1
|
Streeter HB, Lucas LG, West RM, Krishna MT, Wraith DC. A dominant, pan-DR binding epitope of Der p 1 in house dust mite allergy induces tolerance in HLA-DR4 transgenic mice. Front Immunol 2025; 16:1569283. [PMID: 40292297 PMCID: PMC12021919 DOI: 10.3389/fimmu.2025.1569283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background Peptides were designed to induce immune tolerance to the major antigen associated with house dust mite (HDM) allergy, Der p 1. HDM is commonly associated with allergic responses in allergic rhinitis and asthma, with Der p 1 specific T-cells implicated in ongoing disease. Tolerogenic peptide immunotherapy can induce tolerance in pathogenic T-cells, bypass mast cell activation and hence reduce the risk of anaphylaxis. A pan-DR binding epitope of Der p 1, covering the broad population, was tested for efficacy in HLA-DR transgenic mice. Methods Potential pan-HLA-DR binding tolerogenic T-cell epitopes from Der p 1 were predicted in silico and manufactured (synthetic peptides A-E). Participants included HDM sensitised (allergic rhinitis/asthma, n=25), non-HDM sensitised (atopic controls sensitised to ≥1 other aero-allergens, n=10) and non-atopic healthy controls, n=10). Peripheral blood mononuclear cells (PBMC) were collected and screened for immune responses to Der p 1 or test peptides A-E. Mapping of minimal T-cell epitopes, apitope (antigen-processing independent epitope) validation and tolerance induction were tested in HLA-DR transgenic mice. Results HDM-sensitised subjects have an elevated response to pan-DR binding peptide D 30mer. Peptide analogue D121B, containing the minimal epitope and optimised for solubility, was verified as a tolerogenic apitope and induced tolerance against Der p 1 antigens in HLA-DR4 transgenic mice in vivo. Conclusion A tolerogenic peptide, apitope D121B, reduces T-cell immune responses to Der p 1 and is a promising candidate for further development as an immunotherapy for HDM-associated allergic rhinitis and asthma.
Collapse
Affiliation(s)
- Heather B. Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lora G. Lucas
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Robert M. West
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Mamidipudi T. Krishna
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Allergy and Immunology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Huan F, Gao S, Gu Y, Ni L, Wu M, Li Y, Liu M, Yang Y, Xiao A, Liu G. Molecular Allergology: Epitope Discovery and Its Application for Allergen-Specific Immunotherapy of Food Allergy. Clin Rev Allergy Immunol 2025; 68:37. [PMID: 40198416 DOI: 10.1007/s12016-025-09052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The prevalence of food allergy continues to rise, posing a significant burden on health and quality of life. Research on antigenic epitope identification and hypoallergenic agent design is advancing allergen-specific immunotherapy (AIT). This review focuses on food allergens from the perspective of molecular allergology, provides an overview of integration of bioinformatics and experimental validation for epitope identification, highlights hypoallergenic agents designed based on epitope information, and offers a valuable guidance to the application of hypoallergenic agents in AIT. With the development of molecular allergology, the characterization of the amino acid sequence and structure of the allergen at the molecular level facilitates T-/B-cell epitope identification. Alignment of the identified epitopes in food allergens revealed that the amino acid sequence of T-/B-cell epitopes barely overlapped, providing crucial data to design allergen molecules as a promising form for treating (FA) food allergy. Manipulating antigenic epitopes can reduce the allergenicity of allergens to obtain hypoallergenic agents, thereby minimizing the severe side effects associated with AIT. Currently, hypoallergenic agents are mainly developed through synthetic epitope peptides, genetic engineering, or food processing methods based on the identified epitope. New strategies such as DNA vaccines, signaling molecules coupling, and nanoparticles are emerging to improve efficiency. Although significant progress has been made in designing hypoallergenic agents for AIT, the challenge in clinical translation is to determine the appropriate dose and duration of treatment to induce long-term immune tolerance.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Lingna Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Mingxuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yongpeng Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, 361024, Fujian, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China.
| |
Collapse
|
3
|
Martín‐Cruz L, Palomares O. Allergen-Specific Immunotherapy and Trained Immunity. Allergy 2025; 80:677-689. [PMID: 39641571 PMCID: PMC11891420 DOI: 10.1111/all.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The high prevalence of allergic diseases reached over the last years is attributed to the complex interplay of genetic factors, lifestyle changes, and environmental exposome. Allergen-specific immunotherapy (AIT) is the single therapeutic strategy for allergic diseases with the potential capacity to modify the course of the disease. Our knowledge of the mechanisms involved in allergy and successful AIT has significantly improved. Recent findings indicate that long-term allergen tolerance upon AIT discontinuation not only relies on the generation of proper adaptive immune responses by the generation of allergen-specific regulatory T and B cells enabling the induction of different isotypes of blocking antibodies but also relies on the restoration of proper innate immune responses. Trained immunity (TRIM) is the process by which innate immune cells acquire memory by mechanisms depending on metabolic and epigenetic reprogramming, thus conferring the host with increased broad protection against infection. This concept was initially explored for infectious diseases, as well as for vaccination against infections, but compelling experimental evidence suggests that TRIM might also play a role in allergy and AIT. Hyperinflammatory innate immune responses in early life, likely due to TRIM maladaptations, lead to aberrant type 2 inflammation-enhancing allergy. However, exposure to farming environments and specific microbes prevents recurrent infections and allergy development, likely due to mechanisms partially depending on TRIM. TRIM-based vaccines and next-generation AIT vaccines inducing metabolic and epigenetic reprogramming in innate immune cells and their precursors have shown protective antiallergic effects. A better understanding of the factors involved in early-life TRIM mechanisms in the context of allergy and the identification and characterization of novel tolerance inducers might well enable the design of alternative TRIM-based allergen vaccines for allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín‐Cruz
- School of Chemistry, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
- School of Pharmacy, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
| | - Oscar Palomares
- School of Chemistry, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
| |
Collapse
|
4
|
Stoumpos A, Heine G, Saggau C, Scheffold A. The role of allergen-specific regulatory T cells in the control of allergic disease. Curr Opin Immunol 2025; 92:102509. [PMID: 39642798 DOI: 10.1016/j.coi.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
Allergies result from an antigen-specific loss of tolerance against innocuous foreign substances. Allergen immunotherapy (AIT) aims to reverse the pathogenic response and to re-establish physiological tolerance. However, the tolerogenic mechanisms that prevent allergy in healthy and act during AIT are still obscure. Foxp3 expressing 'regulatory' CD4 T cells (Tregs) are essential mediators of tolerance against allergens. It remains controversial which antigen specificity of Tregs is required to prevent allergy and the role of allergen-specific Tregs during AIT. Recent work provided precise insight into physiological T cell responses against environmental and food compounds. This identified Treg responses mainly against peptides and proteins not involved in immune pathology, revealing an unexpected role of Treg antigen specificity for tolerance. This review will focus on antigen-specific Treg responses against food and airborne allergens, and the impact of the technological approach utilized for antigen-specific Treg characterization is discussed, with critical points to be addressed in future research.
Collapse
Affiliation(s)
- Athanasios Stoumpos
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
5
|
Liu S, Li J, Zhang Y, Wang C, Zhang L. IL-10: the master immunomodulatory cytokine in allergen immunotherapy. Expert Rev Clin Immunol 2025; 21:17-28. [PMID: 39323099 DOI: 10.1080/1744666x.2024.2406894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Allergen immunotherapy (AIT) is the only disease-modifying treatment for patients with IgE-mediated allergic diseases. Successful AIT can induce long-term immune tolerance to the common allergen, which provides clinical benefits for years after discontinuation. The cytokine interleukin (IL)-10, as a key anti-inflammatory mediator with strong immunoregulatory functions, has drawn increasing attention over the past decades. AREAS COVERED After an extensive search of PubMed, EMBASE, and Web of Science databases, covering articles published from 1989 to 2024, our review aims to emphasize the key common information from previous reviews on the crucial involvement of IL-10 in allergen immunotherapy (AIT) induced immunological tolerance. In this review, we discuss the regulation of IL-10 expression and the molecular pathways associated with IL-10 function. We also further summarize mechanisms of immune tolerance induced by AIT, especially the indispensable role of IL-10 in AIT. EXPERT OPINION IL-10 plays an indispensable role in immune tolerance induced by AIT. Understanding the importance of the role of IL-10 in AIT would help us comprehend the mechanisms thoroughly and develop targeted therapeutics for allergic diseases.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liu J, Xiao X, Liao Y, Xu X, Liu Y, Tang A, Zeng X, Yang P. Allergen specific immunotherapy regulates macrophage property in the airways. Arch Biochem Biophys 2024; 755:109984. [PMID: 38588908 DOI: 10.1016/j.abb.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Allergen specific immunotherapy (AIT) has been widely used in allergy clinics. The therapeutic effects of it are to be improved. Macrophages occupy the largest proportion of airway immune cells. The aim of this study is to measure the effects of nasal instillation AIT (nAIT) on airway allergy by regulating macrophage functions. METHODS An airway allergy mouse model was established with the ovalbumin-alum protocol. nAIT was conducted for mice with airway allergy through nasal instillation. The effects of nAIT were compared with subcutaneous injection AIT (SCIT) and sublingual AIT (SLIT). RESULTS Mice with airway allergy showed the airway allergic response, including lung inflammation, airway hyper responsiveness, serum specific IgE, increase in the amounts of eosinophil peroxidase, mouse mast cell protease-1, and Th2 cytokines in bronchoalveolar lavage fluid. nAIT had a much better therapeutic effect on the airway allergic response than SCIT and SLIT. Mechanistically, we observed better absorption of allergen in macrophages, better production of IL-10 by macrophages, and better immune suppressive functions in macrophages in mice received nAIT than SCIT and SLIT. CONCLUSIONS The nAIT has a much better therapeutic effect on suppressing the airway allergic response, in which macrophages play a critical role.
