1
|
Hou L, Liu J, Yuan Y, Ding Y. Role of the NOD1/Rip2 Signaling Pathway in Macrophage Inflammatory Activation Induced by ox-LDL. Cardiol Res Pract 2024; 2024:7601261. [PMID: 39640499 PMCID: PMC11620810 DOI: 10.1155/crp/7601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Aim: This study aimed to investigate the impact of the NOD1/Rip2 signaling pathway on macrophage inflammatory activation and polarity switching in ox-LDL-induced THP-1-derived macrophages. Methods: THP-1-derived macrophages were stimulated with various concentrations (10, 25, or 50 mg/L) of ox-LDL for different durations (8, 16, or 24 h). Quantitative real-time PCR was used to measure the mRNA expression of NOD1, Rip2, IL-10, IL-12, iNOS, and Arg-1. Western blotting was used to determine the protein levels of NOD1 and Rip2. The secretion of TNF-α and MCP-1 in the cell culture supernatants was measured via ELISA. Rip2 siRNA was used to inhibit the NOD1/Rip2 signaling pathway. Oil Red O staining was employed to visualize foam cell formation. CD86, CD80, and CD163 membrane molecules were analyzed via FACS. Results: After exposure to ox-LDL, the expression levels of NOD1 and Rip2 mRNAs and proteins in THP-1-derived macrophages increased in a dose- and time-dependent manner. This upregulation was accompanied by increased concentrations of TNF-α and MCP-1 in the cell culture supernatants. The effects of NOD1 and Rip2 expression upregulation were mitigated by Rip2 siRNA, as evidenced by decreased concentrations of TNF-α and MCP-1. Furthermore, ox-LDL downregulated the expression of M2 macrophage markers CD163, IL-12, and Arg-1 and upregulated the expression of M1 macrophage markers CD86, CD80, IL-10, and iNOS. The inhibition of Rip2 by siRNA reversed these effects and prevented the formation of foam cells. Conclusion: Our data show that the NOD1/RIP2 signaling pathway regulates the inflammatory activation of macrophages induced by ox-LDL and controls the macrophage polarity switch.
Collapse
Affiliation(s)
- Liang Hou
- Department of Cardiology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Jinli Liu
- Second Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhui Yuan
- Cancer Center, Dalian Medical University, Dalian, China
| | - Yanchun Ding
- Second Cardiology Department, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Barczyk A, Six P, Rivoal M, Devos C, Dezitter X, Cornu-Choi MJ, Huard K, Pellegrini E, Cusack S, Dubuquoy L, Millet R, Leleu-Chavain N. 4-Anilinoquinazoline Derivatives as the First Potent NOD1-RIPK2 Signaling Pathway Inhibitors at the Nanomolar Range. J Med Chem 2024; 67:19304-19322. [PMID: 39444201 DOI: 10.1021/acs.jmedchem.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Inflammation is a defense mechanism that restores tissue damage and eliminates pathogens. Among the pattern recognition receptors that recognize danger or pathogenic signals, nucleotide oligomerization domains 1 and 2 (NOD1/2) have been identified to play an important role in innate immunity responses, and inhibition of NOD1 could be interesting to treat severe infections and inflammatory diseases. In this work, we identified the first selective NOD1 versus NOD2 pathway inhibitors at the nanomolar range based on a 4-anilinoquinazoline scaffold. We demonstrated that NOD1 inhibition occurs through the inhibition of receptor interacting protein kinase 2 (RIPK2), which is involved in its downstream signaling pathways. Compound 37 demonstrates no cytotoxicity, a selectivity for RIPK2 over epithelial and vascular endothelial growth factor receptors (EGFR/VEGFR), and a capacity to reduce pro-inflammatory cytokine IL-8 secretion. The structure of the RIPK2-compound 37 complex was resolved by crystallography. The 4-anilinoquinazoline scaffold offers novel perspectives to design NOD1-RIPK2 signaling inhibitors.
Collapse
Affiliation(s)
- Amélie Barczyk
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Perrine Six
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Morgane Rivoal
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Claire Devos
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Xavier Dezitter
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Min-Jeong Cornu-Choi
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Karine Huard
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Erika Pellegrini
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Régis Millet
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Natascha Leleu-Chavain
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| |
Collapse
|
3
|
Dicks LMT. Cardiovascular Disease May Be Triggered by Gut Microbiota, Microbial Metabolites, Gut Wall Reactions, and Inflammation. Int J Mol Sci 2024; 25:10634. [PMID: 39408963 PMCID: PMC11476619 DOI: 10.3390/ijms251910634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease (CVD) may be inherited, as recently shown with the identification of single nucleotide polymorphisms (SNPs or "snips") on a 250 kb DNA fragment that encodes 92 proteins associated with CVD. CVD is also triggered by microbial dysbiosis, microbial metabolites, metabolic disorders, and inflammatory intestinal epithelial cells (IECs). The epithelial cellular adhesion molecule (Ep-CAM) and trefoil factor 3 (TFF3) peptide keeps the gut wall intact and healthy. Variations in Ep-CAM levels are directly linked to changes in the gut microbiome. Leptin, plasminogen activator inhibitor 1 (PAI1), and alpha-1 acid glycoprotein 1 (AGP1) are associated with obesity and may be used as biomarkers. Although contactin 1 (CNTN1) is also associated with obesity and adiposity, it regulates the bacterial metabolism of tryptophan (Trp) and thus appetite. A decrease in CNTN1 may serve as an early warning of CVD. Short-chain fatty acids (SCFAs) produced by gut microbiota inhibit pro-inflammatory cytokines and damage vascular integrity. Trimethylamine N-oxide (TMAO), produced by gut microbiota, activates inflammatory Nod-like receptors (NLRs) such as Nod-like receptor protein 3 (NLRP3), which increase platelet formation. Mutations in the elastin gene (ELN) cause supra valvular aortic stenosis (SVAS), defined as the thickening of the arterial wall. Many of the genes expressed by human cells are regulated by gut microbiota. The identification of new molecular markers is crucial for the prevention of CVD and the development of new therapeutic strategies. This review summarizes the causes of CVD and identifies possible CVD markers.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
4
|
Kong L, Cao Y, He Y, Zhang Y. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med (Berl) 2024; 102:787-799. [PMID: 38740600 DOI: 10.1007/s00109-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn's disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
Collapse
Affiliation(s)
- Lingjun Kong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanhua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanan He
- Gamma Knife Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Shaku MT, Um PK, Ocius KL, Apostolos AJ, Pires MM, Bishai WR, Kana BD. A modified BCG with depletion of enzymes associated with peptidoglycan amidation induces enhanced protection against tuberculosis in mice. eLife 2024; 13:e89157. [PMID: 38639995 PMCID: PMC11132681 DOI: 10.7554/elife.89157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.
