbdv.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In the quest to evade side effects associated with synthetic drugs, mankind is continually exploring natural sources. In recent decades, neurodegenerative disorders (NDDs) have surged dramatically compared to other human diseases. Flavonoids, naturally occurring compounds, have emerged as potential preventers of NDD development. Notably, quercetin and its derivatives demonstrated excellent antioxidant properties in the fight against NDDs. Recognizing bee-collected pollen (BP) as a well-established excellent source of quercetin and its derivatives, this review seeks to consolidate available data on the prevalence of this flavonoid in BP, contingent upon its botanical and geographical origins. It aims to advocate for BP as a superb natural source of "drugs" that could serve as preventative measures against NDDs. Examination of numerous published articles, detailing the phenolic profile of BP, suggests that it can be a great source of quercetin, with an average range of up to 1000 mg/kg. In addition to quercetin, 24 derivatives (with rutin being the most predominant) have been identified. Theoretical calculations, based on the recommended dietary intake for quercetin, indicate that BP can fulfil from 0.1 to over 100 % of the requirement, depending on BP's origin and bioaccessibility/bioavailability during digestion.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Dılhun Keriman Arserim-Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bingöl University, Bingöl, 12000, Türkiye
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950, Lublin, Poland
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Danijel D Milinčić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Mirjana B Pešić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Piotr Pszczółkowski
- Experimental Department of Cultivar Assessment, Research Centre for Cultivar Testing, Uhnin, 21-211, Dębowa Kłoda, Poland
| | - Donya Moradi
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Ziarati
- Department of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bernadetta Bienia
- Food Production and Safety Department, National Academy of Applied Sciences, Rynek 1 str., 38-400, Krosno, Poland
| | - Piotr Barbaś
- Department Agronomy of Potato, Plant Breeding and Acclimatization Institute - National Research Institute, Branch Jadwisin, 05-140, Serock, Poland
| | - Mert Sudagıdan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Preetinder Kaur
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Punjab Agricultural University, Ludhiana, 141004, Punjab
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, 14-008, Cuenca, Ecuador
| |
Collapse
|
19
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
20
|
Chen JY, Huang TR, Hsu SY, Huang CC, Wang HS, Chang JS. Effect and mechanism of quercetin or quercetin-containing formulas against COVID-19: From bench to bedside. Phytother Res 2024; 38:2597-2618. [PMID: 38479376 DOI: 10.1002/ptr.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.
Collapse
Affiliation(s)
- Jhong Yuan Chen
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung Rung Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih Yun Hsu
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei Syun Wang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
22
|
Carrillo-Martinez EJ, Flores-Hernández FY, Salazar-Montes AM, Nario-Chaidez HF, Hernández-Ortega LD. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024; 29:1000. [PMID: 38474512 DOI: 10.3390/molecules29051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Quercetin is a flavonoid with a low molecular weight that belongs to the human diet's phenolic phytochemicals and nonenergy constituents. Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC), which act as reducing agents by chelating transition-metal ions. Its structure has five functional hydroxyl groups, which work as electron donors and are responsible for capturing free radicals. In addition to its antioxidant capacity, different pharmacological properties of quercetin have been described, such as carcinostatic properties; antiviral, antihypertensive, and anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis; these are developed in this review.
