1
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2025; 62:6748-6763. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
2
|
Cheong LYT, Saipuljumri EN, Loi GWZ, Zeng J, Lo CH. Autolysosomal Dysfunction in Obesity-induced Metabolic Inflammation and Related Disorders. Curr Obes Rep 2025; 14:43. [PMID: 40366502 PMCID: PMC12078456 DOI: 10.1007/s13679-025-00638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF REVIEW Obesity is a global health crisis affecting individuals across all age groups, significantly increasing the risk of metabolic disorders such as type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), and cardiovascular diseases. The World Health Organization reported in 2022 that 2.5 billion adults were overweight, with 890 million classified as obese, emphasizing the urgent need for effective interventions. A critical aspect of obesity's pathophysiology is meta-inflammation-a chronic, systemic low-grade inflammatory state driven by excess adipose tissue, which disrupts metabolic homeostasis. This review examines the role of autolysosomal dysfunction in obesity-related metabolic disorders, exploring its impact across multiple metabolic organs and evaluating potential therapeutic strategies that target autophagy and lysosomal function. RECENT FINDINGS Emerging research highlights the importance of autophagy in maintaining cellular homeostasis and metabolic balance. Obesity-induced lysosomal dysfunction impairs the autophagic degradation process, contributing to the accumulation of damaged organelles and toxic aggregates, exacerbating insulin resistance, lipotoxicity, and chronic inflammation. Studies have identified autophagic defects in key metabolic tissues, including adipose tissue, skeletal muscle, liver, pancreas, kidney, heart, and brain, linking autophagy dysregulation to the progression of metabolic diseases. Preclinical investigations suggest that pharmacological and nutritional interventions-such as AMPK activation, caloric restriction mimetics, and lysosomal-targeting compounds-can restore autophagic function and improve metabolic outcomes in obesity models. Autolysosomal dysfunction is a pivotal contributor to obesity-associated metabolic disorders , influencing systemic inflammation and metabolic dysfunction. Restoring autophagy and lysosomal function holds promise as a therapeutic strategy to mitigate obesity-driven pathologies. Future research should focus on translating these findings into clinical applications, optimizing targeted interventions to improve metabolic health and reduce obesity-associated complications.
Collapse
Affiliation(s)
- Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | | | - Gavin Wen Zhao Loi
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA.
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA.
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
3
|
Bei Y, Wang T, Guan S. Berberine Extends Lifespan in C. elegans Through Multi-Target Synergistic Antioxidant Effects. Antioxidants (Basel) 2025; 14:450. [PMID: 40338239 PMCID: PMC12024168 DOI: 10.3390/antiox14040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Aging is a process of gradual functional decline in complex physiological systems and is closely related to the occurrence of various diseases. Berberine, a bioactive alkaloid derived from Coptis chinensis (Huanglian), has emerged as a promising candidate for anti-aging interventions. This study comprehensively investigated the lifespan-extending effects and molecular mechanisms of berberine in C. elegans through integrated approaches including lifespan assays, locomotor activity analysis, oxidative stress challenges, and transcriptomic profiling. Furthermore, genetic models of mutant and transgenic worms were employed to delineate their interactions with the insulin/IGF-1 signaling (IIS) pathway. Our results demonstrate that berberine extended the mean lifespan of wild-type worms by 27%. By activating transcription factors such as DAF-16/FOXO, HSF-1, and SKN-1/NRF2, berberine upregulated antioxidant enzyme expression, reduced lipofuscin accumulation, and improved stress resistance. Transcriptomic analysis revealed significant changes in lipid metabolism-related genes, particularly in pathways involving fatty acid synthesis, degradation, and sphingolipid metabolism. These findings establish that berberine exerts multi-target anti-aging effects through coordinated activation of stress-responsive pathways and metabolic optimization, providing mechanistic insights for developing natural product-based geroprotective strategies.
Collapse
Affiliation(s)
| | | | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Mattson MP. The cyclic metabolic switching theory of intermittent fasting. Nat Metab 2025; 7:665-678. [PMID: 40087409 DOI: 10.1038/s42255-025-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Intermittent fasting (IF) and ketogenic diets (KDs) have recently attracted much attention in the scientific literature and in popular culture and follow a longer history of exercise and caloric restriction (CR) research. Whereas IF involves cyclic metabolic switching (CMS) between ketogenic and non-ketogenic states, KDs and CR may not. In this Perspective, I postulate that the beneficial effects of IF result from alternating between activation of adaptive cellular stress response pathways during the fasting period, followed by cell growth and plasticity pathways during the feeding period. Thereby, I establish the cyclic metabolic switching (CMS) theory of IF. The health benefits of IF may go beyond those seen with continuous CR or KDs without CMS owing to the unique interplay between the signalling functions of the ketone β-hydroxybutyrate, mitochondrial adaptations, reciprocal activation of autophagy and mTOR pathways, endocrine and paracrine signalling, gut microbiota, and circadian biology. The CMS theory may have important implications for future basic research, clinical trials, development of pharmacological interventions, and healthy lifestyle practices.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Wang W, Wang Y, Duan C, Tian W, Gao L. LncRNA NEAT1-206 regulates autophagy of human umbilical cord mesenchymal stem cells through the WNT5A/Ca 2+ signaling pathway under senescence stress. Noncoding RNA Res 2025; 11:234-248. [PMID: 39896347 PMCID: PMC11786084 DOI: 10.1016/j.ncrna.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Stem cells are crucial for maintaining bodily stability, but their regenerative abilities decline with age. This decline is marked by reduced proliferation and differentiation capacities of stem cells, as well as exhaustion of the stem cell pool. The accumulation of aged mesenchymal stem cells (MSCs) can reduce the tissue regeneration, but the molecular mechanisms influencing MSCs aging remain unclear. Moreover, collecting MSCs from elderly individuals is not suitable for observing the early response of MSCs to senescence stress, and the factors involved in early senescence remain unclear. In our previous study, we established a fast MSC aging model using D-galactose. We discovered that, while not affecting the "stemness" markers of mesenchymal stem cells, the expression of LncRNA NEAT1-206 was notably increased during the early stages of aging induction (within 4 days). And LncRNA NEAT1-206 was observed to be localized in the cytoplasmic matrix due to enhanced nuclear export. We found that the LncRNA NEAT1-206 could trigger autophagy through the WNT5A/Ca2+ signaling pathway, thereby decreasing senescence markers and enhancing the osteogenic differentiation of MSCs. This study elucidated the role that LncRNA NEAT1-206 as a potential key factor in conferring resistance to D-galactose-induced cell senescence at the early stage and promoting the osteogenic differentiation of MSCs. This study may provide a foundational understanding for delaying the MSCs aging process.
Collapse
Affiliation(s)
- Weili Wang
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Yongyu Wang
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Chunchun Duan
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Wenjing Tian
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| | - Liyang Gao
- Life Science School, Ningxia University, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Perego Junior JE, Tomazi Silva K, Balani Rando AL, Sousa Lima M, Garcia RF, Pedrosa MMD. Glucose metabolism in the perfused liver did not improve with resistance training in male Swiss mice under caloric restriction. Arch Physiol Biochem 2025; 131:306-315. [PMID: 39392336 DOI: 10.1080/13813455.2024.2413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Energy homeostasis is a primary factor for the survival of mammals. Many tissues and organs, among which is the liver, keep this homeostasis in varied circumstances, including caloric restriction (CR) and physical activity. OBJECTIVE This study investigated glucose metabolism using the following groups of eight-week-old male Swiss mice: CS, sedentary and fed freely; RS, sedentary and RT, trained, both under 30% CR (n = 20-23 per group). RESULTS Organs and fat depots of groups RS and RT were similar to CS, although body weight was lower. CR did not impair training performance nor affected systemic or hepatic glucose metabolism. Training combined with CR (group RT) improved in vivo glucose tolerance and did not affect liver gluconeogenesis. CONCLUSIONS The mice tolerated the prolonged moderate CR without impairment of their well-being, glucose homeostasis, and resistance training performance. But the higher liver gluconeogenic efficiency previously demonstrated using this training protocol in mice was not evidenced under CR.
