1
|
Hillenbrand CA, Akbari Bani D, Follonier O, Kaur A, Weissbach FH, Wernli M, Wilhelm M, Leuzinger K, Binet I, Bochud PY, Golshayan D, Hirzel C, Manuel O, Mueller NJ, Schaub S, Schachtner T, Van Delden C, Hirsch HH. BK polyomavirus serotype-specific antibody responses in blood donors and kidney transplant recipients with and without new-onset BK polyomavirus-DNAemia: A Swiss Transplant Cohort Study. Am J Transplant 2025; 25:985-1001. [PMID: 39580075 DOI: 10.1016/j.ajt.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/03/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
BK polyomavirus (BKPyV) causes premature renal failure in 10% to 30% of kidney transplant recipients (KTRs). Current guidelines recommend screening for new-onset BKPyV-DNAemia/nephropathy and reducing immunosuppression to regain BKPyV-specific immune control. Because BKPyV encompasses 4 major genotype (gt)-encoded serotypes (st1,-2,-3,-4), st-specific antibodies may inform the risk and course of BKPyV-DNAemia/nephropathy. Using BKPyV st-virus-like particle (VLP) enzyme-linked immunosorbent assay, we analyzed plasma from 399 blood donors (BDs) and 428 KTRs (134 KTR-cases with BKPyV-DNAemia, 294 KTR-controls). BDs were anti-BKPyV-VLP immunoglobulin G-seropositive in 85% compared to 93% of KTRs at the timepoint at transplantation (T0) (P < .001). Anti-st1 was predominant in both groups followed by anti-st4, anti-st2, and anti-st3. Antibody levels and quadruple sero-reactivity at T0 were higher in KTR-controls than in KTR-cases (P = .026) or in BDs (P < .001). In KTR-cases, anti-st increased posttransplant (P < .0001) and independently of ongoing or cleared BKPyV-DNAemia. However, anti-st levels were significantly higher at T0 in KTR-cases able to clear at timepoint 6-month posttransplant or timepoint 12-month posttransplant. In 34 KTR-cases with deep genome sequencing, BKPyV-gtI was predominant, and anti-st1 and st1-neutralizing antibodies were significantly lower at T0 than in KTR-controls. Thus, BKPyV st-specific antibody levels at transplantation might reflect gt/st-BKPyV-specific immunity clearing or preventing BKPyV-DNAemia in KTR-cases or KTR-controls, respectively. Accordingly, active or passive immunization may be most efficient pretransplant or early posttransplant.
Collapse
Affiliation(s)
- Caroline A Hillenbrand
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Dorssa Akbari Bani
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Océane Follonier
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Amandeep Kaur
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Fabian H Weissbach
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Marion Wernli
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | | | - Isabelle Binet
- Nephrology & Transplantation Medicine, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Pierre-Yves Bochud
- Transplantation Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Cédric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Schaub
- Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Thomas Schachtner
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Wilhelm M, Kaur A, Geng A, Wernli M, Hirsch HH. Donor Variability and PD-1 Expression Limit BK Polyomavirus-specific T-cell Function and Therapy. Transplantation 2025:00007890-990000000-01054. [PMID: 40200394 DOI: 10.1097/tp.0000000000005399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
BACKGROUND BK polyomavirus (BKPyV) nephropathy is a major cause of premature kidney transplant failure. Current management relies on reducing immunosuppression to restore BKPyV-specific immune control. Ex vivo expansion and transfer of BKPyV-specific cytotoxic T cells prepared from third-party donors may enhance virus-specific treatment, but the efficacy seems suboptimal. METHODS To optimize BKPyV-specific T-cell expansion protocols, we compared conventional and G-Rex expansion cultures at 10 and 14 d after stimulation with BKPyV overlapping peptide pools. Cytokine and cytotoxic responses were assessed as well as programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-1L) expression on effector and target cells, respectively. RESULTS Despite all donors being BKPyV-IgG seropositive, BKPyV-specific T-cell responses were heterogeneous and varied in magnitude between individuals. Overall, we observed higher cell counts in G-Rex compared to conventional cultures. Upon restimulation with 15mer-pools or immunodominant 9mer-pools, expanded BKPyV-specific T cells expressed polyfunctional markers, for example, interferon-γ, tumor necrosis factor-α and CD107a, and were cytotoxic for 9mP-pulsed autologous phytohemagglutinin blasts or BKPyV-infected allogeneic renal proximal tubule epithelial cells (RPTECs). Compared with conventional cultures, G-Rex-expanded CD4 and CD8 T cells showed higher PD-1 expression. Pembrolizumab reduced PD-1 expression on BKPyV-specific T cells and augmented polyfunctional BKPyV-specific T-cell responses and cytotoxicity. Interferon-𝛾 increased PD-L1 expression on BKPyV-infected RPTECs and increased viability. CONCLUSIONS Upregulated PD-1 expression of ex vivo expanded T cells contributes to third-party donor variability and potentially impairs the efficacy of adoptive T-cell therapy. Because BKPyV-infected RPTECs increase PD-L1 under inflammatory conditions, adding immune checkpoint inhibitors ex vivo before infusion could be evaluated for enhanced clinical efficacy when attempting treatment of BKPyV-associated pathologies without jeopardizing transplantation outcomes.
Collapse
Affiliation(s)
- Maud Wilhelm
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Chevalier MF, Allain V, Gras J, Racle J, Villemonteix J, Divard G, Feghoul L, Delaugerre C, Molina JM, Taupin JL, Peraldi MN, Gfeller D, Feray C, Caillat-Zucman S. Donor HLA-DQ genetic and functional divergence affect the control of BK polyoma virus infection after kidney transplantation. SCIENCE ADVANCES 2025; 11:eadt3499. [PMID: 40043107 PMCID: PMC11881896 DOI: 10.1126/sciadv.adt3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
BK polyomavirus (BKPyV) infection remains a major concern after kidney transplantation, increasing the risk of graft loss in the absence of specific antiviral agent now available. Here, we investigated the impact of HLA diversity on the control of posttransplant BKPyV replication. High HLA evolutionary divergence (HED) at the DQ locus in the donor was an independent predictor of BKPyV-free outcome. More generally, we highlighted the protective effect of highly divergent pairs of HLA-DQ heterodimers corresponding to heterozygous HLA-DQα01/non-DQα01 combinations. We then defined a functional divergence metrics assessed by the similarity of peptide-binding motifs between pairs of HLA-DQ molecules. Greater functional divergence correlated with the size of the BKPyV-derived DQ-bound immunopeptidome and a lower risk of BKPyV reactivation, thus providing a molecular basis for the observed genetic differences. Together, these data provide evidence for a direct link between donor HLA-DQ genetic and functional divergence, diversity of the DQ-bound immunopeptidome, and control of viral infection, likely reflecting stronger antiviral T cell responses.
Collapse
Affiliation(s)
- Mathieu F. Chevalier
- INSERM UMR 1342, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Vincent Allain
- INSERM UMR 1342, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Laboratory of Immunology, Saint-Louis Hospital, APHP, Paris, France
| | - Julien Gras
- Infectious Diseases Department, Saint-Louis Hospital, APHP, Paris, France
| | - Julien Racle
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Gillian Divard
- Nephrology-Transplantation Department, Saint-Louis Hospital, APHP, Paris, France
| | - Linda Feghoul
- Laboratory of Virology, Saint-Louis Hospital, APHP, Paris, France
| | | | - Jean-Michel Molina
- Infectious Diseases Department, Saint-Louis Hospital, APHP, Paris, France
| | - Jean-Luc Taupin
- Laboratory of Immunology, Saint-Louis Hospital, APHP, Paris, France
| | - Marie-Noelle Peraldi
- Nephrology-Transplantation Department, Saint-Louis Hospital, APHP, Paris, France
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Cyrille Feray
- Centre Hépatobiliaire, Paul Brousse Hospital, Inserm U1193, Université Paris Sud, Villejuif, France
| | - Sophie Caillat-Zucman
- INSERM UMR 1342, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Laboratory of Immunology, Saint-Louis Hospital, APHP, Paris, France
| |
Collapse
|
4
|
van Delden C, Manuel O, Hirzel C, Walti LN, Khanna N, Hirsch HH, Dionyios N, Kohler P, Abela IA, Mueller NJ. The Swiss Transplant Cohort Study: Implications for Transplant Infectious Diseases Research. Transpl Infect Dis 2025; 27:e70023. [PMID: 40127403 DOI: 10.1111/tid.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
The longitudinal, nationwide Swiss Transplant Cohort Study (STCS) follows > 92% of all transplant recipients with comprehensive data collection tailored to overall and organ-specific transplant outcomes. Transplant infectious disease events are assembled under the auspices of transplant ID specialists using common definitions. With over 6000 active patients and a median follow-up exceeding 6 years, the cohort offers a unique platform for understanding real-world epidemiology in transplanted patients. Beyond observational analysis, the STCS supports randomized controlled trials to address specific research questions. This overview highlights the achievements of the STCS and explores its future directions.
Collapse
Affiliation(s)
- Christian van Delden
- Transplant Infectious Diseases Unit, Service of Infectious Diseases, University Hospitals Geneva, University of Geneva, Geneva, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Cédric Hirzel
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laura N Walti
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Department of Biomedicine Transplantation & Clinical Virology, University of Basel, Basel, Switzerland
| | - Neofytos Dionyios
- Transplant Infectious Diseases Unit, Service of Infectious Diseases, University Hospitals Geneva, University of Geneva, Geneva, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Cantonal Hospital of Sankt Gallen, St. Gallen, Switzerland
| | - Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Al‐Talib M, Skaria A, Griffin S. Cellular Immunity Against BK Polyomavirus in Kidney Transplant Recipients: A Comprehensive Review. Transpl Infect Dis 2025; 27:e14401. [PMID: 39499036 PMCID: PMC11827742 DOI: 10.1111/tid.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
BK polyomavirus (BKPyV) is an important opportunistic viral infection that complicates kidney transplantation. Uncontrolled viral replication may result in BKPyV-associated nephropathy (BKPyVAN), a major cause of premature allograft damage and failure. In the continued absence of proven treatments, management relies on the empirical reduction of immunosuppression to facilitate an effective host immune response to clear the virus. This may be complicated by the risk of allograft rejection. There is compelling evidence that cellular immune responses are key to establishing control after viral reactivation. Measurable peripheral BKPyV-specific T cell responses temporally correlate with declining viral loads and subsequent clearance. Conversely, these responses are delayed or absent in BKPyVAN. How these peripheral findings correspond to the intragraft response, and whether BKPyV-specific T cells contribute to the immunopathology of BKPyVAN, remains poorly understood. Molecular techniques have provided some insights; however, these have been unable to fully discriminate BKPyVAN from cellular rejection to date. Furthermore, the contributions of components of innate cellular immunity, such as natural killer cells, are not known. Herein, we review the role of cellular immunity in BKPyV infection in kidney transplant recipients. We discuss advances in the understanding of how the development, phenotype, and functionality of these responses may determine the balance between viral control and immunopathology, and how this knowledge is being translated into tools to prognosticate and guide individualized immunosuppression reduction. Lastly, we consider how further elucidation of these responses may inform the design of therapies that would revolutionize how BKPyV is managed after transplantation.
