1
|
Tang XS, He LY, Li SN, Zhang WC, Wu ZY, Hui AL. Design, Synthesis, and Anti-Inflammatory Activity Evaluation of Novel Indanone Derivatives for the Treatment of Vascular Dementia. Chem Biodivers 2025; 22:e202401931. [PMID: 39482800 DOI: 10.1002/cbdv.202401931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Vascular dementia (VaD) is a neurodegenerative disease resulting from cerebral vascular obstruction, leading to cognitive impairment, and currently lacks effective treatment options. Due to its complex pathogenesis, multi-target drug design (MTDLs) strategies are considered among the most promising therapeutic approaches. In this study, we designed and synthesized a series of novel indanone derivatives targeting targets related to vascular health and dementia. The results indicated that compound C5 exhibited excellent acetylcholinesterase inhibitory activity (IC50 =1.16 0.41 μM) and anti-platelet aggregation activity (IC50 =4.92±0.10 μM) within ranges of 0.1-1000 μM and 0.03-300 μM, respectively, possibly mediated by molecular docking interactions. Furthermore, compound C5 demonstrated protective effects on cells at concentrations ≤50 μM, significantly reducing the release of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) in a concentration-dependent manner, showcasing its potent neuroinflammatory inhibitory effects. Anti-inflammatory therapies are regarded as effective strategies for treating VaD. Therefore, compound C5 holds promise as a novel candidate drug for further investigation into the treatment of vascular dementia.
Collapse
Affiliation(s)
- Xue-Song Tang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Lin-Yu He
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Sheng-Nan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Wen-Cheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Ze-Yu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| | - Ai-Ling Hui
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei 230001, China
| |
Collapse
|
2
|
Liu Y, Yang G, Liu M, Zhang Y, Xu H, Mazhar M. Cinnamaldehyde and its combination with deferoxamine ameliorate inflammation, ferroptosis and hematoma expansion after intracerebral hemorrhage in mice. J Neuroinflammation 2025; 22:45. [PMID: 39985048 PMCID: PMC11846400 DOI: 10.1186/s12974-025-03373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a most serious type of hemorrhagic stroke with a continuously rising incidence globally, without effective cure available. The underlying mechanisms driving brain injury are complex and include inflammation, oxidative stress, glutamate excitotoxicity, membrane damage, lipid peroxidation, ferroptosis and other cellular death modes. Hematoma clearance is the key to limit brain damage and foster the recovery process. The quest for effective ICH remedies is continuing and strategically evolving with the expansion of knowledge and understanding of target mechanisms and novel lead compounds. In this study, we have investigated the effects of cinnamaldehyde after ICH as an individual treatment as well as in combination with deferoxamine. The autologous blood injection model was employed using C57BL/6 mice. Following 2 h of ICH induction, animals received IP injection once per day for three days; normal saline in ICH model group, cinnamaldehyde, deferoxamine, and combined cinnamaldehyde and deferoxamine in respective groups. Measurement of neurobehavioral scoring, markers of inflammation NFкB, TNFα, IL-1, IL6, iNOS; oxidative stress and ferroptosis GSH, TBARS, glutamate, choline containing phospholipids, GPX4, SLC7A11, SLC40A1, ACSL4; and hematoma clearance hemoglobin, haptoglobin, hemopexin, zonulin, CD163, LRP1, HO1, CD36, CD206, were investigated using ELISA, PCR, and western blot. Immunofluorescence for NeuN/SLC40A1, GFAP/GPX4, NeuN/HO1, Iba1/HO1 was also performed. We have found that cinnamaldehyde possess anti-inflammatory, antioxidant, anti-ferroptotic and hematoma limiting properties that were comparable to those obtained with deferoxamine. However, combination of cinnamaldehyde and deferoxamine demonstrated remarkable effectiveness in restoration of these parameters indicating their synergistic effect in ICH model.