Collapse
Affiliation(s)
- Moagi Tube Shaku
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory ServiceJohannesburgSouth Africa
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Peter K Um
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Karl L Ocius
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - Alexis J Apostolos
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - Marcos M Pires
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
6
|
Li W, Liu P, Liu H, Zhang F, Fu Y. Integrative analysis of genes reveals endoplasmic reticulum stress-related immune responses involved in dilated cardiomyopathy with fibrosis. Apoptosis 2023; 28:1406-1421. [PMID: 37462883 PMCID: PMC10425499 DOI: 10.1007/s10495-023-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the mechanisms underlying the fibrotic process in dilated cardiomyopathy (DCM) and results in disease exacerbation; however, the molecular details of this mechanism remain unclear. Through microarray and bioinformatic analyses, we explored genetic alterations in myocardial fibrosis (MF) and identified potential biomarkers related to ER stress. We integrated two public microarray datasets, including 19 DCM and 16 control samples, and comprehensively analyzed differential expression, biological functions, molecular interactions, and immune infiltration levels. The immune cell signatures suggest that inflammatory immune imbalance may promote MF progression. Both innate and adaptive immunity are involved in MF development, and T-cell subsets account for a considerable proportion of immune infiltration. The immune subtypes were further compared, and 103 differentially expressed ER stress-related genes were identified. These genes were mainly enriched in neuronal apoptosis, protein modification, oxidative stress reaction, glycolysis and gluconeogenesis, and NOD-like receptor signaling pathways. Furthermore, the 15 highest-scoring core genes were identified. Seven hub genes (AK1, ARPC3, GSN, KPNA2, PARP1, PFKL, and PRKC) might participate in immune-related mechanisms. Our results offer a new integrative view of the pathways and interaction networks of ER stress-related genes and provide guidance for developing novel therapeutic strategies for MF.
Collapse
Affiliation(s)
- Wanpeng Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, P.R., China
| | - Peiling Liu
- Department of Rheumatology, First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, 450000, P.R., China
| | - Huilin Liu
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China
| | - Fuchun Zhang
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China
| | - Yicheng Fu
- Department of Geriatrics, Peking University Third Hospital, Beijing, 100191, P.R , China.
| |
Collapse
|
7
|
Autophagic reprogramming of bone marrow–derived macrophages. Immunol Res 2022; 71:229-246. [PMID: 36451006 PMCID: PMC10060350 DOI: 10.1007/s12026-022-09344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/12/2022] [Indexed: 12/02/2022]
Abstract
Abstract
Macro-autophagy is a highly conserved catabolic process among eukaryotes affecting macrophages. This work studies the genetic regulatory network involving the interplay between autophagy and macrophage polarization (activation). Autophagy-related genes (Atgs) and differentially expressed genes (DEGs) of macrophage polarization (M1–M2) were predicted, and their regulatory networks constructed. Naïve (M0) mouse bone marrow–derived monocytes were differentiated into M1 and M2a. Validation of the targets of Smad1, LC3A and LC3B, Atg16L1, Atg7, IL-6, CD68, Arg-1, and Vamp7 was performed in vitro. Immunophenotyping by flow cytometry revealed three macrophage phenotypes: M0 (IL-6 + /CD68 +), M1 (IL-6 + /CD68 + /Arg-1 +), and M2a (CD68 + /Arg-1). Confocal microscopy revealed increased autophagy in both M1 and M2a and a significant increase in the pre-autophagosomes size and number. Bafilomycin A increased the expression of CD68 and Arg-1 in all cell lineages. In conclusion, our approach predicted the protein targets mediating the interplay between autophagy and macrophage polarization. We suggest that autophagy reprograms macrophage polarization via CD68, arginase 1, Atg16L1-1, and Atg16L1-3. The current findings provide a foundation for the future use of macrophages in immunotherapy of different autoimmune disorders.
Collapse
|
8
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
10
|
Fernández-García V, González-Ramos S, Martín-Sanz P, García-Del Portillo F, Laparra JM, Boscá L. NOD1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol Res 2021; 171:105775. [PMID: 34273489 DOI: 10.1016/j.phrs.2021.105775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding oligomerization domain 1 (NOD1), a pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals, has been linked to inflammatory pathologies. NOD1, which is expressed by immune and non-immune cells, is activated after recognizing microbe-associated molecular patterns (MAMPs). This recognition triggers host defense responses and both immune memory and tolerance can also be achieved during these processes. Since the gut microbiota is currently considered a master regulator of human physiology central in health and disease and the intestine metabolizes a wide range of nutrients, drugs and hormones, it is a fact that dysbiosis can alter tissues and organs homeostasis. These systemic alterations occur in response to gastrointestinal immune adaptations that are not yet fully understood. Even if previous evidence confirms the connection between the microbiota, the immune system and metabolic disorders, much remains to be discovered about the contribution of NOD1 to low-grade inflammatory pathologies such as obesity, diabetes and cardiovascular diseases. This review compiles the most recent findings in this area, while providing a dynamic and practical framework with future approaches for research and clinical applications on targeting NOD1. This knowledge can help to rate the consequences of the disease and to stratify the patients for therapeutic interventions.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | | | - José Moisés Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra, Cantoblanco 8, 28049 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
11
|
Yuki K, Koutsogiannaki S. Pattern recognition receptors as therapeutic targets for bacterial, viral and fungal sepsis. Int Immunopharmacol 2021; 98:107909. [PMID: 34182242 DOI: 10.1016/j.intimp.2021.107909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022]
Abstract
Sepsis remains to be a significant health care problem associated with high morbidities and mortalities. Recognizing its heterogeneity, it is critical to understand our host immunological responses to develop appropriate therapeutic approaches according to the type of sepsis. Because pattern recognition receptors are largely responsible for the recognition of microbes, we reviewed their role in immunological responses in the setting of bacterial, fungal and viral sepsis. We also considered their therapeutic potentials in sepsis.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, Department of Immunology, Harvard Medical School, United States.
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Department of Anaesthesia, Harvard Medical School, Department of Immunology, Harvard Medical School, United States.
| |
Collapse
|
12
|
NLRC4 gene silencing-dependent blockade of NOD-like receptor pathway inhibits inflammation, reduces proliferation and increases apoptosis of dendritic cells in mice with septic shock. Aging (Albany NY) 2021; 13:1440-1457. [PMID: 33406504 PMCID: PMC7835030 DOI: 10.18632/aging.202379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Septic shock is one of the most significant health concerns across the world, involving hypo-perfusion and defects in tissue energy. The current study investigates the role of NLR family CARD domain containing protein 4 (NLRC4) in septic shock-induced inflammatory reactions, lung tissue injuries, and dendritic cell (DC) apoptosis. Septic shock mice models were established by modified cecal ligation and puncture and injected with retroviral vector expressing siRNA-NLRC4. DCs were then isolated and transfected with siRNA-NLRC4. The degree of lung tissue injury, cell cycle distribution, cell apoptosis and cell viability of DCs were assessed. NLRC4 was found to be expressed at high levels in mice with septic shock. NLRC4 silencing inhibited the activation of the NOD-like receptor (NLR) pathway as evidenced by the decreased levels of NOD1, NOD2, RIP2, and NF-κB. In addition, NLRC4 silencing reduced the inflammatory reaction as attributed by reduced levels of IL-1β, TNF-α and IL-6. Suppressed NLRC4 levels inhibited cell viability and promoted cell apoptosis evidenced by inhibited induction of DC surface markers (CD80, CD86, and MHC II), along with alleviated lung tissue injury. In conclusion, NLRC4 silencing ameliorates lung injury and inflammation induced by septic shock by negatively regulating the NLR pathway.