Collapse
Affiliation(s)
- Jiangqi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Xiaojun Xiao
- Institute of Allergy & Immunology of Shenzhen University & State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yun Liao
- Shenzhen Clinical College, Guangzhou Chinese Traditional Medical & Pharmaceutical University, Guangzhou, China
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University & State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Xianhai Zeng
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Pingchang Yang
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University & State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Komatsuzaki K, Kageshima H, Sekino Y, Suzuki Y, Ugajin T, Tamaoka M, Hanazawa R, Hirakawa A, Miyazaki Y. Local nasal immunotherapy with birch pollen-galactomannan conjugate-containing ointment in mice and humans. Allergol Int 2024; 73:290-301. [PMID: 37981502 DOI: 10.1016/j.alit.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only disease-modifying treatment for immunoglobulin (Ig) E-mediated allergy. Owing to the high prevalence and early onset of hay fever and pollen-food allergy syndrome (PFAS), a safer and simpler treatment method than conventional AIT is needed. To develop a local nasal immunotherapy using an ointment containing hypoallergenic pollen and assess its efficacy in mice and healthy humans. METHODS Hypoallergenicity was achieved by combining pollen and galactomannan through the Maillard reaction to create birch pollen-galactomannan conjugate (BP-GMC). The binding of galactomannan to Bet v 1 was confirmed using electrophoresis and Western blotting (WB). Binding of specific IgE antibodies to BP-GMC was verified using enzyme-linked immunosorbent assay (ELISA) and basophil activation test (BAT). The localization of BP-GMC absorption was confirmed using a BALB/c mouse model. BP-GMC mixed with white petrolatum was intranasally administered to 10 healthy individuals (active drugs, 8; placebo, 2) for 14 days. RESULTS In electrophoresis and WB, no 17-kDa band was observed. In ELISA and BAT, BP-GMC did not react to specific IgE but was bound to IgA and IgG. In the mouse model, BP-GMC was detected in nasopharyngeal-associated lymphoid tissues. In the active drug group, the salivary-specific IgA level significantly increased on day 15 (p = 0.0299), while the serum-specific IgG level significantly increased on day 85 (p = 0.0006). CONCLUSIONS The BP-GMC ointment rapidly produced antagonistic antibodies against IgE; it is safe and easy to use and might serve as a therapeutic antigen for hay fever and PFAS.
Collapse
Affiliation(s)
- Keiko Komatsuzaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiroki Kageshima
- Bio & Healthcare Business Division, Wako Filter Technology Co., Ltd., Ibaraki, Japan
| | - Yuki Sekino
- Bio & Healthcare Business Division, Wako Filter Technology Co., Ltd., Ibaraki, Japan
| | - Yasuhiro Suzuki
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Ugajin
- Department of Dermatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Meiyo Tamaoka
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Hanazawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Pan Y, Zhang X, Geng H, Yu Y, Liu J, Li M, Yang H, Yuan Y, Xu Y, Wu Y, Wu G, Ma X, Cheng L. Increased Nasal Blimp1 + Treg Cells After Sublingual Immunotherapy Reflect the Efficacy of Treatment in Allergic Rhinitis. Adv Ther 2024; 41:1698-1710. [PMID: 38443650 DOI: 10.1007/s12325-024-02819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) plays a pivotal role in altering the immune status and tissue responses in allergic rhinitis (AR). This study focuses on the impact of sublingual immunotherapy (SLIT) involving dust mite drops, exploring the modulation of regulatory T cells (Treg) and their specific marker, BLIMP1, in the nasal mucosa. METHODS Immune cells were isolated from nasal lavage fluid of patients with AR undergoing SLIT (n = 94). Treg cells were analyzed for BLIMP1 expression, and chemokine levels associated with Treg recruitment were assessed using Luminex assay. Patients were categorized on the basis of SLIT efficacy and followed for changes after discontinuation. RESULTS SLIT induced a significant increase in nasal Treg cells (7.09 ± 2.59% vs. 0.75 ± 0.27%, P < 0.0001). BLIMP1 expression in Treg cells notably increased after SLIT (0.36 ± 0.22% to 16.86 ± 5.74%, P < 0.0001). Ineffective SLIT cases exhibited lower levels of nasal Treg and Blimp1 + Treg cells (both P < 0.0001). Receiver operating characteristic (ROC) analysis confirmed their potential as efficacy predictors (AUC = 0.908 and 0.968, respectively). SLIT discontinuation led to a significant reduction in Treg and Blimp1 + Treg cells (P < 0.001), emphasizing their maintenance during treatment. Pro-inflammatory cytokines decreased (P < 0.001), while CCL2 associated with Treg recruitment increased (P = 0.0015). CONCLUSION Elevated nasal Blimp1 + Treg cells serve as a predictive biomarker for SLIT responsiveness in pediatric AR. Their influence on immunotherapy effectiveness contributes to a nuanced understanding of SLIT mechanisms, allowing for disease stratification and personalized treatment plans. This study offers scientific support for predicting SLIT efficacy, enhancing the prospects of improved treatment outcomes in AR.
Collapse
Affiliation(s)
- Yue Pan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Xinxin Zhang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huanting Geng
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yan Yu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Jianyong Liu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Menglin Li
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huijun Yang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yifang Yuan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yao Xu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yujia Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Geping Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China.
- Office of Science Education, Zhangjiagang Hospital Affiliated to Soochow University, 68 West Jiyang Road, Suzhou, 215000, China.
| | - Xingkai Ma
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
- Information Center, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Martín-Cruz L, Benito-Villalvilla C, Sirvent S, Angelina A, Palomares O. The Role of Regulatory T Cells in Allergic Diseases: Collegium Internationale Allergologicum (CIA) Update 2024. Int Arch Allergy Immunol 2024; 185:503-518. [PMID: 38408438 DOI: 10.1159/000536335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Allergy represents a major health problem of increasing prevalence worldwide with a high socioeconomic impact. Our knowledge on the molecular mechanisms underlying allergic diseases and their treatments has significantly improved over the last years. The generation of allergen-specific regulatory T cells (Tregs) is crucial in the induction of healthy immune responses to allergens, preventing the development and worsening of allergic diseases. SUMMARY In the last decades, intensive research has focused on the study of the molecular mechanisms involved in Treg development and Treg-mediated suppression. These mechanisms are essential for the induction of sustained tolerance by allergen-specific immunotherapy (AIT) after treatment discontinuation. Compelling experimental evidence demonstrated altered suppressive capacity of Tregs in patients suffering from allergic rhinitis, allergic asthma, food allergy, or atopic dermatitis, as well as the restoration of their numbers and functionality after successful AIT. KEY MESSAGE The better understanding of the molecular mechanisms involved in Treg generation during allergen tolerance induction might well contribute to the development of novel strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University, Madrid, Spain
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Sofía Sirvent
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| |
Collapse
|
10
|
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
11
|
Chiewchalermsri C, Sangkanjanavanich S, Pradubpongsa P, Mitthamsiri W, Jaisupa N, Jindarat S, Buranapraditkun S, Jacquet A, Sangasapaviliya A, Boonpiyathad T. Randomized, Double-Blind, Placebo-Controlled Trial of Vitamin D Supplementation in the Build-up Phase of House Dust Mite-Specific Immunotherapy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:336-347. [PMID: 37075792 DOI: 10.4168/aair.2023.15.3.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Vitamin D (VitD) is an immunomodulatory molecule capable of alleviating allergic symptoms. However, the effectiveness of allergen-specific immunotherapy (AIT) is not commonly evidenced in the early build-up phase. The aim of the study was to determine the potential of VitD supplementation in this treatment phase. METHODS Thirty-four house dust mite (HDM)-allergic adult patients treated with subcutaneous AIT were randomized to receive VitD2 60,000 IU/week or placebo for 10 weeks and followed up for 10 weeks. The primary endpoints were the symptom-medication score (SMS) and the treatment response rate. The secondary endpoints were eosinophil count and levels of plasma IL-10, Der p 2-specific IgG4, and dysfunctional regulatory T (CRTH2+ Treg) cells. RESULTS Of 34 patients, 15 in each group completed the study. Patients with VitD deficiency receiving a VitD supplement showed significantly lower mean change SMS than the placebo group in weeks 10 (mean difference -54.54%, P = 0.007) and 20 (mean difference -42.69%, P = 0.04). The percentage of treatment responders reached 78% and 50% in the VitD and placebo groups, respectively, and the effect remained in week 20 (89% and 60%). No significant difference was observed for the tested immunological read-outs, with the exception of the frequency of CRTH2+ Treg cells, which was remarkably reduced in the VitD-treated patients. Moreover, improvement in SMS was correlated to the number of CRTH2+ Treg cells. Our in vitro experiment indicated that VitD downregulated activation markers, whereas it improved the function of CRTH2+ Treg cells. CONCLUSIONS VitD supplementation in the build-up phase of AIT could relieve symptoms and decrease Treg cell dysfunction, especially in patients with VitD deficiency.
