1
|
Yalçin T, Kaya S. Effect of thymoquinone on hippocampal spexin levels in cisplatin-induced rats. Neurol Res 2025:1-9. [PMID: 40340641 DOI: 10.1080/01616412.2025.2504158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Neurotoxicity is a known side effect of the chemotherapeutic drug cisplatin (CIS). Thymoquinone (THQ) is a natural compound with strong neuroprotective, antioxidant, and anti-inflammatory effects. The objective of this study is to ascertain the impact of CIS on histopathological, biochemical, and spexin (SPX) immunoreactivity in the hippocampus, and to determine whether THQ has a protective role against these effects.Twenty-eight male Sprague - Dawley rats (8-10 weeks old,200 ± 20 g) were used in the study and randomly divided into four groups (n = 7): control (no administration), CIS (7 mg/kg on the first day), CIS+THQ (7 mg/kg CIS on the first day + 10 mg/kg/day THQ), and THQ (10 mg/kg/day THQ). On the 15th day, the rats were sacrificed. Hippocampus tissue samples were used for biochemical, histological, and immunohistochemical analyses. CISadministration significantly increased interleukin-6 (IL-6), malondialdehyde(MDA), histopathological changes, and SPX immunoreactivity in the hippocampus.THQ treatment was found to significantly reduce the adverse effects of.THQ treatment demonstrated neuroprotective effects againstCIS-induced damage in the hippocampus by modulating antioxidant activity, inflammatory response, and SPX immunoreactivity. We suggest that SPX, whose role and mechanism of action in cognitive, physiological, and pathological processes remains unclear, plays an active role in hippocampus-related functions. Further and more comprehensive studies on SPX are warranted.
Collapse
Affiliation(s)
- Tuba Yalçin
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey
| |
Collapse
|
2
|
Kasem EA, Hamza G, El-Shafai NM, Ghanem NF, Mahmoud S, Sayed SM, Alshehri MA, Al-Shuraym LA, Ghamry HI, Mahfouz ME, Shukry M. Thymoquinone-Loaded Chitosan Nanoparticles Combat Testicular Aging and Oxidative Stress Through SIRT1/FOXO3a Activation: An In Vivo and In Vitro Study. Pharmaceutics 2025; 17:210. [PMID: 40006577 PMCID: PMC11858917 DOI: 10.3390/pharmaceutics17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Aging is a complex biological process characterized by the accumulation of molecular and cellular damage over time, often driven by oxidative stress. This oxidative stress is particularly detrimental to the testes, where it causes degeneration, reduced testosterone levels, and compromised fertility. D-galactose (D-gal) is commonly used to model aging as it induces oxidative stress, mimicking age-related cellular and molecular damage. Testicular aging is of significant concern due to its implications for reproductive health and hormonal balance. This research examines the protection by thymoquinone (TQ) or thymoquinone-loaded chitosan nanoparticles (NCPs) against D-galactose (D-gal)-induced aging in rat testes, focusing on biochemical, histological, and molecular changes. Aging, which is driven largely by oxidative stress, leads to significant testicular degeneration, reducing fertility. D-gal is widely used to model aging due to its ability to induce oxidative stress and mimic age-related damage. TQ, a bioactive ingredient of Nigella sativa, has earned a reputation for its anti-inflammatory, anti-apoptotic, and antioxidant characteristics, but its therapeutic application is limited by its poor bioavailability. Methods: Thymoquinone was loaded into chitosan nanoparticles (NCPs) to enhance its efficacy, and this was hypothesized to improve its stability and bioavailability. Four groups of male Wistar rats participated in the study: one for the control, one for D-gal, one for D-gal + TQ, and the last one for D-gal + NCP. Results: The results exhibited that D-gal substantially increased oxidative injury, reduced testosterone levels, and caused testicular damage. Treatment with TQ and NCPs significantly reduced oxidative stress, improved antioxidant enzyme levels, and restored testosterone levels, with NCPs showing a stronger protective effect than TQ alone. A histological analysis confirmed that NCPs better preserved testicular structure and function. Additionally, the NCP treatment upregulated the expression of key genes of oxidative stress resistance, mitochondrial function, and reproductive health, including SIRT1, FOXO3a, and TERT. Conclusions: The findings suggest that NCPs offer enhanced protection against aging-related testicular damage compared with TQ alone, which is likely due to the improved bioavailability and stability provided by the nanoparticle delivery system. This research emphasizes the potential of NCPs as a more effective therapeutic strategy for mitigating oxidative stress and age-related reproductive dysfunction. Future research should further explore the mechanisms underlying these protective effects.
Collapse
Affiliation(s)
- Enas A. Kasem
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Gehan Hamza
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nagi M. El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nora F. Ghanem
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samy M. Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Laila A. Al-Shuraym
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Magdy E. Mahfouz
- Faculty of Science, Zoology Department, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
3
|
Şensoy E, Güneş E. Determination of the effect of sunset yellow on the morphological parameters of male mice during the development period. Food Chem Toxicol 2024; 188:114653. [PMID: 38599274 DOI: 10.1016/j.fct.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Sunset Yellow (SY), an azo synthetic food dye, is widely used in the food industry. Although there are different opinions on its effect on people, its use is regulated in the European Union. If the Acceptable Daily Intake of 2.5 mg/kg/bw is exceeded, it may have pathological and biochemical effects on organs. There are not enough studies on the effects of SY on growth and development in mammals. This study was conducted to determine the effect of SY on the morphological parameters of mice at different ages (four, eight, and ten weeks old). The treatment and control groups were created with Swiss Albino mice (n: 6). SY was administered orally for 28 days (30 mg/kg/bw/week). On the last day of the study, the mice were weighed, and tail, temporal region, femur, and crown-rubmp-length values were measured using a digital caliper. A statistical difference in average body weight was observed in the SY groups (p < 0.05). SY administration during childhood caused retardation in growth and development parameters. Therefore, SY may cause weight gain and affect morphological parameters. Additional studies are required to investigate the effects of SY at different doses and durations.
Collapse
Affiliation(s)
- Erhan Şensoy
- Department of Midwifery, Faculty of Health Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey.
| | - Eda Güneş
- Department of Gastronomy, Faculty of Tourism, Necmettin Erbakan University, Konya, Turkey.
| |
Collapse
|
4
|
Kazemi R, Yazdanpanah E, Esmaeili SA, Yousefi B, Baharlou R, Haghmorad D. Thymoquinone improves experimental autoimmune encephalomyelitis by regulating both pro-inflammatory and anti-inflammatory cytokines. Mol Biol Rep 2024; 51:256. [PMID: 38302802 DOI: 10.1007/s11033-023-09148-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Introduction Multiple sclerosis (MS) is an autoimmune condition marked by inflammation and the loss of myelin in the central nervous system (CNS). The aim of this research was to understand how Thymoquinone regulate the molecular and cellular processes involved in controlling experimental autoimmune encephalomyelitis (EAE), which is an animal model often used to study MS. Methods Female C57BL/6 mice were split into different groups receiving different doses (low, medium, and high) of Thymoquinone simultaneously with EAE induction. Clinical scores and other measurements were observed daily throughout the 25-day post immunization. We assessed lymphocyte infiltration and demyelination in the spinal cord through histological staining, analyzed T-cell profiles using ELISA, and quantified the expression levels of transcription factors in the CNS using Real-time PCR. Results Thymoquinone prevented the development of EAE. Histological experiments revealed only a small degree of leukocyte infiltration into the CNS. Thymoquinone resulted in a notable reduction in the generation of IFN-γ, IL-17, and IL-6, while simultaneously increasing the production of IL-4, IL-10, and TGF-β in Th2 and Treg cells. Results from Real-time PCR suggested Treatment with Thymoquinone decreased the expression of T-bet and ROR-γt while increasing the expression of Foxp3 and GATA3. Conclusion These findings showed that Thymoquinone could decrease both disease incidence and severity.