Collapse
Affiliation(s)
- Mohammed Al‐Talib
- Systems Immunity Research InstituteDivision of Infection and ImmunitySchool of MedicineCardiff UniversityCardiffUK
- Bristol Medical SchoolUniversity of BristolBristolUK
| | - Anna Skaria
- Southmead HospitalNorth Bristol NHS TrustBristolUK
| | - Siân Griffin
- Department of Nephrology and TransplantationCardiff and Vale University Health BoardCardiffUK
| |
Collapse
|
6
|
Cioni M, Muscianisi S, De Cicco M, Basso S, Hirsch HH, Fontana I, Catenacci L, Bagnarino J, Siciliano M, Montana Lampo O, Acquafredda G, Boti LTD, Rotella J, Bozza E, Zumelli J, Mebelli K, Baldanti F, Cardillo M, Zecca M, Nocera A, Luppi M, Verrina E, Ginevri F, Comoli P. Control of BKPyV-DNAemia by a Tailored Viro-Immunologic Approach Does Not Lead to BKPyV-Nephropathy Progression and Development of Donor-Specific Antibodies in Pediatric Kidney Transplantation. Microorganisms 2024; 13:48. [PMID: 39858816 PMCID: PMC11767705 DOI: 10.3390/microorganisms13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Polyomavirus BK (BKPyV)-associated nephropathy (BKPyV-nephropathy) remains a significant cause of premature kidney allograft failure. In the absence of effective antiviral treatments, current therapeutic approaches rely on immunosuppression (IS) reduction, possibly at the risk of inducing alloimmunity. Therefore, we sought to explore the long-term effects of a tailored viro-immunologic surveillance and treatment program for BKPyV on the development of alloimmunity and kidney graft outcome. Forty-five pediatric kidney transplant recipients were longitudinally monitored for BKPyV replication, virus-specific immunity, and donor-specific HLA antibodies (DSAs). DNAemia developed in 15 patients who were treated with stepwise IS reduction. Among the other 30 patients, 17 developed DNAuria without DNAemia and 13 always resulted as BKPyV-negative. All patients with DNAemia cleared BKPyV after having mounted a virus-specific cellular immune response, and no biopsy-proven BKPyV-nephropathy was observed. The presence of cytotoxic populations directed to the BKPyV Large-T (LT) antigen early after transplantation protected kidney recipients from developing BKPyV replication, and the appearance of LT-specific T cells in viruric patients prevented the development of BKPyV-DNAemia. In our cohort, no significant correlation was observed between BKPyV-DNAemia and the development of DSA and antibody-mediated rejection. However, patients who experienced and cleared BKPyV-DNAemia had a worse allograft survival at a median follow-up of 18.9 years (p = 0.048). These data need to be confirmed in larger cohorts.
Collapse
Affiliation(s)
- Michela Cioni
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Transfusion Service, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Stella Muscianisi
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Marica De Cicco
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Sabrina Basso
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Hans H. Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, 4009 Basel, Switzerland;
| | - Iris Fontana
- Vascular and Endovascular Department, Kidney Transplant Surgery Unit, Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Laura Catenacci
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Jessica Bagnarino
- Microbiology and Virology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (J.B.); (F.B.)
| | - Mariangela Siciliano
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Oriana Montana Lampo
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Gloria Acquafredda
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Lou Tina Diana Boti
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Jessica Rotella
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Eleonora Bozza
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
| | - Jennifer Zumelli
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Kristiana Mebelli
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
| | - Fausto Baldanti
- Microbiology and Virology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (J.B.); (F.B.)
| | - Massimo Cardillo
- Transplantation Immunology, Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Arcangelo Nocera
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Nephrology, Dialysis and Transplantation Unit, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy;
| | - Enrico Verrina
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Nephrology, Dialysis and Transplantation Unit, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Fabrizio Ginevri
- Fondazione Malattie Renali del Bambino, IRCCS G. Gaslini Institute, 16147 Genova, Italy; (M.C.); (A.N.); (E.V.); (F.G.)
- Nephrology, Dialysis and Transplantation Unit, IRCCS G. Gaslini Institute, 16147 Genova, Italy
| | - Patrizia Comoli
- Cell Factory, Department of Mother and Child Health, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.M.); (M.D.C.); (S.B.); (L.C.); (M.S.); (O.M.L.); (G.A.); (L.T.D.B.); (J.R.); (E.B.); (J.Z.); (K.M.)
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| |
Collapse
|
7
|
Nourie N, Boueri C, Tran Minh H, Divard G, Lefaucheur C, Salmona M, Gressens SB, Louis K. BK Polyomavirus Infection in Kidney Transplantation: A Comprehensive Review of Current Challenges and Future Directions. Int J Mol Sci 2024; 25:12801. [PMID: 39684510 DOI: 10.3390/ijms252312801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BK polyomavirus (BKPyV) infection of the kidney graft remains a major clinical issue in the field of organ transplantation. Risk factors for BKPyV-associated nephropathy (BKPyVAN) and molecular tools for determining viral DNA loads are now better defined. BKPyV DNAemia in plasma, in particular, plays a central role in diagnosing active infection and managing treatment decisions. However, significant gaps remain in the development of reliable biomarkers that can anticipate BKPyV viremia and predict disease outcomes. Biomarkers under active investigation include urine-based viral load assays, viral antigen detection, and immune responses against BKPyV, which may offer more precise methods for monitoring disease progression. In addition, treatment of BKPyVAN is currently based on immunosuppression minimization, while the role of adjunctive therapies remains an area of active research, highlighting the need for more personalized treatment regimens. Ongoing clinical trials are also exploring the efficacy of T-cell-based immunotherapies. The clinical management of BKPyV infection, based on proactive virological monitoring, immune response assessment, integrated histopathology, and timely immunosuppression reduction, is likely to reduce the burden of disease and improve outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Nicole Nourie
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| | - Céline Boueri
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Hoang Tran Minh
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Gillian Divard
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Maud Salmona
- Laboratory of Virology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
| | - Simon B Gressens
- Department of Infectious Diseases, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
- Team 3I Brain, Inserm UMR 1141, 75019 Paris, France
| | - Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, 75010 Paris, France
- Human Immunology and Immunopathology, Inserm UMR 976, Université Paris Cité, 75010 Paris, France
| |
Collapse
|
8
|
Kotton CN, Kamar N, Wojciechowski D, Eder M, Hopfer H, Randhawa P, Sester M, Comoli P, Tedesco Silva H, Knoll G, Brennan DC, Trofe-Clark J, Pape L, Axelrod D, Kiberd B, Wong G, Hirsch HH. The Second International Consensus Guidelines on the Management of BK Polyomavirus in Kidney Transplantation. Transplantation 2024; 108:1834-1866. [PMID: 38605438 PMCID: PMC11335089 DOI: 10.1097/tp.0000000000004976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 04/13/2024]
Abstract
BK polyomavirus (BKPyV) remains a significant challenge after kidney transplantation. International experts reviewed current evidence and updated recommendations according to Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). Risk factors for BKPyV-DNAemia and biopsy-proven BKPyV-nephropathy include recipient older age, male sex, donor BKPyV-viruria, BKPyV-seropositive donor/-seronegative recipient, tacrolimus, acute rejection, and higher steroid exposure. To facilitate early intervention with limited allograft damage, all kidney transplant recipients should be screened monthly for plasma BKPyV-DNAemia loads until month 9, then every 3 mo until 2 y posttransplant (3 y for children). In resource-limited settings, urine cytology screening at similar time points can exclude BKPyV-nephropathy, and testing for plasma BKPyV-DNAemia when decoy cells are detectable. For patients with BKPyV-DNAemia loads persisting >1000 copies/mL, or exceeding 10 000 copies/mL (or equivalent), or with biopsy-proven BKPyV-nephropathy, immunosuppression should be reduced according to predefined steps targeting antiproliferative drugs, calcineurin inhibitors, or both. In adults without graft dysfunction, kidney allograft biopsy is not required unless the immunological risk is high. For children with persisting BKPyV-DNAemia, allograft biopsy may be considered even without graft dysfunction. Allograft biopsies should be interpreted in the context of all clinical and laboratory findings, including plasma BKPyV-DNAemia. Immunohistochemistry is preferred for diagnosing biopsy-proven BKPyV-nephropathy. Routine screening using the proposed strategies is cost-effective, improves clinical outcomes and quality of life. Kidney retransplantation subsequent to BKPyV-nephropathy is feasible in otherwise eligible recipients if BKPyV-DNAemia is undetectable; routine graft nephrectomy is not recommended. Current studies do not support the usage of leflunomide, cidofovir, quinolones, or IVIGs. Patients considered for experimental treatments (antivirals, vaccines, neutralizing antibodies, and adoptive T cells) should be enrolled in clinical trials.
Collapse
Affiliation(s)
- Camille N. Kotton
- Transplant and Immunocompromised Host Infectious Diseases Unit, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University Paul Sabatier, Toulouse, France
| | - David Wojciechowski
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Helmut Hopfer
- Division of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Parmjeet Randhawa
- Division of Transplantation Pathology, The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Patrizia Comoli
- Cell Factory and Pediatric Hematology/Oncology Unit, Department of Mother and Child Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Helio Tedesco Silva
- Division of Nephrology, Hospital do Rim, Fundação Oswaldo Ramos, Paulista School of Medicine, Federal University of São Paulo, Brazil
| | - Greg Knoll
- Department of Medicine (Nephrology), University of Ottawa and The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Jennifer Trofe-Clark
- Renal-Electrolyte Hypertension Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
- Transplantation Division, Associated Faculty of the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA
| | - Lars Pape
- Pediatrics II, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - David Axelrod
- Kidney, Pancreas, and Living Donor Transplant Programs at University of Iowa, Iowa City, IA
| | - Bryce Kiberd
- Division of Nephrology, Dalhousie University, Halifax, NS, Canada
| | - Germaine Wong
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, NSW, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Sydney, NSW, Australia
| | - Hans H. Hirsch
- Division of Transplantation and Clinical Virology, Department of Biomedicine, Faculty of Medicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Dekeyser M, de Goër de Herve MG, Hendel-Chavez H, Lhotte R, Scriabine I, Bargiel K, Boutin E, Herr F, Taupin JL, Taoufik Y, Durrbach A. Allogeneic CD4 T Cells Sustain Effective BK Polyomavirus-Specific CD8 T Cell Response in Kidney Transplant Recipients. Kidney Int Rep 2024; 9:2498-2513. [PMID: 39156165 PMCID: PMC11328547 DOI: 10.1016/j.ekir.2024.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction BK polyomavirus-associated nephropathy (BKPyVAN) is a significant complication in kidney transplant recipients (KTRs), associated with a higher level of plasmatic BK polyomavirus (BKPyV) replication and leading to poor graft survival. Methods We prospectively followed-up with 100 KTRs with various degrees of BKPyV reactivation (no BKPyV reactivation, BKPyV-DNAuria, BKPyV-DNAemia, and biopsy-proven BKPyVAN [bp-BKPyVAN], 25 patients per group) and evaluated BKPyV-specific T cell functionality and phenotype. Results We demonstrate that bp-BKPyVAN is associated with a loss of BKPyV-specific T cell proliferation, cytokine secretion, and cytotoxic capacities. This severe functional impairment is associated with an overexpression of lymphocyte inhibitory receptors (programmed cell death 1 [PD1], cytotoxic T lymphocyte-associated protein 4, T cell immunoreceptor with Ig and ITIM domains, and T cell immunoglobulin and mucin domain-containing-3), highlighting an exhausted-like phenotype of BKPyV-specific CD4 and CD8 T cells in bp-BKPyVAN. This T cell dysfunction is associated with low class II donor-recipient human leukocyte antigen (HLA) divergence. In contrast, in the context of higher class II donor-recipient HLA (D/R-HLA) divergence, allogeneic CD4 T cells can provide help that sustains BKPyV-specific CD8 T cell responses. In vitro, allogeneic HLA-mismatched CD4 T cells rescue BKPyV-specific CD8 T cell responses. Conclusion Our findings suggest that in KTRs, allogeneic CD4 T cells can help to maintain an effective BKPyV-specific CD8 T cell response that better controls BKPyV replication in the kidney allograft and may protect against BKPyVAN.