Collapse
Affiliation(s)
- Chirawat Chiewchalermsri
- Division of Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Division of Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panitan Pradubpongsa
- Division of Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Wat Mitthamsiri
- Division of Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Nattapon Jaisupa
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Sarawut Jindarat
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Atik Sangasapaviliya
- Division of Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Tadech Boonpiyathad
- Division of Allergy and Clinical Immunology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand.
| |
Collapse
|
12
|
Fernandes AMS, da Silva ES, Silveira EF, Belitardo EMMDA, Santiago LF, Silva RC, Dos Santos Alves V, Carneiro DM, Ferreira F, Jacquet A, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Recombinant T-cell epitope conjugation: A new approach for Dermatophagoides hypoallergen design. Clin Exp Allergy 2023; 53:198-209. [PMID: 36176209 DOI: 10.1111/cea.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.
Collapse
Affiliation(s)
- Antônio Márcio Santana Fernandes
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Leonardo Freire Santiago
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Raphael Chagas Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor Dos Santos Alves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Deise Malta Carneiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
13
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Qiao YL, Jiao WE, Xu S, Kong YG, Deng YQ, Yang R, Hua QQ, Chen SM. Allergen immunotherapy enhances the immunosuppressive effects of Treg cells to alleviate allergic rhinitis by decreasing PU-1+ Treg cell numbers. Int Immunopharmacol 2022; 112:109187. [PMID: 36037652 DOI: 10.1016/j.intimp.2022.109187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of Tregs and their subtypes in the treatment of allergic rhinitis with allergen immunotherapy (AIT) as well as the underlying mechanism. METHODS 1. Thirty-one healthy controls, 29 Allergic rhinitis (AR) patients and 16 AR patients treated with AIT were recruited. The total nasal symptom scores (TNSSs) were calculated. The serum levels of IgE, IL-2, TNF-α, IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-17 were measured. 2. Changes in the proportions of CD4+ T cells, Treg cells, Treg subtypes and Th1/Th2/Th9/Th17/Tfh cells in the peripheral blood of the subjects in the three groups were measured. 3. The correlations of Treg cells, Treg subtypes and TNSS with the levels of various cytokines in the AR group and AIT group were analysed. RESULTS 1. Compared with the control group, the TNSS and IgE, IL-5 and IL-6 levels in the AR group were significantly increased, while the IL-2, IFN-γ and IL-10 levels were significantly decreased (P < 0.05). Compared with the AR group, the TNSS and IgE, IL-5 and IL-6 levels in the AIT group were significantly decreased, while the IL-2, IFN-γ and IL-10 levels were significantly increased (P < 0.05). 2. Compared with the control group, the proportions of Tregs, GATA3+ Tregs and Th1 cells in the AR group were significantly reduced, while the proportions of PU-1+ Tregs, T-bet+ Tregs and Th2 cells were significantly increased (P < 0.05). Compared with the AR group, the proportions of Tregs and Th1 cells in the AIT group were significantly increased, while the proportions of PU-1+ Tregs and Th2 cells were decreased (P < 0.05). 3. Correlation analysis showed that Treg cell proportions were negatively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but positively correlated with the IL-2 and IL-10 levels (P < 0.05). PU-1+ Treg cell proportions were positively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but negatively correlated with the Treg cell proportions, IL-2 levels and IL-10 levels (P < 0.05). CONCLUSIONS AIT can reduce the proportions of PU-1+ Treg subtypes in AR patients. PU-1+ Treg cell numbers can potentially be used as an indicator to monitor the therapeutic effect of AIT on AR.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
15
|
Zhang J, Zou Y, Chen L, Xu Q, Wang Y, Xie M, Liu X, Zhao J, Wang CY. Regulatory T Cells, a Viable Target Against Airway Allergic Inflammatory Responses in Asthma. Front Immunol 2022; 13:902318. [PMID: 35757774 PMCID: PMC9226301 DOI: 10.3389/fimmu.2022.902318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a multifactorial disorder characterized by the airway chronic inflammation, hyper-responsiveness (AHR), remodeling, and reversible obstruction. Although asthma is known as a heterogeneous group of diseases with various clinical manifestations, recent studies suggest that more than half of the clinical cases are ‘‘T helper type 2 (Th2)-high’’ type, whose pathogenesis is driven by Th2 responses to an inhaled allergen from the environmental exposures. The intensity and duration of inflammatory responses to inhaled allergens largely depend on the balance between effector and regulatory cells, but many questions regarding the mechanisms by which the relative magnitudes of these opposing forces are remained unanswered. Regulatory T cells (Tregs), which comprise diverse subtypes with suppressive function, have long been attracted extensive attention owing to their capability to limit the development and progression of allergic diseases. In this review we seek to update the recent advances that support an essential role for Tregs in the induction of allergen tolerance and attenuation of asthma progression once allergic airway inflammation established. We also discuss the current concepts about Treg induction and Treg-expressed mediators relevant to controlling asthma, and the therapies designed based on these novel insights against asthma in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Bellinghausen I, Khatri R, Saloga J. Current Strategies to Modulate Regulatory T Cell Activity in Allergic Inflammation. Front Immunol 2022; 13:912529. [PMID: 35720406 PMCID: PMC9205643 DOI: 10.3389/fimmu.2022.912529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in industrialized countries. These diseases are characterized by a dominating type 2 immune response and reduced numbers of allergen-specific regulatory T (Treg) cells. Conventional allergen-specific immunotherapy is able to tip the balance towards immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells did not always lead to convincing beneficial results, partially because of limited stability of their regulatory phenotype activity. Besides genetic predisposition, it has become evident that environmental factors like a westernized lifestyle linked to modern sanitized living, the early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the development of allergic diseases. Epigenetic modification of Treg cells has been described as one important mechanism in this context. In this review, we summarize how environmental factors affect the number and function of Treg cells in allergic inflammation and how this knowledge can be exploited in future allergy prevention strategies as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Navas A, Ruiz-Leon B, Serrano P, Martí M, Espinazo ML, Blanco N, Molina J, Alonso C, Jurado A, Moreno-Aguilar C. Natural and Induced Tolerance to Hymenoptera Venom: A Single Mechanism? Toxins (Basel) 2022; 14:toxins14070426. [PMID: 35878164 PMCID: PMC9320229 DOI: 10.3390/toxins14070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Inducing tolerance in Hymenoptera-allergic patients, bee venom immunotherapy (BVIT) is a widely accepted method to treat severe allergy to bee stings. In order to increase the existing knowledge on the underlying immunological mechanisms and look for possible biomarkers predictive of efficacy, a group of 20 bee-venom-allergic patients (AG) were thoroughly examined during their first year of BVIT. In addition, the results of treated patients with those of an untreated group of 20 tolerant beekeepers (TG) who had previously shown a firm suppressor-regulatory profile were compared. Tolerance in AG patients was invariably associated with a significant regulatory response characterised by the expansion of Helios− subpopulation and increased IL-10, specific IgG4 (sIgG4), and kynurenine levels. Although specific IgE (sIgE) levels increased transiently, surprisingly, the T helper type 2 (Th2) population and IL-4 levels rose significantly after one year of immunotherapy. Thus, the picture of two parallel phenomena emerges: a tolerogenic response and an allergenic one. Comparing these results with those obtained from the TG, different immunological mechanisms appear to govern natural and acquired tolerance to immunotherapy. Of particular interest, the kynurenine levels and T regulatory (Treg) Helios− population could be proposed as new biomarkers of response to BVIT.
Collapse
Affiliation(s)
- Ana Navas
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Berta Ruiz-Leon
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Pilar Serrano
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Manuel Martí
- Pharmacology Department, Institute of Molecular Pathology Biomarkers, University of Extremadura (UEx), ARADyAL INS Carlos III, 10071 Cáceres, Spain;
| | - M Luisa Espinazo
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Nadine Blanco
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Juan Molina
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Corona Alonso
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| | - Aurora Jurado
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
- Correspondence: ; Tel.: +34-660-178-358
| | - Carmen Moreno-Aguilar
- UGC Inmunología-Alergología, Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain; (A.N.); (B.R.-L.); (P.S.); (N.B.); (J.M.); (C.A.); (C.M.-A.)