Collapse
Affiliation(s)
- Roya Kazemi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Xie J, Wang J, Shao J, Fang H, Liu Y, Xiao X, Wen X, Guan X, Su Z, Duan P, Chen H, Chen C. Transcriptomic characterization of interactions between sodium selenite and coenzyme Q10 on preventing cadmium-induced testicular defects. Food Chem Toxicol 2023; 182:114180. [PMID: 37967787 DOI: 10.1016/j.fct.2023.114180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The effect of heavy metal cadmium (Cd) on testicular function is recognized. However, the mechanism involved is not well-established. In the present study, we analyzed the testicular transcriptomic changes induced by acute Cd exposure of adult rats with and without supplementation of antioxidants selenium (Se) and/or coenzyme Q10 (CoQ). Cd significantly decreased serum testosterone and two steroidogenic proteins SCARB1 and STAR. RNA-Seq analyses of testicular RNAs revealed specific activation of oxidative stress-, inflammation-, MAPK- and NF-κB-related signaling molecules. In addition, Cd treatment down-regulated gene for I, III and IV complexes of mitochondrial electron transport chain and up-regulated genes for NADPH-oxidase, major cascade in ROS production. The decrease in steroidogenesis and increase in inflammation may result from oxidative stress since supplementation of Se and CoQ, but not with either alone, almost completely prevented these changes, including overall alterations in transcriptome. Cd exposure induced total of 1192 differentially expressed genes (DEGs), which was reduced to 29 without considering confounding factors associated with Se/CoQ, a 97.6% protection rate. In conclusion, Cd exposure inhibited Leydig cell steroidogenesis by down-regulating SCARB1 and STAR through increasing oxidative stress and inflammation, but Se plus CoQ synergistically prevented all the changes induced by the Cd exposure.
Collapse
Affiliation(s)
- Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Shao
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hangping Fang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Liu
- Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Xiao
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhijian Su
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Congde Chen
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Şensoy E. Investigation of the effect of Cadmium chloride applied during pregnancy on the morphological parameters of mouse offspring and the protective role of melatonin. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100222. [DOI: 10.1016/j.hazadv.2022.100222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Alam T, Shahid F, Abidi S, Parwez I, Khan F. Thymoquinone supplementation mitigates arsenic-induced cytotoxic and genotoxic alterations in rat liver. J Trace Elem Med Biol 2022; 74:127067. [PMID: 36155422 DOI: 10.1016/j.jtemb.2022.127067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022]
Abstract
Arsenic, a widespread environmental toxin, produces multiple organ toxicity, including hepatotoxicity. Thymoquinone (TQ) is known to restore liver functions in several hepatic injury models. This study aims to assess the mitigative potential of TQ against sodium arsenate (NaAs)-induced cytotoxic and genotoxic alterations in the liver. Rats were randomly distributed to control, NaAs, TQ, and NaAs+TQ groups. NaAs+TQ and TQ group of rats were pre-treated with TQ (1.5 mg/kg bwt, orally) for 14 days, and the treatment was further continued for 30 days, with and without NaAs treatment (5 mg/kg bwt, orally), respectively. The deleterious histological alterations in the liver of arsenic intoxicated animals were accompanied by an upsurge in the activities of serum ALT and AST, the diagnostic indicators of liver injury. NaAs caused pronounced alterations in the activities of membrane marker and carbohydrate metabolic enzymes and the enzymatic and non-enzymatic components of hepatic antioxidant defense. Significant hepatocyte DNA damage and hepatic arsenic accumulation were also observed in arsenic-exposed rats. TQ supplementation alleviated these adverse alterations and improved the overall hepatic metabolic and antioxidant status in NaAs-administered rats. Prevention of oxidative injury could be the key mechanism of TQ-elicited protective effects. TQ may have an excellent scope as a dietary supplement in the management of arsenic-induced hepatic pathophysiology.
Collapse
Affiliation(s)
- Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Faaiza Shahid
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Kaymak E, Öztürk E, Akİn AT, Karabulut D, Yakan B. Thymoquinone alleviates doxorubicin induced acute kidney injury by decreasing endoplasmic reticulum stress, inflammation and apoptosis. Biotech Histochem 2022; 97:622-634. [PMID: 35989671 DOI: 10.1080/10520295.2022.2111465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Doxorubicin (DOX) is used as an anticancer drug despite its many side effects. Thymoquinone (THQ) is a plant-derived substance that exhibits antioxidant and anti-inflammatory properties. We investigated the protective effects of THQ on DOX induced nephrotoxicity in rats. Rats were divided into five groups of eight: group 1, untreated control; group 2, olive oil group given olive oil intraperitoneally (i.p.) for 14 days; group 3, THQ group given 10 mg/kg THQ i.p. for 14 days; group 4, DOX group given a single dose of 15 mg/kg DOX i.p. on day 7 of experiment; group 5, DOX + THQ given 10 mg/kg THQ i.p. for 14 days and 15 mg/kg DOX i.p. on day 7. Kidney tissues were evaluated for histopathology. Caspase-3, IL-17, GRP78 and TNF-α immunostaining was used to determine the expression levels of these proteins among the groups. The TUNEL method was used to determine the apoptotic index. Total antioxidant status (TAS), total oxidant status (TOS), and TNF-α and TGF-β1 levels in kidney tissue were measured using ELISA assay. Histopathologic damage, caspase-3, IL-17, GRP78 and TNF-α immunoreactivity, TUNEL positive cells, TOS, TNF-α and TGF-β1 levels were increased in group 4 compared to group 1. The TAS of group 4 decreased compared to group 1. We found decreased caspase-3, IL-17, GRP78 and TNF-α expressions and TUNEL positive cells in group 5 compared to group 4. In rats given DOX, THQ reduced kidney damage by suppressing endoplasmic reticulum stress, inflammation and apoptosis pathways.
Collapse
|
10
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
11
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
12
|
Akin AT, Öztürk E, Kaymak E, Karabulut D, Yakan B. Therapeutic effects of thymoquinone in doxorubicin-induced hepatotoxicity via oxidative stress, inflammation and apoptosis. Anat Histol Embryol 2021; 50:908-917. [PMID: 34494664 DOI: 10.1111/ahe.12735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
Cancer is a lethal disease that is characterized by uncontrolled cell division and proliferation, and it results in death in many organisms. Doxorubicin (DOX) is a therapeutic agent used for treatment of many cancer types, but it induces serious hepatotoxicity. In this study, we aimed to determine possible hepato-therapeutic effects of thymoquinone (THQ) on DOX-induced hepatotoxicity in rats. Rats were divided into five groups (n = 8): Control, THQ (10 mg/kg/day/i.p for 14 days), Olive Oil (equal volume with THQ for 14 days), DOX (single dose, 15 mg/kg/i.p on 7th day) and DOX + THQ (10 mg/kg/day/i.p and DOX 15 mg/kg/i.p on 7th day). At the end of the experiment, liver tissues were extracted and evaluated histopathologically. eNOS, iNOS and Cas-3 immunostaining were performed to determine the expression levels. TUNEL method was used to determine apoptotic index. Furthermore, liver tissue total antioxidant status (TAS), total oxidant status (TOS), TNF-α and TGF-β levels were measured by ELISA assay. The DOX group showed histopathological deterioration compared to Control group. Moreover, apoptotic index, eNOS, iNOS and Cas-3 expressions increased in DOX group. While TAS level of the DOX group decreased, TOS level increased. TNF-α and TGF-β levels increased in DOX group. However, there was improvement in DOX + THQ group compared to DOX group. Moreover, apoptotic cell number, eNOS, iNOS and Cas-3 expressions decreased in DOX + THQ group compared to DOX group. We concluded that thymoquinone can be used as a phytotherapeutic for reducing DOX-induced liver damage.
