1
|
Hong Z, Zhao Y, Pahlavan S, Wang X, Han S, Wang X, Wang K. iPSC modification strategies to induce immune tolerance. LIFE MEDICINE 2025; 4:lnaf016. [PMID: 40376110 PMCID: PMC12076409 DOI: 10.1093/lifemedi/lnaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/27/2025] [Indexed: 05/18/2025]
Abstract
Human pluripotent stem cells (hPSCs) hold great promise in regenerative medicine. However, immune rejections remain one of the major obstacles to stem cell therapy. Though conventional immunosuppressants are available in clinics, the side effects prevent the wide application of hPSCs derivatives, compromising both survival rate and quality of life. In recent years, a myriad of strategies aimed at inducing immune tolerance specifically by engineering stem cells has been introduced to society. One strategy involves human leukocyte antigen (HLA) deletion through gene editing, affording allografts the capability to evade the host immune system. Another strategy involves immune cloak, which is the focus of this review, with emphasis on the overexpression of immune checkpoints and the blocking of immune cytotoxic pathways. Nevertheless, co-transplantation with mesenchymal stem cells (MSCs) and enhanced MSCs confers immune privilege to engraftments. This review summarizes recent studies on the intricacies of immune tolerance induction by engineering stem cells. In addition, we endeavor to deliberate upon the safety and limitations associated with this promising and potential therapeutic modality.
Collapse
Affiliation(s)
- Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Xue Wang
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sen Han
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Department of Obstetrics and Gynecology, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Li SY, Kumar S, Gu X, DeFalco T. Testicular immunity. Mol Aspects Med 2024; 100:101323. [PMID: 39591799 PMCID: PMC11624985 DOI: 10.1016/j.mam.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The testis is a unique environment where immune responses are suppressed to allow the development of sperm that possess autoimmunogenic antigens. There are several contributors responsible for testicular immune privilege, including the blood-testis barrier, testicular immune cells, immunomodulation by Sertoli cells, and high levels of steroid hormones. Despite multiple mechanisms in place to regulate the testicular immune environment, pathogens that disrupt testicular immunity can lead to long-term effects such as infertility. If testicular immunity is disturbed, autoimmune reactions can also occur, leading to aberrant immune cell infiltration and subsequent attack of autoimmunogenic germ cells. Here we discuss cellular and molecular factors underlying testicular immunity and how testicular infection or autoimmunity compromise immune privilege. We also describe infections and autoimmune diseases that impact the testis. Further research into testicular immunity will reveal how male fertility is maintained and will help update therapeutic strategies for infertility and other testicular disorders.
Collapse
Affiliation(s)
- Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sudeep Kumar
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
3
|
Ghasemi N, Azizi H, Razavi-Amoli SK, Skutella T. The Role of Plzf in Spermatogonial Stem Cell Maintenance and Differentiation: Mapping the Transcriptional Dynamics and Key Interactions. Cells 2024; 13:1930. [PMID: 39682679 PMCID: PMC11640652 DOI: 10.3390/cells13231930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Spermatogonial stem cells (SSCs) sustain and modulate spermatogenesis through intricate signaling pathways and transcription factors. Promyelocytic leukemia zinc-finger (Plzf, also known as Zbtb16) has been identified as a critical transcription factor influencing various signaling and differentiation pathways. Plzf plays a pivotal role in regulating the differentiation properties of SSCs and is essential for the proper maintenance of spermatogenesis. However, the transcription patterns of Plzf along the seminiferous tubules and its interaction network with adjacent partners still need to be fully elucidated. This study employed immunostaining techniques coupled with Fluidigm quantitative real-time polymerase chain reaction (Fluidigm qPCR) to quantify Plzf expression in undifferentiated and differentiated spermatogonia. Furthermore, we utilized bioinformatics analyses to identify Plzf partners and their associations with other regulatory factors. Immunohistostaining (IMH) revealed a high expression of Plzf in cells near the basal membrane of seminiferous tubules and a lower expression in the middle regions in vivo. Immunocytochemistry (ICC) demonstrated that undifferentiated spermatogonia exhibited significant Plzf positivity, whereas differentiated spermatogonia showed reduced Plzf expression in vitro. Fluidigm qPCR confirmed a significant differential expression of Plzf between undifferentiated and differentiated spermatogonia. In silico differential expression analysis between undifferentiated spermatogonia and spermatids indicated that Plzf is closely associated with Mycn, Lin28a, Kras, Ccnd1, and Jak1, highlighting the importance of these partnerships during spermatogenesis. Our findings suggest that the network of Plzf-related partners and their associated proteins involves differentiation, localization, apoptosis, and signal transduction. This comprehensive approach advances our understanding of Plzf transcription patterns and sheds light on its interactions with other cellular factors, revealing previously obscure pathways and interactions. These insights could lead to more effective diagnostic strategies for reproductive system-related diseases and inform the development of improved therapeutic and clinical applications.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 49767, Amol 4615664616, Iran;
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 49767, Amol 4615664616, Iran;
| | - Seyedeh-Kiana Razavi-Amoli
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany;
| |
Collapse
|
4
|
Chiappalupi S, Salvadori L, Borghi M, Mancuso F, Pariano M, Riuzzi F, Luca G, Romani L, Arato I, Sorci G. Grafted Sertoli Cells Exert Immunomodulatory Non-Immunosuppressive Effects in Preclinical Models of Infection and Cancer. Cells 2024; 13:544. [PMID: 38534388 PMCID: PMC10969358 DOI: 10.3390/cells13060544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The Sertoli cells (SeCs) of the seminiferous tubules secrete a multitude of immunoregulatory and trophic factors to provide immune protection and assist in the orderly development of germ cells. Grafts of naked or encapsulated SeCs have been proved to represent an interesting therapeutic option in a plethora of experimental models of diseases. However, whether SeCs have immunosuppressive or immunomodulatory effects, which is imperative for their clinical translatability, has not been demonstrated. We directly assessed the immunopotential of intraperitoneally grafted microencapsulated porcine SeCs (MC-SeCs) in murine models of fungal infection (Aspergillus fumigatus or Candida albicans) or cancer (Lewis lung carcinoma/LLC or B16 melanoma cells). We found that MC-SeCs (i) provide antifungal resistance with minimum inflammatory pathology through the activation of the tolerogenic aryl hydrocarbon receptor/indoleamine 2,3-dioxygenase pathway; (ii) do not affect tumor growth in vivo; and (iii) reduce the LLC cell metastatic cancer spread associated with restricted Vegfr2 expression in primary tumors. Our results point to the fine immunoregulation of SeCs in the relative absence of overt immunosuppression in both infection and cancer conditions, providing additional support for the potential therapeutic use of SeC grafts in human patients.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Laura Salvadori
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (S.C.); (M.B.); (F.M.); (M.P.); (F.R.); (G.L.); (L.R.); (I.A.)