Collapse
Affiliation(s)
- Manon Dekeyser
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
- Department of Nephrology, Center Hospitalier Régional Universitaire d'Orléans, Orléans, France
| | | | - Houria Hendel-Chavez
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Romain Lhotte
- Laboratory of Immunology and Histocompatibility, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, INSERM U976 (Team 3), Paris, France
| | - Ivan Scriabine
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Karen Bargiel
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Emmanuelle Boutin
- Unit of Clinical Research, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Creteil, France
- Paris Est Creteil University, INSERM, IMRB, CEpiA Team, Creteil, France
| | - Florence Herr
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Jean-Luc Taupin
- Laboratory of Immunology and Histocompatibility, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, INSERM U976 (Team 3), Paris, France
| | - Yassine Taoufik
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
| | - Antoine Durrbach
- INSERM 1186, Gustave Roussy Institute, Villejuif, France
- Paris-Saclay University, Paris, France
- Department of Nephrology and Transplantation, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Creteil, France
| |
Collapse
|
10
|
Chiodini B, Guillaume-Gentil P, Vanhomwegen C, Hennaut E, Lolin K, Tram N, Le Moine A, Ismaili K. BK Polyomavirus in Pediatric Renal Transplantation-What We Know and What We Do Not. Biomedicines 2024; 12:1093. [PMID: 38791055 PMCID: PMC11118040 DOI: 10.3390/biomedicines12051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BK polyomavirus (BKPyV) is still a real threat in the management of kidney transplantation. Immunosuppressive treatment disrupts the equilibrium between virus replication and immune response, and uncontrolled BKPyV replication leads to nephropathy (BKPyV nephropathy). The first evidence of BKPyV reactivation in transplant recipients is the detection of viral shedding in urine, which appears in 20% to 60% of patients, followed by BKPyV viremia in 10-20% of kidney transplant recipients. BKPyV nephropathy eventually occurs in 1-10% of this population, mainly within the first 2 years post-transplantation, causing graft loss in about half of those patients. Few data exist regarding the pediatric population and we focus on them. In this paper, we review the existing diagnostic methods and summarize the evidence on the role of BKPyV humoral and cellular immunity in modulating the clinical course of BKPyV infection and as potential predictors of the outcome. We look at the known risk factors for BKPyV nephropathy in the immunosuppressed patient. Finally, we propose a sensible clinical attitude in order to screen and manage BKPyV infection in kidney transplant children.
Collapse
Affiliation(s)
- Benedetta Chiodini
- Department of Pediatric Nephrology, Hôpital Universitaire de Bruxelles-HUDERF (HUB-HUDERF), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pauline Guillaume-Gentil
- Department of Pediatric Nephrology, Hôpital Universitaire de Bruxelles-HUDERF (HUB-HUDERF), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Charlotte Vanhomwegen
- Department of Nephrology, Hôpital Universitaire de Bruxelles-Erasme (HUB-Erasme), European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Elise Hennaut
- Department of Pediatric Nephrology, Hôpital Universitaire de Bruxelles-HUDERF (HUB-HUDERF), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Ksenija Lolin
- Department of Pediatric Nephrology, Hôpital Universitaire de Bruxelles-HUDERF (HUB-HUDERF), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Nathalie Tram
- Department of Pediatric Nephrology, Hôpital Universitaire de Bruxelles-HUDERF (HUB-HUDERF), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Alain Le Moine
- Department of Nephrology, Hôpital Universitaire de Bruxelles-Erasme (HUB-Erasme), European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Khalid Ismaili
- Department of Pediatric Nephrology, Hôpital Universitaire de Bruxelles-HUDERF (HUB-HUDERF), Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
11
|
Durairaj J, Follonier OM, Leuzinger K, Alexander LT, Wilhelm M, Pereira J, Hillenbrand CA, Weissbach FH, Schwede T, Hirsch HH. Structural implications of BK polyomavirus sequence variations in the major viral capsid protein Vp1 and large T-antigen: a computational study. mSphere 2024; 9:e0079923. [PMID: 38501831 PMCID: PMC11036806 DOI: 10.1128/msphere.00799-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
BK polyomavirus (BKPyV) is a double-stranded DNA virus causing nephropathy, hemorrhagic cystitis, and urothelial cancer in transplant patients. The BKPyV-encoded capsid protein Vp1 and large T-antigen (LTag) are key targets of neutralizing antibodies and cytotoxic T-cells, respectively. Our single-center data suggested that variability in Vp1 and LTag may contribute to failing BKPyV-specific immune control and impact vaccine design. We, therefore, analyzed all available entries in GenBank (1516 VP1; 742 LTAG) and explored potential structural effects using computational approaches. BKPyV-genotype (gt)1 was found in 71.18% of entries, followed by BKPyV-gt4 (19.26%), BKPyV-gt2 (8.11%), and BKPyV-gt3 (1.45%), but rates differed according to country and specimen type. Vp1-mutations matched a serotype different than the assigned one or were serotype-independent in 43%, 18% affected more than one amino acid. Notable Vp1-mutations altered antibody-binding domains, interactions with sialic acid receptors, or were predicted to change conformation. LTag-sequences were more conserved, with only 16 mutations detectable in more than one entry and without significant effects on LTag-structure or interaction domains. However, LTag changes were predicted to affect HLA-class I presentation of immunodominant 9mers to cytotoxic T-cells. These global data strengthen single center observations and specifically our earlier findings revealing mutant 9mer epitopes conferring immune escape from HLA-I cytotoxic T cells. We conclude that variability of BKPyV-Vp1 and LTag may have important implications for diagnostic assays assessing BKPyV-specific immune control and for vaccine design. IMPORTANCE Type and rate of amino acid variations in BKPyV may provide important insights into BKPyV diversity in human populations and an important step toward defining determinants of BKPyV-specific immunity needed to protect vulnerable patients from BKPyV diseases. Our analysis of BKPyV sequences obtained from human specimens reveals an unexpectedly high genetic variability for this double-stranded DNA virus that strongly relies on host cell DNA replication machinery with its proof reading and error correction mechanisms. BKPyV variability and immune escape should be taken into account when designing further approaches to antivirals, monoclonal antibodies, and vaccines for patients at risk of BKPyV diseases.
Collapse
Affiliation(s)
- Janani Durairaj
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Océane M. Follonier
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, Department Theragnostic, University Hospital Basel, Basel, Switzerland
| | - Leila T. Alexander
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Joana Pereira
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Caroline A. Hillenbrand
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Fabian H. Weissbach
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hans H. Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, Department Acute Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Bae H, Jung S, Chung BH, Yang CW, Oh EJ. Pretransplant BKV-IgG serostatus and BKV-specific ELISPOT assays to predict BKV infection after kidney transplantation. Front Immunol 2023; 14:1243912. [PMID: 37809095 PMCID: PMC10551174 DOI: 10.3389/fimmu.2023.1243912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Polyomavirus (BKV) infection can lead to major complications and damage to the graft in kidney transplant recipients (KTRs). We investigated whether pretransplant BK serostatus and BK-specific cell-mediated immunity (CMI) predicts post-transplant BK infection. Methods A total of 93 donor-recipient pairs who underwent kidney transplantation (KT) and 44 healthy controls were examined. Assessment of donor and recipient BKV serostatus and BKV-CMI in recipients was performed prior to transplantation using BKV-IgG ELISA and BKV-specific IFN-g ELISPOT assays against five BK viral antigens (LT, St, VP1, VP2, and VP3). BK viremia was diagnosed when blood BKV-DNA of 104 copies/mL or more was detected during follow-up periods. Results Anti-BKV IgG antibody was detected in 74 (79.6%) of 93 KTRs and in 68 (73.1%) of 93 KT donors. A greater percentage of KTRs who received allograft from donors with high levels of anti-BKV IgG had posttransplant BK viremia (+) than KTRs from donors with low anti-BKV IgG (25.5% [12/47] vs. 4.3% [2/46], respectively; P = 0.007). Pretransplant total BKV-ELISPOT results were lower in BK viremia (+) patients than in patients without viremia (-) 20.5 [range 9.9-63.6] vs. 72.0 [43.2 - 110.8]; P = 0. 027). The sensitivity and specificity of the total BKV-ELISPOT assay (cut-off ≤ 53 spots/3×105 cells) for prediction of posttransplant BK viremia were 71.4 (95% CI: 41.9-91.6) and 54.4 (42.8-65.7), respectively. The combination of high donor BKV-IgG, low recipient BKV-IgG, and low total BKV-ELISPOT results improved specificity to 91.1%. Discussion Our study highlights the importance of pretransplant BKV-IgG serostatus and BKV-specific CMI in predicting posttransplant BKV infection in KTRs. The combination of high donor BKV-IgG, low recipient BKV-IgG, and low total BKV-ELISPOT results predicted BK viremia after KT. Pretransplant identification of patients at highrisk for BK viremia could enable timely interventions and improve clinical outcomes of KTRs.
Collapse
Affiliation(s)
- Hyunjoo Bae
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seungwon Jung
- Department of Laboratory Medicine, Uijeongbu Paik Hospital, Uijeongbu, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Jee Oh
- Resesarch and Development Institute for In Vitro Diagnostic Medical Devices, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Nguyen NK, Devilder MC, Gautreau-Rolland L, Fourgeux C, Sinha D, Poschmann J, Hourmant M, Bressollette-Bodin C, Saulquin X, McIlroy D. A cluster of broadly neutralizing IgG against BK polyomavirus in a repertoire dominated by IgM. Life Sci Alliance 2023; 6:e202201567. [PMID: 36717250 PMCID: PMC9887757 DOI: 10.26508/lsa.202201567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
The BK polyomavirus (BKPyV) is an opportunistic pathogen, which is only pathogenic in immunosuppressed individuals, such as kidney transplant recipients, in whom BKPyV can cause significant morbidity. To identify broadly neutralizing antibodies against this virus, we used fluorescence-labeled BKPyV virus-like particles to sort BKPyV-specific B cells from the PBMC of KTx recipients, then single-cell RNAseq to obtain paired heavy- and light-chain antibody sequences from 2,106 sorted B cells. The BKPyV-specific repertoire was highly diverse in terms of both V-gene usage and clonotype diversity and included most of the IgM B cells, including many with extensive somatic hypermutation. In two patients where sufficient data were available, IgM B cells in the BKPyV-specific dataset had significant differences in V-gene usage compared with IgG B cells from the same patient. CDR3 sequence-based clustering allowed us to identify and characterize three broadly neutralizing "41F17-like" clonotypes that were predominantly IgG, suggesting that some specific BKPyV capsid epitopes are preferentially targeted by IgG.
Collapse
Affiliation(s)
- Ngoc-Khanh Nguyen
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Marie-Claire Devilder
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Laetitia Gautreau-Rolland
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- UFR Sciences et Techniques, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Debajyoti Sinha
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Maryvonne Hourmant
- CHU Nantes, Nantes Université, Service de Néphrologie-Immunologie clinique, Nantes, France
| | - Céline Bressollette-Bodin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Nantes Université, Service de Virologie, Nantes, France
- UFR Médecine, Nantes Université, Nantes, France
| | - Xavier Saulquin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- UFR Sciences et Techniques, Nantes Université, Nantes, France
| | - Dorian McIlroy
- Nantes Université,, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- UFR Sciences et Techniques, Nantes Université, Nantes, France
| |
Collapse
|
14
|
The effect of BK polyomavirus large T antigen on CD4 and CD8 T cells in kidney transplant recipients. Transpl Immunol 2022; 74:101655. [PMID: 35777612 DOI: 10.1016/j.trim.2022.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Human BK polyomavirus (BKPyV) can affect the machinery of the host cell to induce optimal viral replication or transform them into tumor cells. Reactivation of BKPyV happens due to immunosuppression therapies following renal transplantation which might result in BK polyomavirus nephropathy (BKPyVAN) and allograft loss. The first protein that expresses after entering into host cells and has an important role in pathogenicity is the Large T antigen (LT-Ag). In this review tries to study the molecular and cellular inter-regulatory counteractions especially between CD4 and CD8 T cells, and BKPyV LT-Ag may have role in nephropathy after renal transplantation.
