1
|
Kawai S, Matsuura K, Erin McGlynn S. PCR bias in 16S rRNA genes caused by GC content leads to insufficient detection of some abundant species in amplicon sequencing analyses of thermophilic microbial communities. J GEN APPL MICROBIOL 2025:2025.04.003. [PMID: 40414713 DOI: 10.2323/jgam.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Amplicon sequencing is a widely used method for surveying biological diversity. However, the technique is disturbed by PCR bias leading to errors in community composition analyses. In this study, microbial community composition was evaluated in twenty-eight locations of hot spring water with temperatures between 87-48°C at Nakabusa Hot Springs, Japan, using amplicon sequencing analysis with the V4 region of the 16S rRNA gene. In discrepancy with the greenish color and the absorption spectra of the microbial samples, the relative abundance of amplicon sequence variants (ASVs) in the major photosynthetic organisms, Chloroflexus spp., were scarce in any sample when using the annealing temperature of 50°C in amplicon PCR. Changing the annealing temperature to 68ºC significantly improved the detection efficiency of Chloroflexus ASVs, and the obtained numbers were consistent with the presence of the photosynthetic pigments. The abundance of many other microbial ASVs was also dependent on the annealing temperature. The log ratio in the abundance of major ASVs between two annealing temperatures was correlated with the GC content of the 16S rRNA gene, suggesting that even some other major ASVs in the community are seriously affected by PCR bias due to the GC content. Combined usage of results from two different annealing temperatures, rather than a result using a single annealing temperature, seems to be a better way to obtain community structure information with less PCR bias in thermophilic organisms of high 16S rRNA GC content.
Collapse
Affiliation(s)
- Shigeru Kawai
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
- Toyohashi University of Technology
| | - Katsumi Matsuura
- Institute for Early Metabolic Evolution
- Earth-Life Science Institute Institute of Science Tokyo
| | | |
Collapse
|
2
|
Kim K, Won S. Robust phylogenetic tree-based microbiome association test using repeatedly measured data for composition bias. BMC Bioinformatics 2025; 26:75. [PMID: 40050732 PMCID: PMC11887327 DOI: 10.1186/s12859-024-06002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/27/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The effects of microbiota on the host phenotypes can differ substantially depending on their age. Longitudinally measured microbiome data allow for the detection of the age modification effect and are useful for the detection of microorganisms related to the progression of disease whose identification change over time. Moreover, longitudinal analysis facilitates the estimation of the within-subject covariate effect, is robust to the between-subject confounders, and provides better evidence for the causal relationship than cross-sectional studies. However, this method of analysis is limited by compositional bias, and few statistical methods can estimate the effect of microbiota on host diseases with repeatedly measured 16S rRNA gene data. Herein, we propose mTMAT, which is applicable to longitudinal microbiome data and is robust to compositional bias. RESULTS mTMAT normalized the microbial abundance and utilized the ratio of the pooled abundance for association analysis. mTMAT is based on generalized estimating equations with a robust variance estimator and can be applied to repeatedly measured microbiome data. The robustness of mTMAT against compositional bias is underscored by its utilization of abundance ratios. CONCLUSIONS With extensive simulation studies, we showed that mTMAT is statistically relatively powerful and is robust to compositional bias. mTMAT enables detection of microbial taxa associated with host diseases using repeatedly measured 16S rRNA gene data and can provide deeper insights into bacterial pathology.
Collapse
Affiliation(s)
- Kangjin Kim
- Department of Applied Statistics, Gachon University, Seongnam, South Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, South Korea.
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea.
- Interdisciplinary Program for Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Wang C, Yang Y, Xu X, Wang D, Shi X, Liu L, Deng Y, Li L, Zhang T. The quest for environmental analytical microbiology: absolute quantitative microbiome using cellular internal standards. MICROBIOME 2025; 13:26. [PMID: 39871306 PMCID: PMC11773863 DOI: 10.1186/s40168-024-02009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND High-throughput sequencing has revolutionized environmental microbiome research, providing both quantitative and qualitative insights into nucleic acid targets in the environment. The resulting microbial composition (community structure) data are essential for environmental analytical microbiology, enabling characterization of community dynamics and assessing microbial pollutants for the development of intervention strategies. However, the relative abundances derived from sequencing impede comparisons across samples and studies. RESULTS This review systematically summarizes various absolute quantification (AQ) methods and their applications to obtain the absolute abundance of microbial cells and genetic elements. By critically comparing the strengths and limitations of AQ methods, we advocate the use of cellular internal standard-based high-throughput sequencing as an appropriate AQ approach for studying environmental microbiome originated from samples of complex matrices and high heterogeneity. To minimize ambiguity and facilitate cross-study comparisons, we outline essential reporting elements for technical considerations, and provide a checklist as a reference for environmental microbiome research. CONCLUSIONS In summary, we propose absolute microbiome quantification using cellular internal standards for environmental analytical microbiology, and we anticipate that this approach will greatly benefit future studies. Video Abstract.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Bartos M, Urik M, Buresova L, Holochova P, Budinska E, Linhartova PB. Bacteriome of the Middle Ear in Children and Young Adults With Cholesteatoma and Retraction Pocket: A Pilot Study. OTO Open 2025; 9:e70051. [PMID: 39949832 PMCID: PMC11822790 DOI: 10.1002/oto2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 02/16/2025] Open
Abstract
Objective Chronic otitis media (COM) is a common middle ear disease in children and young adults. Dysfunction of the Eustachian tube and bacterial infection are the main causes. This pilot study aimed to describe and compare bacteriomes of the middle ear in children and young adults with serious forms of COM, such as cholesteatoma and retraction pocket (RP) of the tympanic membrane, with bacteriomes in healthy middle ears. Study Design Observational study. Setting Clinical practice in a tertiary center. From January 1, 2021 to August 31, 2022. Patients aged 0 to 20 years. Methods In this case-control study, middle ears were swabbed during surgery on children with cholesteatoma (N = 23) or RP (N = 26) and on children indicated for cochlear implant (N = 15, controls). Genomic DNA extraction was followed by creation of a 16S ribosomal DNA gene library and sequencing on a MiSeq instrument. Samples with relative abundance of at least one bacterial genus >20% were considered positive for the specific genus. Results Bacterial diversity was generally low in the middle ear samples from patients with COM, with DNA content from 1 or 2 bacteria usually dominating in the sample. A significant difference in positivity for one or more bacterial genera was observed between patients with cholesteatoma or RP (38.8%) versus patients indicated for cochlear implants (6.7%). Conclusion While middle ear bacteriomes in cases of cholesteatoma and RP differed from those of controls, findings in the 2 pathological conditions were similar. These results support the statement that the RP could be a precholesteatoma stage.