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy;
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| |
Collapse
|
5
|
Zhang R, Wang XX, Xie JF, Yao TT, Guo QW, Wang Q, Ding Z, Zhang JP, Zhang MR, Xu LC. Cypermethrin induces Sertoli cell apoptosis through endoplasmic reticulum-mitochondrial coupling involving IP3R1-GRP75-VDAC1. Reprod Toxicol 2024; 124:108552. [PMID: 38296003 DOI: 10.1016/j.reprotox.2024.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024]
Abstract
A widely used type II pyrethroid pesticide cypermethrin (CYP) is one of endocrine disrupting chemicals (EDCs) with anti-androgenic activity to induce male reproductive toxicology. However, the mechanisms have not been fully elucidated. This study was to explore the effects of CYP on apoptosis of mouse Sertoli cells (TM4) and the roles of endoplasmic reticulum (ER)-mitochondria coupling involving 1,4,5-trisphosphate receptor type1-glucose-regulated protein 75-voltage-dependent anion channel 1 (IP3R1-GRP75-VDAC1). TM4 were cultured with different concentrations of CYP. Flow cytometry, calcium (Ca2+) fluorescent probe, transmission electron microscopy and confocal microscopy, and western blot were to examine apoptosis of TM4, mitochondrial Ca2+, ER-mitochondria coupling, and expressions of related proteins. CYP was found to increase apoptotic rates of TM4 significantly. CYP was shown to significantly increase expressions of cleaved caspase-3, cleaved poly ADP-ribose polymerase (PARP). Concentration of mitochondrial Ca2+ was increased by CYP treatment significantly. CYP significantly enhanced ER-mitochondria coupling. CYP was shown to increase expressions of IP3R, Grp75 and VDAC1 significantly. We suggest that CYP induces apoptosis in TM4 cells by facilitating mitochondrial Ca2+ overload regulated by ER-mitochondria coupling involving IP3R1-GRP75-VDAC1. This study identifies a novel mechanism of CYP-induced apoptosis in Sertoli cells.
Collapse
Affiliation(s)
- Rui Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Xu Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-Fei Xie
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting-Ting Yao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qian-Wen Guo
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhen Ding
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin-Peng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mei-Rong Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
6
|
Cui H, Culty M. Do macrophages play a role in the adverse effects of endocrine disrupting chemicals (EDCs) on testicular functions? FRONTIERS IN TOXICOLOGY 2023; 5:1242634. [PMID: 37720385 PMCID: PMC10501733 DOI: 10.3389/ftox.2023.1242634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
During the past decades, several endocrine disrupting chemicals (EDCs) have been confirmed to affect male reproductive function and fertility in animal studies. EDCs are suspected to exert similar effects in humans, based on strong associations between levels of antiandrogenic EDCs in pregnant women and adverse reproductive effects in infants. Testicular macrophages (tMΦ) play a vital role in modulating immunological privilege and maintaining normal testicular homeostasis as well as fetal development. Although tMΦ were not historically studied in the context of endocrine disruption, they have emerged as potential targets to consider due to their critical role in regulating cells such as spermatogonial stem cells (SSCs) and Leydig cells. Few studies have examined the impact of EDCs on the ability of testicular cells to communicate and regulate each other's functions. In this review, we recapitulate what is known about tMΦ functions and interactions with other cell types in the testis that support spermatogenesis and steroidogenesis. We also surveyed the literature for reports on the effects of the EDCs genistein and DEHP on tMΦ, SSCs, Sertoli and Leydig cells. Our goal is to explore the possibility that EDC disruption of tMΦ interactions with other cell types may play a role in their adverse effects on testicular developmental programming and functions. This approach will highlight gaps of knowledge, which, once resolved, should improve the risk assessment of EDC exposure and the development of safeguards to protect male reproductive functions.
Collapse
Affiliation(s)
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Chua CYX, Jiang AY, Eufrásio-da-Silva T, Dolatshahi-Pirouz A, Langer R, Orive G, Grattoni A. Emerging immunomodulatory strategies for cell therapeutics. Trends Biotechnol 2023; 41:358-373. [PMID: 36549959 DOI: 10.1016/j.tibtech.2022.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Cellular therapies are poised to transform the field of medicine by restoring dysfunctional tissues and treating various diseases in a dynamic manner not achievable by conventional pharmaceutics. Spanning various therapeutic areas inclusive of cancer, regenerative medicine, and immune disorders, cellular therapies comprise stem or non-stem cells derived from various sources. Despite numerous clinical approvals or trials underway, the host immune response presents a critical impediment to the widespread adoption and success of cellular therapies. Here, we review current research and clinical advances in immunomodulatory strategies to mitigate immune rejection or promote immune tolerance to cellular therapies. We discuss the potential of these immunomodulatory interventions to accelerate translation or maximize the prospects of improving therapeutic outcomes of cellular therapies for clinical success.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Allen Yujie Jiang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Disruptions in Hypothalamic-Pituitary-Gonadal Axis Development and Their IgG Modulation after Prenatal Systemic Inflammation in Male Rats. Int J Mol Sci 2023; 24:ijms24032726. [PMID: 36769048 PMCID: PMC9916578 DOI: 10.3390/ijms24032726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The development of the neuroendocrine system, including the hypothalamic-pituitary-gonadal (HPG) axis, is sensitive to environmental impacts during critical developmental periods. Maternal immune system activation by bacterial or viral infection may be one of the negative impacts. This study focused on the effect of systemic inflammation induced by lipopolysaccharides (LPS E. coli) on the HPG axis development in male rat offspring, corrected by the anti-inflammatory action of polyclonal IgG and monoclonal anti-interleukin (IL)-6 receptor antibodies (IL-6RmAbs). A single LPS exposure on the 12th embryonic day (ED) led to a decrease in the number of afferent synaptic inputs on gonadotropin-releasing, hormone-producing neurons in adult male offspring. LPS exposure on ED18 did not lead to such disruptions. Moreover, after the LPS injections on ED12, circulating follicle-stimulating hormone and sex steroid levels were reduced, and the gonadal structure was disrupted. A prenatal IL-6R blockade with IL-6RmAbs and polyclonal IgG reduced the negative effects of inflammation on fetal HPG axis development. Overall, the data obtained confirm the morphogenetic effect of inflammation on fetal HPG development and IL-6 involvement in these processes.
Collapse
|
9
|
Mechanisms underlying impaired spermatogenic function in orchitis induced by busulfan. Reprod Toxicol 2023; 115:1-7. [PMID: 36372306 DOI: 10.1016/j.reprotox.2022.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Busulfan is an alkylating agent commonly used in cancer chemotherapy. It is also an ideal agent for preparing transplant recipients of spermatogonial stem cells because of its high efficiency in destroying endogenous germ cells in the testis. However, its toxicity mechanism remains unclear, affecting its clinical use and applications. Based on reports of busulfan causing orchitis and a previous study by our team, this article summarizes the relationship between busulfan and orchitis, cytokines, the blood-testis barrier, and the cytoskeleton, unravels the regulatory pathways and mechanism behind busulfan-induced orchitis, and reveals the molecular mechanism underlying impaired spermatogenic function in orchitis, providing new ideas for the clinical application of busulfan while reducing its testicular toxicity.