Collapse
Affiliation(s)
| | - Kauane Tomazi Silva
- Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Mateus Sousa Lima
- Department of Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | |
Collapse
|
7
|
Libramento ZP, Tichy L, Parry TL. Muscle wasting in cancer cachexia: Mechanisms and the role of exercise. Exp Physiol 2025. [PMID: 40159295 DOI: 10.1113/ep092544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Cancer cachexia (CC) is a multifactorial disease marked by a severe and progressive loss of lean muscle mass and characterized further by inflammation and a negative energy/protein balance, ultimately leading to muscle atrophy and loss of muscle tissue. As a result, patients experiencing cachexia have reduced muscle function and thus less independence and a lower quality of life. CC progresses through stages of increasing severity: pre-cachexia, cachexia and refractory cachexia. Two proposed underlying mechanisms that drive cancer-induced muscle wasting are the autophagy-lysosome and ubiquitin-proteasome systems. An increase in autophagic flux and proteolytic activity leads to atrophy of both cardiac and skeletal muscle, ultimately mediated by tumour or immune-secreted inflammatory cytokines. These pathways occur at a basal level to maintain cellular homeostasis; therefore, it is the overactivation of the pathways that leads to muscle atrophy. Recent evidence demonstrates the ability of aerobic and resistance training to restore these pathways to their basal levels. The mechanism is not yet understood, and more research is needed to determine exactly how exercise influences each pathway. However, exercise has great promise as a therapeutic strategy for CC because of the evidence for it preserving muscle mass and function, and attenuating protein degradative pathways. The extent to which exercise affects the ubiquitin-proteasome and autophagy-lysosome systems is determined by the frequency, intensity and duration of the exercise protocol. As such, an ideal exercise prescription is lacking for individuals with CC.
Collapse
Affiliation(s)
- Zoe P Libramento
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Louisa Tichy
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
8
|
McCormick JJ, King KE, Goulet N, Carrillo AE, Fujii N, Amano T, Boulay P, Kenny GP. The effect of an exercise- and passive-induced heat stress on autophagy in young and older males. Am J Physiol Regul Integr Comp Physiol 2025; 328:R289-R299. [PMID: 39903041 DOI: 10.1152/ajpregu.00232.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Although activation of autophagy is vital for cellular survival during exposure to ambient heat and exercise, it remains unclear if autophagic activity differs between these heat stress conditions and if aging mediates this response. Young [n = 10, mean (SD): 22 (2) yr] and older males [n = 10, 70 (5) yr] performed 30 min of semi-recumbent cycling (70% maximal oxygen uptake). On a separate day, participants were immersed in warm water for 30 min, with the water temperature adjusted to induce the same increase in core temperature (rectal) as the prior exercise bout. Proteins associated with autophagy, inflammation, apoptosis, and the heat shock response (HSR) were assessed in peripheral blood mononuclear cells via Western blot before and after each exposure and during a 6-h seated recovery in a temperate environment (∼22°C). No differences in core temperature occurred at end-exposure to exercise or passive heating in either group (both, P ≥ 0.999). Older adults exhibited greater autophagic regulation (significant LC3-II accumulation) to exercise when compared with passive heating at all time points (all, P ≤ 0.022). However, passive heating alone may have impaired autophagy (elevated p62; P = 0.044). Pro-inflammatory IL-6 was elevated during both conditions (P < 0.001) in older adults. Conversely, greater autophagic initiation (i.e., beclin-2) occurred in young adults at end-exercise and 3-h recovery when compared with passive heating (both, P ≤ 0.024). The HSR and apoptotic responses were similar between conditions in both groups. Although brief exercise stimulates autophagy, exposure to ambient heat stress of an equivalent heat load may underlie autophagic dysregulation in older adults.NEW & NOTEWORTHY We show that a short-duration (30-min) bout of vigorous-intensity exercise stimulates autophagy in young and older males when performed in a temperate environment. However, when exposed to an equivalent heat load as achieved during the prior exercise bout to elicit the same relative increase in core temperature via warm-water immersion, autophagic dysregulation occurs in older but not younger males.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andres E Carrillo
- Department of Exercise Science, College of Health Sciences, Chatham University, Pittsburgh, Pennsylvania, United States
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Shin JH, Yoon JY. Does the Combination of Metabolic Syndrome and Low Fat-Free Mass Shorten an Individual's Disability-Free Life? A 12-Year Prospective Cohort Study of the Korean Genome and Epidemiology Study (KoGES). Public Health Nurs 2025; 42:675-683. [PMID: 39603811 DOI: 10.1111/phn.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE This study aims to explore the combined risk of metabolic syndrome (MetS) and low fat-free mass (FFM) on an individual's disability-free survival (DFS). Disability is defined as a composite of dementia, physical disability, and mortality. METHODS Using data from the Korean Genome and Epidemiology Study, we divided 3721 participants aged 40-69 years based on their MetS status and FFM index (FFMI) score. Kaplan-Meier survival analysis and Cox regression were used to analyze differences in DFS between the four groups. RESULTS From 108 events, MetS group had significantly shorter DFS than the non-MetS group regardless of FFMI (p < 0.0001). After adjusting other potential confounding variables, the MetS group had a higher risk of shortened DFS regardless of FFMI, and the MetS group with low FFMI had a 2.06-fold increased risk compared to the non-MetS group with high FFMI (p < 0.001). Older age and lower income were also associated with higher risk of shorter DFS (p < 0.001). CONCLUSIONS The combination of MetS and low FFMI contribute to a cumulative risk of shortened DFS. Community nurses can perform MetS screening and body composition assessment to predict and control the risk of developing disability over time.
Collapse
Affiliation(s)
- Ji Hye Shin
- College of Nursing, Seoul National University, Seoul, Republic of Korea
| | - Ju Young Yoon
- College of Nursing, Seoul National University, Seoul, Republic of Korea
- Research Institute of Nursing Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Shi L, Zha H, Zhao J, An H, Huang H, Xia Y, Yan Z, Song Z, Zhu J. Caloric restriction exacerbates renal post-ischemic injury and fibrosis by modulating mTORC1 signaling and autophagy. Redox Biol 2025; 80:103500. [PMID: 39837191 PMCID: PMC11787690 DOI: 10.1016/j.redox.2025.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy. METHODS A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation. Inducible renal tubule-specific Atg7 knockout mice and autophagy inhibitor 3-MA were used to elucidate autophagy's role in renal outcomes. RESULTS CR exacerbated renal dysfunction, tubular injury, and fibrosis in IRI mice, associated with suppressed mTORC1 signaling and enhanced autophagy. Rapamycin, an mTORC1 inhibitor, mimicked the effects of CR, further supporting the involvement of mTORC1-autophagy pathway. Tubule-specific Atg7 knockout and autophagy inhibitor 3-MA mitigated these effects, indicating a central role for autophagy in CR-induced renal damage. Glucose supplementation, but not branched-chain amino acids (BCAAs), alleviated CR-induced renal fibrosis and dysfunction by restoring mTORC1 activation. Finally, we identified leucyl-tRNA synthetase 1 (LARS1) as a key mediator of nutrient sensing and mTORC1 activation, demonstrating its glucose dependency under CR conditions. CONCLUSION Our study provides novel insights into the interplay between nutrient metabolism, mTORC1 signaling, and autophagy in IRI-induced renal damages, offering potential therapeutic targets for mitigating CR-associated complications after renal IRI.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Juan Zhao
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Haiqian An
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hua Huang
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Ziyu Yan
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, 443000, China
| | - Zhixia Song
- Department of Nephrology, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Wang Z, Ou Y, Zhu X, Zhou Y, Zheng X, Zhang M, Li S, Yang SN, Juntti-Berggren L, Berggren PO, Zheng X. Differential Regulation of miRNA and Protein Profiles in Human Plasma-Derived Extracellular Vesicles via Continuous Aerobic and High-Intensity Interval Training. Int J Mol Sci 2025; 26:1383. [PMID: 39941151 PMCID: PMC11818269 DOI: 10.3390/ijms26031383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Both continuous aerobic training (CAT) and high-intensity interval training (HIIT) are recommended to promote health and prevent diseases. Exercise-induced circulating extracellular vesicles (EX-EVs) have been suggested to play essential roles in mediating organ crosstalk, but corresponding molecular mechanisms remain unclear. To assess and compare the systemic effects of CAT and HIIT, five healthy male volunteers were assigned to HIIT and CAT, with a 7-day interval between sessions. Plasma EVs were collected at rest or immediately after each training section, prior to proteomics and miRNA profile analysis. We found that the differentially expressed (DE) miRNAs in EX-EVs were largely involved in the regulation of transcriptional factors, while most of the DE proteins in EX-EVs were identified as non-secreted proteins. Both CAT and HIIT play common roles in neuronal signal transduction, autophagy, and cell fate regulation. Specifically, CAT showed distinct roles in cognitive function and substrate metabolism, while HIIT was more associated with organ growth, cardiac muscle function, and insulin signaling pathways. Interestingly, the miR-379 cluster within EX-EVs was specifically regulated by HIIT, involving several biological functions, including neuroactive ligand-receptor interaction. Furthermore, EX-EVs likely originate from various tissues, including metabolic tissues, the immune system, and the nervous system. Our study provides molecular insights into the effects of CAT and HIIT, shedding light on the roles of EX-EVs in mediating organ crosstalk and health promotion.