Collapse
|
13
|
Genetic Deletion of NOD1 Prevents Cardiac Ca 2+ Mishandling Induced by Experimental Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21228868. [PMID: 33238586 PMCID: PMC7700567 DOI: 10.3390/ijms21228868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Risk of cardiovascular disease (CVD) increases considerably as renal function declines in chronic kidney disease (CKD). Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) has emerged as a novel innate immune receptor involved in both CVD and CKD. Following activation, NOD1 undergoes a conformational change that allows the activation of the receptor-interacting serine/threonine protein kinase 2 (RIP2), promoting an inflammatory response. We evaluated whether the genetic deficiency of Nod1 or Rip2 in mice could prevent cardiac Ca2+ mishandling induced by sixth nephrectomy (Nx), a model of CKD. We examined intracellular Ca2+ dynamics in cardiomyocytes from Wild-type (Wt), Nod1-/- and Rip2-/- sham-operated or nephrectomized mice. Compared with Wt cardiomyocytes, Wt-Nx cells showed an impairment in the properties and kinetics of the intracellular Ca2+ transients, a reduction in both cell shortening and sarcoplasmic reticulum Ca2+ load, together with an increase in diastolic Ca2+ leak. Cardiomyocytes from Nod1-/--Nx and Rip2-/--Nx mice showed a significant amelioration in Ca2+ mishandling without modifying the kidney impairment induced by Nx. In conclusion, Nod1 and Rip2 deficiency prevents the intracellular Ca2+ mishandling induced by experimental CKD, unveiling new innate immune targets for the development of innovative therapeutic strategies to reduce cardiac complications in patients with CKD.
Collapse
|
14
|
Mahajan MK, Rivera EJ, Sun HH, Nagilla R, DeMartino MP, Haile PA, Casillas LN, Marquis RW, Votta BJ, Bertin J, Reilly MA. Understanding Pharmacokinetic Disconnect in Preclinical Species for 4-Aminoquinolines: Consequences of Low Permeability and High P-glycoprotein Efflux Ratio on Rat and Dog Oral Pharmacokinetics. J Pharm Sci 2020; 109:3160-3171. [DOI: 10.1016/j.xphs.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
|
15
|
González-Ramos S, Paz-García M, Fernández-García V, Portune KJ, Acosta-Medina EF, Sanz Y, Castrillo A, Martín-Sanz P, Obregon MJ, Boscá L. NOD1 deficiency promotes an imbalance of thyroid hormones and microbiota homeostasis in mice fed high fat diet. Sci Rep 2020; 10:12317. [PMID: 32704052 PMCID: PMC7378078 DOI: 10.1038/s41598-020-69295-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The contribution of the nucleotide-binding oligomerization domain protein NOD1 to obesity has been investigated in mice fed a high fat diet (HFD). Absence of NOD1 accelerates obesity as early as 2 weeks after feeding a HFD. The obesity was due to increases in abdominal and inguinal adipose tissues. Analysis of the resting energy expenditure showed an impaired function in NOD1-deficient animals, compatible with an alteration in thyroid hormone homeostasis. Interestingly, free thyroidal T4 increased in NOD1-deficient mice fed a HFD and the expression levels of UCP1 in brown adipose tissue were significantly lower in NOD1-deficient mice than in the wild type animals eating a HFD, thus contributing to the observed adiposity in NOD1-deficient mice. Feeding a HFD resulted in an alteration of the proinflammatory profile of these animals, with an increase in the infiltration of inflammatory cells in the liver and in the white adipose tissue, and an elevation of the circulating levels of TNF-α. In addition, alterations in the gut microbiota in NOD1-deficient mice correlate with increased vulnerability of their ecosystem to the HFD challenge and affect the immune-metabolic phenotype of obese mice. Together, the data are compatible with a protective function of NOD1 against low-grade inflammation and obesity under nutritional conditions enriched in saturated lipids. Moreover, one of the key players of this early obesity onset is a dysregulation in the metabolism and release of thyroid hormones leading to reduced energy expenditure, which represents a new role for these hormones in the metabolic actions controlled by NOD1.
Collapse
Affiliation(s)
- Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Madrid, Spain.
| | - Marta Paz-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Kevin J Portune
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | | | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Unidad de Biomedicina. (Unidad Asociada al CSIC). Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Madrid, Spain
- Unidad de Biomedicina. (Unidad Asociada al CSIC). Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain
| | - Maria Jesus Obregon
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), y Hepáticas y Digestivas (CIBEREHD), ISCIII, Madrid, Spain.
- Unidad de Biomedicina. (Unidad Asociada al CSIC). Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM) and Universidad de Las Palmas, Gran Canaria, Spain.
| |
Collapse
|
16
|
Guzelj S, Gobec M, Urbančič D, Mlinarič-Raščan I, Corsini E, Jakopin Ž. Structural features and functional activities of benzimidazoles as NOD2 antagonists. Eur J Med Chem 2020; 190:112089. [PMID: 32014680 DOI: 10.1016/j.ejmech.2020.112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
NOD1 and NOD2 are pattern recognition receptors that have important roles in innate immune responses. Although their overactivation has been linked to a number of diseases, NOD2 in particular remains a virtually unexploited target in this respect, with only one structural class of antagonist reported. To gain insight into the structure-activity relationships of NOD2 antagonists, a series of novel analogs was designed and synthesized, and then screened for antagonist activity versus NOD2, and counter-screened versus NOD1. Compounds 32 and 38 were identified as potent and moderately selective NOD2 antagonists, and 33 and 42 as dual NOD1/NOD2 antagonists, with balanced activities against both targets in the low micromolar range. These data enable in-depth exploration of their structure-activity relationships and provide deeper understanding of the structural features required for NOD2 antagonism.
Collapse
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental Science and Policy, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Research Progress of Mechanisms and Drug Therapy For Atherosclerosis on Toll-Like Receptor Pathway. J Cardiovasc Pharmacol 2019; 74:379-388. [PMID: 31730559 DOI: 10.1097/fjc.0000000000000738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent reports have established atherosclerosis (AS) as a major factor in the pathogenetic process of cardiovascular diseases such as ischemic stroke and coronary heart disease. Although the possible pathogenesis of AS remains to be elucidated, a large number of investigations strongly suggest that the inhibition of toll-like receptors (TLRs) alleviates the severity of AS to some extent by suppressing vascular inflammation and the formation of atherosclerotic plaques. As pattern recognition receptors, TLRs occupy a vital position in innate immunity, mediating various signaling pathways in infective and sterile inflammation. This review summarizes the available data on the research progress of AS and the latest antiatherosclerotic drugs associated with TLR pathway.