Collapse
Affiliation(s)
- Michal Bartos
- Department of Pediatric OtorhinolaryngologyUniversity Hospital BrnoBrnoCzech Republic
- Department of Pediatric OtorhinolaryngologyFaculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Milan Urik
- Department of Pediatric OtorhinolaryngologyUniversity Hospital BrnoBrnoCzech Republic
- Department of Pediatric OtorhinolaryngologyFaculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Lucie Buresova
- RECETOX‐Research Centre for Toxic Compounds in the Environment, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Pavla Holochova
- RECETOX‐Research Centre for Toxic Compounds in the Environment, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Eva Budinska
- RECETOX‐Research Centre for Toxic Compounds in the Environment, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Petra Borilova Linhartova
- RECETOX‐Research Centre for Toxic Compounds in the Environment, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
5
|
Tourlousse DM, Sekiguchi Y. Synthetic DNA spike-in standards for cross-domain absolute quantification of microbiomes by rRNA gene amplicon sequencing. ISME COMMUNICATIONS 2025; 5:ycaf028. [PMID: 40099159 PMCID: PMC11912825 DOI: 10.1093/ismeco/ycaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/04/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Microbiome studies using high-throughput sequencing are increasingly incorporating absolute quantitative approaches to overcome the inherent limitations of relative abundances. In this study, we have designed and experimentally validated a set of 12 unique synthetic rRNA operons, which we refer to as rDNA-mimics, to serve as spike-in standards for quantitative profiling of fungal/eukaryotic and bacterial microbiomes. The rDNA-mimics consist of conserved sequence regions from natural rRNA genes to act as binding sites for common universal PCR primers, and bioinformatically designed variable regions that allow their robust identification in any microbiome sample. All constructs cover multiple rRNA operon regions commonly targeted in fungal/eukaryotic microbiome studies (SSU-V9, ITS1, ITS2, and LSU-D1D2) and two of them also include an artificial segment of the bacterial 16S rRNA gene (SSU-V4) for cross-domain application. We validated the quantitative performance of the rDNA-mimics using defined mock communities and representative environmental samples. In particular, we show that rDNA-mimics added to extracted DNA or directly to the samples prior to DNA extraction precisely reflects the total amount of fungal and/or bacterial rRNA genes in the samples. We demonstrate that this allows accurate estimation of differences in microbial loads between samples, thereby confirming that the rDNA-mimics are suitable for absolute quantitative analyses of differential microbial abundances.
Collapse
Affiliation(s)
- Dieter M Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
6
|
Bernabei G, De Simone G, Becarelli S, Di Mambro R, Gentini A, Di Gregorio S. Co-metabolic growth and microbial diversity: Keys for the depletion of the α, δ, β and γ-HCH isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135963. [PMID: 39341188 DOI: 10.1016/j.jhazmat.2024.135963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The objective of this study was the isolation and enrichment of microbiomes capable of degrading the main hexachlorocyclohexane isomers quantified in environmental matrices, e.g.: the α, δ, β and γ-HCH isomers. Four microbiomes were isolated and enriched from an HCH-contaminated dumpsite in Italy, both in the presence of HCH isomers (1:1:1:1) as the sole carbon sources and under co-metabolic growth conditions in presence of glucose (0.1 % v/v). The microbiomes were assessed for their relevant metabolic capabilities. A quantitative metabarcoding approach was employed to analyze the compositional evolution of the four microbiomes during the enrichment phase and the phase of testing of the HCH isomers degradation kinetics. The use of a co-metabolic substrate during enrichment process was essential for selecting microbiomes with higher biodiversity. All microbiomes efficiently degraded the α, δ, and γ-HCH isomers. The highest efficiency in the β-HCH degradation capacity was positively correlated to the highest biodiversity of the microbiome, and the involvement of Chryseobacterium and Asinibacterium sps. have been proposed for a recorded increment in bacterial load during the HCH degradation process.
Collapse
|
7
|
Šlapeta J, Vande Velde F, Martínez-Valladares M, Canton C, Claerebout E, Gilleard JS. Towards precision parasite management for livestock gastrointestinal nematodes in 2030. Trends Parasitol 2024; 40:886-895. [PMID: 39217092 DOI: 10.1016/j.pt.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The management of parasitic nematodes calls for a shift from conventional, indiscriminate, anthelmintic use to a more precise approach, directed by diagnostics. We should accept those parasite infection intensities that have minimal impact on production and welfare rather than attempt to eliminate them. The diagnostic toolbox for gastrointestinal nematodes (GINs) faces challenges due to anthelmintic resistance (AR), which is species-specific, drug-class-specific, and varies by region. We discuss which traditional tools may become obsolete and which tools need development to gain widespread use. Social science research highlights the need for dialogue between farmers and veterinarians that emphasises effective parasite management and upskilling the veterinary workforce for more sustainable practices centred on diagnostics to be adopted in practice by 2030.