Collapse
|
10
|
Hsiao ZH, Li L, Yu X, Yin L. Characterization of primary canine Sertoli cells as a model to test male reproductive toxicant. Toxicol In Vitro 2022; 84:105452. [PMID: 35931286 PMCID: PMC10351342 DOI: 10.1016/j.tiv.2022.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/28/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Sertoli cells play critical roles in regulating spermatogenesis and testis development by providing structural and nutritional support. This study aimed to develop a standard protocol for canine Sertoli cell isolation and culture; and characterize its biological features, functionality, and application of compound toxicity testing. Canine testicles were received from the neuter clinic, and three-step of enzymatic digestion was applied to isolate Sertoli cells. We characterized the growth and purity of Sertoli cells with the expression of SOX9, GATA4, and Clusterin. In addition, we selected cadmium as a model toxicant to evaluate the toxic responses in the newly established Sertoli cells using High-content Analysis (HCA). With our optimized protocol, the purity of isolated Sertoli cells was above 95%, as determined with Sertoli cell-specific protein markers of SOX9 and GATA4. More importantly, primary Sertoli cell populations could be expanded rapidly in vitro, passaged (up to seven), and cryopreserved. The HCA-based assay revealed that cadmium at 1 μM induced both disruptions of cytoskeletal and DNA damage responses. Furthermore, we established an HCA assay with the newly isolated and optimized culture of canine Sertoli cells to evaluate the epigenetic markers of histone modification. We found cadmium-induced differential changes in histone modifications H3Me3K9, H3Me3K36, H4Me3K20, and H4acK5. In summary, we have established the standardized protocol to produce canine Sertoli cells with Sertoli cell-specific phenotype. The isolation and expansion of large quantities of canine Sertoli cells will provide broad applications in studying male infertility, reproductive toxicology, testicular cancer, and cell therapy.
Collapse
Affiliation(s)
- Zoey Hsuan Hsiao
- Reprotox Biotech LLC, 800 Bradbury, Drive, SE, Science &Technology Park, Albuquerque, NM 87106, United States of America
| | - Lu Li
- Reprotox Biotech LLC, 800 Bradbury, Drive, SE, Science &Technology Park, Albuquerque, NM 87106, United States of America
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Lei Yin
- Reprotox Biotech LLC, 800 Bradbury, Drive, SE, Science &Technology Park, Albuquerque, NM 87106, United States of America.
| |
Collapse
|
11
|
Petrella C, Spaziani M, D’Orazi V, Tarani L, Terracina S, Tarani F, Micangeli G, Barbato C, Minni A, Greco A, Isidori AM, Ferraguti G, Fiore M. Prokineticin 2/PROK2 and Male Infertility. Biomedicines 2022; 10:2389. [PMID: 36289651 PMCID: PMC9598863 DOI: 10.3390/biomedicines10102389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Male infertility represents about 50% of the causes of infertility in couples. The diagnosis process represents an important procedure for defining, when possible, the causes and approaching treatments (pharmacological, surgical) aimed at overcoming the problem. Several scientific studies have set out to discover early and indicative markers capable of providing information on the biological origin of infertility and increase current knowledge in the context of new potential therapeutic approaches. The prokineticin system (PROK) consists of the prokineticin 1 (PROK1) and prokineticin 2 (PROK2) proteins. Through the activation of two G-protein receptors (PROKR1 and PROKR2) regulate a wide range of biological functions, including gastrointestinal motility, circadian rhythm regulation, neurogenesis, angiogenesis, pain perception, and mood regulation. Several studies have highlighted the crucial role of the PROK system in the development and maturation of both male and female human reproductive organs. Particularly in men, the PROK system represents a new system useful to clarify some aspects of testicular pathophysiology and provide new potential hypotheses for therapeutic intervention. This narrative review aims to illustrate the state of the art regarding, in particular, the role of PROK2 in male infertility.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), 00161 Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Francesca Tarani
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Ginevra Micangeli
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), 00161 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Andrea M. Isidori
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), 00161 Rome, Italy
| |
Collapse
|
12
|
Bartolini D, Arato I, Mancuso F, Giustarini D, Bellucci C, Vacca C, Aglietti MC, Stabile AM, Rossi R, Cruciani G, Rende M, Calafiore R, Luca G, Galli F. Melatonin modulates Nrf2 activity to protect porcine pre-pubertal Sertoli cells from the abnormal H 2 O 2 generation and reductive stress effects of cadmium. J Pineal Res 2022; 73:e12806. [PMID: 35524288 PMCID: PMC9539639 DOI: 10.1111/jpi.12806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Melatonin (MLT) is a cytoprotective agent holding potential to prevent cadmium (Cd) toxicity and its impact in testicular function and fertility. In this study, we explored such potential in porcine pre-pubertal Sertoli cells (SCs). Cd toxicity resulted in impaired SC viability and function, abnormal cellular H2 O2 generation and efflux, and induction of reductive stress by the upregulation of Nrf2 expression and activity, cystine uptake and glutathione biosynthesis, glutathione-S-transferase P (GSTP) expression, and protein glutathionylation inhibition. Cd toxicity also stimulated the activity of cellular kinases (MAPK-ERK1/2 and Akt) and NFkB transcription factor, and cJun expression was increased. MLT produced a potent cytoprotective effect when co-administered with Cd to SCs; its efficacy and the molecular mechanism behind its cytoprotective function varied according to Cd concentrations. However, a significant restoration of cell viability and function, and of H2 O2 levels, was observed both at 5 and 10 μM Cd. Mechanistically, these effects of MLT were associated with a significant reduction of the Cd-induced activation of Nrf2 and GSTP expression at all Cd concentrations. CAT and MAPK-ERK1/2 activity upregulation was associated with these effects at 5 μM Cd, whereas glutathione biosynthesis and efflux were involved at 10 μM Cd together with an increased expression of the cystine transporter xCT, of cJun and Akt and NFkB activity. MLT protects SCs from Cd toxicity reducing its H2 O2 generation and reductive stress effects. A reduced activity of Nrf2 and the modulation of other molecular players of MLT signaling, provide a mechanistic rational for the cytoprotective effect of this molecule in SCs.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical SciencesUniversity of PerugiaPerugiaItaly
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic AnatomyUniversity of PerugiaPerugiaItaly
| | - Iva Arato
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Daniela Giustarini
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
| | - Catia Bellucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmine Vacca
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | | | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic AnatomyUniversity of PerugiaPerugiaItaly
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
| | - Gabriele Cruciani
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic AnatomyUniversity of PerugiaPerugiaItaly
| | - Riccardo Calafiore
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Department of Medicine and Surgery, International Biotechnological Center for Endocrine, Metabolic and Embryo‐Reproductive Translational Research (CIRTEMER)University of PerugiaPerugiaItaly
| | - Giovanni Luca
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Division of Medical Andrology and Endocrinology of ReproductionSaint Mary HospitalTerniItaly
- Department of Medicine and Surgery, International Biotechnological Center for Endocrine, Metabolic and Embryo‐Reproductive Translational Research (CIRTEMER)University of PerugiaPerugiaItaly
| | - Francesco Galli
- Department of Pharmaceutical SciencesUniversity of PerugiaPerugiaItaly
| |
Collapse
|
13
|
Rahimi B, Aliaghaei A, Ramezani F, Behroozi Z, Nasirinezhad F. Sertoli cell transplantation attenuates microglial activation and inhibits TRPC6 expression in neuropathic pain induced by spinal cord injury. Physiol Behav 2022; 251:113807. [PMID: 35427673 DOI: 10.1016/j.physbeh.2022.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cell therapy is a promising treatment method for relieving neuropathic pain caused by spinal cord injuries (SCI). Sertoli cells (SCs) are an attractive choice given their demonstrated secretion of growth factors and immunosuppressant effect. This study mechanistically characterizes the analgesic effect of SCs transplantation. METHODS The clip compression SCI model was carried out on the T12-T13 level in male Wistar rats. One-week post-SCI, SCs were transplanted into the site of injury. Animals underwent Basso, Beattie, and Bresnahan locomotor scoring, mechanical allodynia, and thermal hyperalgesia on a weekly basis for a duration of six weeks. Histological examination of the spinal cord and molecular evaluation of Iba-1, P2Y4, TRPC6, and P-mTOR were performed. SCs survival, measured by anti-Müllerian hormone expression in the spinal cord. RESULTS Animals that received SCs transplantation showed improvement in motor function recovery and pain relief. Furthermore, a cavity was significantly decreased in the transplanted animals (p = 0.0024), the expression level of TRPC6 and caspase3 and the number of activated microglia decreased compared to the SCI animals, and p-mTOR and P2Y4R expression remarkably increased compared to the SCI group. CONCLUSION SCs transplantation produces an analgesic effect which may represent a promising treatment for SCI-induced chronic pain.