Collapse
|
18
|
Jakopin Ž, Corsini E. THP-1 Cells and Pro-inflammatory Cytokine Production: An in Vitro Tool for Functional Characterization of NOD1/NOD2 Antagonists. Int J Mol Sci 2019; 20:ijms20174265. [PMID: 31480368 PMCID: PMC6747088 DOI: 10.3390/ijms20174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
THP-1 cells express high levels of native functional nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptor 4 (TLR4) receptors, and have often been used for investigating the immunomodulatory effects of small molecules. We postulated that they would represent an ideal cell-based model for our study, the aim of which was to develop a new in vitro tool for functional characterization of NOD antagonists. NOD antagonists were initially screened for their effect on NOD agonist-induced interleukin-8 (IL-8) release. Next, we examined the extent to which the selected NOD antagonists block the NOD-TLR4 synergistic crosstalk by measuring the effect of NOD antagonism on tumor necrosis factor-α (TNF-α) secretion from doubly activated THP-1 cells. Overall, the results obtained indicate that pro-inflammatory cytokine secretion from THP-1 provides a valuable, simple and reproducible in vitro tool for functional characterization of NOD antagonists.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
19
|
Takano M, Takeuchi T, Kuriyama S, Yumoto R. Role of peptide transporter 2 and MAPK signaling pathways in the innate immune response induced by bacterial peptides in alveolar epithelial cells. Life Sci 2019; 229:173-179. [DOI: 10.1016/j.lfs.2019.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
|
20
|
de Oliveira AA, Davis D, Nunes KP. Pattern recognition receptors as potential therapeutic targets in metabolic syndrome: From bench to bedside. Diabetes Metab Syndr 2019; 13:1117-1122. [PMID: 31336453 DOI: 10.1016/j.dsx.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs) play crucial roles in the underlying mechanisms of metabolic syndrome (MetS). Mainly, these receptors have been suggested to participate in the pathophysiological processes involved in the complications associated with this condition. Therefore, to evolve therapeutic strategies targeting PRRs might be an imperative approach to avoid the development of further complications in human subjects. In this work, we discuss the understanding regarding the roles of PRRs in the pathways of MetS to further describe potential advancements made to target these receptors within this pathology.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA.
| | - Destiny Davis
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, USA.
| |
Collapse
|
21
|
Velloso FJ, Campos AR, Sogayar MC, Correa RG. Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics 2019; 20:152. [PMID: 30791886 PMCID: PMC6385390 DOI: 10.1186/s12864-019-5523-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is a malignancy with very poor prognosis, due to its aggressive clinical characteristics and lack of response to receptor-targeted drug therapy. In TNBC, immune-related pathways are typically upregulated and may be associated with a better prognosis of the disease, encouraging the pursuit for immunotherapeutic options. A number of immune-related molecules have already been associated to the onset and progression of breast cancer, including NOD1 and NOD2, innate immune receptors of bacterial-derived components which activate pro-inflammatory and survival pathways. In the context of TNBC, overexpression of either NOD1or NOD2 is shown to reduce cell proliferation and increase clonogenic potential in vitro. To further investigate the pathways linking NOD1 and NOD2 signaling to tumorigenesis in TNBC, we undertook a global proteome profiling of TNBC-derived cells ectopically expressing each one of these NOD receptors. Results We have identified a total of 95 and 58 differentially regulated proteins in NOD1- and NOD2-overexpressing cells, respectively. We used bioinformatics analyses to identify enriched molecular signatures aiming to integrate the differentially regulated proteins into functional networks. These analyses suggest that overexpression of both NOD1 and NOD2 may disrupt immune-related pathways, particularly NF-κB and MAPK signaling cascades. Moreover, overexpression of either of these receptors may affect several stress response and protein degradation systems, such as autophagy and the ubiquitin-proteasome complex. Interestingly, the levels of several proteins associated to cellular adhesion and migration were also affected in these NOD-overexpressing cells. Conclusions Our proteomic analyses shed new light on the molecular pathways that may be modulating tumorigenesis via NOD1 and NOD2 signaling in TNBC. Up- and downregulation of several proteins associated to inflammation and stress response pathways may promote activation of protein degradation systems, as well as modulate cell-cycle and cellular adhesion proteins. Altogether, these signals seem to be modulating cellular proliferation and migration via NF-κB, PI3K/Akt/mTOR and MAPK signaling pathways. Further investigation of altered proteins in these pathways may provide more insights on relevant targets, possibly enabling the immunomodulation of tumorigenesis in the aggressive TNBC phenotype. Electronic supplementary material The online version of this article (10.1186/s12864-019-5523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando J Velloso
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Alexandre R Campos
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Ricardo G Correa
- SBP Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Haile PA, Casillas LN, Bury MJ, Mehlmann JF, Singhaus R, Charnley AK, Hughes TV, DeMartino MP, Wang GZ, Romano JJ, Dong X, Plotnikov NV, Lakdawala AS, Convery MA, Votta BJ, Lipshutz DB, Desai BM, Swift B, Capriotti CA, Berger SB, Mahajan MK, Reilly MA, Rivera EJ, Sun HH, Nagilla R, LePage C, Ouellette MT, Totoritis RD, Donovan BT, Brown BS, Chaudhary KW, Gough PJ, Bertin J, Marquis RW. Identification of Quinoline-Based RIP2 Kinase Inhibitors with an Improved Therapeutic Index to the hERG Ion Channel. ACS Med Chem Lett 2018; 9:1039-1044. [PMID: 30344914 DOI: 10.1021/acsmedchemlett.8b00344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 μM).
Collapse
Affiliation(s)
- Pamela A. Haile
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Linda N. Casillas
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael J. Bury
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John F. Mehlmann
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Robert Singhaus
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Adam K. Charnley
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Terry V. Hughes
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael P. DeMartino
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Gren Z. Wang
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Joseph J. Romano
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Xiaoyang Dong
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Nikolay V. Plotnikov
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ami S. Lakdawala
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Maire A. Convery
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bartholomew J. Votta
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - David B. Lipshutz
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Biva M. Desai
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Barbara Swift
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Carol A. Capriotti
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Scott B. Berger
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mukesh K. Mahajan
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael A. Reilly
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Elizabeth J. Rivera
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Helen H. Sun
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rakesh Nagilla
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Carol LePage
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael T. Ouellette
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rachel D. Totoritis
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Brian T. Donovan
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Barry S. Brown
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Khuram W. Chaudhary
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Peter J. Gough
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John Bertin
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Robert W. Marquis
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
23
|
Weir GC, Ehlers MR, Harris KM, Kanaparthi S, Long A, Phippard D, Weiner LJ, Jepson B, McNamara JG, Koulmanda M, Strom TB. Alpha-1 antitrypsin treatment of new-onset type 1 diabetes: An open-label, phase I clinical trial (RETAIN) to assess safety and pharmacokinetics. Pediatr Diabetes 2018; 19:945-954. [PMID: 29473705 PMCID: PMC6030471 DOI: 10.1111/pedi.12660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To determine the safety and pharmacokinetics of alpha-1 antitrypsin (AAT) in adults and children. RESEARCH DESIGN AND METHODS Short-term AAT treatment restores euglycemia in the non-obese mouse model of type 1 diabetes. A phase I multicenter study in 16 subjects with new-onset type 1 diabetes studied the safety and pharmacokinetics of Aralast NP (AAT). This open-label, dose-escalation study enrolled 8 adults aged 16 to 35 years and 8 children aged 8 to 15 years within 100 days of diagnosis, to receive 12 infusions of AAT: a low dose of 45 mg/kg weekly for 6 weeks, followed by a higher dose of 90 mg/kg for 6 weeks. RESULTS C-peptide secretion during a mixed meal, hemoglobin A1c (HbA1c), and insulin usage remained relatively stable during the treatment period. At 72 hours after infusion of 90 mg/kg, mean levels of AAT fell below 2.0 g/L for 7 of 15 subjects. To identify a plasma level of AAT likely to be therapeutic, pharmacodynamic ex vivo assays were performed on fresh whole blood from adult subjects. Polymerase chain reaction (PCR) analyses were performed on inhibitor of IKBKE, NOD1, TLR1, and TRAD gene expression, which are important for activation of nuclear factor-κB (NF-κB) and apoptosis pathways. AAT suppressed expression dose-dependently; 50% inhibition was achieved in the 2.5 to 5.0 mg/mL range. CONCLUSIONS AAT was well tolerated and safe in subjects with new-onset type 1 diabetes. Weekly doses of AAT greater than 90 mg/kg may be necessary for an optimal therapeutic effect.