Collapse
|
15
|
Luciani LG, Mattevi D. Urinary Tract Infections: Virus. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8357242 DOI: 10.1016/b978-0-12-818731-9.00139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Although viruses are common in the urinary tract in healthy people, viral infections can become a major concern in immunocompromised individuals. Patients undergoing hematopoietic stem cell or solid organ transplantation may be particularly susceptible to BK and other viruses, and experience a high risk of mortality. The most common presentation in this setting is hemorrhagic cystitis. The treatment is mostly supportive, including the reduction of immunosuppression; a variety of experimental agents has also been proposed. A different context is offered by chronic (HBV, HCV, HIV) or acute/subacute (Dengue, Hantavirus, etc.) infections, where the kidneys can be secondarily involved and suffer from several glomerular syndromes. Many protocols based on different oral direct-acting antivirals and combined antiretrovirals are available, according to the systemic infection. Viral infections can be classified according to the organ involved, i.e. lower (bladder) or upper urinary tract (kidneys, ureters), and to the mechanism of injury. A section is dedicated to the current breakout of SARS-CoV-2, which does not spare the urinary tract, sometimes with serious implications. Even if this topic is mostly the discipline of ultra-dedicated physicians, this overview has a practical approach and could be useful to a wider medical audience, especially in times of viral pandemics.
Collapse
|
16
|
Stampf S, Mueller NJ, van Delden C, Pascual M, Manuel O, Banz V, Binet I, De Geest S, Bochud PY, Leichtle A, Schaub S, Steiger J, Koller M. Cohort profile: The Swiss Transplant Cohort Study (STCS): A nationwide longitudinal cohort study of all solid organ recipients in Switzerland. BMJ Open 2021; 11:e051176. [PMID: 34911712 PMCID: PMC8679072 DOI: 10.1136/bmjopen-2021-051176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The Swiss Transplant Cohort Study (STCS) is a prospective multicentre cohort study which started to actively enrol study participants in May 2008. It takes advantage of combining data from all transplant programmes in one unique system to perform comprehensive nationwide reporting and to promote translational and clinical post-transplant outcome research in the framework of Swiss transplantation medicine. PARTICIPANTS Over 5500 solid organ transplant recipients have been enrolled in all six Swiss transplant centres by end of 2019, around three-quarter of them for kidney and liver transplants. Ninety-three per cent of all transplanted recipients have consented to study participation, almost all of them (99%) contributed to bio-sampling. The STCS genomic data set includes around 3000 patients. FINDINGS TO DATE Detailed clinical and laboratory data in high granularity as well as patient-reported outcomes from transplant recipients and activities in Switzerland are available in the last decade. Interdisciplinary contributions in diverse fields of transplantation medicine such as infectious diseases, genomics, oncology, immunology and psychosocial science have resulted in approximately 70 scientific papers getting published in peer-review journals so far. FUTURE PLANS The STCS will deepen its efforts in personalised medicine and digital epidemiology, and will also focus on allocation research and the use of causal inference methods to make complex matters in transplant medicine more understandable and transparent.
Collapse
Affiliation(s)
- Susanne Stampf
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Oriol Manuel
- Transplantation Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vanessa Banz
- Department for Visceral Surgery and Medicine, Inselspital, University Hospital Bern and Bern University, Bern, Switzerland
| | - Isabelle Binet
- Nephrology and Transplantation Medicine, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Sabina De Geest
- Department of Public Health, Institute of Nursing Science, University of Basel, Basel, Switzerland
| | - Pierre-Yves Bochud
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexander Leichtle
- Center for Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital University Hospital Bern, Bern, Switzerland
| | - Stefan Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Jürg Steiger
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Michael Koller
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
17
|
Jue JS, Alameddine M, Gonzále J, Cianci G. Risk factors, management, and survival of bladder cancer after kidney transplantation. Actas Urol Esp 2021; 45:427-438. [PMID: 34147429 DOI: 10.1016/j.acuroe.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION AND OBJECTIVES Kidney transplantation is associated with an increased risk of bladder cancer; however guidelines have not been established on the management of bladder cancer after kidney transplantation. MATERIALS AND METHODS A systematic literature review using PubMed was performed in accordance with the PRISMA statement to identify studies concerning the prevalence and survival of bladder cancer after kidney transplantation. The risk factors and management of bladder cancer after kidney transplantation were also reviewed and discussed. RESULTS A total of 41 studies, published between 1996 and 2018, reporting primary data on bladder cancer after kidney transplantation were identified. Marked heterogeneity in bladder cancer prevalence, time to diagnosis, non-muscle invasive/muscle-invasive bladder cancer prevalence, and survival was noted. Four studies, published between 2003 and 2017, reporting primary data on bladder cancer treated with Bacillus Calmette-Guérin (BCG) after kidney transplantation were identified. Disease-free survival, cancer-specific survival, and overall survival were similar between BCG studies (75-100%). CONCLUSIONS Carcinogen exposure that led to ESRD, BKV, HPV, immunosuppressive agents, and the immunosuppressed state likely contribute to the increased risk of bladder cancer after renal transplantation. Non-muscle invasive disease should be treated with transurethral resection. BCG can be safely used in transplant recipients and likely improves the disease course. Muscle-invasive disease should be treated with radical cystectomy, with special consideration to the dissection and urinary diversion choice. Chemotherapy and immune checkpoint inhibitors can be safely used in regionally advanced bladder cancer with potential benefit. mTOR inhibitors may reduce the risk of developing bladder cancer, and immunosuppression medications should be reduced if malignancy develops.
Collapse
Affiliation(s)
- J S Jue
- Department of Urology, Lenox Hill Hospital, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, New York, United States; Department of Urology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | - M Alameddine
- Department of Surgery, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, United States; Miami Transplant Institute, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, United States; Department of Urology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - J Gonzále
- Department of Surgery, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, United States; Department of Urology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - G Cianci
- Department of Surgery, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, United States; Department of Urology, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, United States; Miami Transplant Institute, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, United States; Department of Urology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
18
|
Jue J, Alameddine M, González J, Ciancio G. Risk factors, management, and survival of bladder cancer after kidney transplantation. Actas Urol Esp 2021. [PMID: 33994047 DOI: 10.1016/j.acuro.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES Kidney transplantation is associated with an increased risk of bladder cancer; however guidelines have not been established on the management of bladder cancer after kidney transplantation. MATERIALS AND METHODS A systematic literature review using PubMed was performed in accordance with the PRISMA statement to identify studies concerning the prevalence and survival of bladder cancer after kidney transplantation. The risk factors and management of bladder cancer after kidney transplantation were also reviewed and discussed. RESULTS A total of 41 studies, published between 1996 and 2018, reporting primary data on bladder cancer after kidney transplantation were identified. Marked heterogeneity in bladder cancer prevalence, time to diagnosis, non-muscle invasive/muscle-invasive bladder cancer prevalence, and survival was noted. Four studies, published between 2003 and 2017, reporting primary data on bladder cancer treated with Bacillus Calmette-Guérin (BCG) after kidney transplantation were identified. Disease-free survival, cancer-specific survival, and overall survival were similar between BCG studies (75-100%). CONCLUSIONS Carcinogen exposure that led to ESRD, BKV, HPV, immunosuppressive agents, and the immunosuppressed state likely contribute to the increased risk of bladder cancer after renal transplantation. Non-muscle invasive disease should be treated with transurethral resection. BCG can be safely used in transplant recipients and likely improves the disease course. Muscle-invasive disease should be treated with radical cystectomy, with special consideration to the dissection and urinary diversion choice. Chemotherapy and immune checkpoint inhibitors can be safely used in regionally advanced bladder cancer with potential benefit. mTOR inhibitors may reduce the risk of developing bladder cancer, and immunosuppression medications should be reduced if malignancy develops.
Collapse
|
19
|
Laskin BL, Denburg MR, Furth SL, Moatz T, Altrich M, Kleiboeker S, Lutzko C, Zhu X, Blackard JT, Jodele S, Lane A, Wallace G, Dandoy CE, Lake K, Duell A, Litts B, Seif AE, Olson T, Bunin N, Davies SM. The Natural History of BK Polyomavirus and the Host Immune Response After Stem Cell Transplantation. Clin Infect Dis 2021; 71:3044-3054. [PMID: 31851312 DOI: 10.1093/cid/ciz1194] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND BK polyomavirus (BKPyV) is associated with symptomatic hemorrhagic cystitis after hematopoietic cell transplantation (HCT). Little is known about the host immune response, effectiveness of antiviral treatment, or impact of asymptomatic replication on long-term kidney function. METHODS In children and young adults undergoing allogeneic HCT, we quantified BKPyV viruria and viremia (pre-HCT and at Months 1-4, 8, 12, and 24 post-HCT) and tested associations of peak viremia ≥10 000 or viruria ≥109 copies/mL with estimated kidney function (glomerular filtration rate, eGFR) and overall survival at 2 years posttransplant. We examined the factors associated with viral clearance by Month 4, including BKPyV-specific T cells by enzyme-linked immune absorbent spot at Month 3 and cidofovir use. RESULTS We prospectively enrolled 193 participants (median age 10 years) and found that 18% had viremia ≥10 000 copies/mL and 45% had viruria ≥109 copies/mL in the first 3 months post-HCT. Among the 147 participants without cystitis (asymptomatic), 58 (40%) had any viremia. In the entire cohort and asymptomatic subset, having viremia ≥10 000 copies/mL was associated with a lower creatinine/cystatin C eGFR at 2 years post-HCT. Viremia ≥10 000 copies/mL was associated with a higher risk of death (adjusted hazard ratio, 2.2; 95% confidence interval, 1.1-4.2). Clearing viremia was associated with detectable BKPyV-specific T cells and having viremia <10 000 copies/mL, but not cidofovir exposure. CONCLUSIONS Screening for BKPyV viremia after HCT identifies asymptomatic patients at risk for kidney disease and reduced survival. These data suggest potential changes to clinical practice, including prospective monitoring for BKPyV viremia to test virus-specific T cells to prevent or treat BKPyV replication.
Collapse
Affiliation(s)
- Benjamin L Laskin
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle R Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taylor Moatz
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Carolyn Lutzko
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiang Zhu
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory Wallace
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kelly Lake
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexandra Duell
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bridget Litts
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alix E Seif
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Timothy Olson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nancy Bunin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Non-permissive human conventional CD1c+ dendritic cells enable trans-infection of human primary renal tubular epithelial cells and protect BK polyomavirus from neutralization. PLoS Pathog 2021; 17:e1009042. [PMID: 33592065 PMCID: PMC7886149 DOI: 10.1371/journal.ppat.1009042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading. Dr Sylvia Gardner first discovered the BK polyomavirus (BKPyV) in the urine of a kidney-transplant recipient in 1970. In the 1990’s, the widespread use of potent immunosuppressive drugs such as tacrolimus, sirolimus or mycophenolate mofetil led to the emergence of BKPyV nephropathy. Recently, various studies reported a specific influx of myeloid dendritic cells (mDCs) in the renal tissue of kidney-transplant patients who were diagnosed with a BKPyV nephropathy. MDCs are immune cells both residing in tissues and migrating to other organs or compartments like the blood when changes in their environment occur. Their main functions are the detection of danger signals such as pathogens or tumors and the processing of antigens to prime naïve specific effectors of the adaptive immune response. Although anti-BKPyV cellular immune responses have been investigated in post-transplant recipients as well as healthy individuals, supporting an active role of mDCs little is known about how mDCs and BKPyV interact with each other. Our study provides the basis to understand the role played by mDCs in virus capture through an unprecedented endocytic mechanism and possibly in viral protection from neutralization by specific antibodies. Moreover, we showed that mDCs are unable to sense BKPyV particles or BKPyV-infected dying cells as a danger signal, supporting the view that other DC subsets might act as the true antigen presenting cells that promote the adaptive immune response against BKPyV infection.