Collapse
Affiliation(s)
- Zhenghao Wang
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Xiaowei Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Meixia Zhang
- Research Laboratory of Macular Disease, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Sheyu Li
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (S.-N.Y.); (L.J.-B.)
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China; (Z.W.); (Y.O.); (X.Z.); (Y.Z.); (X.Z.); (S.L.); (P.-O.B.)
| |
Collapse
|
12
|
Russo L, Babboni S, Andreassi MG, Daher J, Canale P, Del Turco S, Basta G. Treating Metabolic Dysregulation and Senescence by Caloric Restriction: Killing Two Birds with One Stone? Antioxidants (Basel) 2025; 14:99. [PMID: 39857433 PMCID: PMC11763027 DOI: 10.3390/antiox14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase. The dysregulation of these pathways contributes to insulin resistance, impaired autophagy, exacerbated oxidative stress, and mitochondrial dysfunction, further enhancing cellular senescence and systemic metabolic derangements. On the other hand, dysfunctional endothelial cells and adipocytes contribute to systemic inflammation, reduced nitric oxide production, and altered lipid metabolism. Numerous factors, including extracellular vesicles, mediate pathological communication between the vascular system and adipose tissue, amplifying metabolic imbalances. Meanwhile, caloric restriction (CR) emerges as a potent intervention to counteract overnutrition effects, improve mitochondrial function, reduce oxidative stress, and restore metabolic balance. CR modulates pathways such as IIS, mTOR, and sirtuins, enhancing glucose and lipid metabolism, reducing inflammation, and promoting autophagy. CR can extend the health span and mitigate age-related diseases by delaying cellular senescence and improving healthy endothelial-adipocyte interactions. This review highlights the crosstalk between endothelial cells and adipocytes, emphasizing CR potential in counteracting overnutrition-induced senescence and restoring vascular homeostasis.
Collapse
Affiliation(s)
- Lara Russo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Babboni
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura 100, Lebanon;
| | - Paola Canale
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| | - Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (L.R.); (S.B.); (M.G.A.); (P.C.); (G.B.)
| |
Collapse
|
13
|
Fu M, Lu S, Gong L, Zhou Y, Wei F, Duan Z, Xiang R, Gonzalez FJ, Li G. Intermittent fasting shifts the diurnal transcriptome atlas of transcription factors. Mol Cell Biochem 2025; 480:491-504. [PMID: 38528297 DOI: 10.1007/s11010-024-04928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/05/2024] [Indexed: 03/27/2024]
Abstract
Intermittent fasting remains a safe and effective strategy to ameliorate various age-related diseases, but its specific mechanisms are not fully understood. Considering that transcription factors (TFs) determine the response to environmental signals, here, we profiled the diurnal expression of 600 samples across four metabolic tissues sampled every 4 over 24 h from mice placed on five different feeding regimens to provide an atlas of TFs in biological space, time, and feeding regimen. Results showed that 1218 TFs exhibited tissue-specific and temporal expression profiles in ad libitum mice, of which 974 displayed significant oscillations at least in one tissue. Intermittent fasting triggered more than 90% (1161 in 1234) of TFs to oscillate somewhere in the body and repartitioned their tissue-specific expression. A single round of fasting generally promoted TF expression, especially in skeletal muscle and adipose tissues, while intermittent fasting mainly suppressed TF expression. Intermittent fasting down-regulated aging pathway and upregulated the pathway responsible for the inhibition of mammalian target of rapamycin (mTOR). Intermittent fasting shifts the diurnal transcriptome atlas of TFs, and mTOR inhibition may orchestrate intermittent fasting-induced health improvements. This atlas offers a reference and resource to understand how TFs and intermittent fasting may contribute to diurnal rhythm oscillation and bring about specific health benefits.
Collapse
Affiliation(s)
- Min Fu
- Department of Neurology, The Fourth Hospital of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Siyu Lu
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lijun Gong
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yiming Zhou
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Fang Wei
- Department of Neurology, The Fourth Hospital of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China.
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 41001, Hunan, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guolin Li
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
14
|
Zhu B, Sun L, Tong J, Ding Y, Shan Y, He M, Tian X, Mei W, Zhao L, Wang Y. Neuregulin 4 attenuates pancreatic β-cell apoptosis induced by lipotoxicity via activating mTOR-mediated autophagy. Islets 2024; 16:2429854. [PMID: 39541216 PMCID: PMC11572226 DOI: 10.1080/19382014.2024.2429854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Neuregulin 4 (Nrg4) is a brown fat-enriched endocrine factor that ameliorates lipid metabolism disorders. Autophagy is critical for pancreatic β-cell to counteract lipotoxicity-induced apoptosis. This study aimed at exploring whether Nrg4 attenuates lipotoxicity-induced β-cell apoptosis by regulating autophagy. The mouse pancreatic β-cell line MIN6 was cultured in palmitic acid (PA) with or without Nrg4 administration. Apoptosis rate, together with anti-apoptotic and pro-apoptotic protein levels, was investigated. Autophagic flux and autophagy-related protein levels along with related signaling pathways that regulate autophagy were also evaluated. Results showed that Nrg4 decreased PA-induced MIN6 apoptosis, enhanced anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) expression and reduced pro-apoptotic proteins Bcl-2-associated X protein (Bax) and cleaved-caspase 3 expressions. Autophagy levels in MIN6 also decreased with PA treatment and Nrg4 administration reactivated autophagy. Further, Nrg4 administration activated autophagy via the mammalian target of rapamycin (mTOR) signaling pathway. In addition, when the mTOR pathway was stimulated or autophagy was suppressed, the beneficial effects of Nrg4 administration on MIN6 apoptosis were diminished. These results imply that Nrg4 administration attenuates MIN6 apoptosis by promoting mTOR-dependent autophagy and thus may lead to a new therapeutic method for type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Biao Zhu
- Department of Stomatology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Stomatology, The Ninth Medical Center,Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Junyao Tong
- Department of Stomatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yan Ding
- Department of Endocrinology, General Hospital of Central Theater Command, Southern Medical University, Wuhan, Hubei Province, China
| | - Yanbo Shan
- Department of Stomatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Mingjuan He
- Department of Endocrinology, General Hospital of Central Theater Command, Southern Medical University, Wuhan, Hubei Province, China
| | - Xiaoyu Tian
- Department of Stomatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Wen Mei
- Department of Endocrinology, General Hospital of Central Theater Command, Southern Medical University, Wuhan, Hubei Province, China
| | - Lisheng Zhao
- Department of Stomatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Ying Wang
- Department of Stomatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
15
|
Moka MK, George M, Sriram DK. Advancing Longevity: Exploring Antiaging Pharmaceuticals in Contemporary Clinical Trials Amid Aging Dynamics. Rejuvenation Res 2024; 27:220-233. [PMID: 39162996 DOI: 10.1089/rej.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Aging is an inevitable biological process that significantly impacts human health, leading to a decline in cellular function and an increase in cellular damage. This study elucidates the burgeoning potential of antiaging pharmaceuticals in mitigating the thriving burden of chronic conditions linked to advancing age. It underscores the pivotal role of these pharmacotherapeutic agents in fostering longevity free from debilitating age-related afflictions, notably cardiovascular disorders, neoplastic processes, and neurodegenerative pathologies. While commendable strides have been made evident in preclinical models, it is crucial to thoroughly investigate their effectiveness and safety in human groups. In addition, ethical concerns about fair access, societal impacts, and careful resource distribution are significant in discussions about developing and using antiaging medications. By approaching the development and utilization of antiaging medications with diligence and foresight, we can strive toward a future where individuals can enjoy extended lifespans free from the debilitating effects of age-related ailments.