Collapse
Affiliation(s)
- Yulin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- National Traditional Chinese Medicine Service Export Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Mengnan Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuwei Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Department of Geriatrics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
- National Traditional Chinese Medicine Service Export Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
4
|
Najjary S, Mostafavi H, Feizi H, Moradi F, Eskandari M. Cinnamon pretreatment modulates gene expression of tight junction proteins in a rat model of stroke. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:723-733. [PMID: 40259962 PMCID: PMC12009627 DOI: 10.22038/ajp.2024.24290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 04/23/2025]
Abstract
Objective Brain ischemia generally results in irreversible brain damage or death. One of the most important features of an ischemic stroke is disruption of the Blood-brain barrier (BBB). In this study, we examined the effect of cinnamon hydroalcoholic extract consumption on BBB permeability and expression of some genes regulating its function. Materials and Methods Sixty male Wistar rats were divided into 5 groups; sham (high-fat diet+ sham surgery), Model (Middle Cerebral Artery Occlusion, MCAO+ high-fat diet), Lovastatin (high-fat diet + lovastatin + MCAO surgery), low and high dosage cinnamon (high-fat diet + cinnamon 130 or 260 mg, respectively+ MCAO surgery). The two doses of cinnamon (130 and 260 mg) were administered intraperitoneally. Twelve hours after ischemic stroke induction, brain right hemisphere tissues were collected and calpain I, calpainII, occludin and VEGF genes expression were quantified by Real-Time -PCR. Accordingly, p-selection protein levels were measured by ELISA method. Results Cinnamon hydroalcoholic extract reduced the BBB permeability compared with the model group (p<0.05). Stroke increased calpain and VEGF genes while decreased occludin gene expression (p<0.001). Conversely, cinnamon administration increased occludin gene expression while calpain and VEGF genes were down-regulated (p<0.01). Pretreatment with cinnamon significantly diminished the P-Selectin protein levels as compared with the model group dose dependently (p<0.001). Conclusion It seems that cinnamon restores BBB function by regulating the elements involved in its permeability.
Collapse
Affiliation(s)
| | | | | | | | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Kumari A, Singh K, Uttam G. Tenuazonic acid-induced mycotoxicosis in an immunosuppressed mouse model and its prophylaxis with cinnamaldehyde. CHEMOSPHERE 2024; 363:142812. [PMID: 39004150 DOI: 10.1016/j.chemosphere.2024.142812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Patients with impaired immune systems are particularly vulnerable to infections. With the increasing number of immunocompromised patients, it becomes necessary to design studies that evaluate the effects of toxic contaminants that are a part of our daily lives. Simultaneously, the management of these toxic components also becomes essential. Therefore, the present study evaluated the possible protective role of cinnamaldehyde (Cin) against tenuazonic acid-induced mycotoxicosis in the immunosuppressed murine model. Tenuazonic acid (TeA), a toxin usually produced by Alternaria species, is a common contaminant in tomato and tomato-based products. Evaluating the potential toxicity of a hazardous chemical necessitates the use of in vitro, in vivo, and in silico methods. Here, the immunomodulatory effect of TeA was assessed in vitro using mouse splenocytes. In silico docking was carried out for the tumour markers of eight organs and TeA. The haematological, histopathological, and biochemical aspects were analysed in vivo. The sub-chronic intoxication of mice with TeA showed elevated malondialdehyde, reduced catalase, and superoxide dismutase production, along with abnormal levels of aspartate aminotransferase and alanine transaminase. The treatment with Cin prevented TeA-induced alterations of antioxidant defense enzyme activities and significantly forbade TeA-induced organ damage, showing therapeutic effects and toxicity reduction in TeA-induced mycotoxicosis.