Collapse
|
21
|
BK Polyomavirus-specific T Cells as a Diagnostic and Prognostic Marker for BK Polyomavirus Infections After Pediatric Kidney Transplantation. Transplantation 2021; 104:2393-2402. [PMID: 31985731 DOI: 10.1097/tp.0000000000003133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND After kidney transplantation, uncontrolled BK polyomavirus (BKPyV) replication causes kidney graft failure through BKPyV-associated nephropathy (BKPyVAN), but markers predicting outcome are missing. BKPyV-specific T cells may serve as a predictive marker to identify patients at risk of persistent DNAemia and BKPyVAN. METHODS Out of a total of 114 pediatric kidney recipients transplanted between 2008 and 2018, 36 children with posttransplant BKPyV-DNAemia were identified. In a prospective noninterventional study, BKPyV-specific CD4 and CD8 T cells were measured in 32 of 36 viremic pediatric kidney recipients using intracellular cytokine staining and flow cytometry. The course of the BKPyV replication was monitored with regard to duration of BKPyV-DNAemia and need of therapeutic intervention and diagnosis of proven BKPyVAN. RESULTS Levels of BKPyV-specific T cells negatively correlated with subsequent duration of BKPyV-DNAemia. Patients with BKPyV-specific CD4 T cells ≥0.5 cells/µL and/or BKPyV-specific CD8 T cells ≥0.1 cells/µL had transient, self-limiting DNAemia (PPV 1.0, NPV 0.86). BKPyV-specific CD4 and CD8 T cells below these thresholds were found in children with persistent BKPyV-DNAemia and biopsy-proven BKPyVAN with need for therapeutic intervention. After reducing immunosuppressive therapy, levels of BKPyV-specific CD4 T cells increased while plasma BKPyV-DNAemia declined. CONCLUSIONS This study found that BKPyV-specific T cell levels may help to distinguish patients with transient, self-limiting BKPyV-DNAemia from those with persisting BKPyV-DNAemia and biopsy-proven BKPyVAN, who would benefit from individualized therapeutic interventions such as reduced immunosuppression. Thereby the risk for rejection because of unnecessary reduction of immunosuppression in case of self-limiting BKPyV-DNAemia can be minimized.
Collapse
|
22
|
Meier RP, Muller YD, Dietrich PY, Tille JC, Nikolaev S, Sartori A, Labidi-Galy I, Ernandez T, Kaur A, Hirsch HH, McKee TA, Toso C, Villard J, Berney T. Immunologic Clearance of a BK Virus-associated Metastatic Renal Allograft Carcinoma. Transplantation 2021; 105:423-429. [PMID: 32091486 PMCID: PMC7837753 DOI: 10.1097/tp.0000000000003193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Metastatic carcinoma of a renal allograft is a rare but life threatening event with a difficult clinical management. Recent reports suggested a potential role of BK polyomavirus (BKPyV) in the development of urologic tract malignancies in kidney transplant recipients. METHODS We investigated a kidney-pancreas female recipient with an history of BKPyV nephritis who developed a rapidly progressive and widely metastatic donor-derived renal carcinoma 9 years after transplantation. RESULTS Histology and fluorescence in situ hybridization analysis revealed a donor-derived (XY tumor cells) collecting (Bellini) duct carcinoma. The presence of BKPyV oncogenic large tumor antigen was identified in large amount within the kidney tumor and the bowel metastases. Whole genome sequencing of the tumor confirmed multiple genome BKPyV integrations. The transplanted kidney was removed, immunosuppression was withdrawn, and recombinant interleukin-2 (IL-2) was administered for 3 months, inducing a complete tumor clearance, with no evidence of disease at 6-year follow-up. The immunological profiling during IL-2 therapy revealed the presence of donor-specific T cells and expanded cytokine-producing bright natural killer cells but no donor-specific antibodies. Finally, we found persistently elevated anti-BK virus IgG titers and a specific anti-BKPyV T cell response. CONCLUSIONS This investigation showed evidence for the potential oncogenic role of BKPyV in collecting duct carcinoma in renal allografts and demonstrated that immunosuppression withdrawal and IL-2 therapy can lead to an efficient antitumor cellular mediated rejection possibly via 3 distinct mechanisms including (1) host-versus-graft, (2) host-versus-tumor, and (3) anti-BKPyV responses.
Collapse
Affiliation(s)
- Raphael P.H. Meier
- Abdominal Transplant Surgery, Department of Surgery, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
- Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Yannick D. Muller
- Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA
- Immunology and Transplant Unit, Department Diagnostic, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Christophe Tille
- Diagnostic Department, Geneva University Hospital, and Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Sergey Nikolaev
- Department of Genetic Medicine and Development, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Ambra Sartori
- Department of Genetic Medicine and Development, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Thomas Ernandez
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Amandeep Kaur
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H. Hirsch
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas A. McKee
- Diagnostic Department, Geneva University Hospital, and Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Christian Toso
- Abdominal Transplant Surgery, Department of Surgery, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| | - Jean Villard
- Immunology and Transplant Unit, Department Diagnostic, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
- Division of Nephrology, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Abdominal Transplant Surgery, Department of Surgery, Geneva University Hospital and University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
23
|
Bae H, Na DH, Chang JY, Park KH, Min JW, Ko EJ, Lee H, Yang CW, Chung BH, Oh EJ. Usefulness of BK virus-specific interferon-γ enzyme-linked immunospot assay for predicting the outcome of BK virus infection in kidney transplant recipients. Korean J Intern Med 2021; 36:164-174. [PMID: 32241081 PMCID: PMC7820663 DOI: 10.3904/kjim.2019.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/AIMS To investigate if BK virus (BKV)-specific T cell immunity measured by an interferon-γ enzyme-linked immunospot (ELISPOT) assay can predict the outcome of BK virus infection in kidney transplant recipients (KTRs). METHODS We included 68 KTRs with different viremia status (no viremia [n = 17], BK viremia [n = 27], and cleared viremia [n = 24]) and 44 healthy controls (HCs). The BK viremia group was divided into controller (< 3 months) and noncontroller (> 3 months) according to sustained duration of BKV infection. We compared BKV-ELISPOT results against five BKV peptides (large tumor antigen [LT], St, VP1-3). RESULTS BKV-ELISPOT results were higher in three KTRs groups with different BKV infection status than the HCs group (p < 0.05). In KTR groups, they were higher in cleared viremia group than no viremia or BK viremia group. Within the BK viremia group, controller group had higher LT-ELISPOT results compared to noncontroller group (p = 0.032). Also, KTRs without BK virus-associated nephropathy (BKVN) had higher LT, St, VP1, and VP2-ELISPOT results than those with BKVN (p < 0.05). CONCLUSION BKV-ELISPOT assay may be effective in predicting clinical outcomes of BKV infection in terms of clearance of BK virus and development of BKVN.
Collapse
Affiliation(s)
- Hyunjoo Bae
- Department of Biomedical Science, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Do Hyun Na
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Yeun Chang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki Hyun Park
- Department of Biomedical Science, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Min
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Eun Jeong Ko
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeyoung Lee
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Chul Woo Yang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Eun-Jee Oh, M.D. Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-1641 Fax: +82-2-2258-1719 E-mail:
| |
Collapse
|
24
|
Virus-specific T cells in pediatric renal transplantation. Pediatr Nephrol 2021; 36:789-796. [PMID: 32221706 PMCID: PMC7910244 DOI: 10.1007/s00467-020-04522-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
After pediatric kidney transplantation, immunosuppressive therapy causes an increased risk of severe viral complications, especially from cytomegalovirus (CMV), BK polyomavirus (BKPyV) or Epstein-Barr virus (EBV), and less frequent from adenovirus (ADV). However, suitable predictive markers for the individual outcome of viral infections are missing and the therapeutic management remains a challenge to the success of pediatric kidney transplantation. Virus-specific T cells are known for controlling viral replication and there is growing evidence that virus-specific T cells may serve as a prognostic marker to identify patients at risk for viral complications. This review provides an overview of the usability of virus-specific T cells for improving diagnostic and therapeutic management of viral infections with reference to the necessity of antiviral prophylaxis, timing of pre-emptive therapy, and dosing of immunosuppressive medication after pediatric kidney transplantation. Several studies demonstrated that high levels of virus-specific T cells are associated with decrease of virus load and favorable outcome, whereas lack of virus-specific T cells coincided with virus-induced complications. Accordingly, the additional monitoring of virus-specific T cells aims to personalize the management of antiviral therapy, identify overimmunosuppression, and avoid unnecessary therapeutic interventions. Prospective randomized trials in pediatric kidney recipients comparing standard antiviral and immunosuppressive regimens with T cell-guided therapeutic interventions are needed, before monitoring of virus-specific T cells is implemented in the routine care of pediatric kidney graft recipients.
Collapse
|
25
|
Leuzinger K, Kaur A, Wilhelm M, Hirsch HH. Variations in BK Polyomavirus Immunodominant Large Tumor Antigen-Specific 9mer CD8 T-Cell Epitopes Predict Altered HLA-Presentation and Immune Failure. Viruses 2020; 12:v12121476. [PMID: 33371492 PMCID: PMC7767524 DOI: 10.3390/v12121476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Failing BK polyomavirus (BKPyV)-specific immune control is underlying onset and duration of BKPyV-replication and disease. We focused on BKPyV-specific CD8 T-cells as key effectors and characterized immunodominant 9mer epitopes in the viral large tumor-antigen (LTag). We investigated the variation of LTag-epitopes and their predicted effects on HLA-class 1 binding and T-cell activation. Available BKPyV sequences in the NCBI-nucleotide (N = 3263), and the NCBI protein database (N = 4189) were extracted (1368 sequences) and analyzed for non-synonymous aa-exchanges in LTag. Variant 9mer-epitopes were assessed for predicted changes in HLA-A and HLA-B-binding compared to immunodominant 9mer reference. We identified 159 non-synonymous aa-exchanges in immunodominant LTag-9mer T-cell epitopes reflecting different BKPyV-genotypes as well as genotype-independent variants altering HLA-A/HLA-B-binding scores. Decreased binding scores for HLA-A/HLA-B were found in 27/159 (17%). This included the immunodominant LPLMRKAYL affecting HLA-B*07:02-, HLA-B*08:01- and HLA-B*51:01-presentation. In two healthy BKPyV-seropositive HLA-B*07:02 blood donors, variant LSLMRKAYL showed reduced CD8 T-cell responses compared to LPLMRKAYL. Thus, despite LTag being highly conserved, aa-exchanges occur in immunodominant CD8 T-cell epitopes of BKPyV-genotypes as well as of genotypes -independent variants, which may contribute to genotype-dependent and genotype-independent failure of cellular immune control over BKPyV-replication. The data warrant epidemiological and immunological investigations in carefully designed clinical studies.
Collapse
Affiliation(s)
- Karoline Leuzinger
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Amandeep Kaur
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
| | - Hans H. Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; (K.L.); (A.K.); (M.W.)