Collapse
Affiliation(s)
- Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, Australia; Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia.
| | - Fiona Vande Velde
- Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Candela Canton
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Facultad de Ciencias Veterinarias, Campus Universitario, Tandil, Argentina
| | - Edwin Claerebout
- Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
8
|
Andriienko V, Buczek M, Meier R, Srivathsan A, Łukasik P, Kolasa MR. Implementing high-throughput insect barcoding in microbiome studies: impact of non-destructive DNA extraction on microbiome reconstruction. PeerJ 2024; 12:e18025. [PMID: 39329134 PMCID: PMC11426317 DOI: 10.7717/peerj.18025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Background Symbiotic relationships with diverse microorganisms are crucial for many aspects of insect biology. However, while our understanding of insect taxonomic diversity and the distribution of insect species in natural communities is limited, we know much less about their microbiota. In the era of rapid biodiversity declines, as researchers increasingly turn towards DNA-based monitoring, developing and broadly implementing approaches for high-throughput and cost-effective characterization of both insect and insect-associated microbial diversity is essential. We need to verify whether approaches such as high-throughput barcoding, a powerful tool for identifying wild insects, would permit subsequent microbiota reconstruction in these specimens. Methods High-throughput barcoding ("megabarcoding") methods often rely on non-destructive approaches for obtaining template DNA for PCR amplification by leaching DNA out of insect specimens using alkaline buffers such as HotSHOT. This study investigated the impact of HotSHOT on microbial abundance estimates and the reconstructed bacterial community profiles. We addressed this question by comparing quantitative 16S rRNA amplicon sequencing data for HotSHOT-treated or untreated specimens of 16 insect species representing six orders and selected based on the expectation of limited variation among individuals. Results We find that in 13 species, the treatment significantly reduced microbial abundance estimates, corresponding to an estimated 15-fold decrease in amplifiable 16S rRNA template on average. On the other hand, HotSHOT pre-treatment had a limited effect on microbial community composition. The reconstructed presence of abundant bacteria with known significant effects was not affected. On the other hand, we observed changes in the presence of low-abundance microbes, those close to the reliable detection threshold. Alpha and beta diversity analyses showed compositional differences in only a few species. Conclusion Our results indicate that HotSHOT pre-treated specimens remain suitable for microbial community composition reconstruction, even if abundance may be hard to estimate. These results indicate that we can cost-effectively combine barcoding with the study of microbiota across wild insect communities. Thus, the voucher specimens obtained using megabarcoding studies targeted at characterizing insect communities can be used for microbiome characterizations. This can substantially aid in speeding up the accumulation of knowledge on the microbiomes of abundant and hyperdiverse insect species.
Collapse
Affiliation(s)
- Veronika Andriienko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Rudolf Meier
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Amrita Srivathsan
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
9
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
Iwaszkiewicz-Eggebrecht E, Zizka V, Lynggaard C. Three steps towards comparability and standardization among molecular methods for characterizing insect communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230118. [PMID: 38705189 PMCID: PMC11070264 DOI: 10.1098/rstb.2023.0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/10/2023] [Indexed: 05/07/2024] Open
Abstract
Molecular methods are currently some of the best-suited technologies for implementation in insect monitoring. However, the field is developing rapidly and lacks agreement on methodology or community standards. To apply DNA-based methods in large-scale monitoring, and to gain insight across commensurate data, we need easy-to-implement standards that improve data comparability. Here, we provide three recommendations for how to improve and harmonize efforts in biodiversity assessment and monitoring via metabarcoding: (i) we should adopt the use of synthetic spike-ins, which will act as positive controls and internal standards; (ii) we should consider using several markers through a multiplex polymerase chain reaction (PCR) approach; and (iii) we should commit to the publication and transparency of all protocol-associated metadata in a standardized fashion. For (i), we provide a ready-to-use recipe for synthetic cytochrome c oxidase spike-ins, which enable between-sample comparisons. For (ii), we propose two gene regions for the implementation of multiplex PCR approaches, thereby achieving a more comprehensive community description. For (iii), we offer guidelines for transparent and unified reporting of field, wet-laboratory and dry-laboratory procedures, as a key to making comparisons between studies. Together, we feel that these three advances will result in joint quality and calibration standards rather than the current laboratory-specific proof of concepts. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Ela Iwaszkiewicz-Eggebrecht
- Bioinformatics and Genetics Department, Swedish Museum of Natural History, PO Box 50007, Stockholm, 104 05, Sweden
| | - Vera Zizka
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113, Germany
| | - Christina Lynggaard
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| |
Collapse
|
11
|
Camacho-Sanchez M. A new spike-in-based method for quantitative metabarcoding of soil fungi and bacteria. Int Microbiol 2024; 27:719-730. [PMID: 37672116 DOI: 10.1007/s10123-023-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Metabarcoding is a powerful tool to characterize biodiversity in biological samples. The interpretation of taxonomic profiles from metabarcoding data has been hindered by their compositional nature. Several strategies have been proposed to transform compositional data into quantitative data, but they have intrinsic limitations. Here, I propose a workflow based on bacterial and fungal cellular internal standards (spike-ins) for absolute quantification of the microbiota in soil samples. These standards were added to the samples before DNA extraction in amounts estimated after qPCRs, to target around 1-2% coverage in the sequencing run. In bacteria, proportions of spike-in reads in the sequencing run were very similar (< 2-fold change) to those predicted by the qPCR assessment, and for fungi they differed up to 40-fold. The low variation among replicates highlights the reproducibility of the method. Estimates based on multiple bacterial spike-ins were highly correlated (r = 0.99). Procrustes analysis evidenced significant biological effects on the community composition when normalizing compositional data. A protocol based on qPCR estimation of input amounts of cellular spikes is proposed as a cheap and reliable strategy for quantitative metabarcoding of biological samples.
Collapse
Affiliation(s)
- Miguel Camacho-Sanchez
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA) Centro Las Torres, Alcalá del Río, 41200, Seville, Spain.