Collapse
Affiliation(s)
- Gordon C Weir
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Mario R Ehlers
- Immune Tolerance Network, Clinical Trials Group, San Francisco, California
| | - Kristina M Harris
- Immune Tolerance Network, Biomarker & Discovery Research, Bethesda, Maryland
| | - Sai Kanaparthi
- Immune Tolerance Network, Biomarker & Discovery Research, Bethesda, Maryland
| | - Alice Long
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Western Australia
| | - Deborah Phippard
- Immune Tolerance Network, Biomarker & Discovery Research, Bethesda, Maryland
| | - Lia J Weiner
- Rho Federal Systems Division, Chapel Hill, North Carolina
| | - Brett Jepson
- Rho Federal Systems Division, Chapel Hill, North Carolina
| | - James G McNamara
- National Institute of Allergy and Infectious Diseases, Division of Allergy, Immunology and Transplant, Bethesda, Maryland
| | - Maria Koulmanda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Terry B Strom
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Velloso FJ, Sogayar MC, Correa RG. Expression and in vitro assessment of tumorigenicity for NOD1 and NOD2 receptors in breast cancer cell lines. BMC Res Notes 2018; 11:222. [PMID: 29615116 PMCID: PMC5883347 DOI: 10.1186/s13104-018-3335-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Immune-related pathways have been frequently associated to tumorigenesis. NOD1 and NOD2 are innate immune receptors responsible for sensing a subset of bacterial-derived components, and to further translate these pathogenic signals through pro-inflammatory and survival pathways. NOD1 and NOD2 have been further associated with tumorigenesis, particularly in gastrointestinal cancers. NOD1 has also been suggested to be a tumor suppressor gene in a model of estrogen receptor-dependent breast cancer. Contrarily, NOD2 polymorphisms are associated with higher risk of breast cancer, with no tumor suppressor role being reported. To better delineate this issue, we investigated NOD1 and NOD2 expression in a panel of breast cancer cell lines, as well as their potential impact in breast tumorigenesis based on in vitro assays. RESULTS The highly invasive Hs578T breast cell line presented the second highest NOD1 expression and the lowest NOD2 expression in our panel. Therefore, we investigated whether NOD1 and/or NOD2 might act as a tumor suppressor in this cell model. Our studies indicate that overexpression of either NOD1 or NOD2 reduces cell proliferation and increases clonogenic potential in vitro. Elucidation of NOD1 and NOD2 effects on tumor cell viability and proliferation may unveil potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Fernando J Velloso
- Cell and Molecular Therapy Center (NUCEL-NETCEM), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL-NETCEM), Internal Medicine Department, School of Medicine, University of São Paulo (USP), São Paulo, SP, 05360-130, Brazil
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Omotuyi OI, Nash O, Inyang OK, Ogidigo J, Enejoh O, Okpalefe O, Hamada T. Flavonoid-rich extract of Chromolaena odorata modulate circulating GLP-1 in Wistar rats: computational evaluation of TGR5 involvement. 3 Biotech 2018; 8:124. [PMID: 29450114 DOI: 10.1007/s13205-018-1138-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chromolaena odorata is a major bio-resource in folkloric treatment of diabetes. In the present study, its anti-diabetic component and underlying mechanism were investigated. A library containing 140 phytocompounds previously characterized from C. odorata was generated and docked (Autodock Vina) into homology models of dipeptidyl peptidase (DPP)-4, Takeda-G-protein-receptor-5 (TGR5), glucagon-like peptide 1 (GLP1) receptor, renal sodium dependent glucose transporter (SGLUT)-1/2 and nucleotide-binding oligomerization domain (NOD) proteins 1&2. GLP-1 gene (RT-PCR) modulation and its release (EIA) by C. odorata were confirmed in vivo. From the docking result above, TGR5 was identified as a major target for two key C. odorata flavonoids (5,7-dihydroxy-6-4-dimethoxyflavanone and homoesperetin-7-rutinoside); sodium taurocholate and C. odorata powder included into the diet of the animals both raised the intestinal GLP-1 expression versus control (p < 0.05); When treated with flavonoid-rich extract of C. odorata (CoF) or malvidin, circulating GLP-1 increased by 130.7% in malvidin-treated subjects (0 vs. 45 min). CoF treatment also resulted in 128.5 and 275% increase for 10 and 30 mg/kg b.w., respectively. CONCLUSIONS The results of this study support that C. odorata flavonoids may modulate the expression of GLP-1 and its release via TGR5. This finding may underscore its anti-diabetic potency.