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-207-3266 or +41-61-207-3225
| |
Collapse
|
26
|
Prospective Study of Long Noncoding RNA, MGAT3-AS1, and Viremia of BK Polyomavirus and Cytomegalovirus in Living Donor Renal Transplant Recipients. Kidney Int Rep 2020; 5:2218-2227. [PMID: 33305115 PMCID: PMC7710814 DOI: 10.1016/j.ekir.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022] Open
Abstract
Introduction Viremia after renal transplantation is a major cause of morbidity and mortality and treatment opportunities are limited. Tests to determine the increased risk for viremia would be preferable. Methods In a prospective, single-center study, we conducted follow-up of 163 renal transplant recipients after incident living donor renal transplantation. We determined a long noncoding RNA, β-1,4-mannosylglycoprotein 4-β-N-acetylglucosaminyltransferase-antisense1 (MGAT3-AS1/beta-actin ratio), in peripheral blood mononuclear cells. Viremia of BK polyomavirus and cytomegalovirus was diagnosed with more than 1000 plasma copies/ml within the first 3 postoperative months. The MGAT3-AS1/beta-actin ratio was assessed before viremia was determined. Results Receiver operator characteristics curve analysis showed a median MGAT3-AS1/beta-actin ratio cutoff value of 4.45 × 10–6 to indicate viremia after transplantation. Samples for 11 of 66 renal transplant recipients (17%) with MGAT3-AS1/beta-actin ratios below 4.45 × 10–6 showed viremia of BK polyomavirus and cytomegalovirus compared with only 6 of 97 renal transplant recipients (6%) with higher MGAT3-AS1/beta-actin ratios (odds ratio [OR]: 3.03; 95% confidence interval [CI]: 1.06–8.67 by Fisher exact test). Furthermore, samples for 6 of 66 renal transplant recipients (9%) with MGAT3-AS1/beta-actin ratios below 4.45 × 10–6 showed BK polyomavirus viremia compared with none of 97 renal transplant recipients (0%) with higher MGAT3-AS1/beta-actin ratios (OR: 20.95; 95% CI, 1.16–378.85 by Fisher exact test). Multivariate logistic regression analysis confirmed that MGAT3-AS1/beta-actin ratios below the cutoff level remained significantly associated with viremia after transplant. Lower MGAT3-AS1/beta-actin ratios occurred with rituximab-containing induction therapy. Conclusions A low MGAT3-AS1/beta-actin ratio indicates an increased risk for viremia of BK polyomavirus and cytomegalovirus in living donor renal transplant recipients.
Collapse
|
27
|
Lepore M, Crespo E, Melilli E, Cruzado JM, Torija A, Grinyó JM, Bestard O. Functional immune monitoring of BK Virus and donor-specific T-cell effector immune responses to guide treatment decision-making after kidney transplantation; an illustrative case report and literature review. Transpl Infect Dis 2020; 23:e13495. [PMID: 33070461 DOI: 10.1111/tid.13495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/13/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Differential diagnosis between Polyoma virus associated-nephropathy (PVAN) and T-cell mediated rejection (TCMR) might be challenging, as respective treatment approaches are totally opposite. Here we report the illustrative case of a kidney transplant recipient with PVAN who developed a persistent acute TCMR after full abrogation of viral infection through immunosuppression modulation. By simultaneous functional immune monitoring of BKV and donor-specific T-cell responses using IFN-γELISPOT assay, we retrospectively demonstrated the predominant effector mechanisms responsible of allograft injury and thus, potential guidance for treatment decision-making. Furthermore, the evidence of an efficient T-cell alloimmunity abrogation accompanied by a sustained anti-viral response after sirolimus addition, promotes the potential benefit of converting patients to an mTOR-based immunosuppression in case of PVAN.
Collapse
Affiliation(s)
- Marta Lepore
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Transplant Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Elena Crespo
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain
| | - Josep M Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Alba Torija
- Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Josep M Grinyó
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| | - Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Experimental Nephrology Laboratory, IDIBELL, Barcelona, Spain
| |
Collapse
|
28
|
Wilhelm M, Kaur A, Wernli M, Hirsch HH. BK Polyomavirus-Specific CD8 T-Cell Expansion In Vitro Using 27mer Peptide Antigens for Developing Adoptive T-Cell Transfer and Vaccination. J Infect Dis 2020; 223:1410-1422. [PMID: 32857163 DOI: 10.1093/infdis/jiaa546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. METHODS Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. RESULTS BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1-) and cytotoxic. CONCLUSIONS Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.
Collapse
Affiliation(s)
- Maud Wilhelm
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Amandeep Kaur
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marion Wernli
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
BK polyomavirus-specific antibody and T-cell responses in kidney transplantation: update. Curr Opin Infect Dis 2020; 32:575-583. [PMID: 31567736 DOI: 10.1097/qco.0000000000000602] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW BK polyomavirus (BKPyV) has emerged as a significant cause of premature graft failure after kidney transplantation. Without effective antiviral drugs, treatment is based on reducing immunosuppression to regain immune control over BKPyV replication. The paradigm of high-level viruria/decoy cells, BKPyV-DNAemia, and proven nephropathy permits early interventions. Here, we review recent findings about BKPyV-specific antibody and T-cell responses and their potential role in risk stratification, immune monitoring, and therapy. RECENT FINDING Kidney transplant recipients having low or undetectable BKPyV-specific IgG immunoglobulin G (IgG) are higher risk for developing BKPyV-DNAemia if the donor has high BKPyV-specific IgG. This observation has been extended to neutralizing antibodies. Immunosuppression, impaired activation, proliferation, and exhaustion of BKPyV-specific T cells may increase the risk of developing BKPyV-DNAemia and nephropathy. Clearance of BKPyV-DNAemia was correlated with high CD8 T cell responses to human leukocyte antigen (HLA)-types presenting BKPyV-encoded immunodominant 9mers. For clinical translation, these data need to be assessed in appropriately designed clinical studies, as outlined in recent guidelines on BKPyV in kidney transplantation. SUMMARY Evaluation of BKPyV-specific immune responses in recipient and donor may help to stratify the risk of BKPyV-DNAemia, nephropathy, and graft loss. Future efforts need to evaluate clinical translation, vaccines, and immunotherapy to control BKPyV replication.
Collapse
|
30
|
McIlroy D, Hönemann M, Nguyen NK, Barbier P, Peltier C, Rodallec A, Halary F, Przyrowski E, Liebert U, Hourmant M, Bressollette-Bodin C. Persistent BK Polyomavirus Viruria is Associated with Accumulation of VP1 Mutations and Neutralization Escape. Viruses 2020; 12:v12080824. [PMID: 32751274 PMCID: PMC7472262 DOI: 10.3390/v12080824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
To investigate the relationship between neutralization escape and persistent high-level BK polyomavirus replication after kidney transplant (KTx), VP1 sequences were determined by Sanger and next-generation sequencing in longitudinal samples from KTx recipients with persistent high-level viruria (non-controllers) compared to patients who suppressed viruria (controllers). The infectivity and neutralization resistance of representative VP1 mutants were investigated using pseudotype viruses. In all patients, the virus population was initially dominated by wild-type VP1 sequences, then non-synonymous VP1 mutations accumulated over time in non-controllers. BC-loop mutations resulted in reduced infectivity in 293TT cells and conferred neutralization escape from cognate serum in five out of six non-controller patients studied. When taken as a group, non-controller sera were not more susceptible to neutralization escape than controller sera, so serological profiling cannot predict subsequent control of virus replication. However, at an individual level, in three non-controller patients the VP1 variants that emerged exploited specific “holes” in the patient’s humoral response. Persistent high-level BK polyomavirus replication in KTx recipients is therefore associated with the accumulation of VP1 mutations that can confer resistance to neutralization, implying that future BKPyV therapies involving IVIG or monoclonal antibodies may be more effective when used as preventive or pre-emptive, rather than curative, strategies.
Collapse
Affiliation(s)
- Dorian McIlroy
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes, France
- Correspondence: ; Tel.: +33-2-40-41-28-39
| | - Mario Hönemann
- Institut für Virologie, Universität Leipzig, 04103 Leipzig, Germany; (M.H.); (U.L.)
| | - Ngoc-Khanh Nguyen
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Paul Barbier
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Cécile Peltier
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Audrey Rodallec
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
| | - Franck Halary
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
| | - Emilie Przyrowski
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
| | - Uwe Liebert
- Institut für Virologie, Universität Leipzig, 04103 Leipzig, Germany; (M.H.); (U.L.)
| | - Maryvonne Hourmant
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Service de Néphrologie et Immunologie Clinique, CHU Nantes, 44093 Nantes, France
| | - Céline Bressollette-Bodin
- Centre de Recherche en Transplantation et Immunoologie (CRTI), UMR 1064, INSERM, Université de Nantes, 44093 Nantes, France; (N.-K.N.); (P.B.); (C.P.); (F.H.); (C.B.-B.)
- Institut de Transplantation Urologie-Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France;
- Service de Virologie, CHU Nantes, 44093 Nantes, France; (A.R.); (E.P.)
- Faculté de Médecine, Université de Nantes, 44093 Nantes, France
| |
Collapse
|
31
|
Manzetti J, Weissbach FH, Graf FE, Unterstab G, Wernli M, Hopfer H, Drachenberg CB, Rinaldo CH, Hirsch HH. BK Polyomavirus Evades Innate Immune Sensing by Disrupting the Mitochondrial Network and Promotes Mitophagy. iScience 2020; 23:101257. [PMID: 32599557 PMCID: PMC7326741 DOI: 10.1016/j.isci.2020.101257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/16/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune escape contributes to viral persistence, yet little is known about human polyomaviruses. BK-polyomavirus (BKPyV) asymptomatically infects 90% of humans but causes premature allograft failure in kidney transplant patients. Despite virus-specific T cells and neutralizing antibodies, BKPyV persists in kidneys and evades immune control as evidenced by urinary shedding in immunocompetent individuals. Here, we report that BKPyV disrupts the mitochondrial network and membrane potential when expressing the 66aa-long agnoprotein during late replication. Agnoprotein is necessary and sufficient, using its amino-terminal and central domain for mitochondrial targeting and network disruption, respectively. Agnoprotein impairs nuclear IRF3-translocation, interferon-beta expression, and promotes p62/SQSTM1-mitophagy. Agnoprotein-mutant viruses unable to disrupt mitochondria show reduced replication and increased interferon-beta expression but can be rescued by type-I interferon blockade, TBK1-inhibition, or CoCl2-treatment. Mitochondrial fragmentation and p62/SQSTM1-autophagy occur in allograft biopsies of kidney transplant patients with BKPyV nephropathy. JCPyV and SV40 infection similarly disrupt mitochondrial networks, indicating a conserved mechanism facilitating polyomavirus persistence and post-transplant disease. BK polyomavirus agnoprotein disrupts mitochondrial membrane potential and network Agnoprotein impairs nucleus IRF3 translocation and interferon-β expression Agnoprotein facilitates innate immune evasion during the late viral replication phase Damaged mitochondria are targeted for p62/SQSTM1 autophagy
Collapse
Affiliation(s)
- Julia Manzetti
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Fabian H Weissbach
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Gunhild Unterstab
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Marion Wernli
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland
| | - Helmut Hopfer
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Cinthia B Drachenberg
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway; Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Petersplatz 10, CH-4009 Basel, Switzerland; Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
32
|
|
33
|
Ahlenstiel-Grunow T, Pape L. Diagnostics, treatment, and immune response in BK polyomavirus infection after pediatric kidney transplantation. Pediatr Nephrol 2020; 35:375-382. [PMID: 30539254 DOI: 10.1007/s00467-018-4164-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
After pediatric kidney transplantation BK polyomavirus (BKPyV) infections are associated with an increased risk of graft loss by BKPyV-associated nephropathy (BkPyVAN). However, suitable prognostic markers for the individual outcome of BKPyV infections are missing and the management of therapeutic interventions remains a challenge to the success of pediatric kidney transplantation. This review gives an overview on current diagnostic and therapeutic strategies in the field of BKPyV infections after pediatric kidney transplantation. Methods determining the individual immune response to BKPyV are described and their usability is discussed. There is growing evidence that BKPyV-specific T cells (BKPyV-Tvis) may serve as prognostic markers in order to steer immunosuppressive therapy in pediatric kidney recipients with BKPyV viremia in future. Prospective randomized trials in viremic kidney recipients comparing Tvis-steered therapeutic intervention with standard reduction of immunosuppression are needed before implementation of BKPyV-Tvis monitoring in routine care of BKPyV infections.