- GC01 Inmunología y Alergología Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, ARADyAL INS Carlos III, 14004 Cordoba, Spain;
| |
Collapse
|
18
|
Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen. Biomolecules 2022; 12:biom12040518. [PMID: 35454107 PMCID: PMC9030487 DOI: 10.3390/biom12040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Allergen immunotherapy is a promising treatment for allergic diseases that induce immune tolerance through the administration of specific allergens. In this study, we investigate the efficacy of sublingual immunotherapy (SLIT) in asthmatic patients with SAR-JCP and the dynamics of the parameters before and after treatment in a real-world setting. This was a prospective single-center observational study. Patients with asthma and SAR-JCP (n = 24) were recruited for this study and assessed using symptom questionnaires before SLIT and a year after the SLIT. In addition, a respiratory function test, forced oscillation technique, and blood sampling test were performed during the off-season before and after SLIT. The one-year SLIT for asthma patients with SAR-JCP significantly improved not only allergic rhinitis symptoms, but also asthma symptoms during the JCP dispersal season, and significantly improved airway resistance during the off-season. The change in the asthma control test and the visual analog scale score during the season before and after SLIT was negatively and positively correlated with the change in peripheral blood γδ T cells off-season before and after SLIT, respectively. It was suggested that improvement in asthma symptoms during the JCP dispersal season after SLIT was associated with reduced peripheral blood γδ T cells.
Collapse
|
19
|
Liu C, Song Y, Wu T, Shiung K, Chen I, Chang T, Liang S, Yen H. Targeting glycolysis in Th2 cells by pterostilbene attenuates clinical severities in an asthmatic mouse model and IL‐4 production in peripheral blood from asthmatic patients. Immunology 2022; 166:222-237. [DOI: 10.1111/imm.13469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Chuan‐Teng Liu
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Chinese Medicine Research Center China Medical University Taichung Taiwan
| | - Ying‐Chyi Song
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Tsai‐Chen Wu
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- School of Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Ko‐Chieh Shiung
- Department of Microbiology and Immunology The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - I‐Hsuan Chen
- Department of Humanities Brandeis University School of Arts & Sciences Waltham MA USA
| | - Tung‐Ti Chang
- School of Post‐Baccalaureate Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Shinn‐Jye Liang
- Division of Pulmonary and Critical Care Department of Internal Medicine China Medical University Hospital Taichung Taiwan
| | - Hung‐Rong Yen
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Chinese Medicine Research Center China Medical University Taichung Taiwan
- School of Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
- Department of Chinese Medicine China Medical University Hospital Taichung Taiwan
- Department of Medical Laboratory Science and Biotechnology Asia University Taichung Taiwan
| |
Collapse
|
20
|
de Oliveira Resende R, José de Oliveira V, Sousa Correa A, Trica de Araújo P, Akio Taketomi E. COVID-19 scenario and recommendations on the continuity of immunobiological therapy in patients with atopic asthma in Brazil and Latin America. Expert Rev Respir Med 2022; 16:211-220. [PMID: 35034544 DOI: 10.1080/17476348.2022.2027758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
INTRODUCTION With the abrupt establishment of the COVID-19 pandemic, treatment for immunological diseases may be influenced by the SARS-CoV-2 infection. Immunobiologics play a pivotal role in the management of severe symptoms of allergy, and an opinion regarding the continuity of this treatment during the COVID-19 pandemic must be issued. AREAS COVERED In Brazil and other countries, patients with severe asthma have been included in the priority groups for COVID-19 vaccination, even those who are undergoing immunobiological therapy. Data are insufficient to support the influence of this therapy on severe COVID-19. Therapeutic strategies for asthma and guidelines/statements of the main societies of Allergy in Latin America on the continuity of treatment with immunobiologics during the COVID-19 pandemic were obtained from the institutional websites and papers published up to September 2021. EXPERT OPINION Although the association between asthma and COVID-19 has been under investigation, immunobiological treatment should follow the consensus-based statements recommending the maintenance of the therapy unless the patient is infected by the SARS-CoV-2. However, it must be closely followed by the medical assistant.
Collapse
Affiliation(s)
- Rafael de Oliveira Resende
- Laboratory of Allergy and Clinical Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Vinícius José de Oliveira
- Laboratory of Allergy and Clinical Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Alessandro Sousa Correa
- Laboratory of Allergy and Clinical Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Pedro Trica de Araújo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Ernesto Akio Taketomi
- Laboratory of Allergy and Clinical Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| |
Collapse
|
21
|
Tian GX, Peng KP, Liu MH, Tian DF, Xie HQ, Wang LW, Guo YY, Zhou S, Mo LH, Yang PC. CD38+ B cells affect immunotherapy for allergic rhinitis. J Allergy Clin Immunol 2022; 149:1691-1701.e9. [DOI: 10.1016/j.jaci.2022.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
22
|
Zhang Y, Zhu K, Xia C, Chen J, Yu C, Gao T, Yan J, Zhang H, Ren X. Multiple-Cytokine Profiling: A Novel Method for Early Prediction of the Efficacy of Sublingual Immunotherapy in Allergic Rhinitis Patients. J Inflamm Res 2022; 15:603-612. [PMID: 35115808 PMCID: PMC8803612 DOI: 10.2147/jir.s350003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Yanni Zhang
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Cui Xia
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jingguo Chen
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Chao Yu
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Tianxi Gao
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Yan
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Huihui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoyong Ren
- Department of Otolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Correspondence: Xiaoyong Ren, Email
| |
Collapse
|
23
|
van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Advances in allergen-specific immune cell measurements for improved detection of allergic sensitization and immunotherapy responses. Allergy 2021; 76:3374-3382. [PMID: 34355403 DOI: 10.1111/all.15036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Over the past two decades, precision medicine has advanced diagnostics and treatment of allergic diseases. Component-resolved analysis of allergen sensitization facilitates stratification of patients. Furthermore, new formulations of allergen immunotherapy (AIT) products can more effectively deliver the relevant components. Molecular insights from the identification of allergen component sensitization and clinical outcomes of treatment with new AIT formulations can now be utilized for a deeper understanding of the nature of the pathogenic immune response in allergy and how this can be corrected by AIT. Fundamental in these processes are the allergen-specific B and T cells. Within the large B- and T-cell compartments, only those that specifically recognize the allergen with their immunoglobulin (Ig) or T-cell receptor (TCR), respectively, are of clinical relevance. With peripheral blood allergen-specific B- and T-cell frequencies below 1%, bulk cell analysis is typically insufficiently sensitive. We here review the latest technologies to detect allergen-specific B and T cells, as well as new developments in utilizing these tools for diagnostics and therapy monitoring to advance precision medicine for allergic diseases.
Collapse
Affiliation(s)
- Menno C. van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
24
|
Zhang Y, Lan F, Zhang L. Advances and highlights in allergic rhinitis. Allergy 2021; 76:3383-3389. [PMID: 34379805 DOI: 10.1111/all.15044] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
Allergic rhinitis (AR) is a growing public health, medical and economic problem worldwide. The current review describes the major discoveries related to AR during the past 2 years, including risk factors for the prevalence of AR, the corresponding diagnostic strategy, precise underlying immunological mechanisms, and efficient therapies for AR during the ongoing global "coronavirus disease 2019" (COVID-19) pandemic. The review further attempts to highlight future research perspectives. Increasing evidence suggests that environmental exposures, climate changes, and lifestyle are important risk factors for AR. Consequently, detailed investigation of the exposome and the connection between environmental exposures and health in the future should provide better risk profiles instead of single predictors, and also help mitigate adverse health outcomes in allergic diseases. Although patients with dual AR, a newly defined AR phenotype, display perennial and seasonal allergens-related nasal symptoms, they are only allergic to seasonal allergens, indicating the importance of measuring inflammation at the local sites. Herein, we suggest that a combination of precise diagnosis in local sites and traditional diagnostic methods may enhance the precision medicine-based approach for management of AR; however, this awaits further investigations. Apart from traditional treatments, social distancing, washing hands, and disinfection are also required to better manage AR patients in the ongoing global COVID-19 pandemic. Despite recent advances in understanding the immune mechanisms underlying the effects of allergen immunotherapy (AIT), further understanding changes of cell profiles after AIT and accurately evaluate the efficacy of AIT are required.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - Luo Zhang
- Department of Allergy Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
| |
Collapse
|
25
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
26
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
27
|
Petrarca C, Lanuti P, Petrosino MI, Di Pillo S, Mistrello G, Compalati E, Otzuki T, Marchisio M, Pierdomenico L, Paganelli R, Di Gioacchino M. Peripheral effector memory regulatory T cells are incremented and functionally enhanced in successful mite monomeric allergoid sublingual immunotherapy. Allergy 2021; 76:2208-2211. [PMID: 33284458 PMCID: PMC8359259 DOI: 10.1111/all.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Claudia Petrarca
- Department of Medicine and Science of Aging G. d’Annunzio University Chieti Italy
- Center for Advanced Science and Technology (CAST) G. d’Annunzio University Chieti Italy
| | - Paola Lanuti
- Department of Medicine and Science of Aging G. d’Annunzio University Chieti Italy
- Center for Advanced Science and Technology (CAST) G. d’Annunzio University Chieti Italy
| | | | | | | | | | - Takemi Otzuki
- Department of Hygiene Kawasaki Medical School Okayama Japan
| | - Marco Marchisio
- Department of Medicine and Science of Aging G. d’Annunzio University Chieti Italy
- Center for Advanced Science and Technology (CAST) G. d’Annunzio University Chieti Italy
| | - Laura Pierdomenico
- Department of Medicine and Science of Aging G. d’Annunzio University Chieti Italy
- Center for Advanced Science and Technology (CAST) G. d’Annunzio University Chieti Italy
| | - Roberto Paganelli
- Department of Medicine and Science of Aging G. d’Annunzio University Chieti Italy
- Center for Advanced Science and Technology (CAST) G. d’Annunzio University Chieti Italy
| | - Mario Di Gioacchino
- Department of Medicine and Science of Aging G. d’Annunzio University Chieti Italy
- Center for Advanced Science and Technology (CAST) G. d’Annunzio University Chieti Italy
- Foundation for Clinical Immunotherapy and Advanced Biological Treatments Pescara Italy
| |
Collapse
|
28
|
Gargano D, Appanna R, Santonicola A, De Bartolomeis F, Stellato C, Cianferoni A, Casolaro V, Iovino P. Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients 2021; 13:1638. [PMID: 34068047 PMCID: PMC8152468 DOI: 10.3390/nu13051638] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Adverse food reactions include immune-mediated food allergies and non-immune-mediated intolerances. However, this distinction and the involvement of different pathogenetic mechanisms are often confused. Furthermore, there is a discrepancy between the perceived vs. actual prevalence of immune-mediated food allergies and non-immune reactions to food that are extremely common. The risk of an inappropriate approach to their correct identification can lead to inappropriate diets with severe nutritional deficiencies. This narrative review provides an outline of the pathophysiologic and clinical features of immune and non-immune adverse reactions to food-along with general diagnostic and therapeutic strategies. Special emphasis is placed on specific nutritional concerns for each of these conditions from the combined point of view of gastroenterology and immunology, in an attempt to offer a useful tool to practicing physicians in discriminating these diverging disease entities and planning their correct management. We conclude that a correct diagnostic approach and dietary control of both immune- and non-immune-mediated food-induced diseases might minimize the nutritional gaps in these patients, thus helping to improve their quality of life and reduce the economic costs of their management.