| |
Collapse
|
12
|
Andriienko V, Buczek M, Meier R, Srivathsan A, Łukasik P, Kolasa MR. Implementing high-throughput insect barcoding in microbiome studies: impact of non-destructive DNA extraction on microbiome reconstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591865. [PMID: 38746196 PMCID: PMC11092579 DOI: 10.1101/2024.04.30.591865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Symbiotic relationships with diverse microorganisms are crucial for many aspects of insect biology. However, while our understanding of insect taxonomic diversity and the distribution of insect species in natural communities is limited, we know much less about their microbiota. In the era of rapid biodiversity declines, as researchers increasingly turn towards DNA-based monitoring, developing and broadly implementing approaches for high-throughput and cost-effective characterization of both insect and insect-associated microbial diversity is essential. We need to verify whether approaches such as high-throughput barcoding, a powerful tool for identifying wild insects, would permit subsequent microbiota reconstruction in these specimens. Methods High-throughput barcoding ("megabarcoding") methods often rely on non-destructive approaches for obtaining template DNA for PCR amplification by leaching DNA out of insect specimens using alkaline buffers such as HotSHOT. This study investigated the impact of HotSHOT on microbial abundance estimates and the reconstructed bacterial community profiles. We addressed this question by comparing quantitative 16S rRNA amplicon sequencing data for HotSHOT-treated or untreated specimens of 16 insect species representing six orders and selected based on the expectation of limited variation among individuals. Results We find that in 13 species, the treatment significantly reduced microbial abundance estimates, corresponding to an estimated 15-fold decrease in amplifiable 16S rRNA template on average. On the other hand, HotSHOT pre-treatment had a limited effect on microbial community composition. The reconstructed presence of abundant bacteria with known significant effects was not affected. On the other hand, we observed changes in the presence of low-abundance microbes, those close to the reliable detection threshold. Alpha and beta diversity analyses showed compositional differences in only a few species. Conclusion Our results indicate that HotSHOT pre-treated specimens remain suitable for microbial community composition reconstruction, even if abundance may be hard to estimate. These results indicate that we can cost-effectively combine barcoding with the study of microbiota across wild insect communities. Thus, the voucher specimens obtained using megabarcoding studies targeted at characterizing insect communities can be used for microbiome characterizations. This can substantially aid in speeding up the accumulation of knowledge on the microbiomes of abundant and hyperdiverse insect species.
Collapse
Affiliation(s)
- Veronika Andriienko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | | | | | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Michał R Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
14
|
Brunner JD, Robinson AJ, Chain PSG. Combining compositional data sets introduces error in covariance network reconstruction. ISME COMMUNICATIONS 2024; 4:ycae057. [PMID: 38812718 PMCID: PMC11135214 DOI: 10.1093/ismeco/ycae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Microbial communities are diverse biological systems that include taxa from across multiple kingdoms of life. Notably, interactions between bacteria and fungi play a significant role in determining community structure. However, these statistical associations across kingdoms are more difficult to infer than intra-kingdom associations due to the nature of the data involved using standard network inference techniques. We quantify the challenges of cross-kingdom network inference from both theoretical and practical points of view using synthetic and real-world microbiome data. We detail the theoretical issue presented by combining compositional data sets drawn from the same environment, e.g. 16S and ITS sequencing of a single set of samples, and we survey common network inference techniques for their ability to handle this error. We then test these techniques for the accuracy and usefulness of their intra- and inter-kingdom associations by inferring networks from a set of simulated samples for which a ground-truth set of associations is known. We show that while the two methods mitigate the error of cross-kingdom inference, there is little difference between techniques for key practical applications including identification of strong correlations and identification of possible keystone taxa (i.e. hub nodes in the network). Furthermore, we identify a signature of the error caused by transkingdom network inference and demonstrate that it appears in networks constructed using real-world environmental microbiome data.
Collapse
Affiliation(s)
- James D Brunner
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Aaron J Robinson
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Patrick S G Chain
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
15
|
Jones-Kellett AE, McNichol JC, Raut Y, Cain KR, Ribalet F, Armbrust EV, Follows MJ, Fuhrman JA. Amplicon sequencing with internal standards yields accurate picocyanobacteria cell abundances as validated with flow cytometry. ISME COMMUNICATIONS 2024; 4:ycae115. [PMID: 39381325 PMCID: PMC11459381 DOI: 10.1093/ismeco/ycae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
To understand ecosystem state and function, marine microbial ecologists seek measurements of organismal abundance and diversity at high taxonomic resolution. Conventional flow cytometry accurately estimates microbial cell abundance but only discerns broad groups with distinct optical properties. While amplicon sequencing resolves more comprehensive diversity within microbiomes, it typically only provides relative organismal abundances within samples, not absolute abundance changes. Internal genomic standards offer a solution for absolute amplicon-based measures. Here, we spiked genomic standards into plankton samples from surface seawater, gathered at 46-km intervals along a cruise transect spanning the southern California Current System and the oligotrophic North Pacific Subtropical Gyre. This enabled evaluation of the absolute volumetric gene copy abundances of 16S rRNA amplicon sequence variants (amplified with 515Y-926R universal primers, quantitatively validated with mock communities) and cell abundances of picocyanobacteria with known genomic 16S copy numbers. Comparison of amplicon-derived cell abundances of Prochlorococcus and Synechococcus with flow cytometry data from nearby locations yielded nearly identical results (slope = 1.01; Pearson's r = 0.9942). Our findings show that this amplicon sequencing protocol combined with genomic internal standards accurately measures absolute cell counts of marine picocyanobacteria in complex field samples. By extension, we expect this approach to reasonably estimate volumetric gene copies for other amplified taxa in these samples.
Collapse
Affiliation(s)
- Alexandra E Jones-Kellett
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Jesse C McNichol
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90007, United States
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Yubin Raut
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90007, United States
| | - Kelsy R Cain
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - E Virginia Armbrust
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90007, United States
| |
Collapse
|
16
|
Herzog EL, Kreuzer M, Zinkernagel MS, Zysset-Burri DC. Challenges and insights in the exploration of the low abundance human ocular surface microbiome. Front Cell Infect Microbiol 2023; 13:1232147. [PMID: 37727808 PMCID: PMC10505673 DOI: 10.3389/fcimb.2023.1232147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose The low microbial abundance on the ocular surface results in challenges in the characterization of its microbiome. The purpose of this study was to reveal factors introducing bias in the pipeline from sample collection to data analysis of low-abundant microbiomes. Methods Lower conjunctiva and lower lid swabs were collected from six participants using either standard cotton or flocked nylon swabs. Microbial DNA was isolated with two different kits (with or without prior host DNA depletion and mechanical lysis), followed by whole-metagenome shotgun sequencing with a high sequencing depth set at 60 million reads per sample. The relative microbial compositions were generated using the two different tools MetaPhlan3 and Kraken2. Results The total amount of extracted DNA was increased by using nylon flocked swabs on the lower conjunctiva. In total, 269 microbial species were detected. The most abundant bacterial phyla were Actinobacteria, Firmicutes and Proteobacteria. Depending on the DNA extraction kit and tool used for profiling, the microbial composition and the relative abundance of viruses varied. Conclusion The microbial composition on the ocular surface is not dependent on the swab type, but on the DNA extraction method and profiling tool. These factors have to be considered in further studies about the ocular surface microbiome and other sparsely colonized microbiomes in order to improve data reproducibility. Understanding challenges and biases in the characterization of the ocular surface microbiome may set the basis for microbiome-altering interventions for treatment of ocular surface associated diseases.