Collapse
Affiliation(s)
- Behnaz Rahimi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Center for experimental and comparative study, Iran university of medical sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yang Y, Li Q, Huang R, Xia H, Tang Y, Mai W, Liang J, Ma S, Chen D, Feng Y, Lei Y, Zhang Q, Huang Y. Small-Molecule-Driven Direct Reprogramming of Fibroblasts into Functional Sertoli-Like Cells as a Model for Male Reproductive Toxicology. Adv Biol (Weinh) 2022; 6:e2101184. [PMID: 35212192 DOI: 10.1002/adbi.202101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/13/2022] [Indexed: 01/27/2023]
Abstract
Sertoli cells (SCs) are vital to providing morphological and nutritional support for spermatogenesis. Defects in SCs often lead to infertility. SCs transplantation is a promising potential strategy to compensate for SC dysfunction. However, isolation of SCs from testes is impractical due to obvious and ethical limitations. Here, a molecular cocktail is identified comprising of pan-BET family inhibitor (I-BET151), retinoic acid, and riluzole that enables the efficient conversion of fibroblasts into functional Sertoli-like cells (CiSCs). The gene expression profiles of CiSCs resemble those of mature SCs and exhibit functional properties such as the formation of testicular seminiferous tubules, engulfment of apoptotic sperms, supporting the survival of germ cells, and suppressing proliferation of primary lymphocytes in vitro. Moreover, CiSCs are sensitive to toxic substances, making them an alternative model to study the deleterious effects of toxicants on SCs. The study provides an efficient approach to reprogram fibroblasts into functional SCs by using pure chemical compounds.
Collapse
Affiliation(s)
- Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Quan Li
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Rufei Huang
- Department of Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Yan Tang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Wanwen Mai
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Siying Ma
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Yuqing Feng
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China.,Department of Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Yaling Lei
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China.,Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
15
|
Vegrichtova M, Hajkova M, Porubska B, Vasek D, Krylov V, Tlapakova T, Krulova M. Xenogeneic Sertoli cells modulate immune response in an evolutionary distant mouse model through the production of interleukin-10 and PD-1 ligands expression. Xenotransplantation 2022; 29:e12742. [PMID: 35297099 DOI: 10.1111/xen.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Immunomodulatory mechanisms of Sertoli cells (SCs) during phylogeny have not been described previously. This study attempted to reveal mechanisms of SC immune modulation in an evolutionary distant host. METHODS The interaction of the SC cell line derived from Xenopus tropicalis (XtSC) with murine immune cells was studied in vivo and in vitro. The changes in the cytokine production, the intracellular and surface molecules expression on murine immune cells were evaluated after co-culturing with XtSCs. Migration of XtSCs in mouse recipients after intravenous application and subsequent changes in spleen and the testicular immune environment were determined by flow cytometry. RESULTS The in vitro co-culture model was established, allowing the study of XtSCs interaction with murine immune cells. Intracellular staining of interleukin (IL-)10 revealed a significant increase in its expression in macrophages and B cells co-cultured with XtSCs, compared to both unstimulated cells and xenogeneic control. On the contrary, a significant decrease in Th lymphocytes expressing interferon-gamma was observed. The expression of both PD-1 ligands (PD-L1 and PD-L2) was upregulated on the macrophage surfaces after co-culture with XtSCs, but not with the controls. XtSCs migrated specifically to testes when administered intravenously and modulated systemic and local testicular microenvironment; this was detected by the expression of molecules associated with suppressive phenotype by CD45+ cells in both spleen and testes. CONCLUSION We have demonstrated for the first time that SCs can migrate and modulate immune response in a phylogenetically distant host. It was further observed that SCs induce expression of molecules associated with immunosuppression, such as IL-10 and PD-1 ligands.
Collapse
Affiliation(s)
- Marketa Vegrichtova
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Bianka Porubska
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Daniel Vasek
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Vladimir Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Tereza Tlapakova
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
16
|
Yang ZJ, Wang YX, Zhao S, Hu N, Chen DM, Ma HM. SIRT 3 was involved in Lycium barbarum seed oil protection testis from oxidative stress: in vitro and in vivo analyses. PHARMACEUTICAL BIOLOGY 2021; 59:1314-1325. [PMID: 34569428 PMCID: PMC8475125 DOI: 10.1080/13880209.2021.1961822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Lycium barbarum L. (Solanaceae) seed oil (LBSO) exerts LBSO exerts protective effects in the testis in vivo and in vitro via upregulating SIRT3. OBJECTIVE This study evaluates the effects and mechanism of LBSO in the d-galactose (d-gal)-induced ageing testis. MATERIALS AND METHODS Male Sprague Dawley (SD) rats (n = 30, 8-week-old) were randomly divided into three groups: LBSO group (n = 10) where rats received subcutaneous injection of d-gal at 125 mg/kg/day for 8 weeks and intragastric administration of LBSO at 1000 mg/kg/day for 4 weeks, ageing model group (n = 10) received 8-week-sunbcutaneous injection of d-gal, and control group (n = 10) with same administration of normal saline. Lentivirus had established TM4 cells with SIRT3 overexpression or silencing before LBSO intervened in vitro. RESULTS Treatment with LBSO, the levels of INHB and testosterone both increased, compared to ageing model. In vitro, we found the ED50 of LBSO was 86.72 ± 1.49 and when the concentration of LBSO at 100 μg/mL to intervene TM4 cells, the number of cells increased from 8120 ± 676.2 to 15251 ± 1119, and the expression of SIRT3, HO-1, and SOD upregulated. However, HO-1 and SOD were dysregulated by silencing SIRT3. On the other hand, the expression of AMPK and PGC-1α upregulated as an effect of SIRT3 overexpression by lentivirus, meanwhile the same increasing trend of that being found in cells treated with LBSO, compared to control group. DISCUSSION AND CONCLUSIONS LBSO alleviated oxidative stress in d-gal-induced sub-acutely ageing testis and TM4 cells by suppressing the oxidative stress to mitochondria via SIRT3/AMPK/PGC-1α.