Collapse
Affiliation(s)
- Domenico Gargano
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Ramapraba Appanna
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Santonicola
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Fabio De Bartolomeis
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Cianferoni
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Paola Iovino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| |
Collapse
|
29
|
Tynecka M, Moniuszko M, Eljaszewicz A. Old Friends with Unexploited Perspectives: Current Advances in Mesenchymal Stem Cell-Based Therapies in Asthma. Stem Cell Rev Rep 2021; 17:1323-1342. [PMID: 33649900 PMCID: PMC7919631 DOI: 10.1007/s12015-021-10137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have a great regenerative and immunomodulatory potential that was successfully tested in numerous pre-clinical and clinical studies of various degenerative, hematological and inflammatory disorders. Over the last few decades, substantial immunoregulatory effects of MSC treatment were widely observed in different experimental models of asthma. Therefore, it is tempting to speculate that stem cell-based treatment could become an attractive means to better suppress asthmatic airway inflammation, especially in subjects resistant to currently available anti-inflammatory therapies. In this review, we discuss mechanisms accounting for potent immunosuppressive properties of MSCs and the rationale for their use in asthma. We describe in detail an intriguing interplay between MSCs and other crucial players in the immune system as well as lung microenvironment. Finally, we reveal the potential of MSCs in maintaining airway epithelial integrity and alleviating lung remodeling.
Collapse
Affiliation(s)
- Marlena Tynecka
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24A, Białystok, 15-276, Poland.
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland.
| |
Collapse
|
30
|
Rostaher A, Rodriguez-Campos S, Deplazes P, Zwickl L, Akdis AC, Urwyler A, Wheeler DW, Audergon S, Fischer NM, Favrot C. Atopic dermatitis in West Highland white terriers - Part III: early life peripheral blood regulatory T cells are reduced in atopic dermatitis. Vet Dermatol 2021; 32:239-e63. [PMID: 33565202 DOI: 10.1111/vde.12939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Regulatory T (Treg) cells are involved in homeostasis of immune regulation and suppression of inflammation and T-cell polarisation. Current knowledge regarding the role of Treg cells in the initiation of allergic disease is limited for both people and dogs. OBJECTIVES To explore the role of circulating Treg cells and their possible influencing factors, on the development of atopic dermatitis (AD). METHODS AND MATERIALS This study followed part of a birth cohort of West Highland white terrier dogs and classified them according to eventual clinical signs of AD (i.e. allergic versus healthy). The Treg phenotypes were assessed longitudinally by flow cytometry at 3, 3-12 and 12-36 months of age, and associated with development of AD. Different early life antigenic factors [endotoxins and allergens in house dust, Toxocara canis-specific immunoglobulin (Ig)E/IgG, allergen-specific and total IgE, skin microbiota] were measured at three months of age, and a possible association with Treg cell levels was assessed. RESULTS The percentages of CD4+ CD25+ Foxp3+ Treg cells in healthy dogs were significantly higher at in 3-month-old (mean 4.5% healthy versus 3.3% allergic; P = 0.021) and <1-year-old (4.0% healthy versus 2.9% allergic; P = 0.028) dogs when compared to percentages of Treg cells in dogs that developed AD. There was a significantly positive correlation between the relative abundance of Lachnospiraceae on the skin and CD4+ CD25+ Foxp3+ Treg cells in puppies that became allergic (r = 0.568, P = 0.017). CONCLUSION AND CLINICAL IMPORTANCE Further large-scale studies are needed to identify the practical value of these findings in AD diagnosis, treatment and prevention.
Collapse
Affiliation(s)
- Ana Rostaher
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Sabrina Rodriguez-Campos
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern, 3012, Switzerland.,Bacteriology and Mycology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, 0454, Norway
| | - Peter Deplazes
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Lena Zwickl
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - A Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere Strasse 22, Davos, 7270, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Herman-Burchard-Strasse 1, Davos, 7265, Switzerland
| | | | - David W Wheeler
- Companion Animal Research, Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, 46140, USA
| | - Sabrina Audergon
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Nina Maria Fischer
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Claude Favrot
- Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| |
Collapse
|
31
|
Drazdauskaitė G, Layhadi JA, Shamji MH. Mechanisms of Allergen Immunotherapy in Allergic Rhinitis. Curr Allergy Asthma Rep 2020; 21:2. [PMID: 33313967 PMCID: PMC7733588 DOI: 10.1007/s11882-020-00977-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Allergic rhinitis (AR) is a chronic inflammatory immunoglobulin (Ig) E-mediated disease of the nasal mucosa that can be triggered by the inhalation of seasonal or perennial allergens. Typical symptoms include sneezing, rhinorrhea, nasal itching, nasal congestion and symptoms of allergic conjunctivitis. AR affects a quarter of the population in the United States of America and Europe. RECENT FINDINGS AR has been shown to reduce work productivity in 36-59% of the patients with 20% reporting deteriorated job attendance. Moreover, 42% of children with AR report reduced at-school productivity and lower grades. Most importantly, AR impacts the patient's quality of life, due to sleep deprivation. However, a proportion of patients fails to respond to conventional medication and opts for the allergen immunotherapy (AIT), which currently is the only disease-modifying therapeutic option. AIT can be administered by either subcutaneous (SCIT) or sublingual (SLIT) route. Both routes of administration are safe, effective, and can lead to tolerance lasting years after treatment cessation. Both innate and adaptive immune responses that contribute to allergic inflammation are suppressed by AIT. Innate responses are ameliorated by reducing local mast cell, basophil, eosinophil, and circulating group 2 innate lymphoid cell frequencies which is accompanied by decreased basophil sensitivity. Induction of allergen-specific blocking antibodies, immunosuppressive cytokines, and regulatory T and B cell phenotypes are key pro-tolerogenic adaptive immune responses. CONCLUSION A comprehensive understanding of these mechanisms is necessary for optimal selection of AIT-responsive patients and monitoring treatment efficacy. Moreover, it could inspire novel and more efficient AIT approaches.
Collapse
Affiliation(s)
- Gabija Drazdauskaitė
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, 1st Floor, Room 111, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, 1st Floor, Room 111, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, 1st Floor, Room 111, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
32
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
33
|
Meng Y, Wang C, Zhang L. Advances and novel developments in allergic rhinitis. Allergy 2020; 75:3069-3076. [PMID: 32901931 DOI: 10.1111/all.14586] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR) is an upper airway disease with high prevalence in the world, and therefore needs to be thoroughly investigated and treated accordingly. Although the mechanisms underlying the pathology and treatment of AR have been widely studied, many aspects of AR are still unclear and warrant further investigations. The purpose of the present review was therefore to report recently published papers, which highlight the novel mechanisms and treatments of AR. These include role of environment, important proteins and cells, and some other factors in the pathogenesis of AR; as well as the role of immunotherapy and biologics in the treatment of AR.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen Hospital Capital Medical University Beijing China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases Chinese Academy of Medical Sciences Beijing China
- Department of Allergy Beijing TongRen Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
34
|
Ohashi-Doi K, Lund K, Mitobe Y, Okamiya K. State of the Art: Development of a Sublingual Allergy Immunotherapy Tablet for Allergic Rhinitis in Japan. Biol Pharm Bull 2020; 43:41-48. [PMID: 31902930 DOI: 10.1248/bpb.b19-00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allergic rhinitis (AR) caused by house dust mite (HDM) and Japanese cedar pollen (JCP) represents a significant, expanding health problem in Japan. Allergic symptoms often have a severe impact on the QOL such as sleep disturbance and reduced school and work performance. In addition to the classical symptoms, AR is known to be a risk factor for the development of allergic asthma, a potentially life-threatening condition. Allergy immunotherapy (AIT) is a well-documented, safe, effective treatment option for respiratory allergic disease. It has been demonstrated that AIT can provide relief from clinical symptoms and that AIT has the potential to provide long-term post-treatment effect. Although the mechanism of AIT is not fully understood, it can actively modulate protective allergen-reactive pathways of the immune system and alter the natural course of disease. Unlike pharmacotherapy, AIT addresses the basic immunological mechanisms that are responsible for the development and persistence of allergic conditions. Currently two main routes of AIT administration are commonly available, subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). Both SCIT and SLIT are clinically effective, and SLIT is particularly well tolerated, with a lower risk of systemic allergic reactions compared with SCIT. To date, SLIT tablets have been developed for a range of different allergies including HDM and JCP and are the best-documented AIT treatment form. Here we introduce the current status of development of a SLIT tablet in Japan for AR, examine the clinical aspects and mechanism of action of AIT, and discuss the future directions of SLIT.