Collapse
Affiliation(s)
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, India
| | - D K Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, India
| |
Collapse
|
16
|
Tagliafico L, Da Costa RT, Boccia L, Kavehmoghaddam S, Ramirez B, Tokarska‐Schlattner M, Scoma ER, Hambardikar V, Bonfiglio T, Caffa I, Monacelli F, Schlattner U, Betley JN, Nencioni A, Solesio ME. Short-term starvation activates AMPK and restores mitochondrial inorganic polyphosphate, but fails to reverse associated neuronal senescence. Aging Cell 2024; 23:e14289. [PMID: 39102875 PMCID: PMC11561667 DOI: 10.1111/acel.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Neuronal senescence is a major risk factor for the development of many neurodegenerative disorders. The mechanisms that drive neurons to senescence remain largely elusive; however, dysregulated mitochondrial physiology seems to play a pivotal role in this process. Consequently, strategies aimed to preserve mitochondrial function may hold promise in mitigating neuronal senescence. For example, dietary restriction has shown to reduce senescence, via a mechanism that still remains far from being totally understood, but that could be at least partially mediated by mitochondria. Here, we address the role of mitochondrial inorganic polyphosphate (polyP) in the intersection between neuronal senescence and dietary restriction. PolyP is highly present in mammalian mitochondria; and its regulatory role in mammalian bioenergetics has already been described by us and others. Our data demonstrate that depletion of mitochondrial polyP exacerbates neuronal senescence, independently of whether dietary restriction is present. However, dietary restriction in polyP-depleted cells activates AMPK, and it restores some components of mitochondrial physiology, even if this is not sufficient to revert increased senescence. The effects of dietary restriction on polyP levels and AMPK activation are conserved in differentiated SH-SY5Y cells and brain tissue of male mice. Our results identify polyP as an important component in mitochondrial physiology at the intersection of dietary restriction and senescence, and they highlight the importance of the organelle in this intersection.
Collapse
Affiliation(s)
- Luca Tagliafico
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
- Department of Internal Medicine and Medical Specialties (DIMI)University of GenoaGenoaItaly
| | - Renata T. Da Costa
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Lavinia Boccia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sheida Kavehmoghaddam
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Bryan Ramirez
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | | | - Ernest R. Scoma
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Vedangi Hambardikar
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties (DIMI)University of GenoaGenoaItaly
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied BioenergeticsGrenoble Alpes UniversitySaint‐Martin‐d'HèresFrance
| | - J. Nicholas Betley
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Maria E. Solesio
- Department of Biology and Center for Computational and Integrative BiologyRutgers UniversityCamdenNew JerseyUSA
| |
Collapse
|
17
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
18
|
Chen L, Wang X, Tian S, Zhou L, Wang L, Liu X, Yang Z, Fu G, Liu X, Ding C, Zou D. Integrin-linked kinase control dental pulp stem cell senescence via the mTOR signaling pathway. Stem Cells 2024; 42:861-873. [PMID: 39169713 PMCID: PMC11464141 DOI: 10.1093/stmcls/sxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Human dental pulp stem cells (HDPSCs) showed an age-dependent decline in proliferation and differentiation capacity. Decline in proliferation and differentiation capacity affects the dental stromal tissue homeostasis and impairs the regenerative capability of HDPSCs. However, which age-correlated proteins regulate the senescence of HDPSCs remain unknown. Our study investigated the proteomic characteristics of HDPSCs isolated from subjects of different ages and explored the molecular mechanism of age-related changes in HDPSCs. Our study showed that the proliferation and osteogenic differentiation of HDPSCs were decreased, while the expression of aging-related genes (p21, p53) and proportion of senescence-associated β-galactosidase (SA-β-gal)-positive cells were increased with aging. The bioinformatic analysis identified that significant proteins positively correlated with age were enriched in response to the mammalian target of rapamycin (mTOR) signaling pathway (ILK, MAPK3, mTOR, STAT1, and STAT3). We demonstrated that OSU-T315, an inhibitor of integrin-linked kinase (ILK), rejuvenated aged HDPSCs, similar to rapamycin (an inhibitor of mTOR). Treatment with OSU-T315 decreased the expression of aging-related genes (p21, p53) and proportion of SA-β-gal-positive cells in HDPSCs isolated from old (O-HDPSCs). Additionally, OSU-T315 promoted the osteoblastic differentiation capacity of O-HDPSCs in vitro and bone regeneration of O-HDPSCs in rat calvarial bone defects model. Our study indicated that the proliferation and osteoblastic differentiation of HDPSCs were impaired with aging. Notably, the ILK/AKT/mTOR/STAT1 signaling pathway may be a major factor in the regulation of HDPSC senescence, which help to provide interventions for HDPSC senescence.
Collapse
Affiliation(s)
- Lu Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
| | - Xiping Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, People’s Republic of China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Li Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Xiaohan Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
| | - Zihan Yang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Guiqiang Fu
- Stomatology Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, People’s Republic of China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, People’s Republic of China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| |
Collapse
|
19
|
Escobar KA, VanDusseldorp TA, Johnson KE, Stratton M, McCormick JJ, Moriarity T, Dokladny K, Vaughan RA, Kerksick CM, Kravitz L, Mermier CM. The biphasic activity of autophagy and heat shock protein response in peripheral blood mononuclear cells following acute resistance exercise in resistance-trained males. Eur J Appl Physiol 2024; 124:2981-2992. [PMID: 38771358 DOI: 10.1007/s00421-024-05503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Autophagy and heat shock protein (HSP) response are proteostatic systems involved in the acute and adaptive responses to exercise. These systems may upregulate sequentially following cellular stress including acute exercise, however, currently few data exist in humans. This study investigated the autophagic and HSP responses to acute intense lower body resistance exercise in peripheral blood mononuclear cells (PBMCs) with and without branched-chain amino acids (BCAA) supplementation. METHODS Twenty resistance-trained males (22.3 ± 1.5 yr; 175.4 ± .7 cm; 86.4 ± 15.6 kg) performed a bout of intense lower body resistance exercise and markers of autophagy and HSP70 were measured immediately post- (IPE) and 2, 4, 24, 48, and 72 h post-exercise. Prior to resistance exercise, 10 subjects were randomly assigned to BCAA supplementation of 0.22 g/kg/d for 5 days pre-exercise and up to 72 h following exercise while the other 10 subjects consumed a placebo (PLCB). RESULTS There were no difference in autophagy markers or HSP70 expression between BCAA and PLCB groups. LC3II protein expression was significantly lower 2 and 4 h post-exercise compared to pre-exercise. LC3II: I ratio was not different at any time point compared to pre-exercise. Protein expression of p62 was lower IPE, 2, and 4 h post-exercise and elevated 24 h post-exercise. HSP70 expression was elevated 48 and 72 h post-exercise. CONCLUSIONS Autophagy and HSP70 are upregulated in PBMCs following intense resistance exercise with autophagy increasing initially post-exercise and HSP response in the latter period. Moreover, BCAA supplementation did not affect this response.
Collapse
Affiliation(s)
- Kurt A Escobar
- Physiology of Sport and Exercise Lab, Department of Kinesiology, California State University, Long Beach, Long Beach, CA, USA.
| | - Trisha A VanDusseldorp
- Bonafide Health, LLC p/b JDS Therapeutics, Harrison, NY, USA
- Department of Health and Exercise Sciences, Jacksonville University, Jacksonville, FL, USA
| | - Kelly E Johnson
- Department of Kinesiology, Coastal Carolina University, Conway, SC, USA
| | - Matthew Stratton
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, USA
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Terence Moriarity
- Department of Kinesiology, University of Northern Iowa, Cedar Falls, USA
| | - Karol Dokladny
- Department of Internal Medicine, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Roger A Vaughan
- Department of Exercise Science, Congdon School of Health Sciences, High Point University, High Point, NC, USA
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Len Kravitz
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Science, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
20
|
Bilkei-Gorzo A, Schurmann B, Schneider M, Kraemer M, Nidadavolu P, Beins EC, Müller CE, Dvir-Ginzberg M, Zimmer A. Bidirectional Effect of Long-Term Δ 9-Tetrahydrocannabinol Treatment on mTOR Activity and Metabolome. ACS Pharmacol Transl Sci 2024; 7:2637-2649. [PMID: 39296258 PMCID: PMC11406684 DOI: 10.1021/acsptsci.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
Brain aging is associated with cognitive decline, reduced synaptic plasticity, and altered metabolism. The activity of mechanistic target of rapamycin (mTOR) has a major impact on aging by regulating cellular metabolism. Although reduced mTOR signaling has a general antiaging effect, it can negatively affect the aging brain by reducing synaptogenesis and thus cognitive functions. Increased mTOR activity facilitates aging and is responsible for the amnestic effect of the cannabinoid receptor 1 agonist Δ9-tetrahydrocannabinol (THC) in higher doses. Long-term low-dose Δ9-THC had an antiaging effect on the brain by restoring cognitive abilities and synapse densities in old mice. Whether changes in mTOR signaling and metabolome are associated with its positive effects on the aging brain is an open question. Here, we show that Δ9-THC treatment has a tissue-dependent and dual effect on mTOR signaling and the metabolome. In the brain, Δ9-THC treatment induced a transient increase in mTOR activity and in the levels of amino acids and metabolites involved in energy production, followed by an increased synthesis of synaptic proteins. Unexpectedly, we found a similar reduction in the mTOR activity in adipose tissue and in the level of amino acids and carbohydrate metabolites in blood plasma as in animals on a low-calorie diet. Thus, long-term Δ9-THC treatment first increases the level of energy and synaptic protein production in the brain, followed by a reduction in mTOR activity and metabolic processes in the periphery. Our study suggests that a dual effect on mTOR activity and the metabolome could be the basis for an effective antiaging and pro-cognitive medication.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Britta Schurmann
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Marion Schneider
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Michael Kraemer
- Institute of Forensic Medicine, Medical Faculty, University of Bonn, Bonn 53111, Germany
| | - Prakash Nidadavolu
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Eva C Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Christa E Müller
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Mona Dvir-Ginzberg
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| |
Collapse
|
21
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
22
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
23
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
24
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
26
|
Alcaráz N, Salcedo-Tello P, González-Barrios R, Torres-Arciga K, Guzmán-Ramos K. Underlying Mechanisms of the Protective Effects of Lifestyle Factors On Age-Related Diseases. Arch Med Res 2024; 55:103014. [PMID: 38861840 DOI: 10.1016/j.arcmed.2024.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The rise in life expectancy has significantly increased the occurrence of age-related chronic diseases, leading to escalating expenses for both society and individuals. Among the main factors influencing health and lifespan, lifestyle takes a forefront position. Specifically, nutrition, mental activity, and physical exercise influence the molecular and functional mechanisms that contribute to the prevention of major age-related diseases. Gaining deeper insights into the mechanisms that drive the positive effects of healthy lifestyles is valuable for creating interventions to prevent or postpone the development of chronic degenerative diseases. This review summarizes the main mechanisms that underlie the positive effect of lifestyle factors in counteracting the major age-related diseases involving brain health, musculoskeletal function, cancer, frailty, and cardiovascular diseases, among others. This knowledge will help to identify high-risk populations for targeted intervention trials and discover new biomarkers associated with healthy aging.