Collapse
Affiliation(s)
- Ankita Kumari
- Animal Mycology Laboratory, Department of Zoology (MMV), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Karuna Singh
- Animal Mycology Laboratory, Department of Zoology (MMV), Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Gunjan Uttam
- Animal Mycology Laboratory, Department of Zoology (MMV), Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Nakhaee S, Kooshki A, Hormozi A, Akbari A, Mehrpour O, Farrokhfall K. Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutr Neurosci 2024; 27:132-146. [PMID: 36652384 DOI: 10.1080/1028415x.2023.2166436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cinnamon is the inner bark of trees named Cinnamomum. Studies have shown that cinnamon and its bioactive compounds can influence brain function and affect behavioral characteristics. This study aimed to systematically review studies about the relationship between cinnamon and its key components in memory and learning. Two thousand six hundred five studies were collected from different databases (PubMed, Scopus, Google Scholar, and Web of Science) in September 2021 and went under investigation for eligibility. As a result, 40 studies met our criteria and were included in this systematic review. Among the included studies, 33 were In vivo studies, five were In vitro, and two clinical studies were also accomplished. The main outcome of most studies (n = 40) proved that cinnamon significantly improves cognitive function (memory and learning). In vivo studies showed that using cinnamon or its components, such as eugenol, cinnamaldehyde, and cinnamic acid, could positively alter cognitive function. In vitro studies also showed that adding cinnamon or cinnamaldehyde to a cell medium can reduce tau aggregation, Amyloid β and increase cell viability. For clinical studies, one study showed positive effects, and another reported no changes in cognitive function. Most studies reported that cinnamon might be useful for preventing and reducing cognitive function impairment. It can be used as an adjuvant in the treatment of related diseases. However, more studies need to be done on this subject.
Collapse
Affiliation(s)
- Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Hormozi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Aref Akbari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Data Science Institute, Southern Methodist University, Dallas, TX, USA
| | - Khadijeh Farrokhfall
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Xing X, Zhang X, Fan J, Zhang C, Zhang L, Duan R, Hao H. Neuroprotective Effects of Melittin Against Cerebral Ischemia and Inflammatory Injury via Upregulation of MCPIP1 to Suppress NF-κB Activation In Vivo and In Vitro. Neurochem Res 2024; 49:348-362. [PMID: 37812268 PMCID: PMC10787673 DOI: 10.1007/s11064-023-04030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Melittin, a principal constituent of honeybee venom, exhibits diverse biological effects, encompassing anti-inflammatory capabilities and neuroprotective actions against an array of neurological diseases. In this study, we probed the prospective protective influence of melittin on cerebral ischemia, focusing on its anti-inflammatory activity. Mechanistically, we explored whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as ZC3H12A), a recently identified zinc-finger protein, played a role in melittin-mediated anti-inflammation and neuroprotection. Male C57/BL6 mice were subjected to distal middle cerebral artery occlusion to create a focal cerebral cortical ischemia model, with melittin administered intraperitoneally. We evaluated motor functions, brain infarct volume, cerebral blood flow, and inflammatory marker levels within brain tissue, employing quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and western blotting. In vitro, an immortalized BV-2 microglia culture was stimulated with lipopolysaccharide (LPS) to establish an inflammatory cell model. Post-melittin exposure, cell viability, and cytokine expression were examined. MCPIP1 was silenced using siRNA in LPS-induced BV-2 cells, with the ensuing nuclear translocation of nuclear factor-κB assessed through cellular immunofluorescence. In vivo, melittin enhanced motor functions, diminished infarction, fostered blood flow restoration in ischemic brain regions, and markedly inhibited the expression of inflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB). In vitro, melittin augmented MCPIP1 expression in LPS-induced BV-2 cells and ameliorated inflammation-induced cell death. The neuroprotective effect conferred by melittin was attenuated upon MCPIP1 knockdown. Our findings establish that melittin-induced tolerance to ischemic injury is intrinsically linked with its anti-inflammatory capacity. Moreover, MCPIP1 is, at the very least, partially implicated in this process.
Collapse
Affiliation(s)
- Xing Xing
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China.