Collapse
|
35
|
Boonpiyathad T, Tantilipikorn P, Ruxrungtham K, Pradubpongsa P, Mitthamsiri W, Piedvache A, Thantiworasit P, Sirivichayakul S, Jacquet A, Suratannon N, Chatchatee P, Morisaki N, Saito H, Sangasapaviriya A, Matsumoto K, Morita H. IL-10-producing innate lymphoid cells increased in patients with house dust mite allergic rhinitis following immunotherapy. J Allergy Clin Immunol 2020; 147:1507-1510.e8. [PMID: 33137358 DOI: 10.1016/j.jaci.2020.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023]
Affiliation(s)
| | - Pongsakokorn Tantilipikorn
- Department of Otorhinolaryngology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kiat Ruxrungtham
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | | | - Wat Mitthamsiri
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Aurélie Piedvache
- Department of Social Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- Pediatric Allergy and Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Pantipa Chatchatee
- Pediatric Allergy and Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Naho Morisaki
- Department of Social Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
36
|
Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy. J Allergy Clin Immunol 2020; 147:1865-1877. [PMID: 33039478 DOI: 10.1016/j.jaci.2020.08.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the efficacy of allergen-specific immunotherapy (AIT), the role of trained immunity and tolerance in this process has not been elucidated. OBJECTIVE Here, we have performed a comprehensive longitudinal analysis of the systemic innate immune cell repertoire during the course of AIT. METHODS Patients with allergy received standard preseasonal subcutaneous AIT with allergoids to birch and/or grass. Healthy controls were monitored without any intervention. Flow cytometry of innate lymphoid cell (ILC), natural killer cell, monocyte cell, and dendritic cell (DC) subsets was performed at baseline, 3 months (birch season), 6 months (grass seasons), and 12 months after the therapy in patients or at similar seasonal time points in controls. Additional analyses were performed in the third-year birch and grass season. RESULTS We observed a durable decrease in group 2 ILCs and an increase of group 1 ILCs after AIT, with dynamic changes in their composition. We found that an expansion of CD127+CD25++ clusters caused observed shifts in the heterogeneity of group 1 ILCs. In addition, we observed development of CD127+CD25++c-Kit+ group 3 ILC clusters. Moreover, we found an increase in the number of intermediate monocytes in parallel with a reduction in nonclassical monocytes during the first year after AIT. Classical and intermediate monocytes presented significant heterogeneity in patients with allergy, but AIT reduced the HLA-DR++ clusters. Finally, an increase in plasmacytoid DCs and CD141+ myeloid DCs was observed in individuals with allergy, whereas the number of CD1c+ myeloid DCs was reduced during the first year of AIT. CONCLUSION AIT induces changes in the composition and heterogeneity of circulating innate immune cells and brings them to the level observed in healthy individuals. Monitoring of ILCs, monocytes, and DCs during AIT might serve as a novel biomarker strategy.
Collapse
|
37
|
Kucuksezer UC, Ozdemir C, Cevhertas L, Ogulur I, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol Int 2020; 69:549-560. [PMID: 32900655 DOI: 10.1016/j.alit.2020.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the mainstay treatment for the cure of allergic disorders, with depicted efficacy and safety by several trials and meta-analysis. AIT impressively contributes to the management of allergic rhinitis, asthma and venom allergies. Food allergy is a new arena for AIT with promising results, especially via novel administration routes. Cell subsets with regulatory capacities are induced during AIT. IL-10 and transforming growth factor (TGF)-β are the main suppressor cytokines, in addition to surface molecules such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) within the micro milieu. Modified T- and B-cell responses and antibody isotypes, increased activity thresholds for eosinophils, basophils and mast cells and consequent limitation of inflammatory cascades altogether induce and maintain a state of sustained allergen-specific unresponsiveness. Established tolerance is reflected into the clinical perspectives as improvement of allergy symptoms together with reduced medication requirements and evolved disease severity. Long treatment durations, costs, reduced patient compliance and risk of severe, even life-threatening adverse reactions during treatment stand as major limiting factors for AIT. By development of purified non-allergenic, highly-immunogenic modified allergen extracts, and combinational usage of them with novel adjuvant molecules via new routes may shorten treatment durations and possibly reduce these drawbacks. AIT is the best model for custom-tailored therapy of allergic disorders. Better characterization of disease endotypes, definition of specific biomarkers for diagnosis and therapy follow-up, as well as precision medicine approaches may further contribute to success of AIT in management of allergic disorders.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Allergen immunotherapy is the only treatment modality which alters the natural course of allergic diseases by restoring immune tolerance against allergens. Deeper understanding of tolerance mechanisms will lead to the development of new vaccines, which target immune responses and promote tolerance. RECENT FINDINGS Successful allergen immunotherapy (AIT) induces allergen-specific peripheral tolerance, characterized mainly by the generation of allergen-specific Treg cells and reduction of Th2 cells. At the early phase, AIT leads to a decrease in the activity and degranulation of mast cells and basophils and a decrease in inflammatory responses of eosinophils in inflamed tissues. Treg cells show their effects by secreting inhibitory cytokines including interleukin (IL)-10, transforming growth factor-β, interfering with cellular metabolisms, suppressing antigen presenting cells and innate lymphoid cells (ILCs) and by cytolysis. AIT induces the development of regulatory B cells producing IL-10 and B cells expressing allergen-specific IgG4. Recent investigations have demonstrated that AIT is also associated with the formation of ILC2reg and DCreg cells which contribute to tolerance induction. SUMMARY Research done so far, has shown that multiple molecular and cellular factors are dysregulated in allergic diseases and modified by AIT. Studies should now focus on finding the best target and ideal biomarkers to identify ideal candidates for AIT.
Collapse
|
39
|
Zissler UM, Schmidt-Weber CB. Predicting Success of Allergen-Specific Immunotherapy. Front Immunol 2020; 11:1826. [PMID: 32983092 PMCID: PMC7477353 DOI: 10.3389/fimmu.2020.01826] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 01/11/2023] Open
Abstract
The immune response to antigens is a key aspect of immunology, as it provides opportunities for therapeutic intervention. However, the induction of immunological tolerance is an evolving area that is still not sufficiently understood. Allergen immunotherapy (AIT) is a disease-modulating therapy available for immunoglobulin E (IgE)-mediated airway diseases such as allergic rhinitis or allergic asthma. This disease-modifying effect is not only antigen driven but also antigen specific. The specificity and also the long-lasting, often life-long symptom reduction make the therapy attractive for patients. Additionally, the chance to prevent the onset of asthma by treating allergic rhinitis with AIT is important. The mechanism and, in consequence, therapy guiding biomarker are still in its infancy. Recent studies demonstrated that the interaction of T, B, dendritic, and epithelial cells and macrophages are individually contributing to clinical tolerance and therefore underline the need for a system to monitor the progress and success of AIT. As clinical improvement is often accompanied by decreases in numbers of effector cells in the tissue, analyses of cellular responses and cytokine pattern provide a good insight into the mechanisms of AIT. The suppression of type-2 immunity is accompanied by decreased levels of type-2 mediators such as epithelial CCL-26 and interleukin (IL)-4, IL-13 produced by T cells that are constituting the immune memory and are increasingly controlled by regulatory T and B cells following AIT. Immune tolerance is also associated with increased production of type-1 mediators like interferon-gamma, tissue-homeostating factors like indoleamine 2,3-dioxygenase (IDO) expressed by macrophages and dendritic cells. Although these individual genes were convincingly demonstrated to play a role immune tolerance, they do not predict therapy outcomes of AIT on an individual level. Therefore, combinations or ratios of gene expression levels are a promising way to achieve predictive value and definition of helpful biomarker.