Collapse
Affiliation(s)
- Nicolás Alcaráz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Salcedo-Tello
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México
| | - Karla Torres-Arciga
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Mexico State, Mexico.
| |
Collapse
|
27
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
28
|
Leite PLDA, Maciel LA, da Silva Aguiar S, Sousa CV, Neves RVP, de Sousa Neto IV, Campbell Simões L, Rosa TDS, Simões HG. Systemic Sirtuin 1 as a Potential Target to Mediate Interactions Between Body Fat and Testosterone Concentration in Master Athletes. J Aging Phys Act 2024; 32:438-445. [PMID: 38417433 DOI: 10.1123/japa.2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 03/01/2024]
Abstract
Evidence indicates that master athletes have higher concentration of Sirtuin 1 (Sirt1), lower body fat (BF), and greater activity of the hypothalamic-pituitary-gonadal axis in comparison to untrained peers. However, no published data have demonstrated possible mediation effect of Sirt1 in the interaction of BF and testosterone in this population. Therefore, this study compared and verified possible associations between Sirt1, BF, fat mass index (FMI), testosterone, luteinizing hormone (LH), and testosterone/luteinizing hormone (T/LH) ratio in middle-aged master athletes (n = 54; 51.22 ± 7.76 years) and control middle-aged peers (n = 21; 47.76 ± 8.47 years). Venous blood was collected for testosterone, LH, and Sirt1. BF was assessed through skinfold protocol. Although LH concentration did not differ between groups, master athletes presented higher concentration of Sirt1, testosterone, and T/LH ratio, and lower BF and FMI in relation to age-matched nonathletes. Moreover, Sirt1 correlated positively with testosterone and T/LH ratio, negatively with BF, and was not significantly correlated with LH (mediation analysis revealed the effect of BF on testosterone is mediated by Sirt1 and vice versa; R2 = .1776; p = .032). In conclusion, master athletes have higher testosterone, T/LH ratio, and Sirt1, and lower BF and FMI in relation to untrained peers. Furthermore, Sirt1 was negatively associated with BF and positively associated with testosterone and T/LH ratio. These findings suggest that increased circulating Sirt1, possibly due to the master athlete's training regimens and lifestyle, exhibits a potential mediation effect on the interaction between endocrine function and body composition.
Collapse
Affiliation(s)
- Patricio Lopes de Araújo Leite
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Larissa Alves Maciel
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Samuel da Silva Aguiar
- Physical Education Department, University Centre of the Federal District, Brasilia, Brazil
| | - Caio Victor Sousa
- Department of Health and Human Sciences, Loyola Marymount University, Los Angeles, CA, USA
| | - Rodrigo Vanerson Passos Neves
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Thiago Dos Santos Rosa
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| | - Herbert Gustavo Simões
- Graduate Program in Physical Activity, Health, and Human Performance, Catholic University of Brasilia, Taguatinga, Brazil
| |
Collapse
|
29
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Reda GK, Ndunguru SF, Csernus B, Gulyás G, Knop R, Szabó C, Czeglédi L, Lendvai ÁZ. Dietary restriction and life-history trade-offs: insights into mTOR pathway regulation and reproductive investment in Japanese quail. J Exp Biol 2024; 227:jeb247064. [PMID: 38563310 DOI: 10.1242/jeb.247064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Resources are needed for growth, reproduction and survival, and organisms must trade off limited resources among competing processes. Nutritional availability in organisms is sensed and monitored by nutrient-sensing pathways that can trigger physiological changes or alter gene expression. Previous studies have proposed that one such signalling pathway, the mechanistic target of rapamycin (mTOR), underpins a form of adaptive plasticity when individuals encounter constraints in their energy budget. Despite the fundamental importance of this process in evolutionary biology, how nutritional limitation is regulated through the expression of genes governing this pathway and its consequential effects on fitness remain understudied, particularly in birds. We used dietary restriction to simulate resource depletion and examined its effects on body mass, reproduction and gene expression in Japanese quails (Coturnix japonica). Quails were subjected to feeding at 20%, 30% and 40% restriction levels or ad libitum for 2 weeks. All restricted groups exhibited reduced body mass, whereas reductions in the number and mass of eggs were observed only under more severe restrictions. Additionally, dietary restriction led to decreased expression of mTOR and insulin-like growth factor 1 (IGF1), whereas the ribosomal protein S6 kinase 1 (RPS6K1) and autophagy-related genes (ATG9A and ATG5) were upregulated. The pattern in which mTOR responded to restriction was similar to that for body mass. Regardless of the treatment, proportionally higher reproductive investment was associated with individual variation in mTOR expression. These findings reveal the connection between dietary intake and the expression of mTOR and related genes in this pathway.
Collapse
Affiliation(s)
- Gebrehaweria K Reda
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Sawadi F Ndunguru
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, Faculty of Life Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
31
|
Wang L, Zhang C, Fan S, Wang J, Zhou W, Zhou Z, Liu Y, Wang Q, Liu W, Dai X. Chitosan oligosaccharide improves intestinal homeostasis to achieve the protection for the epithelial barrier of female Drosophila melanogaster via regulating intestinal microflora. Microbiol Spectr 2024; 12:e0363923. [PMID: 38411050 PMCID: PMC10986574 DOI: 10.1128/spectrum.03639-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Chitosan oligosaccharide (COS) is a new type of marine functional oligosaccharide with biological activities such as regulating intestinal microflora and improving intestinal immunity. In this study, female Drosophila melanogaster was used as a model organism to evaluate the effect of COS on intestinal injury by H2O2 induction, and its mechanism was explored through the analysis of intestinal homeostasis. The results showed that 0.25% of COS could effectively prolong the lifespan of stressed female D. melanogaster by increasing its antioxidant capacity and maintaining intestinal homeostasis, which included protecting the mechanical barrier, promoting the chemical barrier, and regulating the biological barrier by affecting its autophagy and the antioxidant signaling pathway. Additionally, the protective effect of COS on the intestinal barrier and homeostasis of D. melanogaster under oxidative stress status is directly related to its regulation of the intestinal microflora, which could decrease excessive autophagy and activate the antioxidant system to promote health. IMPORTANCE The epithelial barrier plays an important role in the organism's health. Chitosan oligosaccharide (COS), a new potential prebiotic, exhibits excellent antioxidant capacity and anti-inflammatory effects. Our study elucidated the protective mechanisms of COS on the intestinal barrier of Drosophila melanogaster under oxidative stress, which could provide new insights into COS application in various industries, such as food, agriculture, and medicine.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shuhang Fan
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | | | - Weihao Zhou
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Zhaohui Zhou
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Yuhang Liu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Qianna Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
| | - Wei Liu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
She J, Lu F, Chi Y, Cao L, Zuo Y, Yang N, Zhang X, Dai X. Ginseng Extract Attenuates the Injury from Ultraviolet Irradiation for Female Drosophila melanogaster through the Autophagy Signaling Pathway. J Med Food 2024; 27:348-358. [PMID: 38387003 DOI: 10.1089/jmf.2023.k.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Ginseng is an ancient medicinal and edible plant with many health benefits, and can serve as a drug and dietary supplement, but there are few relevant studies on its use to ease ultraviolet (UV) irradiation damage. After 0.8 mg/mL ginseng extract (GE) was added to the medium of female Drosophila melanogaster subjected to UV irradiation, the lifespan, climbing ability, sex ratio, developmental cycle, and antioxidant capacity of flies were examined to evaluate the GE function. In addition, the underlying mechanism by which GE enhances the irradiation tolerance of D. melanogaster was explored. With GE supplementation, female flies subjected to UV irradiation exhibited an extension in their lifespan, enhancement in their climbing ability, improvement in their offspring sex ratio, and restoration of the normal development cycle by increasing their antioxidant activity. Finally, further experiments indicated that GE could enhance the irradiation tolerance of female D. melanogaster by upregulating the gene expressions of SOD, GCL, and components of the autophagy signaling pathway. Finally, the performance of r4-Gal4;UAS-AMPKRNAi flies confirmed the regulatory role of the autophagy signaling pathway in mitigating UV irradiation injury.