Collapse
Affiliation(s)
- Elio L. Herzog
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marco Kreuzer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Denise C. Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Goodwin KB, Hutchinson JD, Gompert Z. Spatiotemporal and ontogenetic variation, microbial selection, and predicted Bd-inhibitory function in the skin-associated microbiome of a Rocky Mountain amphibian. Front Microbiol 2022; 13:1020329. [PMID: 36583053 PMCID: PMC9792605 DOI: 10.3389/fmicb.2022.1020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Host-associated microbiomes play important roles in host health and pathogen defense. In amphibians, the skin-associated microbiota can contribute to innate immunity with potential implications for disease management. Few studies have examined season-long temporal variation in the amphibian skin-associated microbiome, and the interactions between bacteria and fungi on amphibian skin remain poorly understood. We characterize season-long temporal variation in the skin-associated microbiome of the western tiger salamander (Ambystoma mavortium) for both bacteria and fungi between sites and across salamander life stages. Two hundred seven skin-associated microbiome samples were collected from salamanders at two Rocky Mountain lakes throughout the summer and fall of 2018, and 127 additional microbiome samples were collected from lake water and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian Dirichlet-multinomial regression to estimate the relative abundances of bacterial and fungal taxa, test for differential abundance, examine microbial selection, and derive alpha diversity. We predicted the ability of bacterial communities to inhibit the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen, using stochastic character mapping and a database of Bd-inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in community composition through time, between sites, and with salamander age and life stage. We further found that temporal trends in community composition were specific to each combination of salamander age, life stage, and lake. We found salamander skin to be selective for microbes, with many taxa disproportionately represented relative to the environment. Salamander skin appeared to select for predicted Bd-inhibitory bacteria, and we found a negative relationship between the relative abundances of predicted Bd-inhibitory bacteria and Bd. We hope these findings will assist in the conservation of amphibian species threatened by chytridiomycosis and other emerging diseases.
Collapse
Affiliation(s)
- Kenen B. Goodwin
- Department of Watershed Sciences, Utah State University, Logan, UT, United States
- Department of Wildland Resources, Utah State University, Logan, UT, United States
| | - Jaren D. Hutchinson
- Department of Wildland Resources, Utah State University, Logan, UT, United States
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, United States
| |
Collapse
|
18
|
Kestel JH, Field DL, Bateman PW, White NE, Allentoft ME, Hopkins AJM, Gibberd M, Nevill P. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157556. [PMID: 35882340 DOI: 10.1016/j.scitotenv.2022.157556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world's food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security.
Collapse
Affiliation(s)
- Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia.
| | - David L Field
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Philip W Bateman
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Behavioural Ecology Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia; Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Anna J M Hopkins
- Molecular Ecology and Evolution Group (MEEG), School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Mark Gibberd
- Centre for Crop Disease Management (CCDM), School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
19
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Zhou S, Xiong C, Su Y, Wang Y, Gao Y, Tang Z, Liu B, Wu Y, Duan Y. Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119158. [PMID: 35304179 DOI: 10.1016/j.envpol.2022.119158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 102-5.18 × 105 colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 104-1.86 × 107 copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Cong Xiong
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Boyang Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
21
|
Jones R, Fountain MT, Andreani NA, Günther CS, Goddard MR. The relative abundances of yeasts attractive to Drosophila suzukii differ between fruit types and are greatest on raspberries. Sci Rep 2022; 12:10382. [PMID: 35725889 PMCID: PMC9209449 DOI: 10.1038/s41598-022-14275-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.
Collapse
Affiliation(s)
- Rory Jones
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ, UK.
| | | | - Nadia A Andreani
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Catrin S Günther
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The New Zealand Institute of Plant and Food Research Ltd, Ruakura Research Campus, Bisley Road, Hamilton, 3214, New Zealand
| | - Matthew R Goddard
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
- The School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Blakney AJC, Bainard LD, St-Arnaud M, Hijri M. Brassicaceae host plants mask the feedback from the previous year's soil history on bacterial communities, except when they experience drought. Environ Microbiol 2022; 24:3529-3548. [PMID: 35590462 DOI: 10.1111/1462-2920.16046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Soil history operates through time to influence the structure and biodiversity of soil bacterial communities. Examining how different soil histories endure will help clarify the rules of bacterial community assembly. In this study, we established three different soil histories in field trials; the following year these plots were planted with five different Brassicaceae species. We hypothesized that the previously established soil histories would continue to structure the subsequent Brassicaceae bacterial root and rhizosphere communities. We used a MiSeq 16S rRNA metabarcoding strategy to determine the impact of different soil histories on the structure and biodiversity of the bacterial root and rhizosphere communities from the five different Brassicaceae host plants. We found that the Brassicaceae hosts were consistently significant factors in structuring the bacterial communities. Four host plants (Sinapis alba, Brassica napus, B. juncea, B. carinata) formed similar bacterial communities, regardless of different soil histories. Camelina sativa host plants structured phylogenetically distinct bacterial communities compared to the other hosts, particularly in their roots. Soil history established the previous year was only a significant factor for bacterial community structure when the feedback of the Brassicaceae host plants was weakened, potentially due to limited soil moisture during a dry year. Understanding how soil history is involved in the structure and biodiversity of bacterial communities through time is a limitation in microbial ecology and is required for employing microbiome technologies in improving agricultural systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, QC, Canada
| | - Luke D Bainard
- Agassiz Research and Development Centre, AgricuSlture and Agri-Food Canada, Agassiz, BC, V0M 1A2, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, QC, Canada
| | - Mohamed Hijri
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, QC, Canada.,African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| |
Collapse
|
23
|