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.
| | - Jingyi Fan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Ruisheng Duan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hongyu Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
9
|
Chen L, Du Y, Qiao H, Yang L, Zhang P, Wang J, Zhang C, Jiang W, Xu R, Zhang X. Proprotein convertase subtilisin/kexin type 9 inhibitor ameliorates cerebral ischemia in mice by inhibiting inflammation. J Stroke Cerebrovasc Dis 2024; 33:107517. [PMID: 38056113 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVES To investigate the potential protective effects of evolocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on ischemic stroke and its underlying mechanisms. MATERIALS AND METHODS We established a mouse model with distal middle cerebral artery occlusion. We evaluated the therapeutic effects through neurological function and infarct size, while the underlying mechanisms were elucidated using western blotting and real-time polymerase chain reaction. RESULTS Evolocumab improved neurological recovery, reduced the infarct volume, suppressed the activation of Toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB), and attenuated the increased levels of IL-1β and TNF-α after cerebral ischemia. CONCLUSION Evolocumab protects against cerebral ischemic injury by inhibiting inflammation. Therefore, the TLR4/NF-кB pathway may represent a major mechanism in ischemic stroke.
Collapse
Affiliation(s)
- Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Lan Yang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Jing Wang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Wei Jiang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Renhao Xu
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
10
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Yu Z, Yue B, Gao R, Zhang B, Geng X, Lv C, Wang H, Wang Z, Wang Z, Dou W. Gastrodin Attenuates Colitis and Prevents Tumorigenesis in Mice by Interrupting TLR4/MD2/NF-κB Signaling Transduction. Anticancer Agents Med Chem 2024; 24:853-866. [PMID: 38584532 DOI: 10.2174/0118715206286233240328045215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history. AIM This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms. METHODS Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling molecules, NF-κB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA). RESULTS Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-κB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-κB pathway inhibition. CONCLUSION This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-κB signaling transduction.
Collapse
Affiliation(s)
- Zhilun Yu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Bei Yue
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Ruiyang Gao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Beibei Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Xiaolong Geng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Cheng Lv
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Hao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Ziyi Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| | - Wei Dou
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai, 201203, China
| |
Collapse
|
12
|
Kuru Bektaşoğlu P, Arıkök AT, Ergüder Bİ, Sargon MF, Altun SA, Ünlüler C, Börekci A, Kertmen H, Çelikoğlu E, Gürer B. Cinnamaldehyde has ameliorative effects on rabbit spinal cord ischemia and reperfusion injury. World Neurosurg X 2024; 21:100254. [PMID: 38148767 PMCID: PMC10750183 DOI: 10.1016/j.wnsx.2023.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Seda Akyıldız Altun
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Caner Ünlüler
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ali Börekci
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Erhan Çelikoğlu
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
13
|
Wu DC, Ku CC, Pan JB, Wuputra K, Yang YH, Liu CJ, Liu YC, Kato K, Saito S, Lin YC, Chong IW, Hsiao M, Hu HM, Kuo CH, Kuo KK, Lin CS, Yokoyama KK. Heterogeneity of Phase II Enzyme Ligands on Controlling the Progression of Human Gastric Cancer Organoids as Stem Cell Therapy Model. Int J Mol Sci 2023; 24:15911. [PMID: 37958895 PMCID: PMC10647227 DOI: 10.3390/ijms242115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer (GC) organoids are frequently used to examine cell proliferation and death as well as cancer development. Invasion/migration assay, xenotransplantation, and reactive oxygen species (ROS) production were used to examine the effects of antioxidant drugs, including perillaldehyde (PEA), cinnamaldehyde (CA), and sulforaphane (SFN), on GC. PEA and CA repressed the proliferation of human GC organoids, whereas SFN enhanced it. Caspase 3 activities were also repressed on treatment with PEA and CA. Furthermore, the tumor formation and invasive activities were repressed on treatment with PEA and CA, whereas they were enhanced on treatment with SFN. These results in three-dimensional (3D)-GC organoids showed the different cancer development of phase II enzyme ligands in 2D-GC cells. ROS production and the expression of TP53, nuclear factor erythroid 2-related factor (NRF2), and Jun dimerization protein 2 were also downregulated on treatment with PEA and CA, but not SFN. NRF2 knockdown reversed the effects of these antioxidant drugs on the invasive activities of the 3D-GC organoids. Moreover, ROS production was also inhibited by treatment with PEA and CA, but not SFN. Thus, NRF2 plays a key role in the differential effects of these antioxidant drugs on cancer progression in 3D-GC organoids. PEA and CA can potentially be new antitumorigenic therapeutics for GC.