Collapse
Affiliation(s)
- Ali Tuğrul Akin
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Emel Öztürk
- Histology-Embryology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Derya Karabulut
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Histology-Embryology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
13
|
Karakaya FB, Yavuz M, Sirvanci S. Histological analysis of the effects of thymoquinone on testicular damage in pentylenetetrazole-induced temporal lobe epilepsy model. Andrologia 2021; 53:e14130. [PMID: 34414592 DOI: 10.1111/and.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, it was aimed to investigate possible ameliorating effects of thymoquinone on testicular damage in an epilepsy model. Adult male Wistar rats were divided into 4 groups. The animals in sham-operated groups were given saline or thymoquinone (s.c.); and the animals in pentylenetetrazole (PTZ) group were applied PTZ. The animals in PTZ+thymoquinone group were given thymoquinone (i.p) for 6 days after applying PTZ. Hematoxylin-eosin, periodic acid-Schiff and TUNEL staining and PCNA, StAR, inhibin β-B immunohistochemistry and ZO-1 immunofluorescence methods were applied. Staining intensity and cell numbers were determined. Degeneration of seminiferous tubules was observed in PTZ group. Most of the tubules showed normal morphology in the PTZ+thymoquinone group. Apoptotic cell index was found to be increased and proliferative index decreased in PTZ group. Thymoquinone administration decreased apoptotic index and increased proliferation index. In PTZ group, ZO-1, StAR and inhibin β-B immunohistochemical staining intensity was observed to be decreased and after thymoquinone application, ZO-1 was increased. StAR and inhibin β-B-positive cell numbers were decreased in PTZ group and increased in the PTZ +thymoquinone group. In this study, it was observed that PTZ-induced epileptic seizures caused testicular damage in the rat and thymoquinone ameliorated these effects.
Collapse
Affiliation(s)
- Fatma Bedia Karakaya
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Melis Yavuz
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serap Sirvanci
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Sarkar C, Jamaddar S, Islam T, Mondal M, Islam MT, Mubarak MS. Therapeutic perspectives of the black cumin component thymoquinone: A review. Food Funct 2021; 12:6167-6213. [PMID: 34085672 DOI: 10.1039/d1fo00401h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dietary phytochemical thymoquinone (TQ), belonging to the family of quinones, mainly obtained from the black and angular seeds of Nigella sativa, is one of the promising monoterpenoid hydrocarbons, which has been receiving massive attention for its therapeutic potential and pharmacological properties. It plays an important role as a chemopreventive and therapeutic agent in the treatment of various diseases and illnesses. The aim of this review is to present a summary of the most recent literature pertaining to the use of TQ for the prevention and treatment of various diseases along with possible mechanisms of action, and the potential use of this natural product as a complementary or alternative medicine. Research findings indicated that TQ exhibits numerous pharmacological activities including antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, antidiabetic, neuroprotective, and anticancer, among others. Conclusions of this review on the therapeutic aspects of TQ highlight the medicinal and folk values of this compound against various diseases and ailments. In short, TQ could be a novel drug in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh.
| | | | | | | | | | | |
Collapse
|
15
|
Mostafa HES, Alaa El-Din EA, El-Shafei DA, Abouhashem NS, Abouhashem AA. Protective roles of thymoquinone and vildagliptin in manganese-induced nephrotoxicity in adult albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31174-31184. [PMID: 33595798 DOI: 10.1007/s11356-021-12997-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Despite being important in the body's mechanisms, excessive accumulation of manganese (Mn) can induce severe toxicity in vital organs of the body. Thymoquinone (TQ) is extracted from Nigella sativa seeds which recently gained popularity as dietary supplements and plant-based antioxidants. Vildagliptin (VLD) is a dipeptidyl peptidase IV (DPPIV) inhibitor, approved as anti-hyperglycemic agents with cardioprotective and renoprotective effects. The present study aimed to investigate the nephrotoxicity of Mn and the potential protective effects of thymoquinone and vildagliptin. Sixty-four adult male albino rats were equally divided into 8 groups: group I (control, received no medication), group II (vehicle, received normal saline), group III (TQ, 50 mg/kg/day), group IV (VLD, 10 mg/kg/day), group V (MnCl2, 50 mg/kg/day), group VI (Mn+TQ), group VII (Mn+VLD), and group VIII (Mn+TQ+VLD). Groups VI, VII, and VIII, received the same previously mentioned doses. All drugs were orally gavaged for 12 weeks. Manganese administration resulted in an elevation in the levels of serum and tissues Mn, blood glucose, serum urea, creatinine, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and reduction in insulin, kidney superoxide dismutase (SOD), glutathione (GSH), and interleukin-10. Histopathological structural renal damage was detected associated with strong positive immunoexpression of caspase-3. On the other hand, individual or combined TQ and VLD administration with Mn significantly decreased the serum and tissue levels of Mn, declined the blood glucose, inflammatory markers, oxidative stress markers, ameliorated the histopathological effects, and down-regulated the immunoexpression of caspase-3. In conclusion, TQ and VLD co-administration elicited protective effects against Mn-induced nephrotoxicity.
Collapse
Affiliation(s)
- Heba El-Sayed Mostafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Dalia Abdallah El-Shafei
- Department of Community, Environmental & Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehal S Abouhashem
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aisha Abdallah Abouhashem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
Counteracting effects of heavy metals and antioxidants on male fertility. Biometals 2021; 34:439-491. [PMID: 33761043 DOI: 10.1007/s10534-021-00297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Infertility is regarded as a global health problem affecting 8-12% of couples. Male factors are regarded as the main cause of infertility in 40% of infertile couples and contribute to this condition in combination with female factors in another 20% of cases. Abnormal sperm parameters such as oligospermia, asthenospermia, and teratozoospermia result in male factor infertility. Several studies have shown the deteriorative impact of heavy metals on sperm parameters and fertility in human subjects or animal models. Other studies have pointed to the role of antioxidants in counteracting the detrimental effects of heavy metals. In the currents study, we summarize the main outcomes of studies that assessed the counteracting impacts of heavy metal and antioxidants on male fertility. Based on the provided data from animal studies, it seems rational to administrate appropriate antioxidants in persons who suffer from abnormal sperm parameters and infertility due to exposure to toxic elements. Yet, further human studies are needed to approve the beneficial effects of these antioxidants.