Jiang M, Xu SF, Tang TS, Miao L, Luo BZ, Ni Y, Kong FD, Liu C. Development and evaluation of a meat mitochondrial metagenomic (3MG) method for composition determination of meat from fifteen mammalian and avian species. BMC Genomics 2022; 23:36. [PMID: 34996352 PMCID: PMC8742424 DOI: 10.1186/s12864-021-08263-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bioassessment and biomonitoring of meat products are aimed at identifying and quantifying adulterants and contaminants, such as meat from unexpected sources and microbes. Several methods for determining the biological composition of mixed samples have been used, including metabarcoding, metagenomics and mitochondrial metagenomics. In this study, we aimed to develop a method based on next-generation DNA sequencing to estimate samples that might contain meat from 15 mammalian and avian species that are commonly related to meat bioassessment and biomonitoring. RESULTS In this project, we found the meat composition from 15 species could not be identified with the metabarcoding approach because of the lack of universal primers or insufficient discrimination power. Consequently, we developed and evaluated a meat mitochondrial metagenomics (3MG) method. The 3MG method has four steps: (1) extraction of sequencing reads from mitochondrial genomes (mitogenomes); (2) assembly of mitogenomes; (3) mapping of mitochondrial reads to the assembled mitogenomes; and (4) biomass estimation based on the number of uniquely mapped reads. The method was implemented in a python script called 3MG. The analysis of simulated datasets showed that the method can determine contaminant composition at a proportion of 2% and the relative error was < 5%. To evaluate the performance of 3MG, we constructed and analysed mixed samples derived from 15 animal species in equal mass. Then, we constructed and analysed mixed samples derived from two animal species (pork and chicken) in different ratios. DNAs were extracted and used in constructing 21 libraries for next-generation sequencing. The analysis of the 15 species mix with the method showed the successful identification of 12 of the 15 (80%) animal species tested. The analysis of the mixed samples of the two species revealed correlation coefficients of 0.98 for pork and 0.98 for chicken between the number of uniquely mapped reads and the mass proportion. CONCLUSION To the best of our knowledge, this study is the first to demonstrate the potential of the non-targeted 3MG method as a tool for accurately estimating biomass in meat mix samples. The method has potential broad applications in meat product safety.
Collapse
Affiliation(s)
- Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193 Beijing, PR China
| | - Shu-Fei Xu
- Technology Center of Xiamen Entry-exit Inspection and Quarantine Bureau, Xiamen, Fujian 361026 PR China
| | - Tai-Shan Tang
- Technology Center of Jiangsu Entry-exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210009 PR China
| | - Li Miao
- Technology Center of Henan Entry-exit Inspection and Quarantine Bureau, Zhengzhou, Henan 450003 PR China
| | - Bao-Zheng Luo
- Technology Center of Zhuhai Entry-exit Inspection and Quarantine Bureau, Zhuhai, Guangdong 519000 PR China
| | - Yang Ni
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002 PR China
| | - Fan-De Kong
- Technology Center of Xiamen Entry-exit Inspection and Quarantine Bureau, Xiamen, Fujian 361026 PR China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193 Beijing, PR China
| |
Collapse
|
24
|
Apigo A, Oono R. Plant abundance, but not plant evolutionary history, shapes patterns of host specificity in foliar fungal endophytes. Ecosphere 2022. [DOI: 10.1002/ecs2.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| |
Collapse
|
25
|
Carvalho CS, de Oliveira ME, Rodriguez-Castro KG, Saranholi BH, Galetti PM. Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance. Mol Ecol Resour 2021; 22:1262-1273. [PMID: 34724330 DOI: 10.1111/1755-0998.13543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Environmental DNA (eDNA) and invertebrate-derived DNA (iDNA) have been increasingly recognized as powerful tools for biodiversity assessment and conservation management. However, eDNA/iDNA efficiency for vertebrate diversity assessment remains uncertain, and comparisons to conventional methods are still rare. Through a meta-analysis of previously published vertebrate diversity surveys, we compared the efficiency of eDNA/iDNA against conventional methods across several types of samplers, vertebrate groups, and locations (tropical vs. temperate zones). We also assess eDNA/iDNA efficiency to estimate relative abundance or biomass over different molecular methods (qPCR and metabarcoding) and type of experiment (in the laboratory or in the field). We showed that for water sampler, fish as a target species, and studies achieved in temperate zones, eDNA presents lower risk of not detecting a species or a site with a target species than conventional methods. These results show that eDNA is an efficient tool to assess fish diversity. Moreover, eDNA data presents positive correlation with fish abundance or biomass. However, such correlation was higher in laboratory experiments than in the field. For the other samplers, vertebrate groups, and in tropical zones we were not able to draw general conclusion, highlighting the urgency of conducting more comparative studies.
Collapse
Affiliation(s)
- Carolina S Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Instituto Tecnológico Vale, Belém, PA, Brazil
| | | | - Karen Giselle Rodriguez-Castro
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, Colombia
| | - Bruno H Saranholi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Department of Life Sciences, Imperial College London, London, UK
| | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
26
|
Lofgren LA, Stajich JE. Fungal biodiversity and conservation mycology in light of new technology, big data, and changing attitudes. Curr Biol 2021; 31:R1312-R1325. [PMID: 34637742 PMCID: PMC8516061 DOI: 10.1016/j.cub.2021.06.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fungi have successfully established themselves across seemingly every possible niche, substrate, and biome. They are fundamental to biogeochemical cycling, interspecies interactions, food production, and drug bioprocessing, as well as playing less heroic roles as difficult to treat human infections and devastating plant pathogens. Despite community efforts to estimate and catalog fungal diversity, we have only named and described a minute fraction of the fungal world. The identification, characterization, and conservation of fungal diversity is paramount to preserving fungal bioresources, and to understanding and predicting ecosystem cycling and the evolution and epidemiology of fungal disease. Although species and ecosystem conservation are necessarily the foundation of preserving this diversity, there is value in expanding our definition of conservation to include the protection of biological collections, ecological metadata, genetic and genomic data, and the methods and code used for our analyses. These definitions of conservation are interdependent. For example, we need metadata on host specificity and biogeography to understand rarity and set priorities for conservation. To aid in these efforts, we need to draw expertise from diverse fields to tie traditional taxonomic knowledge to data obtained from modern -omics-based approaches, and support the advancement of diverse research perspectives. We also need new tools, including an updated framework for describing and tracking species known only from DNA, and the continued integration of functional predictions to link genetic diversity to functional and ecological diversity. Here, we review the state of fungal diversity research as shaped by recent technological advancements, and how changing viewpoints in taxonomy, -omics, and systematics can be integrated to advance mycological research and preserve fungal biodiversity.