Collapse
Affiliation(s)
- JiaYi She
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - FangYuan Lu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - YiQing Chi
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - LingYao Cao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yaqi Zuo
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Na Yang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xing Zhang
- Zhejiang Shengshi Bio-technology Co., Ltd, Anji, China
| | - XianJun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
33
|
Xie P, Li P, Zhu X, Chen D, Ommati MM, Wang H, Han L, Xu S, Sun P. Hepatotoxic of polystyrene microplastics in aged mice: Focus on the role of gastrointestinal transformation and AMPK/FoxO pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170471. [PMID: 38296072 DOI: 10.1016/j.scitotenv.2024.170471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Microplastic (MP) toxicity has attracted widespread attention, whereas before triggering hepatotoxicity, ingested MPs first undergo transportation and digestion processes in the gastrointestinal tract, possibly interacting with the gastrointestinal contents (GIC). More alarming is the need for more understanding of how this process may impact the liver health of aged animals. This study selected old mice. Firstly, we incubated polystyrene microplastics (PS-MPs, 1 μm) with GIC extract. The results of SEM/EDS indicated a structural alteration in PS-MPs. Additionally, impurities resembling corona, rich in heteroatoms (O, N, and S), were observed. This resulted in an enhanced aggregating phenomenon of MPs. We conducted a 10-day experiment exposing aged mice to four concentrations of PS-MPs, ranging from 1 × 103 to 1 × 1012 particles/L. Subsequent measurements of tissue pathology and body and organ weights were conducted, revealing alterations in liver structure. In the liver, 12 crucial metabolites were found by LC-MS technology, including purines, lipids, and amino acids. The AMPK/FoxO pathway was enriched, activated, and validated in western blotting results. We also comprehensively examined the innate immune system, inflammatory factors, and oxidative stress indicators. The results indicated decreased C3 levels, stable C4 levels, inflammatory factors (IL-6 and IL-8), and antioxidant enzymes were increased to varying degrees. PS-MPs also caused DNA oxidative damage. These toxic effects exhibited a specific dose dependence. Overall, after the formation of the gastrointestinal corona, PS-MPs subsequently impact various cellular processes, such as cycle arrest (p21), leading to hepatic and health crises in the elderly. The presence of gastrointestinal coronas also underscores the MPs' morphology and characteristics, which should be distinguished after ingestion.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Pengcheng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xiaoshan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Deshan Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Mohammad Mehdi Ommati
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Lei Han
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
34
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
35
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
36
|
McCormick JJ, McManus MK, King KE, Goulet N, Kenny GP. The intensity-dependent effects of exercise and superimposing environmental heat stress on autophagy in peripheral blood mononuclear cells from older men. Am J Physiol Regul Integr Comp Physiol 2024; 326:R29-R42. [PMID: 37955130 DOI: 10.1152/ajpregu.00163.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Autophagy is a vital cellular process, essential to maintaining cellular function during acute physiological stressors including exercise and heat stress. We previously showed that autophagy occurs during exercise in an intensity-dependent manner in peripheral blood mononuclear cells (PBMCs) from young men, with elevated responses in the heat. However, given autophagy declines with age, it is unclear whether a similar pattern of response occurs in older adults. Therefore, we evaluated autophagy and the cellular stress response [i.e., apoptosis, inflammation, and the heat shock response (HSR)] in PBMCs from 10 healthy older men [mean (SD): aged 70 yr (5)] in response to 30 min of semirecumbent cycling at low, moderate, and vigorous intensities [40, 55, and 70% maximal oxygen consumption (V̇o2max), respectively] in a temperate (25°C) environment, with an additional vigorous-intensity bout (70% of V̇o2max) performed in a hot environment (40°C). Responses were evaluated before and after exercise, as well as throughout a 6-h seated recovery period performed in the same environmental conditions as the respective exercise bout. Proteins were assessed via Western blot. Although we observed elevations in mean body temperature with each increase in exercise intensity, autophagy was only stimulated during vigorous-intensity exercise, where we observed elevations in LC3-II (P < 0.05). However, when the same exercise was performed in the heat, the LC3-II response was attenuated, which was accompanied by significant p62 accumulation (P < 0.05). Altogether, our findings demonstrate that older adults exhibit autophagic impairments when the same vigorous-intensity exercise is performed in hot environments, potentially underlying heat-induced cellular vulnerability in older men.NEW & NOTEWORTHY We demonstrate that autophagic stimulation occurs in response to short-duration (30-min) vigorous-intensity exercise in peripheral blood mononuclear cells from older adults; however, no changes in autophagy occur during low- or moderate-intensity exercise. Moreover, older adults exhibit autophagic impairments when the same vigorous-intensity exercise is performed in hot ambient conditions. When paired with an attenuated heat shock response, as well as elevated apoptotic responses, older men may exhibit greater cellular vulnerability to exertional heat stress.
Collapse
Affiliation(s)
- James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Bensalem J, Teong XT, Hattersley KJ, Hein LK, Fourrier C, Liu K, Hutchison AT, Heilbronn LK, Sargeant TJ. Basal autophagic flux measured in blood correlates positively with age in adults at increased risk of type 2 diabetes. GeroScience 2023; 45:3549-3560. [PMID: 37498479 PMCID: PMC10643809 DOI: 10.1007/s11357-023-00884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Preclinical data show that autophagy delays age-related disease. It has been postulated that age-related disease is-at least in part-caused by an age-related decline in autophagy. However, autophagic flux has never been measured in humans across a spectrum of aging in a physiologically relevant context. To address this critical gap in knowledge, the objective of this cross-sectional observational study was to measure basal autophagic flux in whole blood taken from people at elevated risk of developing type 2 diabetes and correlate it with chronological age. During this study, 119 people were recruited and five people were excluded during sample analysis such that 114 people were included in the final analysis. Basal autophagic flux measured in blood and correlations with parameters such as age, body weight, fat mass, AUSDRISK score, blood pressure, glycated hemoglobin HbA1c, blood glucose and insulin, blood lipids, high-sensitivity C-reactive protein, plasma protein carbonylation, and plasma β-hexosaminidase activity were analysed. Despite general consensus in the literature that autophagy decreases with age, we found that basal autophagic flux increased with age in this human cohort. This is the first study to report measurement of basal autophagic flux in a human cohort and its correlation with age. This increase in basal autophagy could represent a stress response to age-related damage. These data are significant not only for their novelty but also because they will inform future clinical studies and show that measurement of basal autophagic flux in a human cohort is feasible.