Collapse
|
17
|
He Q, Luo Y, Xie Z. Sulforaphane ameliorates cadmium induced hepatotoxicity through the up-regulation of /Nrf2/ARE pathway and the inactivation of NF-κB. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
18
|
Ali MY, Akter Z, Mei Z, Zheng M, Tania M, Khan MA. Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomed Pharmacother 2021; 134:111157. [PMID: 33370631 DOI: 10.1016/j.biopha.2020.111157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (AUDs) are a multifactorial disease, among which rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis are more prevalent. Several anti-inflammatory, biologics, and AUD-modifying drugs are found effective against them, but their repeated use are associated with various adverse effects. In this review article, we have focused on the regulation of inflammatory molecules, molecular signaling pathways, immune cells, and epigenetics by natural product thymoquinone on AUDs. Studies indicate that thymoquinone can regulate inflammatory molecules including interferons, interleukins, tumor necrosis factor-α (TNF-α), oxidative stress, regulatory T cells, and various signaling pathways such as nuclear factor kappa beta (NF-κβ), janus kinase/signal transduction and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) at the molecular level and epigenetic alteration. As these molecules and signaling pathways with defective immune function play an important role in AUD development, controlling these molecules and deregulated molecular mechanism is a significant feature of AUD therapeutics. Interestingly thymoquinone is reported to possess all these potential. This article reviewed the deregulated mechanism of AUDs, and the action of thymoquinone on inflammatory molecules, immune cells, signaling pathways, and epigenetic machinery. Thymoquinone can be regarded as a potential drug candidate for AUD treatment.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka, Bangladesh; Division of Molecular Cancer Biology, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
19
|
Al Aboud D, Baty RS, Alsharif KF, Hassan KE, Zhery AS, Habotta OA, Elmahallawy EK, Amin HK, Abdel Moneim AE, Kassab RB. Protective efficacy of thymoquinone or ebselen separately against arsenic-induced hepatotoxicity in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6195-6206. [PMID: 32989703 DOI: 10.1007/s11356-020-10955-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/20/2020] [Indexed: 05/12/2023]
Abstract
Arsenic (As) exposure is associated with adverse health outcomes to the living organisms. In the present study, the hepato-protective ability of thymoquinone (TQ), the active principle of Nigella sativa seed, or ebselen (Eb), an organoselenium compound, against As intoxication in female rats was investigated. For this purpose, animals were allocated randomly into control, As (20 mg/kg), TQ (10 mg/kg), Eb (5 mg/kg), As+TQ, and As+Eb groups that were orally administered for 28 consecutive days. Arsenic exposure resulted in hepatic oxidative damage which was evidenced by marked decreases in antioxidant parameters (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione (GSH)) concomitant with high malondialdehyde (MDA) level. Furthermore, As toxicity induced significant elevations in liver accumulation of As, serum hepatic indices (aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin (TB)), and apoptotic marker (B cell lymphoma 2(Bcl2), Bcl-2-associated X protein (Bax), and caspase 3) levels. Additionally, notable increments in hepatic fibrotic markers (epidermal growth factor (EFG) and transforming growth factor beta 1 (TGF-β1)) associated with high nitric oxide, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and myeloperoxidase (MPO) levels were noticed following As intoxication. Biochemical findings were well-supported by hepatic histopathological screening. The co-treatment of As-exposed rats with TQ or Eb considerably improved liver function and antioxidant status together with lessened hepatic As content, inflammation, apoptosis, and fibrosis. The overall outcomes demonstrated that TQ or Eb ameliorates As-induced liver injury through their favorable antioxidant, anti-inflammatory, anti-apoptotic, and fibrolytic properties.
Collapse
Affiliation(s)
- Daifullah Al Aboud
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Taif University, Taif, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Ahmed S Zhery
- Kasr Al-Eini School of Medicine, Cairo University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Hatim K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| |
Collapse
|
20
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
22
|
Alharthi WA, Hamza RZ, Elmahdi MM, Abuelzahab HSH, Saleh H. Selenium and L-Carnitine Ameliorate Reproductive Toxicity Induced by Cadmium in Male Mice. Biol Trace Elem Res 2020; 197:619-627. [PMID: 31863275 DOI: 10.1007/s12011-019-02016-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) has been reported to reduce male fertility, impair reproductive capacity, and play a major role in the pathogenesis of infertility. This study was conducted to investigate the possible protective role of Selenium (Se) and L-carnitine (LC) against the adverse effects induced by Cd on the male reproductive system in mice. Animals were randomly divided into seven groups (n = 10); control group and six treated groups, as follows: Cd (0.35 mg/kg), Se (0.87 mg/kg), LC (10 mg/kg), and a combination of either Se or LC and then a combination of both with Cd, and all animals were injected for a period of 30 days. Exposure of Cd showed a significant decrease in enzymatic antioxidant activities, deficiency in reproductive performance, decrease serum testosterone level, severe changes in the histopathological architecture, and higher degree of damages and appearance of unblemished DNA strands. Treatment with Se and LC has the highly synergistic and ameliorates the damaging effect of Cd on the testis through the elevation of the enzymatic antioxidant and diminish histopathological abnormalities and DNA damage.
Collapse
Affiliation(s)
- Wed A Alharthi
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Zoology Department, Faculty of Science, Zagzig University, Zagazig, Egypt
| | - Magda M Elmahdi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt
| | | | - Hanan Saleh
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt.
| |
Collapse
|
23
|
Arab-Nozari M, Mohammadi E, Shokrzadeh M, Ahangar N, Amiri FT, Shaki F. Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-kB pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24048-24058. [PMID: 32304050 DOI: 10.1007/s11356-020-08791-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Fluoride (F) and cadmium (Cd) are two common water pollutants. There is low information about their co-exposure in low doses. So, in this study, we evaluated the combination effects of non-toxic doses of F and Cd and the possible mechanism of their combined interaction. Male rats were exposed to non-toxic doses of sodium fluoride (30 mg/l) and/or cadmium chloride (40 mg/l) in drinking water for 6 weeks. Then, liver tissues were separated and several factors including oxidative stress, mitochondrial toxicity, inflammation, apoptosis, and biochemical and histopathological changes were evaluated. Cd and F alone did not induce any significant changes in evaluated factors compared to control group, while significant elevation in liver enzymes as well as histopathological changes were observed in rats treated with F+Cd. Also, a remarkable increase in oxidative stress markers including reactive oxygen species, lipid peroxidation, and protein carbonyl and also decreasing glutathione and superoxide dismutase levels were detected following co-exposure to F and Cd. Furthermore, a combination of F and Cd resulted in mitochondrial dysfunction, swelling, as well as a reduction in mitochondrial membrane potential in isolated liver mitochondria. On the other hand, TNF-α, IL-1β, and NF-kB inflammatory genes were upregulated in the liver after combined exposure to F and Cd compared to individual treatments. Also, F+Cd treatment increased the Bax expression but decreased the expression of Bcl-2 significantly. These findings suggest that Cd and F can potentiate their individual toxic effects on the liver tissue through disruption of the cellular redox status, inflammation, and apoptosis pathway.