Collapse
Affiliation(s)
- Eber Josue Carrillo-Martinez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Flor Yohana Flores-Hernández
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | | | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinaria en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico
| |
Collapse
|
23
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates. Crit Rev Food Sci Nutr 2024; 65:1669-1705. [PMID: 38189312 DOI: 10.1080/10408398.2023.2299329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
25
|
D'Angelo S. Diet and Aging: The Role of Polyphenol-Rich Diets in Slow Down the Shortening of Telomeres: A Review. Antioxidants (Basel) 2023; 12:2086. [PMID: 38136206 PMCID: PMC10740764 DOI: 10.3390/antiox12122086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The ends of human chromosomes are defended by DNA-protein complexes named telomeres, which inhibit the chromosomes from fusing with each other and from being known as a double-strand break by DNA reparation proteins. Telomere length is a marker of biological aging, and disfunction of telomeres is related to age-related syndromes. Telomere attrition has been shown to be accelerated by oxidative stress and inflammation. Telomere length has been proven to be positively linked with nutritional status in human and animal scientific research as several nutrients influence it through mechanisms that imitate their function in cellular roles including oxidative stress and inflammation. Data reported in this article support the idea that following a low-in-fat and rich-plant polyphenols food diet seems to be able to slow down the shortening of telomeres.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Department of Medical, Movement and Wellbeing Sciences, Parthenope University, 80133 Naples, Italy
| |
Collapse
|
26
|
Devi A, Levin M, Waterhouse AL. Inhibition of ALDH2 by quercetin glucuronide suggests a new hypothesis to explain red wine headaches. Sci Rep 2023; 13:19503. [PMID: 37985790 PMCID: PMC10662156 DOI: 10.1038/s41598-023-46203-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
The consumption of red wine induces headaches in some subjects who can drink other alcoholic beverages without suffering. The cause for this effect has been attributed to a number of components, often the high level of phenolics in red wine, but a mechanism has been elusive. Some alcohol consumers exhibit flushing and experience headaches, and this is attributed to a dysfunctional ALDH2 variant, the enzyme that metabolizes acetaldehyde, allowing it to accumulate. Red wine contains much higher levels of quercetin and its glycosides than white wine or other alcoholic beverages. We show that quercetin-3-glucuronide, a typical circulating quercetin metabolite, inhibits ALDH2 with an IC50 of 9.6 µM. Consumption of red wine has been reported to result in comparable levels in circulation. Thus, we propose that quercetin-3-glucoronide, derived from the various forms of quercetin in red wines inhibits ALDH2, resulting in elevated acetaldehyde levels, and the subsequent appearance of headaches in susceptible subjects. Human-subject testing is needed to test this hypothesis.
Collapse
Affiliation(s)
- Apramita Devi
- Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Morris Levin
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, Davis, CA, USA.
| |
Collapse
|
27
|
Kotik M, Kulik N, Valentová K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14890-14910. [PMID: 37800688 PMCID: PMC10591481 DOI: 10.1021/acs.jafc.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.
Collapse
Affiliation(s)
- Michael Kotik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| |
Collapse
|
28
|
Berga M, Logviss K, Lauberte L, Paulausks A, Mohylyuk V. Flavonoids in the Spotlight: Bridging the Gap between Physicochemical Properties and Formulation Strategies. Pharmaceuticals (Basel) 2023; 16:1407. [PMID: 37895878 PMCID: PMC10610233 DOI: 10.3390/ph16101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them "brick dust" candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
29
|
Solnier J, Zhang Y, Roh K, Kuo YC, Du M, Wood S, Hardy M, Gahler RJ, Chang C. A Pharmacokinetic Study of Different Quercetin Formulations in Healthy Participants: A Diet-Controlled, Crossover, Single- and Multiple-Dose Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9727539. [PMID: 37600550 PMCID: PMC10435304 DOI: 10.1155/2023/9727539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
This study aimed to evaluate the blood concentrations of quercetin in healthy participants after the administration of different formulations in single- and multiple-dose phases. Ten healthy adults (males, 5; females, 5; age 37 ± 11 years) participated in a diet-controlled, crossover pilot study. Participants received three different doses (250 mg, 500 mg, or 1000 mg) of quercetin aglycone orally. In the single-dose study, blood concentrations (AUC0-24 and Cmax) of standard quercetin were compared with those of LipoMicel®-a food-grade delivery form of quercetin. In the multiple-dose study, blood concentrations of formulated quercetin were observed over 72 h, after repeated doses of LipoMicel (LM) treatments. The AUC0-24 ranged from 77.3 to 1128.9 ng·h/ml: LM significantly increased blood concentrations of quercetin by 7-fold (LM 500) compared to standard quercetin, when tested at the same dose, over 24 h (p < 0.001); LM administered at a higher dose (LM 1000) achieved 15-fold higher absorption (p < 0.001); LM tested at half a dose of standard quercetin increased concentration by approx. 3-fold (LM 250). Quercetin blood concentrations were attained over 72 h. The major metabolites measured in the blood were methylated, sulfate, and glutathione (GSH) conjugates of quercetin. Significant differences in concentrations between quercetin conjugates (sulfate vs. methyl vs. GSH) were observed (p < 0.001). Data obtained from this study suggest that supplementation with LipoMicel® is a promising strategy to increase the absorption of quercetin and its health-promoting effects in humans. However, due to the low sample size in this pilot study, further research is still warranted to confirm the observations in larger populations. This trial is registered with NCT05611827.