Collapse
Affiliation(s)
- Olaposi Idowu Omotuyi
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Oyekanmi Nash
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Olumide Kayode Inyang
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Joyce Ogidigo
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Ojochenemi Enejoh
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Okiemute Okpalefe
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tsuyoshi Hamada
- 3Advanced Computing Centre, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
26
|
Liu J, Yu L, Chen C, Zhou J, Gong X, Li D, Hou D, Song Y, Shao C. The Expression of Dectin-1, Irak1 and Rip2 During the Host Response to Aspergillus fumigatus. Mycopathologia 2017; 183:337-348. [PMID: 29058172 DOI: 10.1007/s11046-017-0210-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND C-type lectin receptors (CLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) have the ability to recognize Aspergillus fumigatus (A. fumigates) and induce innate immune response. Dectin-1 is a well-described CLR, while interleukin-1 receptor-associated kinase 1 (Irak1) and receptor-interacting protein 2 (Rip2) are pivotal adaptor proteins of TLRs and NLRs signaling pathways, respectively. OBJECTIVES Our primary aim is to elucidate whether Dectin-1 regulates the expression of Irak1 and Rip2, and confirm that CLRs, TLRs, and NLRs pathways act synergistically in response to A. fumigatus infection. METHODS Pulmonary infection mouse models were established. Myeloid cells were differentiated in cell culture and examined by inverted microscopy, flow cytometry, and scanning electron microscopy. The relative mRNA levels were determined by qRT-PCR. The protein expression levels were determined by immunohistochemistry and Western blot. RESULTS The expression of Dectin-1, Irak1, Rip2, and phosphorylation level of nuclear factor (NF)-κB p65 were induced by conidia in immunocompetent mice, while their expression and phosphorylation level were inhibited in immunocompromised mice after the administration of conidia. Conidia increased the expression of Dectin-1, Irak1, and Rip2 in myeloid cells, while Dectin-1 silencing significantly reduced their expression. CONCLUSION Our findings demonstrate that Dectin-1, Irak1, and Rip2 are involved in response to A. fumigatus infection. Dectin-1 modulates the expression of Irak1 and Rip2. Additionally, these three signaling pathways are interconnected, and CLRs pathway plays a dominant role against A. fumigatus invasion.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lin Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People's Republic of China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xin Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dandan Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dongni Hou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Changzhou Shao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
27
|
Majumdar I, Nagpal I, Paul J. Homology modeling and in silico prediction of Ulcerative colitis associated polymorphisms of NOD1. Mol Cell Probes 2017; 35:8-19. [PMID: 28578011 DOI: 10.1016/j.mcp.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022]
Abstract
Cytosolic pattern recognition receptors play key roles in innate immune response. Nucleotide binding and oligomerisation domain containing protein 1 (NOD1) belonging to the Nod-like receptor C (NLRC) sub-family of Nod-like receptors (NLRs) is important for detection and clearance of intra-cellular Gram negative bacteria. NOD1 is involved in activation of pro-inflammatory pathways. Limited structural data is available for NOD1. Using different templates for each domain of NOD1, we determined the full-length homology model of NOD1. ADP binding amino acids within the nucleotide binding domain (NBD) of NOD1 were also predicted. Key residues in inter-domain interaction were identified by sequence comparison with Oryctolagus cuniculus NOD2, a related protein. Interactions between NBD and winged helix domain (WHD) were found to be conserved in NOD1. Functional and structural effect of single nucleotide polymorphisms within the NOD1 NBD domain associated with susceptibility risk to Ulcerative colitis (UC), an inflammatory disorder of the colon was evaluated by in silico studies. Mutations W219R and L349P were predicted to be damaging and disease associated by prediction programs SIFT, PolyPhen2, PANTHER, SNP&GO, PhD SNP and SNAP2. We further validated the effect of W219R and L349P mutation on NOD1 function in vitro. Elevated mRNA expression of pro-inflammatory cytokines IL8 and IL-1β was seen as compared to the wild type NOD1 in intestinal epithelial cell line HT29 when stimulated with NOD1 ligand. Thus, these mutations may indeed have a bearing on pathogenesis of inflammation during UC.
Collapse
Affiliation(s)
- Ishani Majumdar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Nagpal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
28
|
Val-Blasco A, Prieto P, Gonzalez-Ramos S, Benito G, Vallejo-Cremades MT, Pacheco I, González-Peramato P, Agra N, Terrón V, Delgado C, Martín-Sanz P, Boscá L, Fernández-Velasco M. NOD1 activation in cardiac fibroblasts induces myocardial fibrosis in a murine model of type 2 diabetes. Biochem J 2017; 474:399-410. [PMID: 27803247 DOI: 10.1042/bcj20160556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/13/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis and chronic inflammation are common complications in type 2 diabetes mellitus (T2D). Since nucleotide oligomerization-binding domain 1 (NOD1), an innate immune receptor, is involved in the pathogenesis of insulin resistance and diabetes outcomes, we sought to investigate its involvement in cardiac fibrosis. Here, we show that selective staining of cardiac fibroblasts from T2D (db/db;db) mice exhibits up-regulation and activation of the NOD1 pathway, resulting in enhanced NF-κB and TGF-β signalling. Activation of the TGF-β pathway in cardiac fibroblasts from db mice was prevented after inhibition of NF-κB with BAY-11-7082 (BAY). Moreover, fibrosis progression in db mice was also prevented by BAY treatment. Enhanced TGF-β signalling and cardiac fibrosis of db mice was dependent, at least in part, on the sequential activation of NOD1 and NF-κB since treatment of db mice with a selective NOD1 agonist induced activation of the TGF-β pathway, but co-administration of a NOD1 agonist plus BAY, or a NOD1 inhibitor prevented the NOD1-induced fibrosis. Therefore, NOD1 is involved in cardiac fibrosis associated with diabetes, and establishes a new mechanism for the development of heart fibrosis linked to T2D.
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Silvia Gonzalez-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Gemma Benito
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| | | | | | - Pilar González-Peramato
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| | - Noelia Agra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Verónica Terrón
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Fernández-Velasco
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| |
Collapse
|
29
|
Bacterial peptidoglycan with amidated meso-diaminopimelic acid evades NOD1 recognition: an insight into NOD1 structure–recognition. Biochem J 2016; 473:4573-4592. [DOI: 10.1042/bcj20160817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an intracellular pattern recognition receptor that recognizes bacterial peptidoglycan (PG) containing meso-diaminopimelic acid (mesoDAP) and activates the innate immune system. Interestingly, a few pathogenic and commensal bacteria modify their PG stem peptide by amidation of mesoDAP (mesoDAPNH2). In the present study, NOD1 stimulation assays were performed using bacterial PG containing mesoDAP (PGDAP) and mesoDAPNH2 (PGDAPNH2) to understand the differences in their biomolecular recognition mechanism. PGDAP was effectively recognized, whereas PGDAPNH2 showed reduced recognition by the NOD1 receptor. Restimulation of the NOD1 receptor, which was initially stimulated with PGDAP using PGDAPNH2, did not show any further NOD1 activation levels than with PGDAP alone. But the NOD1 receptor initially stimulated with PGDAPNH2 responded effectively to restimulation with PGDAP. The biomolecular structure–recognition relationship of the ligand-sensing leucine-rich repeat (LRR) domain of human NOD1 (NOD1–LRR) with PGDAP and PGDAPNH2 was studied by different computational techniques to further understand the molecular basis of our experimental observations. The d-Glu–mesoDAP motif of GMTPDAP, which is the minimum essential motif for NOD1 activation, was found involved in specific interactions at the recognition site, but the interactions of the corresponding d-Glu–mesoDAP motif of PGDAPNH2 occur away from the recognition site of the NOD1 receptor. Hot-spot residues identified for effective PG recognition by NOD1–LRR include W820, G821, D826 and N850, which are evolutionarily conserved across different host species. These integrated results thus successfully provided the atomic level and biochemical insights on how PGs containing mesoDAPNH2 evade NOD1–LRR receptor recognition.