Collapse
Affiliation(s)
- Julien Bensalem
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xiao Tong Teong
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kathryn J Hattersley
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Leanne K Hein
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Célia Fourrier
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kai Liu
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Amy T Hutchison
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J Sargeant
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
38
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
39
|
Baumgartner JN, Kowtha B, Riscuta G, Wali A, Gao Y. Molecular underpinnings of physical activity and resilience: A brief overview of the state-of-science and research design needs. Stress Health 2023; 39:14-21. [PMID: 37226691 DOI: 10.1002/smi.3258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Jennifer N Baumgartner
- Office of Disease Prevention, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Bramaramba Kowtha
- Office of Disease Prevention, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriela Riscuta
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anil Wali
- Center to Reduce Cancer Health Disparities, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Sills ES, Harrity C, Wood SH, Tan SL. mTOR Inhibition via Low-Dose, Pulsed Rapamycin with Intraovarian Condensed Platelet Cytokines: An Individualized Protocol to Recover Diminished Reserve? J Pers Med 2023; 13:1147. [PMID: 37511761 PMCID: PMC10381109 DOI: 10.3390/jpm13071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
No major breakthroughs have entered mainstream clinical fertility practice since egg donation and intracytoplasmic sperm injection decades ago, and oocyte deficits secondary to advanced age continue as the main manifestation of diminished ovarian reserve. In the meantime, several unproven IVF 'accessories' have emerged including so-called ovarian rejuvenation which entails placing fresh autologous platelet-rich plasma (PRP) directly into ovarian tissue. Among cellular responses attributed to this intervention are reduced oxidative stress, slowed apoptosis and improved metabolism. Besides having an impact on the existing follicle pool, platelet growth factors might also facilitate de novo oocyte recruitment by specified gene upregulation targeting uncommitted ovarian stem cells. Given that disordered activity at the mechanistic target of rapamycin (mTOR) has been shown to exacerbate or accelerate ovarian aging, PRP-discharged plasma cytokines combined with mTOR suppression by pulsed/cyclic rapamycin represents a novel fusion technique to enhance ovarian function. While beneficial effects have already been observed experimentally in oocytes and embryos with mTOR inhibition alone, this proposal is the first to discuss intraovarian platelet cytokines followed by low-dose, phased rapamycin. For refractory cases, this investigational, tailored approach could amplify or sustain ovarian capacity sufficient to permit retrieval of competent oocytes via distinct but complementary pathways-thus reducing dependency on oocyte donation.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, Regenerative Biology Group/CAG, San Clemente, CA 92673, USA
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
| | - Conor Harrity
- Department of Obstetrics & Gynaecology, Royal College of Surgeons in Ireland, D02 HC66 Dublin, Ireland
| | - Samuel H Wood
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
- Gen 5 Fertility Center, San Diego, CA 92121, USA
| | - Seang Lin Tan
- OriginElle Fertility Clinic, Montreal, QC H4A 3J3, Canada
- Department of Obstetrics & Gynecology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
41
|
Ding Y, Chen Y, Hu K, Yang Q, Li Y, Huang M. Sweroside alleviates hepatic steatosis in part by activating AMPK/mTOR-mediated autophagy in mice. J Cell Biochem 2023. [PMID: 37269482 DOI: 10.1002/jcb.30428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
In this study, we investigated the effect of sweroside (SOS) on hepatic steatosis in mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of nonalcohol fatty liver disease (NAFLD) to explore the effect of SOS on hepatic steatosis in NAFLD mice. In in vitro experiments, primary mouse hepatocytes were treated with palmitic acid and SOS, and the protective effects of SOS on inflammation, lipogenesis, and fat deposition were analyzed. Autophagy-related protein levels and their related signaling pathways were evaluated in both in vivo and in vitro experiments. The results demonstrated that SOS decreased the high-fat-induced intrahepatic lipid content both in vivo and in vitro. The autophagy level in the liver was decreased in NAFLD mice but was reactivated following SOS intervention. SOS intervention was found to partially activate autophagy via the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Consequently, when the AMPK/mTOR pathway was suppressed or autophagy was inhibited, the beneficial effects of SOS intervention on hepatic steatosis were diminished. These results indicate that SOS intervention attenuates hepatic steatosis by promoting autophagy in the liver of NAFLD mice, in part by activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuefu Chen
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Ke Hu
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Qiansheng Yang
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxian Li
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Minjiang Huang
- Department of Diagnostics, School of Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
42
|
Zhang JJ, Chen KC, Yin JY, Zheng YN, Chen RX, Liu W, Tang S, Zhang J, Zhang M, Wang Z, Liu S, Li W. AFG, an important maillard reaction product in red ginseng, alleviates D-galactose-induced brain aging in mice via correcting mitochondrial dysfunction induced by ROS accumulation. Eur J Pharmacol 2023:175824. [PMID: 37263403 DOI: 10.1016/j.ejphar.2023.175824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Red ginseng is a classical processed product from Panax ginseng. C.A Meyer with many bioactive components formed through the Maillard reaction called Maillard reaction products. Maillard reaction refers to complex reversible reactions between amino acids or proteins and glycosides, which are used in food processing and storage, as well as in tobacco development, traditional Chinese medicine processing, and wine brewing. Arginyl-fructosyl-glucose (AFG) is a main non-saponin (ginsenoside) component produced in red ginseng processing, with high antioxidant, anti-apoptotic and neuroprotective efficiencies. However, its effects and mechanisms against oxidation stress in on the brain remain elusive. Therefore, this study aimed at exploring the therapeutic effect exerted by AFG on murine subacute brain aging induced by D-galactose (D-gal) and its potential molecular mechanism in the murine model, finding that AFG (40 and 80 mg/kg) significantly ameliorated D-gal-resulted changes in pathology. Besides, according to the transmission electron microscopy (TEM) and Western blot, AFG corrected the mitochondrial dysfunction resulted from ROS, thereby delaying the mice brain aging caused by D-gal.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ke-Cheng Chen
- Looking Up Starry Sky Medical Research Center, Siping, 136001, China
| | - Ji-Ying Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ri-Xin Chen
- Looking Up Starry Sky Medical Research Center, Siping, 136001, China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ming Zhang
- College of Medicine, Jilin University, Changchun, 130021, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Liu
- Goldenwell Biotechnology, Inc., Reno, 89501, United States.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
43
|
Wünsch AC, Ries E, Heinzelmann S, Frabschka A, Wagner PC, Rauch T, Koderer C, El-Mesery M, Volland JM, Kübler AC, Hartmann S, Seher A. Metabolic Silencing via Methionine-Based Amino Acid Restriction in Head and Neck Cancer. Curr Issues Mol Biol 2023; 45:4557-4573. [PMID: 37367038 DOI: 10.3390/cimb45060289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, various forms of caloric restriction (CR) and amino acid or protein restriction (AAR or PR) have shown not only success in preventing age-associated diseases, such as type II diabetes and cardiovascular diseases, but also potential for cancer therapy. These strategies not only reprogram metabolism to low-energy metabolism (LEM), which is disadvantageous for neoplastic cells, but also significantly inhibit proliferation. Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumour types, with over 600,000 new cases diagnosed annually worldwide. With a 5-year survival rate of approximately 55%, the poor prognosis has not improved despite extensive research and new adjuvant therapies. Therefore, for the first time, we analysed the potential of methionine restriction (MetR) in selected HNSCC cell lines. We investigated the influence of MetR on cell proliferation and vitality, the compensation for MetR by homocysteine, the gene regulation of different amino acid transporters, and the influence of cisplatin on cell proliferation in different HNSCC cell lines.
Collapse
Affiliation(s)
- Anna Chiara Wünsch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Elena Ries
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Sina Heinzelmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Andrea Frabschka
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Peter Christoph Wagner
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Theresa Rauch
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Corinna Koderer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Julian Manuel Volland
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Alexander Christian Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
| |
Collapse
|
44
|
Lin J, Ye S, Ke H, Lin L, Wu X, Guo M, Jiao B, Chen C, Zhao L. Changes in the mammary gland during aging and its links with breast diseases. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37184281 DOI: 10.3724/abbs.2023073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.
Collapse
Affiliation(s)
- Junqiang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shihui Ye
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Liang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Xia Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Mengfei Guo
- Huankui Academy, Nanchang University, Nanchang 330031, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- the Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| |
Collapse
|
45
|
Zhang JJ, Hu RY, Chen KC, Liu YB, Hou YY, Zhang YZ, Feng ZM, Chen RX, Zheng YN, Liu S, Li W. 20(S)-protopanaxatriol inhibited D-galactose-induced brain aging in mice via promoting mitochondrial autophagy flow. Phytother Res 2023. [PMID: 37037488 DOI: 10.1002/ptr.7779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 01/29/2023] [Indexed: 04/12/2023]
Abstract
Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C. A. Meyer exerted obvious memory-enhancing and antiaging effects, and the simpler the structure of ginsenosides, the better the biological activity. In this work, we aimed to explore the therapeutic effect and underlying molecular mechanism of 20(S)-protopanaxatriol (PPT), the aglycone of panaxatriol-type ginsenosides, by establishing D-galactose (D-gal)-induced subacute brain aging model in mice. The results showed that PPT treatment (10 and 20 mg/kg) for 4 weeks could significantly restore the D-gal (800 mg/kg for 8 weeks)-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Meanwhile, PPT also significantly reduced the histopathological changes caused by D-gal exposure. Moreover, PPT could increase TFEB/LAMP2 protein expression to promote mitochondrial autophagic flow. Importantly, the results from molecular docking showed that PPT had good binding ability with LAMP2 and TFEB, suggesting that TFEB/LAMP2 might play an important role in PPT to alleviate D-gal-caused brain aging.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Ke-Cheng Chen
- Looking Up Starry Sky Medical Research Center, Siping, 136001, China
| | - Yong-Bo Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Yun-Yi Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Yu-Zhuo Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi-Meng Feng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ri-Xin Chen
- Looking Up Starry Sky Medical Research Center, Siping, 136001, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Liu
- Goldenwell Biotechnology, Inc., Reno, Nevada, 89501, USA
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| |
Collapse
|
46
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
47
|
Zhang JX, Bao SC, Chen J, Chen T, Wei HL, Zhou XY, Li JT, Yan SG. Xiaojianzhong decoction prevents gastric precancerous lesions in rats by inhibiting autophagy and glycolysis in gastric mucosal cells. World J Gastrointest Oncol 2023; 15:464-489. [PMID: 37009319 PMCID: PMC10052669 DOI: 10.4251/wjgo.v15.i3.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/01/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Gastric precancerous lesions (GPL) precede the development of gastric cancer (GC). They are characterized by gastric mucosal intestinal metaplasia and dysplasia caused by various factors such as inflammation, bacterial infection, and injury. Abnormalities in autophagy and glycolysis affect GPL progression, and their effective regulation can aid in GPL treatment and GC prevention. Xiaojianzhong decoction (XJZ) is a classic compound for the treatment of digestive system diseases in ancient China which can inhibit the progression of GPL. However, its specific mechanism of action is still unclear.