Collapse
Affiliation(s)
| | | | - Kyle Roh
- ISURA, Burnaby, BC V3N4S9, Canada
| | | | - Min Du
- ISURA, Burnaby, BC V3N4S9, Canada
| | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- InovoBiologic Inc., Calgary, AB Y2N4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Mary Hardy
- Association of Integrative and Holistic Medicine, San Diego, California, USA
| | | | | |
Collapse
|
30
|
Cattivelli A, Conte A, Tagliazucchi D. Quercetins, Chlorogenic Acids and Their Colon Metabolites Inhibit Colon Cancer Cell Proliferation at Physiologically Relevant Concentrations. Int J Mol Sci 2023; 24:12265. [PMID: 37569640 PMCID: PMC10418599 DOI: 10.3390/ijms241512265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Several studies have suggested that a phenolic-rich diet may be protective against colon cancer. Most phenolic compounds are not absorbed in the small intestine and reach the colon where they are metabolized by gut microbiota in simple phenolic acids. In this study, the anti-proliferative activity of quercetins, chlorogenic acids, their colon metabolites and mixtures of parent compounds/metabolites was assessed by using two colon cancer cell lines (Caco-2 and SW480) at physiologically relevant concentrations. Chlorogenic acids, quercetin and the metabolite 3-(3',4'-dihydroxyphenyl)acetic acid exerted remarkable anti-proliferative activity against Caco-2, whereas quercetin derivatives and metabolites were the most active against SW480. Tested compounds arrested the cell cycle at the S phase in both the cell lines. The mixtures of parent compounds/metabolites, which mimic the colon human metabotypes that slowly or rapidly metabolize the parent compounds, similarly inhibited cell growth. SW480 cells metabolized parent phenolic compounds more rapidly and extensively than Caco-2, whereas colon metabolites were more stable. These results suggest that dietary phenolic compounds exert an anti-proliferative effect against human colon cancer cells that can be further sustained by the colon metabolites. Therefore, gut microbiota metabolism of phenolic compounds may be of paramount importance in explaining the protective effect of phenolic-rich foods against colon cancer.
Collapse
Affiliation(s)
| | | | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy; (A.C.); (A.C.)
| |
Collapse
|
31
|
Tronina T, Łużny M, Dymarska M, Urbaniak M, Kozłowska E, Piegza M, Stępień Ł, Janeczko T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 24:11857. [PMID: 37511613 PMCID: PMC10380404 DOI: 10.3390/ijms241411857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin is the most abundant flavonoid in food products, including berries, apples, cauliflower, tea, cabbage, nuts, onions, red wine and fruit juices. It exhibits various biological activities and is used for medical applications, such as treating allergic, inflammatory and metabolic disorders, ophthalmic and cardiovascular diseases, and arthritis. However, its low water solubility may limit quercetin's therapeutic potential. One method of increasing the solubility of active compounds is their coupling to polar molecules, such as sugars. The attachment of a glucose unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Entomopathogenic fungi are biocatalysts well known for their ability to attach glucose and its 4-O-methyl derivative to bioactive compounds, including flavonoids. We investigated the ability of cultures of entomopathogenic fungi belonging to Beauveria, Isaria, Metapochonia, Lecanicillium and Metarhizium genera to biotransform quercetin. Three major glycosylation products were detected: (1), 7-O-β-D-(4″-O-methylglucopyranosyl)-quercetin, (2) 3-O-β-D-(4″-O-methylglucopyranosyl)-quercetin and (3) 3-O-β-D-(glucopyranosyl)-quercetin. The results show evident variability of the biotransformation process, both between strains of the tested biocatalysts from different species and between strains of the same species. Pharmacokinetic and pharmacodynamic properties of the obtained compounds were predicted with the use of cheminformatics tools. The study showed that the obtained compounds may have applications as effective modulators of intestinal flora and may be stronger hepato-, cardio- and vasoprotectants and free radical scavengers than quercetin.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