Collapse
|
30
|
Kang H, Park Y, Lee A, Seo H, Kim MJ, Choi J, Jo HN, Jeong HN, Cho JG, Chang W, Lee MS, Jeon R, Kim J. Negative regulation of NOD1 mediated angiogenesis by PPARγ-regulated miR-125a. Biochem Biophys Res Commun 2016; 482:28-34. [PMID: 27836539 DOI: 10.1016/j.bbrc.2016.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/07/2016] [Indexed: 01/20/2023]
Abstract
Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3' untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis.
Collapse
Affiliation(s)
- Hyesoo Kang
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Youngsook Park
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Aram Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Hyemin Seo
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Min Jung Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Jihea Choi
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ha-Neul Jo
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ha-Neul Jeong
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Jin Gu Cho
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, 46241, South Korea
| | - Myeong-Sok Lee
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Raok Jeon
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, 04310, South Korea.
| |
Collapse
|
31
|
Yang Q, Liao J, Huang J, Li YP, Huang S, Zhou H, Xie Y, Pan J, Li Y, Wang JH, Wang J. Cardiopulmonary Bypass Down-Regulates NOD Signaling and Inflammatory Response in Children with Congenital Heart Disease. PLoS One 2016; 11:e0162179. [PMID: 27622570 PMCID: PMC5021269 DOI: 10.1371/journal.pone.0162179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aimed to examine the impact of cardiopulmonary bypass (CPB) on expression and function of NOD1 and NOD2 in children with congenital heart disease (CHD), in an attempt to clarify whether NOD1 and NOD2 signaling is involved in the modulation of host innate immunity against postoperative infection in pediatric CHD patients. Peripheral blood samples were collected from pediatric CHD patients at five different time points: before CPB, immediately after CPB, and 1, 3, and 7 days after CPB. Real-time PCR, Western blot, and ELISA were performed to measure the expression of NOD1 and NOD2, their downstream signaling pathways, and inflammatory cytokines at various time points. Proinflammatory cytokine IL-6 and TNF-α levels in response to stimulation with either the NOD1 agonist Tri-DAP or the NOD2 agonist MDP were significantly reduced after CPB compared with those before CPB, which is consistent with a suppressed inflammatory response postoperatively. The expression of phosphorylated RIP2 and activation of the downstream signaling pathways NF-κB p65 and MAPK p38 upon Tri-DAP or MDP stimulation in PBMCs were substantially inhibited after CPB. The mRNA level of NOD1 and protein levels of NOD1 and NOD2 were also markedly decreased after CPB. Our results demonstrated that NOD-mediated signaling pathways were substantially inhibited after CPB, which correlates with the suppressed inflammatory response and may account, at least in part, for the increased risk of postoperative infection in pediatric CHD patients.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jianyi Liao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Department of Pediatric Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Ping Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Shungen Huang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Huiting Zhou
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanhong Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Kao WP, Yang CY, Su TW, Wang YT, Lo YC, Lin SC. The versatile roles of CARDs in regulating apoptosis, inflammation, and NF-κB signaling. Apoptosis 2015; 20:174-95. [PMID: 25420757 DOI: 10.1007/s10495-014-1062-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CARD subfamily is the second largest subfamily in the DD superfamily that plays important roles in regulating various signaling pathways, including but not limited to NF-kB activation signaling, apoptosis signaling and inflammatory signaling. The CARD subfamily contains 33 human CARD-containing proteins, regulating the assembly of many signaling complexes, including apoptosome, inflammsome, nodosome, the CBM complex, PIDDosome, the TRAF2 complex, and the MAVS signalosome, by homotypic CARD-CARD interactions. The mechanism of how CARDs find the right binding partner to form a specific complex remains unclear. This review uses different classification schemes to update the classification of CARD-containing proteins. Combining the classification based on domain structures, functions, associated signaling complexes, and roles would help better understand the structural and function diversity of CARD-containing proteins. This review also summarizes recent structural studies on CARDs. Especially, the CARD-containing complexes can be divided into the homodimeric, heterodimeric, oligomeric, filamentous CARD complexes and the CARD-ubiquitin complex. This review will give an overview of the versatile roles of CARDs in regulating signaling transduction, as well as the therapeutic drugs targeting CARD-containing proteins.
Collapse
Affiliation(s)
- Wen-Pin Kao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Zhou YJ, Liu C, Li CL, Song YL, Tang YS, Zhou H, Li A, Li Y, Weng Y, Zheng FP. Increased NOD1, but not NOD2, activity in subcutaneous adipose tissue from patients with metabolic syndrome. Obesity (Silver Spring) 2015; 23:1394-400. [PMID: 26052894 DOI: 10.1002/oby.21113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Nucleotide-binding oligomerization domain (NOD) protein, as cytoplasmic receptor of the innate immune response, plays an important role in adipose inflammation and insulin resistance in obesity. Our objective was to examine adipose tissue (AT) NOD in nascent metabolic syndrome (MetS) patients and to investigate its association with MetS features. METHODS Thirty-four MetS subjects and 31 controls were recruited. Fasting blood was collected, and abdominal subcutaneous AT was obtained by biopsy for NOD1/NOD2 expression and activity. RESULTS MetS subjects showed significantly increased expression for NOD1 on adipose depots as compared to controls. In addition to increased expression of downstream signaling mediators RIPK2 and NF-κB p65 nuclear translocation, there was remarkably higher release of monocyte chemotactic protein1 (MCP-1), interleukin (IL)-6, and IL-8 in MetS versus controls following priming of the isolated adipocytes with NOD1 ligand iE-DAP. With regard to NOD2, the differences between the two groups were not significant in either basal state or after activation. Increased NOD1 positively correlated with waist circumference. NOD1 was also correlated with HbA1c and HOMA-IR. NOD1 positively correlated with serum levels of IL-6, MCP-1, and NF-κB activity. CONCLUSIONS Activation of the innate immune pathway via NOD1 may be partially responsible for the increased systemic inflammation and insulin resistance in MetS.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Cong Liu
- Department of Endocrinology and Metabolism, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Chun-Li Li
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yu-Ling Song
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yin-Si Tang
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Hui Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ai Li
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yan Li
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yang Weng
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Fang-Ping Zheng
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
34
|
Delgado C, Ruiz-Hurtado G, Gómez-Hurtado N, González-Ramos S, Rueda A, Benito G, Prieto P, Zaragoza C, Delicado EG, Pérez-Sen R, Miras-Portugal MT, Núñez G, Boscá L, Fernández-Velasco M. NOD1, a new player in cardiac function and calcium handling. Cardiovasc Res 2015; 106:375-386. [PMID: 25824149 DOI: 10.1093/cvr/cvv118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 03/05/2015] [Indexed: 02/07/2023] Open
Abstract