Collapse
Affiliation(s)
- Zhang-Jie Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Yu-Xin Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Shuai Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Na Hu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
| | - Dong-Mei Chen
- Institute of Human Stem Cell Research, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui-Ming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education in Ningxia Medical University, Yinchuan, China
- College of Chinese medicine of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Pan Z, Gao Y, Liu S, Ke Z, Guo J, Ma W, Cui T, Liu B, Zhang X. Wu-Zi-Yan-Zong-Wan protects mouse blood-testis barrier from Tripterygium wilfordii Hook. f. multiglycoside-induced disruption by regulating proinflammatory cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114440. [PMID: 34293456 DOI: 10.1016/j.jep.2021.114440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu-Zi-Yan-Zong-Wan (WZYZW) is a classical traditonal Chinese herbal formula and a Chinese patent medicine used to treat male infertility. However, the chemical components of WZYZW and its mechanism are not yet fully clarified. AIM OF THE STUDY The purpose of this study is to observe the effect and underlying mechanism of WZYZW on ameliorating blood-testis barrier (BTB) dysfunction in mice with spermatogenic dysfunction induced by administration of Tripterygium wilfordii Hook. f. multiglycosides (GTW). MATERIALS AND METHODS WZYZW was administered by gavage to mice with GTW-induced spermatogenic dysfunction (kidney essence deficiency pattern) for 40 days. Testis tissues were obtained for subsequent histopathological analysis. Biotin tracing was used to evaluate the permeability of Sertoli cell tight junctions. The levels of proinflammatory cytokines including interleukin (IL)-6, IL-17A, IL-1α and tumor necrosis factor (TNF)-α were analyzed by ELISA. The expression levels of proteins related to tight junction including ZO-1, JAM-A and occludin were analyzed by western blotting. The ultrastructures of tight junctions were observed by transmission electron microscopy. RESULTS WZYZW ameliorated GTW-induced testicular spermatogenic dysfunction. Levels of IL-6, IL-17A, IL-1α, and TNF-α in the groups receiving low, medium, and high doses of WZYZW decreased in a dose-dependent manner. WZYZW impeded a biotin tracer from permeating the BTB, protecting its integrity in GTW-treated mice. In addition, our results showed no significant changes in the protein expressions of ZO-1, JAM-A, and occludin after WZYZW administration compared with the GTW group. Meanwhile, WZYZW exhibited a linear arrangement and restored the typical "sandwich" structure of BTB. No acute poisoning incidences were observed in all groups during the experiment. CONCLUSIONS Our findings demonstrate that WZYZW may ameliorate some GTW-induced BTB dysfunction, possibly by regulating proinflammatory cytokine levels. In vitro studies on the regulation of BTB permeability by WZYZW and its active components are further required.
Collapse
Affiliation(s)
- Zhenkun Pan
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yunxiao Gao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shuang Liu
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New District, Chongqing, 401121, China.
| | - Zhenghao Ke
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jianqiang Guo
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wenjing Ma
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Tianwei Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Xiuping Zhang
- Department of Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China.
| |
Collapse
|
18
|
Salvadori L, Chiappalupi S, Arato I, Mancuso F, Calvitti M, Marchetti MC, Riuzzi F, Calafiore R, Luca G, Sorci G. Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules 2021; 11:1504. [PMID: 34680138 PMCID: PMC8533898 DOI: 10.3390/biom11101504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene translating in lack of functional dystrophin and resulting in susceptibility of myofibers to rupture during contraction. Inflammation and fibrosis are critical hallmarks of DMD muscles, which undergo progressive degeneration leading to loss of independent ambulation in childhood and death by early adulthood. We reported that intraperitoneal injection of microencapsulated Sertoli cells (SeC) in dystrophic mice translates into recovery of muscle morphology and performance thanks to anti-inflammatory effects and induction of the dystrophin paralogue, utrophin at the muscle level, opening new avenues in the treatment of DMD. The aim of this study is to obtain information about the direct effects of SeC on myoblasts/myotubes, as a necessary step in view of a translational application of SeC-based approaches to DMD. We show that (i) SeC-derived factors stimulate cell proliferation in the early phase of differentiation in C2C12, and human healthy and DMD myoblasts; (ii) SeC delay the expression of differentiation markers in the early phase nevertheless stimulating terminal differentiation in DMD myoblasts; (iii) SeC restrain the fibrogenic potential of fibroblasts, and inhibit myoblast-myofibroblast transdifferentiation; and, (iv) SeC provide functional replacement of dystrophin in preformed DMD myotubes regardless of the mutation by inducing heregulin β1/ErbB2/ERK1/2-dependent utrophin expression. Altogether, these results show that SeC are endowed with promyogenic and antifibrotic effects on dystrophic myoblasts, further supporting their potential use in the treatment of DMD patients. Our data also suggest that SeC-based approaches might be useful in improving the early phase of muscle regeneration, during which myoblasts have to adequately proliferate to replace the damaged muscle mass.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Proliferation/genetics
- Cell Transdifferentiation/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Injections, Intraperitoneal
- MAP Kinase Signaling System/genetics
- Male
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts/metabolism
- Neuregulin-1/genetics
- Receptor, ErbB-2/genetics
- Regeneration/genetics
- Sertoli Cells/metabolism
- Sertoli Cells/pathology
- Utrophin/genetics
Collapse
Affiliation(s)
- Laura Salvadori
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
| | - Francesca Riuzzi
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
| | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132 Perugia, Italy; (S.C.); (F.R.)
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (F.M.); (M.C.); (M.C.M.); (R.C.)
- Consorzio Interuniversitario Biotecnologie (CIB), 34127 Trieste, Italy
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (CURGeF), 06132 Perugia, Italy
| |
Collapse
|
19
|
Hawthorne WJ, Fuller E, Thomas A, Rao JS, Burlak C. Updateon xenotransplantation for May/June 2021. Xenotransplantation 2021; 28:e12710. [PMID: 34617623 DOI: 10.1111/xen.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Wayne J Hawthorne
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Erin Fuller
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Adwin Thomas
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Joseph Sushil Rao
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Azizi H, Niazi Tabar A, Skutella T. Successful transplantation of spermatogonial stem cells into the seminiferous tubules of busulfan-treated mice. Reprod Health 2021; 18:189. [PMID: 34556135 PMCID: PMC8461838 DOI: 10.1186/s12978-021-01242-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 09/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background Spermatogonial stem cells (SSCs) in the testis are crucial for transferring genetic information to the next generation. Successful transplantation of SSCs to infertile men is an advanced therapeutic application in reproductive biology research. Methods In this experimental research, both in vitro and in vivo characterization of undifferentiated and differentiated SSCs were performed by morphology—immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm Real-Time polymerase chain reaction (RT-PCR) and flow cytometry analysis. The isolated SSCs were finally microinjected into the rete testis of busulfan-treated mice. The compact undifferentiated and more loosely connected round differentiated SSCs were isolated during testicular cell expansion from their specific feeder layer. Results ICC analysis indicated high and low expression levels of Zbtb16 in undifferentiated and differentiated germ cells. Also, IMH analysis showed different expression levels of Zbtb16 in the two different germ stem cell populations of the testicular tissue. While Fluidigm RT-PCR analysis indicated overexpression of the TAF4B germ cell gene, the expression of DAZL, VASA, and Zbtb16 were down-regulated during the differentiation of SSCs (P < 0.05). Also, flow cytometry analysis confirmed the significant downregulation of Itgb1 and Itga4 during differentiation. By transplantation of SSCs into busulfan-treated NOD/SCID mice, GFP-labeled sperm cells developed. Conclusions In the current study, we performed a transplantation technique that could be useful for the future microinjection of SSCs during infertility treatment and for studying in vivo differentiation of SSCs into sperm. Spermatogonia (SSCs) in the testis transmit genetic information to the next generation. Successful SSC transplantation into infertile men is an advanced therapeutic application in reproductive biology research. In this experimental research, both in vitro and in vivo characterization of undifferentiated and differentiated SSCs were performed by morphology—immunocytochemistry (ICC), immunohistochemistry (IMH), Fluidigm Real-Time polymerase chain reaction (RT-PCR) and flow cytometry analysis. The isolated SSCs were finally microinjected into the rete testis of busulfan-treated mice. ICC analysis indicated high and low expression levels of Zbtb16 in undifferentiated and differentiated germ cells. IMH analysis showed different expression levels of Zbtb16 in both populations. Fluidigm RT-PCR analysis indicated overexpression of the TAF4B germ cell gene and the down-regulated expression of DAZL, VASA, and Zbtb16 during SSCs differentiation of (P < 0.05). Flow cytometry analysis confirmed the significant downregulation of Itgb1 and Itga4 during differentiation. By transplantation of SSCs into busulfan-treated NOD/SCID mice, GFP-labeled sperm cells developed. We performed a transplantation technique that could be useful for the future microinjection of SSCs during infertility treatment and for studying in vivo differentiation of SSCs into sperm. Data analysis confirmed that zbtb16 is expressed in the undifferentiated germ cells located on the basal membrane of seminiferous tubules and SSCs in vitro. Also, spermatogenesis was resumed, and fertility improved after transplantation of undifferentiated cells into busulfan-treated mice; thus, improvements in vitro SSCs transplantation, isolation and culture would be helpful in future clinical treatments to solve the reproductive problems of families influenced by infertility.