32
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
33
|
Pellegrino M, Bevacqua E, Frattaruolo L, Cappello AR, Aquaro S, Tucci P. Enhancing the Anticancer and Anti-Inflammatory Properties of Curcumin in Combination with Quercetin, for the Prevention and Treatment of Prostate Cancer. Biomedicines 2023; 11:2023. [PMID: 37509660 PMCID: PMC10377667 DOI: 10.3390/biomedicines11072023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is the second most common cancer in men. Although epidemiologic studies show that a higher intake of polyphenols, curcumin (CUR), and quercetin (QRT), in particular, result in lower prostate cancer risk, the chemopreventive mechanisms underlying the effects of CUR and QRT have not been fully understood yet, and most investigations were conducted with individual compounds. Here, we investigated the anticancer and anti-inflammatory effects of CUR in combination with QRT, respectively, in a human prostate cancer cell line, PC-3, and in LPS-stimulated RAW 264.7 cells, and found that their combination significantly inhibited proliferation and arrested the cell cycle, inducing apoptosis, so exhibiting synergic activities stronger than single drug use. Moreover, via their antioxidant effects, the combination of CUR and QRT modulated several inflammation-mediated signaling pathways (ROS, nitric oxide, and pro-inflammatory cytokines) thus helping protect cells from undergoing molecular changes that trigger carcinogenesis. Although additional studies, including in vivo experiments and translational studies, are required, this study raises the possibility of their use as a safe, effective, and affordable therapeutic approach to prostate cancer.
Collapse
Affiliation(s)
- Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Emilia Bevacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
34
|
Gupta A, Kumar Mehta S, Qayoom I, Gupta S, Singh S, Kumar A. Biofunctionalization with Cissus quadrangularis Phytobioactives Accentuates Nano-Hydroxyapatite Based Ceramic Nano-Cement for Neo-Bone Formation in Critical Sized Bone Defect. Int J Pharm 2023:123110. [PMID: 37302672 DOI: 10.1016/j.ijpharm.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Developing biofunctionalized ceramic bone substitutes with phytobioactives for their sustained delivery is highly desired to enhance the osteo-active potential of ceramic bone substitutes, reduce the systemic toxicity of synthetic drugs, and increase the bioavailability of phytobioactives. The present work highlights the local delivery of phytobioactives of Cissus quadrangularis (CQ) through nano-hydroxyapatite (nHAP) based ceramic nano-cement. The phytoconstituent profiling represented the optimized CQ fraction to be rich in osteogenic polyphenols and flavonoids like quercetin, resveratrol, and their glucosides. Further, CQ phytobioactives-based formulation was biocompatible, increased bone formation, calcium deposition, proliferation, and migration of cells with simultaneous alleviation of cellular oxidative stress. In the in vivo critical-sized bone defect model, enhanced formation of highly mineralized tissue (BV mm3) in CQ phytobioactives functionalized nano-cement (10.5 ± 2 mm3) were observed compared to the control group (6.5 ± 1.2 mm3). Moreover, the addition of CQ phytobioactives to the bone nano-cement increased the fractional bone volume (BV/TV%) to 21 ± 4.2% compared to 13.1 ± 2.5% in non-functionalized nano-cement. The results demonstrated nHAP-based nano-cement as a carrier for phytobioactives which could be a promising approach for neo-bone formation in different bone defect conditions.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India.