Collapse
Affiliation(s)
- Milad Arab-Nozari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
24
|
Fouad AA, Abdel-Aziz AM, Hamouda AAH. Diacerein Downregulates NLRP3/Caspase-1/IL-1β and IL-6/STAT3 Pathways of Inflammation and Apoptosis in a Rat Model of Cadmium Testicular Toxicity. Biol Trace Elem Res 2020; 195:499-505. [PMID: 31401744 DOI: 10.1007/s12011-019-01865-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
The potential gonadal protective effect of diacerein (DCN) and its underlying mechanisms were studied in a rat model of cadmium-induced testicular toxicity. The rats received DCN (50 mg/kg/day, p.o.) for 10 days and one injection of CdCl2 (2 mg/kg, i.p.) on day 9. Cadmium significantly declined serum testosterone and significantly raised interleukin-1β, interleukin-6, interleukin-18, tumor necrosis factor-α, caspase-1, phosphorylated signal transducer and activator of transcription-3 (pSTAT3), nuclear factor-κB p65, Bax, and caspase-3 in rat testes. DCN significantly ameliorated the changes in the biochemical measurements observed with CdCl2 insult. Additionally, DCN preserved the normal testicular architecture, maintained spermatogenesis, and lowered the expression of NOD-like receptor family protein 3 (NLRP3) inflammasome in testes of rats that received CdCl2. It was concluded that DCN significantly protected the gonads of male rats exposed to cadmium toxicity through modulation of NLRP3/caspase-1/IL-1β and IL-6/STAT3 pathways of inflammation and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61519, Egypt.
| | - Asmaa M Abdel-Aziz
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61519, Egypt
| | - Azza A H Hamouda
- Department of Histology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
25
|
Öztürk E, Kaymak E, Akin AT, Karabulut D, Ünsal HM, Yakan B. Thymoquinone is a protective agent that reduces the negative effects of doxorubicin in rat testis. Hum Exp Toxicol 2020; 39:1364-1373. [PMID: 32394736 DOI: 10.1177/0960327120924108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Doxorubicin (DOX) is used for treatment of many cancer types. Thymoquinone (THQ) is a powerful antioxidant agent used for reducing side effects of several drugs. The aim of this study is to determine possible therapeutic effects of THQ on doxorubicin-induced testicular toxicity in rats. METHODS Rats were divided into five groups (n = 8): control, THQ, olive oil, DOX (a single dose of 15 mg/kg intraperitoneally (i.p.) on seventh day of the experiment), and DOX + THQ (10 mg/kg THQ per day and 15 mg/kg DOX i.p. on seventh day). Animals were euthanized, and testis tissues were evaluated histopathologically. Caspase 3 and HSP90 immunostaining were performed to determine the expression levels of these proteins among groups. Terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick-end labeling method was used for evaluation of apoptotic index. Moreover, serum testosterone levels and total antioxidant status (TAS) and total oxidant status (TOS) in testicular tissue were measured by ELISA assay. RESULTS The DOX group had histopathological deterioration compared to the control group. There was an increase in apoptotic index, caspase 3 and HSP90 expressions in the DOX group. While TAS level of the DOX group decreased, TOS level increased when compared with the other groups. Serum testosterone levels in the DOX group decreased compared to the control group. However, there was improvement in testicular tissue in DOX + THQ group compared to the DOX group. There was a decrease in apoptotic index, caspase 3, and HSP90 expressions in DOX + THQ group compared to the DOX group. Testosterone level of DOX + THQ significantly increased compared to the DOX group. CONCLUSION We suggest that THQ can be used as a protective agent to reduce the toxic effects of DOX.
Collapse
Affiliation(s)
- E Öztürk
- Department of Histology and Embryology, Faculty of Medicine, Harran University, Sanlıurfa, Turkey
| | - E Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - A T Akin
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - D Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - H Murat Ünsal
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - B Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
26
|
Wang X, Wang T, Pan T, Huang M, Ren W, Xu G, Amin HK, Kassab RB, Abdel Moneim AE. Senna alexandrina extract supplementation reverses hepatic oxidative, inflammatory, and apoptotic effects of cadmium chloride administration in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5981-5992. [PMID: 31863371 DOI: 10.1007/s11356-019-07117-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Senna alexandrina is traditionally used for its antioxidant and anti-inflammatory properties, but little information is available concerning its potential protective effects against cadmium, which is a widespread environmental toxicant that causes hepatotoxicity. Here, we explored the effects of S. alexandrina extract (SAE) on cadmium chloride (CdCl2)-induced liver toxicity over 4 weeks in rats. Rats were allocated into four groups: control, SAE (100 mg/kg), CdCl2 (0.6 mg/kg), and SAE + CdCl2, respectively. Cadmium level in hepatic tissue, blood transaminases, and total bilirubin as indicators of liver function were assessed. Oxidative stress indices [malondialdehyde (MDA), nitrate/nitrite (NO), and glutathione (GSH)], antioxidant molecules [superoxide dismutase (SOD, catalase (CAT), glutathione-derived enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2)], pro-inflammatory mediators [interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α)], apoptosis proteins (Bcl-2, Bax, and caspase-3), and histological alterations to the liver were examined. SAE administration before CdCl2 exposure decreased cadmium deposition in liver tissue and the blood liver function indicators. SAE pre-treatment prevented oxidative, inflammatory, and apoptotic reactions and decreased histological alterations to the liver caused by CdCl2 exposure. SAE can be used as a promising protective agent against CdCl2-induced hepatotoxicity by increasing Nrf2 expression. Graphical abstract.
Collapse
Affiliation(s)
- Xianbin Wang
- Department of Graduate School, Tianjin Medical University, Tianjin, 300051, China
| | - Ting Wang
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, 014030, Neimenggu, China
| | - Tingting Pan
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Mei Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Weihua Ren
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China
| | - Geliang Xu
- Department of General Surgery, The First Affiliated Hospital of USTC, Hefei, 230001, Anhui, China.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
27
|
Yahyazadeh A, Altunkaynak BZ, Kaplan S. Biochemical, immunohistochemical and morphometrical investigation of the effect of thymoquinone on the rat testis following exposure to a 900-MHz electromagnetic field. Acta Histochem 2020; 122:151467. [PMID: 31784235 DOI: 10.1016/j.acthis.2019.151467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Long-term use of cell phones emitting electromagnetic fields (EMFs) have raised concerns regarding public health in recent year. We aimed to investigate the possible effects of 900 MHz EMF exposure (60 min/day for 28 days) on the rat testis. Another objective was to determine whether the deleterious effect of EMF radiation would be reduced by the administration of thymoquinone (TQ) (10 mg/kg/day). Twenty-four male adult Wistar albino rats were randomly selected, then assigned into four groups as followControl, EMF, TQ and EMF + TQ. Testicular samples were analyzed using histological, stereological, biochemical and immunohistochemical techniques. Total numbers of primary spermatocytes and spermatids as well as Leydig cells were significantly decreased in the EMF group compared to the Control group (p < 0.05). In the EMF + TQ group, the total number of primary spermatocytes was significantly increased compared to the EMF group (p < 0.05). Superoxide dismutase (SOD) activity was significantly increased in the EMF group compared to the Control group (p < 0.05). Also, serum testosterone levels and wet weight of testes were significantly decreased in the EMF group compared to the Control group (p < 0.05). Our findings suggested that exposure to a 900 MHz EMF had adverse effects on rat testicular tissue and that the administration of TQ partially mitigated testicular oxidative damages caused by EMF radiation.