Collapse
Affiliation(s)
- Lotus A Lofgren
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Pennycook JH, Scanlan PD. Ecological and Evolutionary responses to Antibiotic Treatment in the Human Gut Microbiota. FEMS Microbiol Rev 2021; 45:fuab018. [PMID: 33822937 PMCID: PMC8498795 DOI: 10.1093/femsre/fuab018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The potential for antibiotics to affect the ecology and evolution of the human gut microbiota is well recognised and has wide-ranging implications for host health. Here, we review the findings of key studies that surveyed the human gut microbiota during antibiotic treatment. We find several broad patterns including the loss of diversity, disturbance of community composition, suppression of bacteria in the Actinobacteria phylum, amplification of bacteria in the Bacteroidetes phylum, and promotion of antibiotic resistance. Such changes to the microbiota were often, but not always, recovered following the end of treatment. However, many studies reported unique and/or contradictory results, which highlights our inability to meaningfully predict or explain the effects of antibiotic treatment on the human gut microbiome. This problem arises from variation between existing studies in three major categories: differences in dose, class and combinations of antibiotic treatments used; differences in demographics, lifestyles, and locations of subjects; and differences in measurements, analyses and reporting styles used by researchers. To overcome this, we suggest two integrated approaches: (i) a top-down approach focused on building predictive models through large sample sizes, deep metagenomic sequencing, and effective collaboration; and (ii) a bottom-up reductionist approach focused on testing hypotheses using model systems.
Collapse
Affiliation(s)
- Joseph Hugh Pennycook
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Pauline Deirdre Scanlan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
28
|
Harrison JG, Beltran LP, Buerkle CA, Cook D, Gardner DR, Parchman TL, Poulson SR, Forister ML. A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression. THE ISME JOURNAL 2021; 15:2763-2778. [PMID: 33790425 PMCID: PMC8397751 DOI: 10.1038/s41396-021-00964-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023]
Abstract
Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways-including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva-a vertically transmitted and usually abundant fungus-within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.
Collapse
Affiliation(s)
- Joshua G. Harrison
- grid.135963.b0000 0001 2109 0381Department of Botany, University of Wyoming, Laramie, WY USA
| | - Lyra P. Beltran
- grid.266818.30000 0004 1936 914XEcology, Evolution, and Conservation Biology Program, Biology Department, University of Nevada, Reno, NV USA
| | - C. Alex Buerkle
- grid.135963.b0000 0001 2109 0381Department of Botany, University of Wyoming, Laramie, WY USA
| | - Daniel Cook
- grid.417548.b0000 0004 0478 6311Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT USA
| | - Dale R. Gardner
- grid.417548.b0000 0004 0478 6311Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT USA
| | - Thomas L. Parchman
- grid.266818.30000 0004 1936 914XEcology, Evolution, and Conservation Biology Program, Biology Department, University of Nevada, Reno, NV USA
| | - Simon R. Poulson
- grid.266818.30000 0004 1936 914XDepartment of Geological Sciences & Engineering, University of Nevada, Reno, NV USA
| | - Matthew L. Forister
- grid.266818.30000 0004 1936 914XEcology, Evolution, and Conservation Biology Program, Biology Department, University of Nevada, Reno, NV USA
| |
Collapse
|
29
|
Narum S, Kelley J, Fountain-Jones N, Hooper R, Ortiz-Barrientos D, O'Boyle B, Sibbett B. Editorial 2021. Mol Ecol Resour 2021; 21:1-10. [PMID: 33332771 DOI: 10.1111/1755-0998.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
|
30
|
Kim JY, Yi M, Kim M, Lee S, Moon HS, Yong D, Yong T. Measuring the absolute abundance of the microbiome by adding yeast containing 16S rRNA gene from a hyperthermophile. Microbiologyopen 2021; 10:e1220. [PMID: 34459541 PMCID: PMC8302012 DOI: 10.1002/mbo3.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/09/2022] Open
Abstract
High-throughput sequencing (HTS) of 16S rRNA gene amplicons provides compositional information regarding the microbial community, but not the absolute abundance of the bacteria. We aimed to develop a standardized method for quantifying the absolute abundance of bacteria in microbiome studies. To demonstrate the utility of our approach, we quantified the number of bacteria from the compositional data of the fecal and cecal microbiomes. The 16S rRNA gene of a hyperthermophile, Thermus aquaticus, was cloned into Pichia pastoris (yeast) genome, and an equivalent amount of the yeast was added to the stool and cecal samples of mice before DNA extraction. 16S rRNA gene library construction and HTS were performed after DNA extraction. The absolute abundances of bacteria were calculated using T. aquaticus reads. The average relative abundances of T. aquaticus in the five stool and five cecal samples were 0.95% and 0.33%, respectively, indicating that the number of bacteria in a cecum sample is 2.9 times higher than that in a stool sample. The method proposed for quantifying the absolute abundance of the bacterial population in this study is expected to overcome the limitation of showing only compositional data in most microbiome studies.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical BiologyArthropods of Medical Importance Resource BankInstitute of Tropical MedicineYonsei University College of MedicineSeoulKorea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulKorea
| | - Myung‐hee Yi
- Department of Environmental Medical BiologyArthropods of Medical Importance Resource BankInstitute of Tropical MedicineYonsei University College of MedicineSeoulKorea
| | - Myungjun Kim
- Department of Environmental Medical BiologyArthropods of Medical Importance Resource BankInstitute of Tropical MedicineYonsei University College of MedicineSeoulKorea
| | - Seogwon Lee
- Department of Environmental Medical BiologyArthropods of Medical Importance Resource BankInstitute of Tropical MedicineYonsei University College of MedicineSeoulKorea
| | - Hye Su Moon
- Department of Laboratory Medicine and Research Institute of Bacterial ResistanceYonsei University College of MedicineSeoulKorea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial ResistanceYonsei University College of MedicineSeoulKorea
| | - Tai‐Soon Yong
- Department of Environmental Medical BiologyArthropods of Medical Importance Resource BankInstitute of Tropical MedicineYonsei University College of MedicineSeoulKorea
| |
Collapse
|
31
|
Characterizing Microbiomes via Sequencing of Marker Loci: Techniques To Improve Throughput, Account for Cross-Contamination, and Reduce Cost. mSystems 2021; 6:e0029421. [PMID: 34254828 PMCID: PMC8409480 DOI: 10.1128/msystems.00294-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
New approaches to characterizing microbiomes via high-throughput sequencing provide impressive gains in efficiency and cost reduction compared to approaches that were standard just a few years ago. However, the speed of method development has been such that staying abreast of the latest technological advances is challenging. Moreover, shifting laboratory protocols to include new methods can be expensive and time consuming. To facilitate adoption of new techniques, we provide a guide and review of recent advances that are relevant for single-locus sequence-based study of microbiomes—from extraction to library preparation—including a primer regarding the use of liquid-handling automation in small-scale academic settings. Additionally, we describe several amendments to published techniques to improve throughput, track contamination, and reduce cost. Notably, we suggest adding synthetic DNA molecules to each sample during nucleic acid extraction, thus providing a method of documenting incidences of cross-contamination. We also describe a dual-indexing scheme for Illumina sequencers that allows multiplexing of many thousands of samples with minimal PhiX input. Collectively, the techniques that we describe demonstrate that laboratory technology need not impose strict limitations on the scale of molecular microbial ecology studies. IMPORTANCE New methods to characterize microbiomes reduce technology-imposed limitations to study design, but many new approaches have not been widely adopted. Here, we present techniques to increase throughput and reduce contamination alongside a thorough review of current best practices.