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India.
| |
Collapse
|
35
|
Rauf A, Joshi PB, Ahmad Z, Hemeg HA, Olatunde A, Naz S, Hafeez N, Simal-Gandara J. Edible mushrooms as potential functional foods in amelioration of hypertension. Phytother Res 2023; 37:2644-2660. [PMID: 37157920 DOI: 10.1002/ptr.7865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ-aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
36
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
37
|
Zahid HF, Ali A, Legione AR, Ranadheera CS, Fang Z, Dunshea FR, Ajlouni S. Probiotic Yoghurt Enriched with Mango Peel Powder: Biotransformation of Phenolics and Modulation of Metabolomic Outputs after In Vitro Digestion and Colonic Fermentation. Int J Mol Sci 2023; 24:ijms24108560. [PMID: 37239906 DOI: 10.3390/ijms24108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated the health-promoting effects and prebiotic functions of mango peel powder (MPP) both as a plain individual ingredient and when incorporated in yoghurt during simulated digestion and fermentation. The treatments included plain MPP, plain yoghurt (YA), yoghurt fortified with MPP (YB), and yoghurt fortified with MPP and lactic acid bacteria (YC), along with a blank (BL). The identification of polyphenols in the extracts of insoluble digesta and phenolic metabolites after the in vitro colonic fermentation were performed employing LC-ESI-QTOF-MS2. These extracts were also subjected to pH, microbial count, production of SCFA, and 16S rRNA analyses. The characterisation of phenolic profiles identified 62 phenolic compounds. Among these compounds, phenolic acids were the major compounds that underwent biotransformation via catabolic pathways such as ring fission, decarboxylation, and dehydroxylation. Changes in pH indicated that YC and MPP reduced the media pH from 6.27 and 6.33 to 4.50 and 4.53, respectively. This decline in pH was associated with significant increases in the LAB counts of these samples. The Bifidobacteria counts were 8.11 ± 0.89 and 8.02 ± 1.01 log CFU/g in YC and MPP, respectively, after 72 h of colonic fermentation. Results also showed that the presence of MPP imparted significant variations in the contents and profiles of individual short chain fatty acids (SCFA) with more predominant production of most SCFA in the MPP and YC treatments. The 16s rRNA sequencing data indicated a highly distinctive microbial population associated with YC in terms of relative abundance. These findings suggested MPP as a promising ingredient for utilisation in functional food formulations aiming to enhance gut health.
Collapse
Affiliation(s)
- Hafza Fasiha Zahid
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Akhtar Ali
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Said Ajlouni
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
38
|
Shala AL, Arduino I, Salihu MB, Denora N. Quercetin and Its Nano-Formulations for Brain Tumor Therapy—Current Developments and Future Perspectives for Paediatric Studies. Pharmaceutics 2023; 15:pharmaceutics15030963. [PMID: 36986827 PMCID: PMC10057501 DOI: 10.3390/pharmaceutics15030963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The development of efficient treatments for tumors affecting the central nervous system (CNS) remains an open challenge. Particularly, gliomas are the most malignant and lethal form of brain tumors in adults, causing death in patients just over 6 months after diagnosis without treatment. The current treatment protocol consists of surgery, followed using synthetic drugs and radiation. However, the efficacy of these protocols is associated with side effects, poor prognosis and with a median survival of fewer than two years. Recently, many studies were focused on applying plant-derived products to manage various diseases, including brain cancers. Quercetin is a bioactive compound derived from various fruits and vegetables (asparagus, apples, berries, cherries, onions and red leaf lettuce). Numerous in vivo and in vitro studies highlighted that quercetin through multitargeted molecular mechanisms (apoptosis, necrosis, anti-proliferative activity and suppression of tumor invasion and migration) effectively reduces the progression of tumor cells. This review aims to summarize current developments and recent advances of quercetin’s anticancer potential in brain tumors. Since all reported studies demonstrating the anti-cancer potential of quercetin were conducted using adult models, it is suggested to expand further research in the field of paediatrics. This could offer new perspectives on brain cancer treatment for paediatric patients.