Collapse
|
28
|
Habib R, Wahdan SA, Gad AM, Azab SS. Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflammation and apoptosis mediators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109398. [PMID: 31276887 DOI: 10.1016/j.ecoenv.2019.109398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
Cadmium(Cd) is a serious environmental and occupational contaminant that represents a serious health hazard to humans and other animals. Reproductive health problems have been reported in men exposed to Cd. Testicular damage is one of the deleterious effects due to Cd exposure. Cd-induced testicular toxicity is mediated through oxidative stress, inflammation, testosterone inhibition and apoptosis. Thus, the present study was performed to assess the possible protective role of infliximab (IFX), anti-TNFα agent, against Cd-induced testicular damage and spermiotoxicity in rats. The rats were randomly allotted into six experimental groups: control, Cd sulphate treated, Cd sulphate treated with infliximab (5 mg/kg), Cd sulphate with infliximab (7 mg/kg), infliximab alone (5 mg/kg), and infliximab alone (7 mg/kg). The control group received saline. To induce testicular damage, Cd sulphate (1.5 mg/100 gm body weight/day) was dissolved in normal saline and orally administrated for 3 consecutive weeks. The rats in infliximab-treated groups were given a weekly dose of 5 mg/kg/week or 7 mg/kg/week of infliximab intraperitoneally. In the current study Cd exposure reduced sperm count, markers of testicular function, sperm motility as well as gene expression of testicular 3β-HSD and 17β-HSD and serum testosterone level. Additionally, it increased testicular oxidative stress, inflammatory and apoptotic markers. The histopathologic studies supported the biochemical findings. Treatment with infliximab significantly attenuated Cd-induced injury verified by the restoration of testicular architecture, enhancement of steroidogenesis, preservation of spermatogenesis, modulation of the inflammatory reaction along with suppression of oxidative stress and apoptosis. It was concluded that infliximab, through its antioxidant, anti-inflammatory and anti-apoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of Cd.
Collapse
Affiliation(s)
- Raghda Habib
- National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
29
|
Amanpour P, Khodarahmi P, Salehipour M. Protective effects of vitamin E on cadmium-induced apoptosis in rat testes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:349-358. [DOI: 10.1007/s00210-019-01736-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
|
30
|
Altindağ F, Rağbetli MÇ. The effect of maternal treatment with diclofenac sodium and thymoquinone on testicular parameters in rat offspring. Rev Int Androl 2019; 19:34-40. [PMID: 31628026 DOI: 10.1016/j.androl.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/29/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION AND OBJECTIVE Diclofenac sodium (DS) can have toxic effects on various tissues and organs, as well as causing foetal and new-born malformations. Thymoquinone (TQ), the basic bioactive compound of black seed oil, is an antioxidant and antineoplastic substance. The aim of our study was to explore the effects of DS and TQ exposure during gestation on offspring rat testicular histology. MATERIALS AND METHODS Mother pregnant rats were divided into five groups: control, saline, DS, TQ and DS plus TQ (DS+TQ) four animals for each group. They were then treated as follows between day of 5 and 15 of gestation: the control group received no treatment. The saline group received physiological saline (1mg/kg/d) via the intraperitoneal (IP) route; the DS group received an intramuscular (IM) injection of DS (6.1mg/kg/d); the TQ group received TQ (5mg/kg/d) dissolved in drinking water; and the DS+TQ group received DS (6.1mg/kg/d) and TQ (5mg/kg/d) dissolved in water. After birth, the male rats were fed for four weeks, and at the end of this period offspring were sacrificed. Stereological methods, physical disector and Cavalieri principle were used for particle counting and volume estimation respectively. RESULTS The results revealed a significant decrease in the total number of Sertoli and Leydig cells in 4-week-old rats in the DS group (p<0.05), and TQ not have provide protection against this adverse effect of DS. CONCLUSIONS In this study, DS at a dose of 6.1mg/kg, equivalent to a dose of 1mg/kg in humans, decreased the number of Sertoli and Leydig cells, and TQ did not have a protective effect against the adverse effect of DS during the gestation period. These results show that new dose depend studies on TQ and DS interaction are requested to see protective effect of TQ.
Collapse
Affiliation(s)
- Fikret Altindağ
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey.
| | - Murat Çetin Rağbetli
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
31
|
Haghmorad D, Mahmoudi MB, Haghighi P, Alidadiani P, Shahvazian E, Tavasolian P, Hosseini M, Mahmoudi M. Improvement of fertility parameters with Tribulus Terrestris and Anacyclus Pyrethrum treatment in male rats. Int Braz J Urol 2019; 45:1043-1054. [PMID: 31626524 PMCID: PMC6844349 DOI: 10.1590/s1677-5538.ibju.2018.0843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/06/2019] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Anacyclus Pyrethrum (AP) and Tribulus Terrestris (TT) have been reported as male infertility treatment in several studies; however, in Iranian traditional medicine these two plants are prescribed simultaneously. In this study, we aimed to determine the effects of AP and TT extracts both separately and simultaneously on the male Wistar rat fertility parameters. MATERIALS AND METHODS 32 male Wistar rats were divided into 4 groups: Control, TT, AP, and AT treated groups. Treatment continued for 25 days and rats were weighed daily. Their testes were dissected for histological studies. Sperm analysis including sperm count, viability and motility were performed. Serum was obtained to evaluate testosterone, LH and FSH levels. Histological studies were conducted to study Leydig, and Sertoli cells, spermatogonia and spermatid cell numbers, and to measure seminiferous diameter and epithelium thickness. RESULTS Sperm count increased in all the treatment groups. Sperm viability and motility in AT and AP groups were elevated. TT and AT groups showed signifi cantly increased testosterone level compared to control group (P=004, P=0.000, respectively) and TT, AP and AT treatment groups showed increased LH level (P=0.002, P=0.03 and P=0.000, respectively) compared to control, while only AT group showed increased FSH (p=0.006) compared to control. Histological studies showed signifi cant increase of spermatogonia, Leydig and Sertoli cell numbers and epithelial thickness in AT group compared to other groups. All the treatment groups had higher number of Leydig, spermatogonia and spermatid cells. CONCLUSION TT and AP improved sexual parameters; however, their simultaneous administration had higher improving effects on studied parameters.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Laboratory MedicineSchool of MedicineSemnan University of Medical SciencesSemnanIran Department of Pathology and Laboratory Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran;
- Department of ImmunologySchool of MedicineSemnan University of Medical SciencesSemnanIranDepartment of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran;
| | - Mohammad Bagher Mahmoudi
- Department of GeneticsShahid Sadoughi University of Medical SciencesYazdIranDepartment of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran;
| | - Pardis Haghighi
- BuAli Research InstituteSchool of MedicineMashhad University of Medical SciencesIran Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences; Iran
| | - Paria Alidadiani
- BuAli Research InstituteSchool of MedicineMashhad University of Medical SciencesIran Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences; Iran
| | - Ensieh Shahvazian
- BuAli Research InstituteSchool of MedicineMashhad University of Medical SciencesIran Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences; Iran
| | - Parsova Tavasolian
- BuAli Research InstituteSchool of MedicineMashhad University of Medical SciencesIran Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences; Iran
| | - Mahmoud Hosseini
- Neuroscience Research CenterSchool of MedicineMashhad University of Medical SciencesIranNeuroscience Research Center, Department of Physiology, School of Medicine, Mashhad University of Medical Sciences Iran
| | - Mahmoud Mahmoudi
- BuAli Research InstituteSchool of MedicineMashhad University of Medical SciencesIran Immunology Research Center, BuAli Research Institute, Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences; Iran
| |
Collapse
|
32
|
Abarikwu SO, Wokoma AFS, Mgbudom-Okah CJ, Omeodu SI, Ohanador R. Effect of Fe and Cd Co-Exposure on Testicular Steroid Metabolism, Morphometry, and Spermatogenesis in Mice. Biol Trace Elem Res 2019; 190:109-123. [PMID: 30291518 DOI: 10.1007/s12011-018-1536-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
The mechanism of testicular toxicity of simultaneous multiple exposures to metals is poorly understood. Previous studies reported that the toxic effect of cadmium (Cd) is modified by tissue concentration of iron (Fe). Using the mice (Mus musculus) model in the present study, we demonstrated that combined Cd (25 mg kg-1 bw) and Fe (100 mg kg-1 bw) treatment increased both Cd and Fe testicular concentrations much more than separate exposures to either of the metals. Intratesticular Cd and Fe concentrations were inversely correlated (r = - 0.731, p < 0.05) on administration of Fe but not on combined exposure to both metals when they were positively correlated (versus Cd; r = 0.793, versus Fe; r = 0.779, p < 0.05). Additionally, Cd + Fe treatment increased testicular lipid peroxidation and depleted intratestesticular testosterone, cholesterol and glutathione concentrations much more than their separate treatment. This was also associated with decreased activity of the germ cell marker, testicular lactate dehydrogenase, and increased testicular myeloperoxidase activity. These changes resulted in decreased seminiferous epithelial height, tubular diameter, germ cell (spermatogonia, spermatocytes, and spermatids) numbers, and severe tissue damage. In conclusion, Cd + Fe intake have synergistic toxic effects on testicular steroid formation and spermatogenesis due to the high testicular concentrations of both metals.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria.