Collapse
Affiliation(s)
- Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), and Member of the Helmholtz I&I Initiative, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), and Member of the Helmholtz I&I Initiative, Munich, Germany
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The establishment of long-term clinical tolerance in AIT requires the involvement of basophils, mast cells, allergen-specific regulatory T and B cells, downregulation of effector type 2 responses, and increase in production of specific IgG, particularly immunglobulin G4 (IgG4) antibodies. This review aims to provide an overview of the role of B cells in AIT, their mechanism of action, and their potential for improving AIT. RECENT FINDINGS In-depth research of B cells has paved the way for improved diagnosis and research on allergic diseases. B cells play a central role in allergy and allergen tolerance through the production of immunglobulin E (IgE)-blocking antibodies. However, an increasing body of evidence has emerged supporting a role for B cells in regulating immune responses that extends beyond the production of antibodies. Regulatory B cells play an important role in immunosuppression, mediated by secretion of anti-inflammatory cytokines. SUMMARY Successful AIT establishes the reinstatement of immune tolerance toward allergens, reduces allergic symptoms, and improves clinical treatments in patients. B cells play a central role in this process through antibody-independent immune regulatory processes in addition to the production of IgE-blocking antibodies.
Collapse
|
41
|
Lan F, Zhang N, Bachert C, Zhang L. Stability of regulatory T cells in T helper 2-biased allergic airway diseases. Allergy 2020; 75:1918-1926. [PMID: 32124987 DOI: 10.1111/all.14257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells potentially suppress the deleterious activities of effector T cells and maintain a state of tolerance against antigens in the airway mucosa. A decrease in the number and function of Treg cells is observed in T helper 2 (Th2)-biased allergic airway diseases. However, adoptive transfer of naturally occurring Treg (tTreg) cells or peripherally derived Treg (pTreg) cells in asthmatic mouse models did not yield satisfactory results in any previous studies. Here, we review the recent progress in the identification and plasticity of tTreg and pTreg cells in Th2-biased airway diseases and summarize the factors affecting the stability and function of Treg cells. This review may serve as foundation for understanding the molecular mechanisms underlying the stability of tTreg and pTreg cells and development of effective strategies for treating allergic airway diseases.
Collapse
Affiliation(s)
- Feng Lan
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| | - Nan Zhang
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
42
|
Lee J, Kim B, Chu H, Zhang K, Kim H, Kim JH, Kim SH, Pan Y, Noh JY, Sun Z, Lee J, Jeong KY, Park KH, Park JW, Kupper TS, Park CO, Lee KH. FABP5 as a possible biomarker in atopic march: FABP5-induced Th17 polarization, both in mouse model and human samples. EBioMedicine 2020; 58:102879. [PMID: 32711257 PMCID: PMC7387782 DOI: 10.1016/j.ebiom.2020.102879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023] Open
Abstract
Background While the incidence of patients with atopic dermatitis (AD) with atopic march (AM) showing respiratory allergy is steadily rising, the pathomechanism is still unknown. There are currently no biomarkers to predict progression of AM. Methods To explore the mechanism of AM, patients with AD and AM and healthy controls were recruited and RNA microarray, flow cytometry, quantitative real-time polymerase chain reaction, and immunofluorescence staining were performed. We also co-cultured dendritic cells and CD4+T cells with various Dermatophagoides farinae allergen fractions. Cytokine levels were evaluated using enzyme-linked immunosorbent assay. Findings Both fatty-acid-binding protein 5 (FABP5) and Th17-related genes were more highly expressed in AM. FABP5 knockdown significantly decreased Th17-inducing cytokines in keratinocytes and IL-17A in T cells from AM patients. Further confirmation was obtained using an AM mice model compared to mice without AM. Der f 1, a major D. farinae allergen, increased FABP5 and IL-17A expression in T cells from AM patients. Higher serum FABP5 levels from AM patients were positively correlated with serum IL-17A levels. Interpretation FABP5 expression, possibly enhanced by higher epicutaneous and respiratory sensitization to Der f 1, may directly promote Th17 responses in AD patients with AM. Thus, AM progression can be explained by Th17 reaction induced by FABP5. FABP5 was identified as a potential biomarker in AM. Funding This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT; No. NRF-2017R1A2B4009568), grants of the Korean Health Technology R&D Project, Ministry for Health, Welfare & Family Affairs, and the Republic of Korea (HI13C0010, HI14C1324, HI14C1799).
Collapse
Affiliation(s)
- Jungsoo Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea; Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea
| | - Bomi Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Howard Chu
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeran Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Hye Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Hyeong Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youdong Pan
- Department of Dermatology & Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, Harvard Medical School, Boston, MA, USA
| | - Ji Yeon Noh
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - ZhengWang Sun
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jongsun Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Yong Jeong
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Thomas S Kupper
- Department of Dermatology & Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, Harvard Medical School, Boston, MA, USA
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Kwang Hoon Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea; Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Boonpiyathad T, Pradubpongsa P, Mitthamsiri W, Satitsuksanoa P, Jacquet A, Sangasapaviliya A. Allergen-specific immunotherapy boosts allergen-specific IgD production in house dust mite-sensitized asthmatic patients. Allergy 2020; 75:1457-1460. [PMID: 31769883 DOI: 10.1111/all.14133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Tadech Boonpiyathad
- Division of Allergy and Clinical Immunology Department of Medicine Phramongkutklao Hospital and Phramongkutklao College of Medicine Bangkok Thailand
| | - Panitan Pradubpongsa
- Division of Allergy and Clinical Immunology Department of Medicine Phramongkutklao Hospital and Phramongkutklao College of Medicine Bangkok Thailand
| | - Wat Mitthamsiri
- Division of Allergy and Clinical Immunology Department of Medicine Phramongkutklao Hospital and Phramongkutklao College of Medicine Bangkok Thailand
| | | | - Alain Jacquet
- Faculty of Medicine Center of Excellence in Vaccine Research and Development Chulalongkorn University Bangkok Thailand
| | - Atik Sangasapaviliya
- Division of Allergy and Clinical Immunology Department of Medicine Phramongkutklao Hospital and Phramongkutklao College of Medicine Bangkok Thailand
| |
Collapse
|
44
|
da Silva ES, Aglas L, Pinheiro CS, de Andrade Belitardo EMM, Silveira EF, Huber S, Torres RT, Wallner M, Briza P, Lackner P, Laimer J, Pacheco LGC, Cruz ÁA, Alcântara-Neves NM, Ferreira F. A hybrid of two major Blomia tropicalis allergens as an allergy vaccine candidate. Clin Exp Allergy 2020; 50:835-847. [PMID: 32314444 PMCID: PMC7384089 DOI: 10.1111/cea.13611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Introduction Allergen‐specific immunotherapy (AIT) represents a curative approach for treating allergies. In the tropical and subtropical regions of the world, Blomia tropicalis (Blo t 5 and Blo t 21) is the likely dominant source of indoor allergens. Aim To generate a hypoallergenic Blo t 5/Blo t 21 hybrid molecule that can treat allergies caused by B tropicalis. Methods Using in silico design of B tropicalis hybrid proteins, we chose two hybrid proteins for heterologous expression. Wild‐type Blo t 5/Blo t 21 hybrid molecule and a hypoallergenic version, termed BTH1 and BTH2, respectively, were purified by ion exchange and size exclusion chromatography and characterized by physicochemical, as well as in vitro and in vivo immunological, experiments. Results BTH1, BTH2 and the parental allergens were purified to homogeneity and characterized in detail. BTH2 displayed the lowest IgE reactivity that induced basophil degranulation using sera from allergic rhinitis and asthmatic patients. BTH2 essentially presented the same endolysosomal degradation pattern as the shortened rBlo t 5 and showed a higher resistance towards degradation than the full‐length Blo t 5. In vivo immunization of mice with BTH2 led to the production of IgG antibodies that competed with human IgE for allergen binding. Stimulation of splenocytes from BTH2‐immunized mice produced higher levels of IL‐10 and decreased secretion of IL‐4 and IL‐5. In addition, BTH2 stimulated T‐cell proliferation in PBMCs isolated from allergic patients, with secretion of higher levels of IL‐10 and lower levels of IL‐5 and IL‐13, when compared to parental allergens. Conclusions and Clinical Relevance BTH2 is a promising hybrid vaccine candidate for immunotherapy of Blomia allergy. However, further pre‐clinical studies addressing its efficacy and safety are needed.
Collapse
Affiliation(s)
- Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programa de Pós-Graduação em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Natal, Brazil.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Emília M M de Andrade Belitardo
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programa de Pós-Graduação em Imunologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Sara Huber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Rogério Tanan Torres
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Michael Wallner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Lackner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Josef Laimer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Luis Gustavo C Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Álvaro A Cruz
- Núcleo de Excelência de Asma da, Universidade Federal da Bahia, Salvador, Brazil
| | - Neuza Maria Alcântara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programa de Pós-Graduação em Biotecnologia da Rede Nordeste de Biotecnologia (RENORBIO), Natal, Brazil.,Programa de Pós-Graduação em Imunologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
45
|
Yu D, Liu JQ, Mo LH, Luo XQ, Liu ZQ, Wu GH, Yang LT, Liu DB, Wang S, Liu ZG, Yang PC. Specific antigen-guiding exosomes inhibit food allergies by inducing regulatory T cells. Immunol Cell Biol 2020; 98:639-649. [PMID: 32378751 DOI: 10.1111/imcb.12347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022]
Abstract
The therapies for food allergy (FA) need to be improved. The generation of inducible regulatory T cells (Tregs) can support immune tolerance in the body. This study aims to suppress experimental FA by inducing Tregs through the employment of modified exosomes (mExosomes). In this study, mExosomes were prepared by incubating dendritic cells with interleukin (IL)-2 and ovalbumin (OVA, used as a specific antigen) in the culture. Exosomes were purified from culture supernatant and used as the mExosomes. A murine FA model was developed to test the effects of mExosomes on the generation of Tregs in the mouse intestinal tissues and inhibiting FA. The results showed that mExosomes, which carried IL-2 and a complex of OVA peptide-major histocompatibility complex class II on the surface of exosomes, bound to OVA-specific CD4+ T cells and induced CD4+ T cells to differentiate into Tregs. In the FA mouse intestinal tissues, we found low IL-2 levels that were positively correlated with the number of Tregs. Depletion of IL-2 in mice prevented the generation of Tregs. The levels of peroxisome proliferator-activated receptor-γ were increased in the FA intestinal tissues with inhibited IL-2 production. Administration of mExosomes induced Tregs in the intestinal tissues and efficiently suppressed FA in mice. We conclude that the mExosomes can suppress FA in mice through inducing Tregs. The data suggest that the mExosomes have translational potential in the treatment of FA and other allergic disorders.