Collapse
Affiliation(s)
- Aida Loshaj Shala
- Department of Drug Analysis and Pharmaceutical Technology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Ilaria Arduino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy
| | - Mimoza Basholli Salihu
- Department of Drug Analysis and Pharmaceutical Technology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
39
|
Sethi G, Rath P, Chauhan A, Ranjan A, Choudhary R, Ramniwas S, Sak K, Aggarwal D, Rani I, Tuli HS. Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends and Advancements. Pharmaceutics 2023; 15:712. [PMID: 36840034 PMCID: PMC9960374 DOI: 10.3390/pharmaceutics15020712] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Due to rising incidence rates of liver cancer and worries about the toxicity of current chemotherapeutic medicines, the hunt for further alternative methods to treat this malignancy has escalated. Compared to chemotherapy, quercetin, a flavonoid, is relatively less harmful to normal cells and is regarded as an excellent free-radical scavenger. Apoptotic cell death of cancer cells caused by quercetin has been demonstrated by many prior studies. It is present in many fruits, vegetables, and herbs. Quercetin targets apoptosis, by upregulating Bax, caspase-3, and p21 while downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, and Bcl-2. Additionally, it has been reported to increase STAT3 protein degradation in liver cancer cells while decreasing STAT3 activation. Quercetin has a potential future in chemoprevention, based on substantial research on its anticancer effects. The current review discusses quercetin's mechanisms of action, nanodelivery strategies, and other potential cellular effects in liver cancer.
Collapse
Affiliation(s)
- Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| |
Collapse
|
40
|
Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules 2023; 28:molecules28030938. [PMID: 36770606 PMCID: PMC9920550 DOI: 10.3390/molecules28030938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin's antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin.
Collapse
|
41
|
Mechanism of Action of a Chinese Herbal Compound Containing Quercetin, Luteolin, and Kaempferol in the Treatment of Vitiligo Based on Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7197533. [PMID: 36569347 PMCID: PMC9788887 DOI: 10.1155/2022/7197533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Objective This study aimed to explore the mechanisms of Baishi tablets (BSTs) in the treatment of vitiligo through network pharmacology-based identification and experimental validation. Methods In brief, the compounds and related targets of BST were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to visualize the common targets of BST and vitiligo. GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using STRING and Cytoscape software. In addition, the measurement of apoptosis in PIG1 cells and intracellular reactive oxygen species were measured using quercetin (QU), luteolin (LU), and kaempferol (KA) to protect melanocytes from oxidative stress. Results A total of 55 compounds with 236 targets and 1205 vitiligo-related genes were obtained from the TCMSP database. GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways, revealing that BST may cure vitiligo by influencing the biological processes of cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained with 13 core genes by analyzing the PPI network, which includes HMOX1, CXCL8, CCL2, IL6, MAPK8, CASP3, PTGS2, AKT1, IL1B, MYC, TP53, IFNG, and IL2. Furthermore, a molecular docking analysis was conducted to simulate the combination of compounds and gene proteins, reflecting that QU, LU, and KA can strongly bind the core genes. Through a series of experimental validations, we found that QU, LU, and KA could attenuate H2O2-induced apoptosis in melanocytes. Further evidence revealed that QU, LU, and KA could enhance the scavenging of intracellular reactive oxygen species (ROS). Conclusion Based on the results of network pharmacology analysis and experimental verification, QA, LU, and KA can be utilized to protect PIG1 cells by inhibiting oxidative stress and reducing the intracellular level of ROS. This may explain the underlying mechanism of BST therapy and provide a novel strategy for the treatment of vitiligo.