AIM To investigate the therapeutic effects of XJZ decoction on a rat GPL model and the mechanisms underlying its effects on autophagy and glycolysis regulation in GPLs.
METHODS Wistar rats were randomly divided into six groups of five rats each and all groups except the control group were subjected to GPL model construction for 18 wk. The rats’ body weight was monitored every 2 wk starting from the beginning of modeling. Gastric histopathology was examined using hematoxylin-eosin staining and Alcian blue-periodic acid-Schiff staining. Autophagy was observed using transmission electron microscopy. The expressions of autophagy, hypoxia, and glycolysis related proteins in gastric mucosa were detected using immunohistochemistry and immunofluorescence. The expressions of the following proteins in gastric tissues: B cell lymphoma/Leukemia-2 and adenovirus E1B19000 interacting protein 3 (Bnip-3), microtubule associated protein 1 light chain 3 (LC-3), moesin-like BCL2-interacting protein 1 (Beclin-1), phosphatidylinositol 3-kimase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), p53, AMP-activated protein kinase (AMPK), and Unc-51 like kinase 1 (ULK1) were detected using western blot. The relative expressions of autophagy, hypoxia, and glycolysis related mRNA in gastric tissues was detected using reverse transcription-polymerase chain reaction.
RESULTS Treatment with XJZ increased the rats’ body weight and improved GPL-related histopathological manifestations. It also decreased autophagosome and autolysosome formation in gastric tissues and reduced Bnip-3, Beclin-1, and LC-3II expressions, resulting in inhibition of autophagy. Moreover, XJZ down-regulated glycolysis-related monocarboxylate transporter (MCT1), MCT4, and CD147 expressions. XJZ prevented the increase of autophagy level by decreasing gastric mucosal hypoxia, activating the PI3K/AKT/mTOR pathway, inhibiting the p53/AMPK pathway activation and ULK1 Ser-317 and Ser-555 phosphorylation. In addition, XJZ improved abnormal gastric mucosal glucose metabolism by ameliorating gastric mucosal hypoxia and inhibiting ULK1 expression.
CONCLUSION This study demonstrates that XJZ may inhibit autophagy and glycolysis in GPL gastric mucosal cells by improving gastric mucosal hypoxia and regulating PI3K/AKT/mTOR and p53/ AMPK/ULK1 signaling pathways, providing a feasible strategy for the GPL treatment.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Sheng-Chuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Juan Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ting Chen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Hai-Liang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Department of General Surgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Xiao-Yan Zhou
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Department of Gastroenterology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Jing-Tao Li
- Departments of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Shu-Guang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
48
|
Fall of PARP3 restrains Lgr5 + intestinal stem cells proliferation and mucosal renovation in intestinal aging. Mech Ageing Dev 2023; 211:111796. [PMID: 36870456 DOI: 10.1016/j.mad.2023.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The regeneration ability of intestinal epithelium is degenerated in aging. The determining factor is leucine-rich repeat-containing G-protein-coupled receptor 5-positive intestinal stem cells (Lgr5+ ISCs). Lgr5-EGFP (enhanced green fluorescence protein) knock-in in transgenic mice at three different ages (young group: 3-6 months; middle group: 12-14 months; old group: 22-24 months) were used to examined Lgr5+ ISCs at three different timepoints. The jejunum samples were collected for histology, immunofluorescence analysis, western blotting and PCR. In tissue, crypt depth, proliferating cells and Lgr5+ ISC numbers were increased in the middle group (12-14 months) and decreased in the old group (22-24 months). The number of proliferating Lgr5+ ISCs gradually decreased as the mice aged. In organoids, the budding number, projected area, and Lgr5+ ISC ratio decreased as the mice aged. The gene expression of poly (ADP-ribose) polymerase 3 (Parp3) and the protein expression of PARP3 were increased in the middle- and old-aged groups. PARP3 inhibitors slowed organoid growth in the middle group. In conclusion, PARP3 is upregulated in aging, and the inhibition of PARP3 reduces the proliferation of aging Lgr5+ ISCs.
Collapse
|
49
|
Li J, Wang L, Yang K, Zhang G, Li S, Gong H, Liu M, Dai X. Structure characteristics of low molecular weight pectic polysaccharide and its anti-aging capability by modulating the intestinal homeostasis. Carbohydr Polym 2023; 303:120467. [PMID: 36657846 DOI: 10.1016/j.carbpol.2022.120467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Pectic polysaccharide has attracted increasing attention for their potential biological properties and applications in health industries. In this study, a low-molecular-weight pectic polysaccharide, POS4, was obtained from citrus peel. The structure of POS4 was preliminarily analyzed by gel-permeation chromatography, monosaccharide analysis, infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Results showed that the molecular weight of POS4 was 4.76 kDa and it was a galacturonic acid enriched pectic polysaccharide. The anti-aging activity in vivo showed that POS4 could notably prolong the average lifespan of fruit flies by suppressing the generation of reactive oxygen species (ROS). Further studies demonstrated that POS4 could enhance intestinal homeostasis by modulating gut microbiota in a positive way and regulating autophagy associated genes. Taken together, we proposed that galacturonic acid enriched low molecular weight pectic polysaccharide have great potential in the development of healthy foods such as anti-aging health care products.
Collapse
Affiliation(s)
- Junhui Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
| | - Lu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Kun Yang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guocai Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266003, China
| | - Hongjian Gong
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Mingqi Liu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
50
|
Yang C, Xia S, Zhang W, Shen HM, Wang J. Modulation of Atg genes expression in aged rat liver, brain, and kidney by caloric restriction analyzed via single-nucleus/cell RNA sequencing. Autophagy 2023; 19:706-715. [PMID: 35737739 PMCID: PMC9851201 DOI: 10.1080/15548627.2022.2091903] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dysregulation of macroautophagy/autophagy has been closely implicated in aging. Caloric restriction (CR) is an effective intervention of aging partially via activation of autophagy. Recently, a high-throughput single-cell RNA-seq technique has been employed to detect the comprehensive transcriptomes of individual cells. However, the transcriptional networks of ATG (autophagy related) genes in the aging process and the modulation of ATG genes expression by CR at the single-cell level have not been elucidated. Here, by performing data analysis of single nucleus/cells RNA sequencing in rats undergoing aging and the modulation by CR, we demonstrate that the transcription patterns of Atg genes in different cell types of rat liver, brain, and kidney are highly heterogeneous. Importantly, CR reversed aging-induced changes of multiple Atg genes across different cell types in the brain, liver, and kidney. In summary, our results, for the first time, provide comprehensive information on Atg gene expression in specific cell types of different organs in a mammal during aging and give novel insight into the protective role of autophagy and CR in aging at the single-cell resolution.Abbreviations: ATG genes: autophagy-related genes; Atg5: autophagy related 5; Atg7: autophagy related 7; CR: caloric restriction; DEATG: differentially expressed autophagy-related; NAFLD: nonalcoholic fatty liver disease; ScRNA-seq: single-cell RNA sequencing.
Collapse
Affiliation(s)
- Chuanbin Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University; the First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China,CONTACT Chuanbin Yang Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University; the First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Siyu Xia
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University; the First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China,Han-Ming Shen Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University; the First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China,Han-Ming Shen Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China,Han-Ming Shen Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University; the First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong, China,Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, Beijing, ChinaChina,Jigang Wang Artemisinin Research center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, Beijing, China
| |
Collapse
|