Collapse
Affiliation(s)
- Deng-Chyang Wu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (C.-H.K.)
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Ya-Han Yang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (C.-H.K.)
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (C.-H.K.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Chang Liu
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 239-1571, Japan;
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Inn-Wen Chong
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Michael Hsiao
- Genome Research Center, Academia Sinica, Nangan, Taipei 115, Taiwan;
| | - Huang-Ming Hu
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (C.-H.K.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Chao-Hung Kuo
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (C.-H.K.)
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (C.-H.K.)
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (D.-C.W.); (C.-C.K.); (J.-B.P.); (K.W.); (I.-W.C.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.Y.); (C.-J.L.); (K.-K.K.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| |
Collapse
|
14
|
Kumari A, Singh K. Preventive role of cinnamaldehyde against tenuazonic acid- and Freund's adjuvant-induced histopathological and biochemical alterations in the mouse model. Front Microbiol 2023; 14:1159881. [PMID: 37426034 PMCID: PMC10325827 DOI: 10.3389/fmicb.2023.1159881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction This study was designed to assess the protective role of cinnamaldehyde (Cin) against the synergistic effect of tenuazonic acid (TeA) and Freund's adjuvant on different organs of Swiss albino mice. Methods TeA was administered singly and in combination with Freund's adjuvant intra-peritoneally. The mice were divided into control (vehicle treated), mycotoxicosis-induced (MI) groups, and treatment groups. The route of administration of TeA was intra-peritoneal. The treatment group (FAICT) received Cin orally as a protective agent against TeA-induced mycotoxicosis. The effects on performance, differential leukocyte counts (DLC), and pathological measurements in eight organs (liver, lungs, kidney, spleen, stomach, heart, brain, and testis) were taken into consideration. Results The body weight and feed consumption decreased significantly in the MI groups, which were reversed in the FAICT group. The necropsy observations revealed an increase in the relative organ-to-body weight percentage in the MI groups, which was restored to normal in the FAICT group. Freund's adjuvant enhanced the effects of TeA on DLC. The antioxidant enzymes SOD and CAT decreased, while MDA increased in the MI groups. Caspase-3 activity was reduced in all organs and remained stable in the treatment group. TeA elevated the ALT concentration in the liver and kidneys and the AST in the liver, kidney, heart, and brain tissues. The oxidative stress induced by TeA in the MI groups was ameliorated in the treatment group. Histopathological observations consisted of NASH, pulmonary oedema and fibrosis, renal crystals and inflammation, splenic hyperplasia, gastric ulceration and cyst, cerebral axonopathy, testicular hyperplasia, and vacuolation in the MI groups. However, no such pathology was recorded in the treatment group. Discussions Thus, it can be concluded that the toxicity of TeA was found to be enhanced when combined with Freund's adjuvant. However, Cin exhibited promising protective effects against TeA + Freund's adjuvant toxicity and reverted the pathological alterations caused by them. Additionally, this study emphasizes Freund's adjuvant's ability to increase mycotoxicity rather than just acting as an immunopotentiator.