AIMS Inflammation is a significant contributor to cardiovascular disease and its complications; however, whether the myocardial inflammatory response is harmonized after cardiac injury remains to be determined. Some receptors of the innate immune system, including the nucleotide-binding oligomerization domain-like receptors (NLRs), play key roles in the host response after cardiac damage. Nucleotide-binding oligomerization domain containing 1 (NOD1), a member of the NLR family, is expressed in the heart, but its functional role has not been elucidated. We determine whether selective NOD1 activation modulates cardiac function and Ca(2+) signalling. METHODS AND RESULTS Mice were treated for 3 days with the selective NOD1 agonist C12-iE-DAP (iE-DAP), and cardiac function and Ca(2+) cycling were assessed. We found that iE-DAP treatment resulted in cardiac dysfunction, measured as a decrease in ejection fraction and fractional shortening. Cardiomyocytes isolated from iE-DAP-treated mice displayed a decrease in the L-type Ca(2+) current, [Ca(2+)]i transients and Ca(2+) load, and decreased expression of phospho-phospholamban, sarcoplasmic reticulum-ATPase, and Na(+)-Ca(2+) exchanger. Furthermore, iE-DAP prompted 'diastolic Ca(2+) leak' in cardiomyocytes, resulting from increased Ca(2+) spark frequency and RyR2 over-phosphorylation. Importantly, these iE-DAP-induced changes in Ca(2+) cycling were lost in NOD1(-/-) mice, indicating that iE-DAP exerts its actions through NOD1. Co-treatment of mice with iE-DAP and a selective inhibitor of NF-κB (BAY11-7082) prevented cardiac dysfunction and Ca(2+) handling impairment induced by iE-DAP. CONCLUSION Our data provide the first evidence that NOD1 activation induces cardiac dysfunction associated with excitation-contraction coupling impairment through NF-κB activation and uncover a new pro-inflammatory player in the regulation of cardiovascular function.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Excitation Contraction Coupling/drug effects
- Inflammation Mediators/agonists
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Male
- Membrane Potentials
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NF-kappa B/metabolism
- Nod1 Signaling Adaptor Protein/agonists
- Nod1 Signaling Adaptor Protein/antagonists & inhibitors
- Nod1 Signaling Adaptor Protein/deficiency
- Nod1 Signaling Adaptor Protein/genetics
- Nod1 Signaling Adaptor Protein/metabolism
- Phosphorylation
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sodium-Calcium Exchanger/metabolism
- Stroke Volume
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Carmen Delgado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Instituto de Investigación i + 12 Hospital Universitario 12 de Octubre and Instituto Pluridisciplinar, UCM, Madrid, Spain
| | - Nieves Gómez-Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Benito
- Instituto de Investigación Hospital Universitario La PAZ, IDIPAZ, Madrid, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Zaragoza
- Department of Cardiology, University Hospital Ramón y Cajal/University Francisco de Vitoria, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Maria Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
35
|
Prieto P, Vallejo-Cremades MT, Benito G, González-Peramato P, Francés D, Agra N, Terrón V, Gónzalez-Ramos S, Delgado C, Ruiz-Gayo M, Pacheco I, Velasco-Martín JP, Regadera J, Martín-Sanz P, López-Collazo E, Boscá L, Fernández-Velasco M. NOD1 receptor is up-regulated in diabetic human and murine myocardium. Clin Sci (Lond) 2014; 127:665-677. [PMID: 24934088 DOI: 10.1042/cs20140180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes has a complex pathology that involves a chronic inflammatory state. Emerging evidence suggests a link between the innate immune system receptor NOD1 (nucleotide-binding and oligomerization domain 1) and the pathogenesis of diabetes, in monocytes and hepatic and adipose tissues. The aim of the present study was to assess the role of NOD1 in the progression of diabetic cardiomyopathy. We have measured NOD1 protein in cardiac tissue from Type 2 diabetic (db) mice. Heart and isolated cardiomyocytes from db mice revealed a significant increase in NOD1, together with an up-regulation of nuclear factor κB (NF-κB) and increased apoptosis. Heart tissue also exhibited an enhanced expression of pro-inflammatory cytokines. Selective NOD1 activation with C12-γ-D-glutamyl-m-diaminopimelic acid (iEDAP) resulted in an increased NF-κB activation and apoptosis, demonstrating the involvement of NOD1 both in wild-type and db mice. Moreover, HL-1 cardiomyocytes exposed to elevated concentrations of glucose plus palmitate displayed an enhanced NF-κB activity and apoptotic profile, which was prevented by silencing of NOD1 expression. To address this issue in human pathology, NOD1 expression was evaluated in myocardium obtained from patients with Type 2 diabetes (T2DMH) and from normoglycaemic individuals without cardiovascular histories (NH). We have found that NOD1 was expressed in both NH and T2DMH; however, NOD1 expression was significantly pronounced in T2DMH. Furthermore, both the pro-inflammatory cytokine tumour necrosis factor α (TNF-α) and the apoptosis mediator caspase-3 were up-regulated in T2DMH samples. Taken together, our results define an active role for NOD1 in the heightened inflammatory environment associated with both experimental and human diabetic cardiac disease.
Collapse
Affiliation(s)
- Patricia Prieto
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | | | - Gemma Benito
- †Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Pilar González-Peramato
- ‡Departamento de Anatomía Patológica, Hospital Universitario La Paz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Daniel Francés
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | - Noelia Agra
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | - Verónica Terrón
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | - Silvia Gónzalez-Ramos
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | - Carmen Delgado
- §Centro de Investigaciones Biológicas. Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Juan P Velasco-Martín
- ††Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Regadera
- ††Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paloma Martín-Sanz
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | | | - Lisardo Boscá
- *Instituto de Investigaciones Biomédicas Alberto Sols, Centro Mixto CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
36
|
Zhang Y, Wu J, Xin Z, Wu X. Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells. Exp Eye Res 2014; 127:170-8. [PMID: 25108222 DOI: 10.1016/j.exer.2014.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 01/23/2023]
Abstract
Fungal keratitis is a serious vision-threatening disease caused by fungi after corneal epithelium damage. We have previously shown a role of cell surface TLRs in Aspergillus fumigatus (A. fumigatus) keratitis. In the present study we showed that Human telomerase-immortalized corneal epithelial cells (HCECs) exposed to A. fumigatus elicited an inflammatory response consisting in increased interleukin-6 (IL-6), IL-8 and tumor necrosis factor (TNF)-α expression and innate defense molecules hBD2 and LL37 in a time-dependent manner. In this study we further investigated the role of intracellular nucleotide-binding oligomerization domain-containing protein (NOD)-like receptors, NOD1 in innate immune and inflammatory response to A. fumigatus. We showed that NOD1 and its downstream signaling molecules RIP2 and NF-κB p65 are expressed in HCECs challenged with either NOD1 specific ligand iE-DAP or A. fumigatus. More importantly, NOD1 knockdown attenuated A. fumigatus-triggered the expression of NOD1, and downstream signaling effectors RIP2 and NF-κB p65, as well as the secretion of IL-6, IL-8 and TNF-α, and the production of hBD2 and LL37. In conclusion, our results demonstrated that NOD1 is a prominent factor of innate immune and inflammatory response in HCECs against A. fumigatus, suggesting that NOD1 might be a potential novel therapeutic target for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China
| | - Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China
| | - Zhaoting Xin
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
37
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|