Collapse
Affiliation(s)
- Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 46168-49767, Amol, Iran.
| | - Amirreza Niazi Tabar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 46168-49767, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
21
|
The guardians of germ cells; Sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells. Theriogenology 2021; 173:112-122. [PMID: 34371438 DOI: 10.1016/j.theriogenology.2021.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 01/10/2023]
Abstract
Nowadays, prolonged exposure to electromagnetic fields (EMF) has raised public concern about the detrimental potential of EMF on spermatogonial stem cells (SSCs) and spermatogenesis. Recent studies introduced the fundamental role of Sertoli cell paracrine signaling in the regulation of SSCs maintenance and differentiation in fertility preservation. Thus we investigated the therapeutic effect of Sertoli-derived exosomes (Sertoli-EXOs) as powerful paracrine mediators in SSCs subjected to EMF and its underlying mechanisms. SSCs and Sertoli cells were isolated from neonate mice testis, and identified by their specific markers. Then SSCs were exposed to 50 Hz EMF with intensity of 2.5 mT (1 h for 5 days) and supplemented with exosomes that were isolated from pre-pubertal Sertoli cells. Sertoli-EXOs were characterized and the uptake was observed by PKH26 labeling. The cell viability, colonization efficiency, reactive oxygen species (ROS) balance, cell cycle arrest and apoptosis induction were then analysed. SSCs were confirmed by immunocytochemistry (Oct4, Plzf) and Sertoli cells were identified through Sox9 and vimentin expression by immunocytochemistry and Real-time PCR (qRT-PCR), respectively. Our results demonstrated the detrimental effect of EMF via ROS accumulation that reduced the expression of catalase antioxidant, cell viability and colonization of SSCs. Also, AO/PI and flow cytometry analysis demonstrated the elevation of apoptosis in SSCs exposed to EMF in comparison with control. qRT-PCR data confirmed the up-regulation of apoptotic gene (Caspase-3) and down-regulation of SSCs specific gene (GFRα1). Consequently, the administration of Sertoli-EXOs exerted ameliorative effect on SSCs and significantly improved these changes through the regulation of oxidative stress. These findings suggest that Sertoli-EXOs have positive impact on SSCs exposed to EMF and can be useful in further investigation of Sertoli-EXOs as a novel therapeutic agent which may recover the deregulated SSCs microenvironment and spermatogenesis after exposure to EMF.
Collapse
|
22
|
Figueiredo AFA, Wnuk NT, Vieira CP, Gonçalves MFF, Brener MRG, Diniz AB, Antunes MM, Castro-Oliveira HM, Menezes GB, Costa GMJ. Activation of C-C motif chemokine receptor 2 modulates testicular macrophages number, steroidogenesis, and spermatogenesis progression. Cell Tissue Res 2021; 386:173-190. [PMID: 34296344 DOI: 10.1007/s00441-021-03504-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The monocyte chemoattractant protein 1 (MCP-1) belongs to the CC chemokine family and acts in the recruitment of C-C motif chemokine receptor 2 (CCR2)-positive immune cell types to inflammation sites. In testis, the MCP-1/CCR2 axis has been associated with the macrophage population's functional regulation, which presents significant functions supporting germ cell development. In this context, herein, we aimed to investigate the role of the chemokine receptor CCR2 in mice testicular environment and its impact on male sperm production. Using adult transgenic mice strain that had the CCR2 gene replaced by a red fluorescent protein gene, we showed a stage-dependent expression of CCR2 in type B spermatogonia and early primary spermatocytes. Several parameters related to sperm production were reduced in the absence of CCR2 protein, such as Sertoli cell efficiency, meiotic index, and overall yield of spermatogenesis. Daily sperm production decreased by almost 40%, and several damages in the seminiferous tubules were observed. Significant reduction in the expression of important genes related to the Sertoli cell function (Cnx43, Vim, Ocln, Spna2) and meiosis initiation (Stra8, Pcna, Prdm9, Msh5) occurred in comparison to controls. Also, the number of macrophages significantly decreased in the absence of CCR2 protein, along with a disturbance in Leydig cell steroidogenic activity. In summary, our results show that the non-activation of the MCP-1/CCR2 axis disturbs the testicular homeostasis, interfering in macrophage population, meiosis initiation, blood-testis barrier function, and androgen synthesis, leading to the malfunction of seminiferous tubules, decreased testosterone levels, defective sperm production, and lower fertility index.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C P Vieira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F F Gonçalves
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M R G Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A B Diniz
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - H M Castro-Oliveira
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G B Menezes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
Teng F, Hu F, Zhang M. MicroRNA-125a-5p modulates the proliferation and apoptosis of TM4 Sertoli cells by targeting RAB3D and regulating the PI3K/AKT signaling pathway. Mol Hum Reprod 2021; 27:6323363. [PMID: 34273154 DOI: 10.1093/molehr/gaab049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
Sertoli cells are cells that provide protection and nutrition for developing sperm. Each stage of sperm development occurs on the surface of Sertoli cells. MicroRNA (MiR)-125a-5p is involved in male reproduction. The current research aimed to probe the role of miR-125a-5p in Sertoli cell function. Functionally, miR-125a-5p knockdown facilitated Sertoli cell proliferation, while miR-125a-5p overexpression suppressed Sertoli cell proliferation, as evidenced by 5-ethynyl-20-deoxyuridine incorporation assay. Additionally, miR-125a-5p knockdown inhibited Sertoli cell apoptosis, while miR-125a-5p upregulation facilitated Sertoli cell apoptosis, as evidenced by flow cytometry analysis. Computationally, we identified four predicted mRNA targets of miR-125a-5p. Based on the results of luciferase reporter assay, miR-125a-5p was confirmed to bind to the predicted sequence in the Ras-related protein Rab-3D (RAB3D) 3'UTR. Rescue experiments showed that miR-125a-5p suppressed the proliferative ability of TM4 Sertoli cells and facilitated their apoptosis by targeting RAB3D. Finally, our data confirmed that miR-125a-5p and RAB3D modulated activation of the PI3K/AKT pathway. In conclusion, our data showed that miR-125a-5p regulated Sertoli cell proliferation and apoptosis by targeting RAB3D and regulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fengmeng Teng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinses Medicine, Nanjing 210029, Jiangsu, China
| | - Fang Hu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou 215009, Jiangsu, China
| | - Maosen Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinses Medicine, Nanjing 210029, Jiangsu, China
| |
Collapse
|
24
|
O'Donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol 2021; 121:2-9. [PMID: 34229950 DOI: 10.1016/j.semcdb.2021.06.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Sertoli cells are the orchestrators of spermatogenesis; they support fetal germ cell commitment to the male pathway and are essential for germ cell development, from maintenance of the spermatogonial stem cell niche and spermatogonial populations, through meiosis and spermiogeneis and to the final release of mature spermatids during spermiation. However, Sertoli cells are also emerging as key regulators of other testis somatic cells, including supporting peritubular myoid cell development in the pre-pubertal testis and supporting the function of the testicular vasculature and in contributing to testicular immune privilege. Sertoli cells also have a major role in regulating androgen production within the testis, by specifying interstitial cells to a steroidogenic fate, contributing to androgen production in the fetal testis, and supporting fetal and adult Leydig cell development and function. Here, we provide an overview of the specific roles for Sertoli cells in the testis and highlight how these cells are key drivers of testicular sperm output, and of adult testis size and optimal function of other testicular somatic cells, including the steroidogenic Leydig cells.