Collapse
|
42
|
A Double-Edged Sword: Focusing on Potential Drug-to-Drug Interactions of Quercetin. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022. [DOI: 10.1007/s43450-022-00347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Lakeev AP, Yanovskaya EA, Yanovsky VA, Andropov MO, Frelikh GA, Yu Chukicheva I, Kutchin AV. LC-MS/MS method for the determination of a semi-synthetic phenolic antioxidant 2,6-diisobornyl-4-methylphenol in rats after different administration routes. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123537. [PMID: 36455390 DOI: 10.1016/j.jchromb.2022.123537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
IBP (2,6-diisobornyl-4-methylphenol) is a small drug molecule with antioxidant properties considered to be a promising neuro-, cardio-, and retinoprotective agent. In this study, a bioanalytical LC-MS/MS method for its determination in rat plasma was developed using 11H-indeno[1,2-b]quinoxalin-11-one oxime as an internal standard (IS). The analytes were extracted from plasma by liquid-liquid extraction technique using isopropyl alcohol:chloroform mixture (1:5, v/v) followed by evaporation and reconstitution of the residues in acetonitrile. The chromatographic separation was carried out on the EC Nucleodur C8 ec column (150 × 4.6 mm, 5 μm) under an isocratic elution mode using acetonitrile and water containing 0.1% (v/v) formic acid (97:3, v/v) as a mobile phase at a flow rate of 0.55 mL/min (40 °C). The IS and IBP were eluted at 3.79 ± 0.02 and 6.30 ± 0.02 min, respectively. The total analysis time was 7.00 min. Multiple reaction monitoring was used to conduct the MS/MS detection in the negative ion mode with transitions at m/z 245.9 → 214.9 (IS) and 379.2 → 256.0 (IBP). Validation studies of the developed method revealed good linearity over the range of 10-5,000 ng/mL. Within- and between-run accuracy was in the range of 92-110%, while within- and between-run precision was below 8%. Additionally, low matrix effects and high recovery (above 98%) were observed. IBP remained stable in rat plasma at room temperature for 4 h, at -80 °C for 21 days, over three freeze-thaw cycles, under vacuum concentrator (45 °C, dried residues) and auto-sampler (15 °C, processed samples) temperatures for 1 h and 24 h, respectively. Subsequently, the validated LC-MS/MS method has been successfully applied to quantitate IBP in actual plasma samples after a single oral, intramuscular, and subcutaneous dose of IBP (10 mg/kg in the peach oil) to rats. Pharmacokinetic studies show that more rapid and complete IBP absorption with a satisfactory excretion rate were observed after oral administration route compared to the intramuscular and subcutaneous ones.
Collapse
Affiliation(s)
- Alexander P Lakeev
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Elena A Yanovskaya
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Vyacheslav A Yanovsky
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia
| | - Mikhail O Andropov
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia
| | - Galina A Frelikh
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia
| | - Irina Yu Chukicheva
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| | - Aleksandr V Kutchin
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| |
Collapse
|
44
|
Protective Effects of Combined Utilization of Quercetin and Florfenicol on Acute Hepatopancreatic Necrosis Syndrome Infected Litopenaeus vannamei. Antibiotics (Basel) 2022; 11:antibiotics11121784. [PMID: 36551441 PMCID: PMC9774288 DOI: 10.3390/antibiotics11121784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to determine the immunity, survival rate, and disease resistance of Litopenaeus vannamei treated using quercetin and florfenicol alone or in combination, after infection with acute hepatopancreatic necrosis syndrome caused by Vibrio parahaemolyticus (VPAHPND). After infection with VPAHPND, different types of feed were given to the shrimp for 5 days, including a control diet (drug-free), florfenicol only diet (15 mg/kg), quercetin only diet (400 mg/kg), a low-dose florfenicol/quercetin combined diet (200 mg/kg quercetin + 7.0 mg/kg florfenicol), a moderate-dose florfenicol/quercetin combined diet (400 mg/kg quercetin + 15 mg/kg florfenicol), and a high-dose florfenicol/quercetin combined diet (800 mg/kg quercetin + 30 mg/kg florfenicol). The cumulative mortality of shrimp was significantly reduced in the drug combination groups compared with either drug used alone (p < 0.05). The density of Vibrio was significantly lower and the immune parameters were significantly increased in the drug combination groups compared with either drug used alone (p < 0.05). Moreover, in the drug combination groups, the hepatopancreas tubules showed better integrity and structure compared with those when either drug was used alone. Therefore, compared with single drug treatment, the florfenicol and quercetin combination enhanced disease resistance, survival, and immune activity of VPAHPND-infected shrimp. When the combination treatment is used, the dosage of florfenicol can be reduced and a better therapeutic effect is obtained.