Collapse
Affiliation(s)
- Dian Yu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiang-Qi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Li-Hua Mo
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhi-Qiang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Gao-Hui Wu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Li-Teng Yang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuai Wang
- Department of Allergy, Longgang ENT Hospital & Shenzhen Key Laboratory of ENT, Institute of ENT, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
| |
Collapse
|
46
|
Alvaro-Lozano M, Akdis CA, Akdis M, Alviani C, Angier E, Arasi S, Arzt-Gradwohl L, Barber D, Bazire R, Cavkaytar O, Comberiati P, Dramburg S, Durham SR, Eifan AO, Forchert L, Halken S, Kirtland M, Kucuksezer UC, Layhadi JA, Matricardi PM, Muraro A, Ozdemir C, Pajno GB, Pfaar O, Potapova E, Riggioni C, Roberts G, Rodríguez Del Río P, Shamji MH, Sturm GJ, Vazquez-Ortiz M. EAACI Allergen Immunotherapy User's Guide. Pediatr Allergy Immunol 2020; 31 Suppl 25:1-101. [PMID: 32436290 PMCID: PMC7317851 DOI: 10.1111/pai.13189] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergen immunotherapy is a cornerstone in the treatment of allergic children. The clinical efficiency relies on a well-defined immunologic mechanism promoting regulatory T cells and downplaying the immune response induced by allergens. Clinical indications have been well documented for respiratory allergy in the presence of rhinitis and/or allergic asthma, to pollens and dust mites. Patients who have had an anaphylactic reaction to hymenoptera venom are also good candidates for allergen immunotherapy. Administration of allergen is currently mostly either by subcutaneous injections or by sublingual administration. Both methods have been extensively studied and have pros and cons. Specifically in children, the choice of the method of administration according to the patient's profile is important. Although allergen immunotherapy is widely used, there is a need for improvement. More particularly, biomarkers for prediction of the success of the treatments are needed. The strength and efficiency of the immune response may also be boosted by the use of better adjuvants. Finally, novel formulations might be more efficient and might improve the patient's adherence to the treatment. This user's guide reviews current knowledge and aims to provide clinical guidance to healthcare professionals taking care of children undergoing allergen immunotherapy.
Collapse
Affiliation(s)
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cherry Alviani
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elisabeth Angier
- Primary Care and Population Sciences, University of Southampton, Southampton, UK
| | - Stefania Arasi
- Pediatric Allergology Unit, Department of Pediatric Medicine, Bambino Gesù Children's research Hospital (IRCCS), Rome, Italy
| | - Lisa Arzt-Gradwohl
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Domingo Barber
- School of Medicine, Institute for Applied Molecular Medicine (IMMA), Universidad CEU San Pablo, Madrid, Spain.,RETIC ARADYAL RD16/0006/0015, Instituto de Salud Carlos III, Madrid, Spain
| | - Raphaëlle Bazire
- Allergy Department, Hospital Infantil Niño Jesús, ARADyAL RD16/0006/0026, Madrid, Spain
| | - Ozlem Cavkaytar
- Department of Paediatric Allergy and Immunology, Faculty of Medicine, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Pasquale Comberiati
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Stephanie Dramburg
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Stephen R Durham
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospitals NHS Foundation Trust, London, UK
| | - Leandra Forchert
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Susanne Halken
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Max Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Umut C Kucuksezer
- Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul University, Istanbul, Turkey
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Paolo Maria Matricardi
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Antonella Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Women and Child Health, University of Padua, Padua, Italy
| | - Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Turkey.,Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Ekaterina Potapova
- Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Medical University, Berlin, Germany
| | - Carmen Riggioni
- Pediatric Allergy and Clinical Immunology Service, Institut de Reserca Sant Joan de Deú, Barcelona, Spain
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK.,NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology, Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.,the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Gunter J Sturm
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
47
|
Veen W, Akdis M. Tolerance mechanisms of allergen immunotherapy. Allergy 2020; 75:1017-1018. [PMID: 31758812 DOI: 10.1111/all.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
| |
Collapse
|
48
|
Lam H, Tergaonkar V, Ahn K. Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci Rep 2020; 40:BSR20200256. [PMID: 32186703 PMCID: PMC7109000 DOI: 10.1042/bsr20200256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is currently the only potential treatment for allergies including allergic rhinitis (AR) and food allergies (FA) that can modify the underlying course of the diseases. Although AIT has been performed for over a century, the precise and detailed mechanism for AIT is still unclear. Previous clinical trials have reported that successful AIT induces the reinstatement of tolerance against the specific allergen. In this review, we aim to provide an updated summary of the knowledge on the underlying mechanisms of IgE-mediated AR and FA as well as the immunological changes observed after AIT and discuss on how better understanding of these can lead to possible identification of biomarkers and novel strategies for AIT.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
49
|
Mitsias DI, Xepapadaki P, Makris M, Papadopoulos NG. Immunotherapy in allergic diseases - improved understanding and innovation for enhanced effectiveness. Curr Opin Immunol 2020; 66:1-8. [PMID: 32272340 DOI: 10.1016/j.coi.2020.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Allergen immunotherapy leads to tolerance through multiple mechanisms that include tolerogenic dendritic cells and T and B regulatory cells. These induced cellular populations produce mediators to skew the immune response to a tolerogenic milieu that, among others, results in IgG4 blocking antibodies formation and lowered FcE receptors. All lead in decreased effector responses from mast cells, eosinophils, and basophils thus limiting the allergic inflammation. Clinically, this results in better allergic rhinitis control and, of importance, asthma prevention. Newer approaches include modified allergens, second generation adjuvants/carriers and routes of administration, all aiming to increased efficacy with parallel no compromise of safety.
Collapse
Affiliation(s)
- Dimitrios I Mitsias
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Thivon and Levadias 1, 115 27, Athens, Greece
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Thivon and Levadias 1, 115 27, Athens, Greece
| | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Rimini 1, 124 62, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Thivon and Levadias 1, 115 27, Athens, Greece; Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Oxford Rd., M13 9PL, Manchester, UK.
| |
Collapse
|
50
|
Jensen‐Jarolim E, Bachmann MF, Bonini S, Jacobsen L, Jutel M, Klimek L, Mahler V, Mösges R, Moingeon P, O´Hehir RE, Palomares O, Pfaar O, Renz H, Rhyner C, Roth‐Walter F, Rudenko M, Savolainen J, Schmidt‐Weber CB, Traidl‐Hoffmann C, Kündig T. State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:746-760. [PMID: 31774179 DOI: 10.1111/all.14134] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper, we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3 ) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre-existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is presensitized to the antigen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilized in AIT redirect the Th2 immune response towards Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three-to-five-year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need.
Collapse
Affiliation(s)
- Erika Jensen‐Jarolim
- Institute of Pathophysiology & Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | - Martin F. Bachmann
- Institute of Immunology Inselspital University of Berne Bern Switzerland
| | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| | - Lars Jacobsen
- ALC, Allergy Learning & Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
- ALL‐MED Medical Research Institute Wroclaw Poland
| | - Ludger Klimek
- Center of Rhinology and Allergology Wiesbaden Germany
| | - Vera Mahler
- Division of Allergology Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Ralph Mösges
- CRI‐Clinical Research International Ltd Hamburg Germany
- Institute of Medical Statistics and Bioinformatics University of Cologne Cologne Germany
| | - Philippe Moingeon
- Center for Therapeutic Innovation – Immuno‐Inflammatory Disease Servier Suresnes France
| | - Robyn E. O´Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology (Research) Central Clinical School Monash University and Alfred Hospital Melbourne Vic. Australia
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology Chemistry School Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Harald Renz
- Institute of Laboratory Medicine Universities of Giessen and Marburg Lung Center (UGMLC) German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Claudio Rhyner
- SIAF – Swiss Institute of Allergy and Asthma Research Davos Switzerland
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology University of Turku and Turku University Hospital Turku Finland
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) German Center of Lung Research (DZL) and Helmholtz I&I Initiative Technical University, and Helmholtz Center Munich Munich Germany
| | - Claudia Traidl‐Hoffmann
- Institute of Environmental Medicine (IEM) Technical University Munich and Helmholtz Center Munich Munich Germany
| | - Thomas Kündig
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| |
Collapse
|