Collapse
Affiliation(s)
- Thurid Ahlenstiel-Grunow
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
34
|
Lorentzen EM, Henriksen S, Kaur A, Kro GB, Hammarström C, Hirsch HH, Midtvedt K, Rinaldo CH. Early fulminant BK polyomavirus-associated nephropathy in two kidney transplant patients with low neutralizing antibody titers receiving allografts from the same donor. Virol J 2020; 17:5. [PMID: 31924245 PMCID: PMC6954500 DOI: 10.1186/s12985-019-1275-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BK Polyomavirus (BKPyV) causes premature graft failure in 1 to 15% of kidney transplant (KT) recipients. High-level BKPyV-viruria and BKPyV-DNAemia precede polyomavirus-associated nephropathy (PyVAN), and guide clinical management decisions. In most cases, BKPyV appears to come from the donor kidney, but data from biopsy-proven PyVAN cases are lacking. Here, we report the early fulminant course of biopsy-proven PyVAN in two male KT recipients in their sixties, receiving kidneys from the same deceased male donor. CASE PRESENTATIONS Both recipients received intravenous basiliximab induction, and maintenance therapy consisting of tacrolimus (trough levels 3-7 ng/mL from time of engraftment), mycophenolate mofetil 750 mg bid, and prednisolone. At 4 weeks post-transplant, renal function was satisfactory with serum creatinine concentrations of 106 and 72 μmol/L in recipient #1 and recipient #2, respectively. Plasma BKPyV-DNAemia was first investigated at 5 and 8 weeks post-transplant being 8.58 × 104 and 1.12 × 106 copies/mL in recipient #1 and recipient #2, respectively. Renal function declined and biopsy-proven PyVAN was diagnosed in both recipients at 12 weeks post-transplant. Mycophenolate mofetil levels were reduced from 750 mg to 250 mg bid while tacrolimus levels were kept below 5 ng/mL. Recipient #2 cleared BKPyV-DNAemia at 5.5 months post-transplant, while recipient #1 had persistent BKPyV-DNAemia of 1.07 × 105 copies/mL at the last follow-up 52 weeks post-transplant. DNA sequencing of viral DNA from early plasma samples revealed apparently identical viruses in both recipients, belonging to genotype Ib-2 with archetype non-coding control region. Retrospective serological work-up, demonstrated that the donor had high BKPyV-IgG-virus-like particle ELISA activity and a high BKPyV-genotype I neutralizing antibody titer, whereas both KT recipients only had low neutralizing antibody titers pre-transplantation. By 20 weeks post-transplant, the neutralizing antibody titer had increased by > 1000-fold in both recipients, but only recipient #2 cleared BKPyV-DNAemia. CONCLUSIONS Low titers of genotype-specific neutralizing antibodies in recipients pre-transplant, may identify patients at high risk for early fulminant donor-derived BKPyV-DNAemia and PyVAN, but development of high neutralizing antibody titers may not be sufficient for clearance.
Collapse
Affiliation(s)
- Elias Myrvoll Lorentzen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stian Henriksen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Amandeep Kaur
- Department Biomedicine Transplantation & Clinical Virology, University of Basel, Basel, Switzerland
| | - Grete Birkeland Kro
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Clara Hammarström
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hans H. Hirsch
- Department Biomedicine Transplantation & Clinical Virology, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Karsten Midtvedt
- Department of Transplantation, Medicine, Section of Nephrology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Christine Hanssen Rinaldo
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
35
|
Ylinen E, Miettinen J, Jalanko H, Weissbach FH, Tainio J, Wernli M, Lautenschlager I, Hirsch HH. JC polyomavirus-specific antibody responses in pediatric kidney transplant recipients. Pediatr Transplant 2019; 23:e13586. [PMID: 31535435 DOI: 10.1111/petr.13586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
BKPyV is widely recognized in KTRs, but little is known about rates of primary and secondary JCPyV exposure in pediatric KTRs. We evaluated JCPyV exposure in pediatric KTRs using antibody responses in the first 12 months post-transplant. Of 46 children transplanted between 2009 and 2014, 6 lacked any samples for serologic testing, leaving 40 KTRs for study. JCPyV-specific IgG and IgM antibodies were measured using a normalized VLP ELISA. Significant JCPyV exposure was defined as IgG seroconversion, increasing IgG levels of >0.5 nOD units, or IgM detection. Of 40 recipients (median age 3.2 years), 11 (27.5%) were seropositive, 20 (50%) seronegative for JCPyV-IgG, while 9 (22.5%) had no specimen at the time of transplantation, but were confirmed as seronegative in post-transplant samples. Of 29 (72.5%) at risk, JCPyV-IgG seroconversion occurred in 15/29 (51.7%) including JCPyV-IgM in 6 patients (20.7%). Two patients (6.9%) developed only JCPyV-IgM. Among JCPyV-IgG-positive KTRs, six (12.5%) had significant IgG increases. Altogether 23 of 40 patients (57.5%) had serological evidence of primary or secondary JCPyV exposure. In these patients, kidney function tended to be lower during the 2 years of follow-up, but only one patient lost the graft due to JCPyV nephropathy. Thus, JCPyV exposure is common in pediatric KTR and may present serologically as primary or secondary infection. Although only one case of JC-PyVAN occurred, a trend toward lower renal function was seen. Dedicated studies of larger cohorts are warranted to define impact of JCPyV in pediatric KTR.
Collapse
Affiliation(s)
- Elisa Ylinen
- New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jenni Miettinen
- New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannu Jalanko
- New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabian H Weissbach
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Juuso Tainio
- New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marion Wernli
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Irmeli Lautenschlager
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital, Basel, Switzerland
| |
Collapse
|
36
|
Bruminhent J, Srisala S, Klinmalai C, Pinsai S, Watcharananan SP, Kantachuvesiri S, Hongeng S, Apiwattanakul N. BK Polyomavirus-specific T cell immune responses in kidney transplant recipients diagnosed with BK Polyomavirus-associated nephropathy. BMC Infect Dis 2019; 19:974. [PMID: 31744480 PMCID: PMC6862809 DOI: 10.1186/s12879-019-4615-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/04/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Adjustment of immunosuppression is the main therapy for BK polyomavirus (BKPyV)-associated nephropathy (BKPyVAN) after kidney transplantation (KT). Studies of BKPyV-specific T cell immune response are scarce. Here, we investigated BKPyV-specific T cell immunity in KT recipients diagnosed with BKPyVAN. METHODS All adult KT recipients with BKPyVAN diagnosed at our institution from January 2017 to April 2018 were included. Laboratory-developed intracellular cytokine assays measuring the percentage of IFN-γ-producing CD4+ and CD8+ T cells, after stimulation with large-T antigen (LT) and viral capsid protein 1 (VP1), were performed both at the time of diagnosis and after adjustment of immunosuppression. RESULTS We included 12 KT recipients diagnosed with BKPyVAN (7 proven, 4 presumptive, and 1 possible). Those with presumptive BKPyVAN had a median plasma BKPyV DNA load of 5.9 log10 copies/ml (interquartile range [IQR]: 4.9-6.1). Adjusted dosing of mycophenolic acid and tacrolimus with (86%) or without (14%) adjunctive therapies were implemented after diagnosis. There was a significantly higher median percentage of IFN-γ-producing CD4+ T cells to LT at a median of 3 (IQR: 1-4) months after adjustment of immunosuppression compared with at the time of diagnosis (0.004 vs. 0.015; p = 0.047). However, the difference between the median percentage of IFN-γ-producing CD4+ T cells to VP1 and CD8+ T cells to LT and VP1 did not reach statistical significance. Four (33%) patients achieved plasma BKPyV DNA clearance, and the remaining eight (67%) patients had persistent BKPyV DNAemia. Although eight (67%) patients developed allograft dysfunction, none required hemodialysis. CONCLUSIONS We observed a marginal trend of BKPyV-specific CD4+ T cell recovery after adjustment of immunosuppression in KT recipients diagnosed with BKPyVAN. A further study would be benefited to confirm and better assess BKPyV-specific immune response after KT.
Collapse
Affiliation(s)
- Jackrapong Bruminhent
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
- Excellence Center of Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Supranart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chompunut Klinmalai
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Subencha Pinsai
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Siriorn P Watcharananan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Surasak Kantachuvesiri
- Excellence Center of Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Hirsch HH, Randhawa PS. Screening for BK polyomavirus DNAemia: What should be done? Clin Transplant 2019; 33:e13672. [DOI: 10.1111/ctr.13672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Hans H. Hirsch
- Department Biomedicine, Transplantation & Clinical Virology University of Basel Basel Switzerland
- Infectious Diseases & Hospital Epidemiology University Hospital Basel Basel Switzerland
| | - Parmjeet S. Randhawa
- Division of Transplantation Pathology, Department of Pathology University of Pittsburgh Pittsburgh PA USA
- Thomas E Starzl Transplantation Institute Pittsburgh PA USA
| |
Collapse
|
38
|
HLA-B51 Reduces Risk of BK Polyomavirus Viremia After Kidney Transplantation. Transplantation 2019; 103:e386-e387. [PMID: 31335779 DOI: 10.1097/tp.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
An immunoinformatic approach to universal therapeutic vaccine design against BK virus. Vaccine 2019; 37:3457-3463. [PMID: 31097352 DOI: 10.1016/j.vaccine.2019.04.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
In kidney transplant recipients (KTRs) long-term immunosuppression leads to BK virus (BKV) reactivation, with an increased incidence of BKV-associated pathologies and allograft rejection. The current approaches to limit BKV infection include a reduction in immunosuppression and use of anti-BKV drugs, which are clinically sub-optimal and lead to undesirable therapeutic outcomes. Here, we adopted an immune-based approach to augment the endogenous BKV specific T-cells. Using reverse vaccinology based in silico analyses, we designed a peptide-based multi-epitope vaccine for BKV (MVBKV). A major advantage of our approach is that the selected epitopes show an affinity towards all the 12 superfamilies of HLA class I alleles and 27 reference alleles of HLA class II. This suggests MVBKV's universal nature and its potential effectiveness in a wide-population base. To improve MVBKV's immunogenic properties, a synthetic Toll-like Receptor (TLR) 4 peptide ligand (RS09) was added to the final vaccine construct. The sequences of the individual epitopes were molecularly linked to form a 3D-stable synthetic protein. Overall, our immunoinformatic-based approach led to the design of a new MVBKV vaccine, which remains to be validated experimentally.
Collapse
|
40
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
41
|
Chong AS. Urinary nanosensors of early transplant rejection. Nat Biomed Eng 2019; 3:251-252. [PMID: 30952984 PMCID: PMC6635947 DOI: 10.1038/s41551-019-0389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanoparticle sensors of the activity of the protease granzyme B detect early T-cell-mediated rejection of transplanted skin grafts in mice via the release of a proteolytically cleaved fluorescence reporter that filters into urine.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Reduced Risk of BK Polyomavirus Infection in HLA-B51–positive Kidney Transplant Recipients. Transplantation 2019; 103:604-612. [DOI: 10.1097/tp.0000000000002376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
In vitro comparison of currently available and investigational antiviral agents against pathogenic human double-stranded DNA viruses: A systematic literature review. Antiviral Res 2019; 163:50-58. [PMID: 30677427 DOI: 10.1016/j.antiviral.2019.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Double-stranded (ds) DNA virus infections often occur concomitantly in immunocompromised patients. We performed a systematic search of published in vitro activity for nine approved and investigational antivirals to understand the spectrum of in vitro activity against dsDNA viruses. METHODS A literature search was performed (PubMed and the WoS Core Collection) using keywords related to: 1) targeted approved/developmental antivirals (acyclovir, artesunate, brincidofovir, cidofovir, cyclopropavir (filociclovir), foscarnet, ganciclovir, letermovir, and maribavir); 2) pathogenic dsDNA viruses; 3) in vitro activity. We summarized data from 210 publications. RESULTS Activity against ≤3 viruses was documented for maribavir (cytomegalovirus, Epstein-Barr virus), and letermovir, while activity against > 3 viruses was shown for ganciclovir, cidofovir, acyclovir, foscarnet, cyclopropavir, artesunate, and brincidofovir. The EC50 values of brincidofovir were the lowest, ranging from 0.001 to 0.27 μM, for all viruses except papillomaviruses. The next most potent agents included cidofovir, ganciclovir, foscarnet, and acyclovir with EC50 values between 0.1 μM and >10 μM for cytomegalovirus, herpes simplex virus, and adenovirus. CONCLUSION Most of the identified antivirals had in vitro activity against more than one dsDNA virus. Brincidofovir and cidofovir have broad-spectrum activity, and brincidofovir has the lowest EC50 values. These findings could assist clinical practice and developmental research.