| | - Adaba F S Wokoma
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | | | - Stephen I Omeodu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Robinson Ohanador
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
33
|
Khafaga AF, Abd El-Hack ME, Taha AE, Elnesr SS, Alagawany M. The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4588-4604. [PMID: 30612355 DOI: 10.1007/s11356-018-4037-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a heavy and toxic metal and easily absorbed by animals and plants; subsequently, it is an environmental risk factor with several toxic effects in humans and animals. The main pathway of human or animal exposure to Cd is through its ingestion by water or food and by particles or fume inhalation during industrial processes. With continuous exposure to small levels of cadmium, it is being deposited in different tissues day after day, causing toxic effects on the liver, kidney, and testes. Long-term exposure to this toxic metal resulted in inflammatory infiltration, necrosis of hepatocytes, degenerative changes in testis tissues, reduction in spermatocytes, degeneration in renal tubules, and hypertrophy of renal epithelium. Therefore, we need an effective treatment to overcome cadmium poisoning. Thus, in the current review, we try to provide compiled reports and summarize information about the toxicological effects of Cd in human, animals, and poultry. This review also provides updated information about the protective actions of herbs and herbal extracts and their role as an effective strategy in reducing or preventing serious health problems and tissue damage in response to Cd toxicity.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22578, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
34
|
Elkhadragy MF, Al-Olayan EM, Al-Amiery AA, Abdel Moneim AE. Protective Effects of Fragaria ananassa Extract Against Cadmium Chloride-Induced Acute Renal Toxicity in Rats. Biol Trace Elem Res 2018; 181:378-387. [PMID: 28567583 DOI: 10.1007/s12011-017-1062-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
For experiments of cadmium toxicity in animal models, cadmium (II) chloride is often used due to its solubility in water and its ability to produce high concentrations of cadmium at the target site. The present study was designed to investigate the potential inhibitory effect of the Fragaria ananassa fruit extract on cadmium (II) chloride-induced renal toxicity in rats. Tested animals were pretreated with the extract of F. ananassa and injected with cadmium (II) chloride (6.5-mg/kg body weight) for 5 days. Cadmium (II) chloride significantly increased kidney cadmium concentration, kidney weight, lipid peroxidation, and nitric oxide production. Plasma uric acid, urea, and creatinine levels also increased significantly, indicative of kidney dysfunction. These effects were accompanied by significantly decreased levels of nonenzymatic and enzymatic antioxidant molecules (i.e., glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase). Moreover, messenger RNA (mRNA) expression of the antiapoptotic protein, Bcl-2, and the antioxidant proteins, superoxide dismutase 2 and glutathione reductase, were downregulated markedly, whereas mRNA expression of tumor necrosis factor-α was upregulated significantly in kidney tissues of cadmium-treated rats. Histology of kidney tissue demonstrated severe, adverse changes that reflected cadmium-induced tissue damage. Pretreatment of rats with the extract of F. ananassa ameliorated all aforementioned cadmium (II) chloride-induced changes. In conclusion, the present study showed acute renal toxicity in rats treated with cadmium (II) chloride. The study also revealed that pretreatment with the extract of F. ananassa could protect the kidney against cadmium (II) chloride-induced acute renal toxicity.
Collapse
Affiliation(s)
- Manal F Elkhadragy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ebtesam M Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Al-Amiery
- Environmental Research Center, University of Technology, Baghdad, Iraq
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
35
|
Elbaghdady HAM, Alwaili MA, El-Demerdash RS. Amelioration of cadmium-induced testes' damage in rats by the bone marrow mesenchymal stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:763-769. [PMID: 29182986 DOI: 10.1016/j.ecoenv.2017.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) and its compounds are highly toxic to virtually all organ systems of the mammals. Cd-induced testicular injuries have been reported in various animal species, using different protocols. The self-renewal capacity and the ability to generate different specialized cell types make the mesenchymal stem cells (MSCs) one of the ideal choices for restoring tissue damages of various etiologies. The use of bone marrow-derived MSCs (BM-MSCs) is among the most recent strategies to repair the Cd-induced testicular damage, but empirical studies in this regard are largely missing. Keeping in view the CD-induced testicular damage and the suggested restorative functions of BM-MSCs, the objectives of the current study were twofold: to induce testicular injury in Sprague-Dawley (SD) rats by a single intraperitoneal (i.p.) 2mg/kg Cd injection; and to study the reparative potential of BM-MSCs in Cd-induced testicular damage in adult male rats. The SD rats were randomly divided into three groups (n = 10 each): control (untreated), Cd-group (i.p. 2mg/kg Cd), and Cd+SC group (i.p. 2mg/kg Cd plus two intravenous doses of 1 × 106 BM-MSCs via penile vein). After four weeks, Cd-group showed a significantly lower (p < 0.05) weight-gain, sperm count, and sperm viability, as well as led to testicular atrophy, necrosis, fibrosis, calcification, and marked perivascular lymphocytic infiltration, as compared to the untreated controls. As hypothesized, the rats exposed to Cd, but treated with BM-MSCs (Cd+SC group), showed a lesser degree of Cd-induced damage. In conclusion, the findings of current investigation indicate a reversal of Cd-induced testicular injury by BM-MSCs. The study supports the previously suggested notion that BM-MSCs can repair the Cd-induced testes' damage in rats.
Collapse
Affiliation(s)
- Heba Allah M Elbaghdady
- Zoology Department, Environmental Sciences Division, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Maha A Alwaili
- Department of Biological Sciences, Princes Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
36
|
Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, Talla SP, Ojha SK. Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin. Front Pharmacol 2017; 8:656. [PMID: 28983249 PMCID: PMC5613109 DOI: 10.3389/fphar.2017.00656] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone, a monoterpene molecule is chemically known as 2-methyl-5-isopropyl-1, 4-benzoquinone. It is abundantly present in seeds of Nigella sativa L. that is popularly known as black cumin or black seed and belongs to the family Ranunculaceae. A large number of studies have revealed that thymoquinone is the major active constituent in N. sativa oil this constituent is responsible for the majority of the pharmacological properties. The beneficial organoprotective activities of thymoquinone in experimental animal models of different human diseases are attributed to the potent anti-oxidant and anti-inflammatory properties. Thymoquinone has also been shown to alter numerous molecular and signaling pathways in many inflammatory and degenerative diseases including cancer. Thymoquinone has been reported to possess potent lipophilicity and limited bioavailability and exhibits light and heat sensitivity. Altogether, these physiochemical properties encumber the successful formulation for the delivery of drug in oral dosages form and restrict the pharmaceutical development. In recent past, many efforts were undertaken to improve the bioavailability for clinical usage by manipulating the physiochemical parameters. The present review aimed to provide insights regarding the physicochemical characteristics, pharmacokinetics and the methods to promote pharmaceutical development and endorse the clinical usage of TQ in future by overcoming the associated physiochemical obstacles. It also enumerates briefly the pharmacological and molecular targets of thymoquinone as well as the pharmacological properties in various diseases and the underlying molecular mechanism. Though, a convincing number of experimental studies are available but human studies are not available with thymoquinone despite of the long history of use of black cumin in different diseases. Thus, the clinical studies including pharmacokinetic studies and regulatory toxicity studies are required to encourage the clinical development of thymoquinone.