Collapse
|
32
|
Kleerebezem R, Stouten G, Koehorst J, Langenhoff A, Schaap P, Smidt H. Experimental infrastructure requirements for quantitative research on microbial communities. Curr Opin Biotechnol 2021; 67:158-165. [PMID: 33596519 DOI: 10.1016/j.copbio.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Natural microbial communities are composed of a large diversity of interacting microorganisms, each with a specific role in the functional properties of the ecosystem. The objectives in microbial ecology research are related to identifying, understanding and exploring the role of these different microorganisms. Because of the rapidly increasing power of DNA sequencing and the rapid increase of genomic data, main attention of microbial ecology research shifted from cultivation-oriented studies towards metagenomic studies. Despite these efforts, the direct link between the molecular properties and the measurable changes in the functional performance of the ecosystem is often poorly documented. A quantitative understanding of functional properties in relation to the molecular changes requires effective integration, standardization, and parallelization of experiments. High-resolution functional characterization is a prerequisite for interpretation of changes in metagenomic properties, and will improve our understanding of microbial communities and facilitate their exploration for health and circular economy related objectives.
Collapse
Affiliation(s)
- Robbert Kleerebezem
- Delft University of Technology, Department of Biotechnology, Delft, The Netherlands.
| | - Gerben Stouten
- Delft University of Technology, Department of Biotechnology, Delft, The Netherlands
| | - Jasper Koehorst
- Wageningen University and Research, Laboratory of Systems and Synthetic Biology, Wageningen, The Netherlands
| | - Alette Langenhoff
- Wageningen University and Research, Department of Environmental Technology, Wageningen, The Netherlands
| | - Peter Schaap
- Wageningen University and Research, Laboratory of Systems and Synthetic Biology, Wageningen, The Netherlands
| | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| |
Collapse
|
33
|
Francioli D, Lentendu G, Lewin S, Kolb S. DNA Metabarcoding for the Characterization of Terrestrial Microbiota-Pitfalls and Solutions. Microorganisms 2021; 9:361. [PMID: 33673098 PMCID: PMC7918050 DOI: 10.3390/microorganisms9020361] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Soil-borne microbes are major ecological players in terrestrial environments since they cycle organic matter, channel nutrients across trophic levels and influence plant growth and health. Therefore, the identification, taxonomic characterization and determination of the ecological role of members of soil microbial communities have become major topics of interest. The development and continuous improvement of high-throughput sequencing platforms have further stimulated the study of complex microbiota in soils and plants. The most frequently used approach to study microbiota composition, diversity and dynamics is polymerase chain reaction (PCR), amplifying specific taxonomically informative gene markers with the subsequent sequencing of the amplicons. This methodological approach is called DNA metabarcoding. Over the last decade, DNA metabarcoding has rapidly emerged as a powerful and cost-effective method for the description of microbiota in environmental samples. However, this approach involves several processing steps, each of which might introduce significant biases that can considerably compromise the reliability of the metabarcoding output. The aim of this review is to provide state-of-the-art background knowledge needed to make appropriate decisions at each step of a DNA metabarcoding workflow, highlighting crucial steps that, if considered, ensures an accurate and standardized characterization of microbiota in environmental studies.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland;
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| |
Collapse
|
34
|
Pust MM, Wiehlmann L, Davenport C, Rudolf I, Dittrich AM, Tümmler B. The human respiratory tract microbial community structures in healthy and cystic fibrosis infants. NPJ Biofilms Microbiomes 2020; 6:61. [PMID: 33319812 PMCID: PMC7738502 DOI: 10.1038/s41522-020-00171-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The metagenome development of the human respiratory tract was investigated by shotgun metagenome metagenomic sequencing of cough swabs from healthy children and children with cystic fibrosis (CF) between 3 weeks and 6 years of age. A healthy microbial community signature was associated with increased absolute abundances in terms of bacterial–human cell ratios of core and rare species across all age groups, with a higher diversity of rare species and a tightly interconnected species co-occurrence network, in which individual members were found in close proximity to each other and negative correlations were absent. Even without typical CF pathogens, the CF infant co-occurrence network was found to be less stable and prone to fragmentation due to fewer connections between species, a higher number of bridging species and the presence of negative species correlations. Detection of low-abundant DNA of the CF hallmark pathogen Pseudomonas aeruginosa was neither disease- nor age-associated in our cohort. Healthy and CF children come into contact with P. aeruginosa on a regular basis and from early on.
Collapse
Affiliation(s)
- Marie-Madlen Pust
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Isa Rudolf
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|