Collapse
Affiliation(s)
- Liza O'Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; Monash University, Clayton 3168, Victoria, Australia.
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
25
|
Zhu WQ, Yang DC, Jiang Y, Cai NN, Yang R, Zhang XM. Effective isolation of Sertoli cells from New Zealand rabbit testis. J Adv Vet Anim Res 2021; 8:218-223. [PMID: 34395591 PMCID: PMC8280993 DOI: 10.5455/javar.2021.h505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: Sertoli cells (SCs) are important sustentacular cells in the seminiferous tubules of the testis. Isolation and identification of SCs are the premise for studying their functions. Since New Zealand rabbit is a stable strain which is widely used for biomedical research and animal farming, this study aimed to develop a simple and effective protocol for SC isolation in New Zealand rabbits. Materials and Methods: The SCs of three 30-day-old New Zealand rabbits were isolated by incubation with enzymatic digestion I (Dulbecco’s modified Eagle medium supplemented with 1 mg/ml collagenase IV and 50 μg/ml DNase I) and digestion II (digestion I + 1 mg/ml hyaluronidase + 1 mg/ml trypsin), as well as differential plating. The cells were enriched and identified by using immunocytochemical staining and reverse transcription polymerase chain reaction analysis. Results: Homogeneous cells were obtained. They presented the typical large cell body and an irregular pyramidal shape after differential plating and passaging. These cells expressed mRNA of the SC marker sex-determining region Y-box 9 (SOX9) instead of the Leydig cell marker StAR. Immunocytochemically, they are positive of SOX9, GATA binding protein 4, and androgen-binding protein. Conclusion: The SCs were enriched from the testicular tissues of prepubertal New Zealand rabbits by a simple and effective protocol, which provides a basis for further theoretical researches and practical applications.
Collapse
Affiliation(s)
- Wen-Qian Zhu
- Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - De-Cai Yang
- Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yu Jiang
- Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Ning-Ning Cai
- Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Rui Yang
- Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xue-Ming Zhang
- Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
26
|
Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Rev Rep 2021; 17:1905-1916. [PMID: 34115315 DOI: 10.1007/s12015-021-10197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly evident that selecting an optimal source of mesenchymal stromal cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.
Collapse
|
27
|
Higuch K, Matsumura T, Akiyama H, Kanai Y, Ogawa T, Sato T. Sertoli cell replacement in explanted mouse testis tissue supporting host spermatogenesis. Biol Reprod 2021; 105:934-943. [PMID: 34057178 DOI: 10.1093/biolre/ioab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous tubules, starting from the spermatogonial stem cell and maturing into sperm through multiple stages of cell differentiation. Sertoli cells, the main somatic cell constituting the seminiferous tubule, are in close contact with every germ cell and play pivotal roles in the progression of spermatogenesis. In this study, we developed an in vitro Sertoli cell replacement method by combining an organ culture technique and a toxin receptor-mediated cell knockout (Treck) system. We used Amh- diphtheria toxin receptor (DTR) transgenic mice, whose Sertoli cells specifically express human DTR, which renders them sensitive to diphtheria toxin (DT). An immature Amh-DTR testis was transplanted with donor testis cells followed by culturing in a medium containing DT. This procedure successfully replaced the original Sertoli cells with the transplanted Sertoli cells, and spermatogenesis originating from resident germ cells was confirmed. In addition, Sertoli cells in the mouse testis tissues were replaced by transplanted rat Sertoli cells within culture conditions, without requiring immunosuppressive treatments. This method works as a functional assay system, making it possible to evaluate any cells that might function as Sertoli cells. It would also be possible to investigate interactions between Sertoli and germ cells more closely, providing a new platform for the study of spermatogenesis and its impairments.
Collapse
Affiliation(s)
- Kazusa Higuch
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Takafumi Matsumura
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University School of Medicine, Gifu, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takehiko Ogawa
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan.,Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| |
Collapse
|
28
|
Silk Nanofibrous Electrospun Scaffold Amplifies Proliferation and Stemness Profile of Mouse Spermatogonial Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00189-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Gabellini D, Musarò A. 16th Meeting of the Interuniversity Institute of Myology (IIM) - Assisi (Italy), October 17-20, 2019: Foreword, Program and Abstracts. Eur J Transl Myol 2020; 30:9345. [PMID: 33117514 PMCID: PMC7582450 DOI: 10.4081/ejtm.2020.9345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
The 16th Meeting of the Interuniversity Institute of Myology (IIM), October 17-20, 2019, Assisi, Italy brought together scientists, pharma and patient organization representatives discussing new results on muscle research. Internationally renowned Keynote speakers presented advances on muscle development, homeostasis, metabolism, and disease. Speakers selected among submitted abstracts presented their new, unpublished data in seven scientific sessions. The remaining abstracts were showcased in two poster sessions. Young trainees where directly involved in the selection of keynote speakers, the organizing scientific sessions and roundtables discussions tailored to the interests of their peers. A broad Italian, European and North-American audience participated to the different initiatives. The meeting allowed muscle biology researchers to discuss ideas and scientific collaborations aimed at better understanding the mechanisms underlying muscle diseases in order to develop better therapeutic strategies. The active participation of young trainees was facilitated by the friendly and inclusive atmosphere, which fostered lively discussions identifying emerging areas of myology research and stimulated scientific cross-fertilization. The meeting was a success and the IIM community will continue to bring forward significant contributions to the understanding of muscle development and function, the pathogenesis of muscular diseases and the development of novel therapeutic approaches. Here, we report abstracts of the meeting illustrating novel results of basic, translational, and clinical research, which confirms that the Myology field is strong and healthy.