Collapse
Affiliation(s)
- Sameer N. Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
- SVKM Institute of PharmacyDhule, India
| | - Chaitali P. Prajapati
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Prashant R. Gore
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Umesh B. Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sandhya P. Talla
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, North Maharashtra UniversityShirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
37
|
Thymoquinone Defeats Diabetes-Induced Testicular Damage in Rats Targeting Antioxidant, Inflammatory and Aromatase Expression. Int J Mol Sci 2017; 18:ijms18050919. [PMID: 28448463 PMCID: PMC5454832 DOI: 10.3390/ijms18050919] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Antioxidants have valuable effects on the process of spermatogenesis, particularly with diabetes mellitus (DM). Therefore, the present study investigated the impact and the intracellular mechanisms by which thymoquinone (TQ) works against diabetes-induced testicular deteriorations in rats. Wistar male rats (n = 60) were randomly allocated into four groups; Control, Diabetic (streptozotocin (STZ)-treated rats where diabetes was induced by intraperitoneal injection of STZ, 65 mg/kg), Diabetic + TQ (diabetic rats treated with TQ (50 mg/kg) orally once daily), and TQ (non-diabetic rats treated with TQ) for 12 weeks. Results revealed that TQ significantly improved the sperm parameters with a reduction in nitric oxide (NO) and malondialdehyde (MDA) levels in testicular tissue. Also, it increased testicular reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity. Interestingly, TQ induced downregulation of testicular inducible nitric oxide synthase (iNOS) and nuclear factor kappa-B (NF-κB) and significantly upregulated the aromatase protein expression levels in testicles in comparison with the diabetic rats. In conclusion, TQ treatment exerted a protective effect against reproductive dysfunction induced by diabetes not only through its powerful antioxidant and hypoglycemic effects but also through its downregulation of testicular iNOS and NF-κB along with upregulation of aromatase expression levels in diabetic rats.
Collapse
|
38
|
Abdelrazek HM, Helmy SA, Elsayed DH, Ebaid HM, Mohamed RM. Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase- 3. Reprod Biol 2016; 16:300-308. [DOI: 10.1016/j.repbio.2016.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
|
39
|
Alyoussef A, Al-Gayyar MMH. Thymoquinone ameliorated elevated inflammatory cytokines in testicular tissue and sex hormones imbalance induced by oral chronic toxicity with sodium nitrite. Cytokine 2016; 83:64-74. [PMID: 27038016 DOI: 10.1016/j.cyto.2016.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/23/2016] [Accepted: 03/25/2016] [Indexed: 01/08/2023]
Abstract
Scientific evidence illustrated the health hazards of exposure to nitrites for prolonged time. Nitrites affected several body organs due to oxidative, inflammatory and apoptosis properties. Furthermore, thymoquinone (TQ) had curative effects against many diseases. We tried to discover the impact of both sodium nitrite and TQ on inflammatory cytokines contents in testicular tissues and hormonal balance both in vivo and in vitro. Fifty adult male SD rats received 80mg/kg sodium nitrite and treated with either 25 or 50mg/kg TQ daily by oral-gavage for twelve weeks. Testis were removed for sperms' count. Testicular tissue homogenates were used for assessment of protein and gene expression of IL-1β, IL-6, TNF-α, Nrf2 and caspase-3. Serum samples were used for measurement of testosterone, LH, FSH and prolactin. Moreover, all the parameters were measured in human normal testis cell-lines, CRL-7002. Sodium nitrite produced significant decrease in serum testosterone associated with raised FSH, LH and prolactin. Moreover, sodium nitrite significantly elevated TNF-α, IL-1β, IL-6, caspase-3 and reduced Nrf2. TQ significantly reversed all these effects both in vivo and in vitro. In conclusion, TQ ameliorated testicular tissue inflammation and restored the normal balance of sex hormones induced by sodium nitrite both in vivo and in vitro.
Collapse
Affiliation(s)
- Abdullah Alyoussef
- Department of Internal Medicine (Division of Dermatology and Venereology), Faculty of Medicine, University of Tabuk, Tabuk 71471, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; Department of Clinical Biochemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| |
Collapse
|
40
|
Fouad AA, Alwadani F. Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:960-965. [PMID: 26544518 DOI: 10.1016/j.etap.2015.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The possible protective effect of thymoquinone against eye lens changes in diabetic rats was investigated. Following diabetes induction by a single injection of streptozotocin (45 mg/kg, i.p.), thymoquinone was administered in three different doses (20, 40, and 80 mg/kg/day, p.o.) for 12 weeks. Thymoquinone significantly and dose-dependently attenuated the hypoinsulinemia and hyperglycemia in diabetic rats. Also, thymoquinone (particularly 40 and 80 mg/kg) significantly decreased the elevations of malondialdehyde, nitric oxide, tumor necrosis factor-α, glycated proteins, aldose reductase activity, sorbitol level, and caspase-3 activity in the lens tissues of diabetic rats. In addition, thymoquinone (particularly 40 and 80 mg/kg) significantly ameliorated the diabetes-induced reductions of glutathione peroxidase, superoxide dismutase, and catalase activities, and total and soluble protein contents in the lens tissues. It was concluded that thymoquinone significantly protected the lens tissue against changes induced by diabetes in rats through its antioxidant, anti-inflammatory, and antidiabetic effects.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Postal code: 31982, Al-Ahsa, Saudi Arabia.
| | - Fahad Alwadani
- Department of Ophthalmology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
41
|
Alyoussef A, Al-Gayyar MMH. Thymoquinone ameliorates testicular tissue inflammation induced by chronic administration of oral sodium nitrite. Andrologia 2015; 48:501-8. [DOI: 10.1111/and.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- A. Alyoussef
- Department of Internal Medicine (Dermatology and Venereology); Faculty of Medicine; University of Tabuk; Tabuk Saudi Arabia
| | - M. M. H. Al-Gayyar
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; University of Tabuk; Tabuk Saudi Arabia
- Department of Clinical Biochemistry; Faculty of Pharmacy; University of Mansoura; Mansoura Egypt
| |
Collapse
|
42
|
Ishtikhar M, Rabbani G, Khan S, Khan RH. Biophysical investigation of thymoquinone binding to ‘N’ and ‘B’ isoforms of human serum albumin: exploring the interaction mechanism and radical scavenging activity. RSC Adv 2015. [DOI: 10.1039/c4ra09892g] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thymoquinone more strongly interacts with the ‘N’ isoform in comparison to the ‘B’ isoform of HSA and also increases its thermal stability but the antioxidant activity is significantly higher at the ‘B’ isoform of HSA.
Collapse
Affiliation(s)
- Mohd Ishtikhar
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Shawez Khan
- Department of Computer Science
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|