Collapse
|
44
|
Krejci K, Tichy T, Bednarikova J, Zamboch K, Zadrazil J. BK virus-induced renal allograft nephropathy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:165-177. [DOI: 10.5507/bp.2018.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
|
45
|
Arasaratnam RJ, Tzannou I, Gray T, Aguayo-Hiraldo PI, Kuvalekar M, Naik S, Gaikwad A, Liu H, Miloh T, Vera JF, Himes RW, Munoz FM, Leen AM. Dynamics of virus-specific T cell immunity in pediatric liver transplant recipients. Am J Transplant 2018; 18:2238-2249. [PMID: 29900673 PMCID: PMC6117219 DOI: 10.1111/ajt.14967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 01/25/2023]
Abstract
Immunosuppression following solid organ transplantation (SOT) has a deleterious effect on cellular immunity leading to frequent and prolonged viral infections. To better understand the relationship between posttransplant immunosuppression and circulating virus-specific T cells, we prospectively monitored the frequency and function of T cells directed to a range of latent (CMV, EBV, HHV6, BK) and lytic (AdV) viruses in 16 children undergoing liver transplantation for up to 1 year posttransplant. Following transplant, there was an immediate decline in circulating virus-specific T cells, which recovered posttransplant, coincident with the introduction and subsequent routine tapering of immunosuppression. Furthermore, 12 of 14 infections/reactivations that occurred posttransplant were successfully controlled with immunosuppression reduction (and/or antiviral use) and in all cases we detected a temporal increase in the circulating frequency of virus-specific T cells directed against the infecting virus, which was absent in 2 cases where infections remained uncontrolled by the end of follow-up. Our study illustrates the dynamic changes in virus-specific T cells that occur in children following liver transplantation, driven both by active viral replication and modulation of immunosuppression.
Collapse
Affiliation(s)
- R J Arasaratnam
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - I Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - T Gray
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - P I Aguayo-Hiraldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - M Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - S Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - A Gaikwad
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - H Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - T Miloh
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - J F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - R W Himes
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - F M Munoz
- Departments of Pediatrics, Infectious Diseases Section, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - A M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
46
|
BK Polyomavirus MicroRNA Levels in Exosomes Are Modulated by Non-Coding Control Region Activity and Down-Regulate Viral Replication When Delivered to Non-Infected Cells Prior to Infection. Viruses 2018; 10:v10090466. [PMID: 30200237 PMCID: PMC6164188 DOI: 10.3390/v10090466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
In immunosuppressed patients, BKPyV-variants emerge carrying rearranged non-coding control-regions (rr-NCCRs) that increase early viral gene region (EVGR) expression and replication capacity. BKPyV also encodes microRNAs, which have been reported to downregulate EVGR-encoded large T-antigen transcripts, to decrease viral replication in infected cells and to be secreted in exosomes. To investigate the interplay of NCCR and microRNAs, we compared archetype- and rr-NCCR-BKPyV infection in cell culture. We found that laboratory and clinical rr-NCCR-BKPyV-strains show higher replication rates but significantly lower microRNA levels than archetype virus intracellularly and in exosomes. To investigate whether rr-NCCR or increased EVGR activity modulated microRNA levels, we examined the (sp1-4)NCCR-BKPyV, which has an archetype NCCR-architecture but shows increased EVGR expression due to point mutations inactivating one Sp1 binding site. We found that microRNA levels following (sp1-4)NCCR-BKPyV infection were as low as in rr-NCCR-variants. Thus, NCCR rearrangements are not required for lower miRNA levels. Accordingly, Sp1 siRNA knock-down decreased microRNA levels in archetype BKPyV infection but had no effect on (sp1-4)- or rr-NCCR-BKPyV. However, rr-NCCR-BKPyV replication was downregulated by exosome preparations carrying BKPyV-microRNA prior to infection. To explore the potential relevance in humans, urine samples from 12 natalizumab-treated multiple sclerosis patients were analysed. In 7 patients, rr-NCCR-BKPyV were detected showing high urine BKPyV loads but low microRNAs levels, whereas the opposite was seen in 5 patients with archetype BKPyV. We discuss the results in a dynamic model of BKPyV replication according to NCCR activity and exosome regulation, which integrates immune selection pressure, spread to new host cells and rr-NCCR emergence.
Collapse
|
47
|
Nickeleit V, Singh HK, Kenan DJ, Mieczkowski PA. The two-faced nature of BK polyomavirus: lytic infection or non-lytic large-T-positive carcinoma. J Pathol 2018; 246:7-11. [PMID: 29931826 PMCID: PMC6120561 DOI: 10.1002/path.5127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
In immunocompromised patients, reactivation of latent BK polyomavirus (BKPyV) can cause disease with lytic infections of the kidneys and the lower urinary tract. Emerging evidence also links BKPyV to oncogenesis and high‐grade intrarenal and transitional cell carcinomas. These neoplasms strongly express polyomavirus large‐T antigen as a defining feature; that is, they are ‘large‐T‐positive carcinomas’. Such neoplasms arise in immunocompromised patients, typically in renal allograft recipients, and preferentially in tissues harbouring latent BKPyV. In recent articles in this journal, it was shown that tumour cells harbour replication‐incompetent clonal BKPyV. The virus can be truncated and randomly integrated into the genome, and/or it can be mutated in an episomal state. Truncation and/or deletions in the BKPyV non‐coding control region can hamper late viral gene expression, replication, and cell lysis, while facilitating overexpression of early genes, including that encoding large‐T. Biologically active fusion proteins or alterations in human tumour suppressor or promoter function have not been described so far, making uncontrolled large‐T gene expression in non‐lytically infected cells a prime suspect for neoplastic transformation. Current concepts of BKPyV‐induced disease, including recent reports from this journal, are discussed, and evolving paradigms of BKPyV‐associated oncogenesis are highlighted. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Volker Nickeleit
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Harsharan K Singh
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Daniel J Kenan
- Division of Nephropathology, Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Piotr A Mieczkowski
- Department of Genetics, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
48
|
Grellier J, Hirsch HH, Mengelle C, Esposito L, Hebral AL, Bellière J, Weissbach F, Izopet J, Del Bello A, Kamar N. Impact of donor BK polyomavirus replication on recipient infections in living donor transplantation. Transpl Infect Dis 2018; 20:e12917. [PMID: 29800505 DOI: 10.1111/tid.12917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple risk factors for BK polyomavirus (BKPyV) replication after kidney transplantation have been described. Here, we investigated the impact of living donors' urinary BKPyV shedding and recipients' BKPyV antibody status pre-transplant on BKPyV replication during the first year post-transplantation. METHODS We assessed a cohort of living kidney donors and their paired recipients (n = 121). All donors were tested before transplantation, and recipients were tested before and after transplantation for BKPyV viruria and viremia. BKPyV-specific serology was assessed in all recipients at transplantation. RESULTS Ten of 121 donors (8.3%) had urinary BKPyV shedding pre-transplant, none had viremia. Overall, 33 (27.3%) recipients developed viruria after transplantation: 7 had received a kidney from a donor with BK viruria (7/10 positive donors) and 26 had received a kidney from a donor without BK viruria (26/111 negative donors; P = .0015). Fifteen (12.4%) recipients developed BK viremia after transplantation: 3 received a kidney from a donor with viruria (3/10 positive donors, 30%) and 12 received a kidney from a donor without viruria (12/111 negative donors, 11%; P = .08). One patient developed proven nephropathy. Ninety-one percent of recipients were seropositive for BKPyV. No relationship between recipients' sero-reactivity at transplantation and post-transplant BKPyV replication was observed. Pre-transplant donor urinary shedding was an independent risk factor for post-transplant BKPyV replication. CONCLUSION Screening living kidney donors for BKPyV can identify recipients at higher risk for BKPyV replication after transplantation who may benefit from intensified post-transplant screening and treatment strategies.
Collapse
Affiliation(s)
- Jimmy Grellier
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland
| | | | - Laure Esposito
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France
| | - Anne Laure Hebral
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France
| | - Julie Bellière
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - Fabian Weissbach
- Transplantation and Clinical Virology, Department of Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland
| | - Jacques Izopet
- Laboratory of Virology, CHU Purpan, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,INSERM U1043, IFR-BMT, CHU Purpan, Toulouse, France
| | - Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,INSERM U1043, IFR-BMT, CHU Purpan, Toulouse, France
| |
Collapse
|
49
|
Aguilar C, Husain S, Lortholary O. Recent advances in understanding and managing infectious diseases in solid organ transplant recipients. F1000Res 2018; 7:F1000 Faculty Rev-661. [PMID: 29899970 PMCID: PMC5968357 DOI: 10.12688/f1000research.14262.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Undergoing solid organ transplantation (SOT) exposes the recipient to various infectious risks, including possible transmission of pathogen by the transplanted organ, post-surgical infections, reactivation of latent pathogens, or novel infections. Recent advances: In the last few years, the emergence of Zika virus has raised concerns in the transplant community. Few cases have been described in SOT patients, and these were associated mainly with moderate disease and favorable outcome; the notable exception is a recent case of fatal meningo-encephalopathy in a heart transplant recipient. Because of the advances in treating hepatitis C, several teams recently started to use organs from hepatitis C-positive donors. The worldwide increasing incidence of multidrug-resistant pathogens, as well as the increasing incidence of Clostridioidesdifficile infection, is of particular concern in SOT patients. In the field of mycology, the main recent therapeutic advance is the availability of isavuconazole for the treatment of invasive aspergillosis and mucormycosis. This drug has the advantage of minimal interaction with calcineurin inhibitors. Regarding the viral reactivations occurring after transplant, cytomegalovirus (CMV) infection is still a significant issue in SOT patients. The management of resistant CMV remains particularly difficult. The approval of letermovir, albeit in bone marrow transplantation, and the therapeutic trial of maribavir bring a ray of hope. Another advancement in management of post-transplant infections is the development of in vitro tests evaluating pathogen-specific immune response, such as immunodiagnostics for CMV and, more recently, tests for monitoring immunity against BK virus. Conclusion: The increasing number of organ transplantations, the use of newer immunosuppressive drugs, and high-risk donors continue to define the landscape of transplant infectious diseases in the current era.
Collapse
Affiliation(s)
- Claire Aguilar
- Division of Infectious Diseases, Multi-Organ Transplant Program, Department of Medicine, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, Department of Medicine, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Olivier Lortholary
- Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Paris Descartes University, IHU Imagine, Paris, France
| |
Collapse
|
50
|
Cheungpasitporn W, Thongprayoon C, Craici IM, Sharma K, Chesdachai S, Khoury NJ, Ettore AS. Reactivation of BK polyomavirus during pregnancy, vertical transmission, and clinical significance: A meta-analysis. J Clin Virol 2018; 102:56-62. [DOI: 10.1016/j.jcv.2018.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
|