Collapse
Affiliation(s)
- Davide Gabellini
- Gene Expression and Muscular Dystrophy Group, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to “Istituto Pasteur Italia – Fondazione Cenci Bolognetti”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Xu C, Dai Y, Mohsin A, Hang H, Zhuang Y, Guo M. Mapping molecular pathways for embryonic Sertoli cells derivation based on differentiation model of mouse embryonic stem cells. Stem Cell Res Ther 2020; 11:85. [PMID: 32102677 PMCID: PMC7045406 DOI: 10.1186/s13287-020-01600-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/27/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) have been known for playing important roles in male reproductive development system. In current studies, eSCs were mainly generated from induced intermediate mesoderm. The deriving mechanism of eSCs has been unclear so far. Therefore, this work was aimed to reveal the molecular pathways during derivation of eSCs. Methods In this scenario, a differentiation model from mouse embryonic stem cells (mESCs) to eSCs was established through spatiotemporal control of 5 key factors, Wilms tumor 1 homolog (Wt1), GATA binding protein 4 (Gata4), nuclear receptor subfamily 5, group A, member 1 (Nr5a1, i.e., Sf1), SRY (sex determining region Y)-box 9 (Sox9), doublesex, and mab-3 related transcription factor 1 (Dmrt1). To investigate the molecular mechanism, these key factors were respectively manipulated through a light-switchable (light-on) system, tetracycline-switchable (Tet-on) system, and CRISPR/Cas9 knock out (KO) system. Results Via the established approach, some embryonic Sertoli-like cells (eSLCs) were induced from mESCs and formed ring-like or tubular-like structures. The key factors were respectively manipulated and revealed their roles in the derivation of these eSLCs. Based on these results, some molecular pathways were mapped during the development of coelomic epithelial somatic cells to eSCs. Conclusions This differentiation model provided a high controllability of some key factors and brought a novel insight into the deriving mechanism of Sertoli cells. Supplementary information accompanies this paper at 10.1186/s13287-020-01600-2.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yichen Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
32
|
Hutka M, Smith LB, Goossens E, Wallace WHB, Stukenborg JB, Mitchell RT. Exogenous Gonadotrophin Stimulation Induces Partial Maturation of Human Sertoli Cells in a Testicular Xenotransplantation Model for Fertility Preservation. J Clin Med 2020; 9:jcm9010266. [PMID: 31963729 PMCID: PMC7019512 DOI: 10.3390/jcm9010266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022] Open
Abstract
The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. We used a validated xenograft model to identify the factors required for Leydig and Sertoli cell development and function in immature human testis. Importantly, we compared the maturation status of Sertoli cells in xenografts with that of human testis tissues (n = 9, 1 year-adult). Human fetal testis (n = 6; 14–21 gestational weeks) tissue, which models many aspects of prepubertal testicular development, was transplanted subcutaneously into castrated immunocompromised mice for ~12 months. The mice received exogenous human chorionic gonadotropin (hCG; 20IU, 3×/week). In xenografts exposed continuously to hCG, we demonstrate the maintenance of Leydig cell steroidogenesis, the acquisition of features of Sertoli cell maturation (androgen receptor, lumen development), and the formation of the blood–testis barrier (connexin 43), none of which were present prior to the transplantation or in xenografts in which hCG was withdrawn after 7 months. These studies provide evidence that hCG plays a role in Sertoli cell maturation, which is relevant for future investigations, helping them generate functional gametes from immature testis tissue for clinical application.
Collapse
Affiliation(s)
- Marsida Hutka
- Medical Research Council (MRC) Centre for Reproductive Health, The University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (M.H.); (L.B.S.)
| | - Lee B. Smith
- Medical Research Council (MRC) Centre for Reproductive Health, The University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (M.H.); (L.B.S.)
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, Australia
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - W. Hamish B. Wallace
- Department of Oncology and Haematology, Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh EH9 1LF, UK;
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Solna SE-17164, Sweden;
| | - Rod T. Mitchell
- Medical Research Council (MRC) Centre for Reproductive Health, The University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; (M.H.); (L.B.S.)
- Department of Diabetes and Endocrinology, Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh EH9 1LF, UK
- Correspondence:
| |
Collapse
|
33
|
|
34
|
Liang J, Wang N, He J, Du J, Guo Y, Li L, Wu W, Yao C, Li Z, Kee K. Induction of Sertoli-like cells from human fibroblasts by NR5A1 and GATA4. eLife 2019; 8:48767. [PMID: 31710289 PMCID: PMC6881147 DOI: 10.7554/elife.48767] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
Sertoli cells are essential nurse cells in the testis that regulate the process of spermatogenesis and establish the immune-privileged environment of the blood-testis-barrier (BTB). Here, we report the in vitro reprogramming of fibroblasts to human induced Sertoli-like cells (hiSCs). Initially, five transcriptional factors and a gene reporter carrying the AMH promoter were utilized to obtain the hiSCs. We further reduce the number of reprogramming factors to two, NR5A1 and GATA4, and show that these hiSCs have transcriptome profiles and cellular properties that are similar to those of primary human Sertoli cells. Moreover, hiSCs can sustain the viability of spermatogonia cells harvested from mouse seminiferous tubules. hiSCs suppress the proliferation of human T lymphocytes and protect xenotransplanted human cells in mice with normal immune systems. hiSCs also allow us to determine a gene associated with Sertoli cell only syndrome (SCO), CX43, is indeed important in regulating the maturation of Sertoli cells.
Collapse
Affiliation(s)
- Jianlin Liang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nan Wang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jing He
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Du
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yahui Guo
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Li
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wenbo Wu
- National Institute of Biological Sciences, Beijing, China
| | - Chencheng Yao
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai General Hospital, Shanghai, China
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai General Hospital, Shanghai, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Rebourcet D, O'Shaughnessy PJ, Smith LB. The expanded roles of Sertoli cells: lessons from Sertoli cell ablation models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Chiappalupi S, Salvadori L, Luca G, Riuzzi F, Calafiore R, Donato R, Sorci G. Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy? Cell Prolif 2019; 52:e12599. [PMID: 30912260 PMCID: PMC6536415 DOI: 10.1111/cpr.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
Sertoli cells (SeC) are responsible for the immunoprivileged status of the testis thanks to which allogeneic or xenogeneic engraftments can survive without pharmacological immune suppression if co‐injected with SeC. This peculiar ability of SeC is dependent on secretion of a plethora of factors including maturation factors, hormones, growth factors, cytokines and immunomodulatory factors. The anti‐inflammatory and trophic properties of SeC have been largely exploited in several experimental models of diseases, diabetes being the most studied. Duchenne muscular dystrophy (DMD) is a lethal X‐linked recessive pathology in which lack of functional dystrophin leads to progressive muscle degeneration culminating in loss of locomotion and premature death. Despite a huge effort to find a cure, DMD patients are currently treated with anti‐inflammatory steroids. Recently, encapsulated porcine SeC (MC‐SeC) have been injected ip in the absence of immunosuppression in an animal model of DMD resulting in reduction of muscle inflammation and amelioration of muscle morphology and functionality, thus opening an additional avenue in the treatment of DMD. The novel protocol is endowed with the advantage of being potentially applicable to all the cohort of DMD patients regardless of the mutation. This mini‐review addresses several issues linked to the possible use of MC‐SeC injected ip in dystrophic people.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy
| | | | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology (IIM), Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|