Collapse
|
45
|
Sulfation of Phenolic Acids: Chemoenzymatic vs. Chemical Synthesis. Int J Mol Sci 2022; 23:ijms232315171. [PMID: 36499496 PMCID: PMC9736156 DOI: 10.3390/ijms232315171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from Desulfitobacterium hafniense, or chemically using SO3 complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids. The sulfates of 3-HPA, 4-HPA, 4-HPP, DHPA, and DHPP were all obtained by the methods of chemical synthesis. In contrast, the enzymatic sulfation of monohydroxyphenolic acids failed probably due to enzyme inhibition, whereas the same reaction was successful for dihydroxyphenolic acids (DHPA and DHPP). Special attention was also paid to the counterions of the sulfates, a topic often poorly reported in synthetic works. The products obtained will serve as authentic analytical standards in metabolic studies and to determine their biological activity.
Collapse
|
46
|
Organically surface engineered mesoporous silica nanoparticles control the release of quercetin by pH stimuli. Sci Rep 2022; 12:20661. [PMID: 36450792 PMCID: PMC9712501 DOI: 10.1038/s41598-022-25095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Controlling the premature release of hydrophobic drugs like quercetin over physiological conditions remains a challenge motivating the development of smart and responsive drug carriers in recent years. This present work reported a surface modification of mesoporous silica nanoparticles (MSN) by a functional compound having both amines (as a positively charged group) and carboxylic (negatively charged group), namely 4-((2-aminoethyl)amino)-4-oxobut-2-enoic acid (AmEA) prepared via simple mechanochemistry approach. The impact of MSN surface modification on physical, textural, and morphological features was evaluated by TGA, N2 adsorption-desorption, PSA-zeta, SEM, and TEM. The BET surface area of AmEA-modified MSN (MSN-AmEA) was found to be 858.41 m2 g-1 with a pore size of 2.69 nm which could accommodate a high concentration of quercetin 118% higher than MSN. In addition, the colloidal stability of MSN-AmEA was greatly improved as indicated by high zeta potential especially at pH 4 compared to MSN. In contrast to MSN, MSN-AmEA has better in controlling quercetin release triggered by pH, thanks to the presence of the functional groups that have a pose-sensitive interaction hence it may fully control the quercetin release, as elaborated by the DFT study. Therefore, the controlled release of quercetin over MSN-AmEA verified its capability of acting as a smart drug delivery system.
Collapse
|
47
|
Dias JL, Rebelatto EA, Hotza D, Bortoluzzi AJ, Lanza M, Ferreira SR. Production of quercetin-nicotinamide cocrystals by gas antisolvent (GAS) process. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Zhang B, Zhang Y, Xing X, Wang S. Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Guo B, Chou F, Huang L, Yin F, Fang J, Wang JB, Jia Z. Recent insights into oxidative metabolism of quercetin: catabolic profiles, degradation pathways, catalyzing metalloenzymes and molecular mechanisms. Crit Rev Food Sci Nutr 2022; 64:1312-1339. [PMID: 36037033 DOI: 10.1080/10408398.2022.2115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Fang Chou
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Feifan Yin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
50
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:1049. [PMID: 36145270 PMCID: PMC9504481 DOI: 10.3390/ph15091049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 outbreak seems to be the most dangerous challenge of the third millennium due to its highly contagious nature. Amongst natural molecules for COVID-19 treatment, the flavonoid molecule quercetin (QR) is currently considered one of the most promising. QR is an active agent against SARS and MERS due to its antimicrobial, antiviral, anti-inflammatory, antioxidant, and some other beneficial effects. QR may hold therapeutic potential against SARS-CoV-2 due to its inhibitory effects on several stages of the viral life cycle. In fact, QR inhibits viral entry, absorption, and penetration in the SARS-CoV virus, which might be at least partly explained by the ability of QR and its derivatives to inhibit 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). QR is a potent immunomodulatory molecule due to its direct modulatory effects on several immune cells, cytokines, and other immune molecules. QR-based nanopreparations possess enhanced bioavailability and solubility in water. In this review, we discuss the prospects for the application of QR as a preventive and treatment agent for COVID-19. Given the multifactorial beneficial action of QR, it can be considered a very valid drug as a preventative, mitigating, and therapeutic agent of COVID-19 infection, especially in synergism with zinc, vitamins C, D, and E, and other polyphenols.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | | | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| |
Collapse
|