Collapse
|
15
|
Chen L, Yuan J, Li H, Ding Y, Yang X, Yuan Z, Hu Z, Gao Y, Wang X, Lu H, Cai Y, Bai Y, Pan X. Trans-cinnamaldehyde attenuates renal ischemia/reperfusion injury through suppressing inflammation via JNK/p38 MAPK signaling pathway. Int Immunopharmacol 2023; 118:110088. [PMID: 37011503 DOI: 10.1016/j.intimp.2023.110088] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Inflammation is the major contributor to the mechanisms of acute kidney injury due to renal ischemia-reperfusion injury (IRI). Trans-cinnamaldehyde (TCA) is a main bioactive component extracted from the bark of cinnamon and has been proved to have good anti-inflammatory properties. The current study was to demonstrate the effect of TCA on renal IRI and explore its specific mechanism. C57BL/6J mice were injected prophylactically intraperitoneally for TCA 3 days, and IRI for 24 h. In parallel, Human Kidney-2 (HK-2) cells were prophylactically treated with TCA, and then exposed to oxygen glucose deprivation/reperfusion (OGD/R) and cobalt chloride (CoCl2). TCA was found to significantly attenuate renal pathological changes and renal dysfunction, and inhibit gene and protein expression of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, TCA significantly suppressed the expression of TNF-α, IL-6, IL-1β, COX-2, iNOS, and MCP-1. Mechanistically, the activation of the JNK/p38 MAPK signaling pathway was inhibited by TCA in renal IRI as well as in OGD/R and CoCl2-stimulated cells. However, following pretreatment with anisomycin before OGD/R treatment, we found that the activation of the JNK/p38 MAPK signaling pathway was significantly enhanced, and concomitant abrogation of the TCA inhibitory effect on the JNK/p38 MAPK signaling pathway, which was followed by a worsening of cell injury that was characterized by an increased number of cell necrosis and an increase in the expression of Kim-1, NGAL as well as proinflammatory factors (IL-6, IL-1β, iNOS). In summary, TCA inhibited renal inflammation via the JNK/p38 MAPK signaling pathway and attenuated renal IRI.
Collapse
|
16
|
Ustaoglu E, Turkoglu Z, Ulgen OA, Caytemel C, Agirgol S. Anti-Inflammatory Effect of Cinnamaldehyde in a Mouse Model of 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis. Indian J Dermatol 2023; 68:170-177. [PMID: 37275806 PMCID: PMC10238997 DOI: 10.4103/ijd.ijd_576_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Background This study aims to investigate the anti-inflammatory effects of cinnamaldehyde in atopic dermatitis (AD) in the mouse model. Materials and Methods Twenty-four mice were divided into four groups: Group A (control), group B [AD with no treatment (AD + NoTre)], group C [AD with corticosteroids (AD + Cort)] and group D [AD with cinnamaldehyde (AD + Cin)]. 2,4-dinitrofluorobenzene was used to form the AD model. Topical corticosteroid was applied to group C, and oral cinnamaldehyde was administered to group D. Dorsal skin biopsies were evaluated immunohistochemically with interleukin (IL)-25, IL-33, thymic stromal lymphopoietin and caspase-3. Results Epithelial thicknesses were significantly higher in group B-D mice compared to group A (P = 0.002, 0.009, 0.004, respectively). Significantly, higher staining with IL-25 was observed in group B (AD + NoTre) and group D (AD + Cin) than in group A (control) (P = 0.003, 0.002, respectively). However, no significant difference was observed between group D (AD + Cin) and group B (AD + NoTre). All three groups (B-D) had significantly higher staining in terms of diffuseness of IL-33 compared to group A (control) (P = 0.002, 0.002, 0.002, respectively). Caspase-3 staining was significantly lower in group D (AD + Cin) than in group B (AD + NoTre) (P = 0.003, 0.002, respectively). Moreover, caspase-3 staining intensity was significantly lower in group D (AD + Cin) than in group C (AD + Cort) (P = 0.002). Conclusions Our study demonstrated that IL-33, IL-25 and caspase-3 have a role in the pathogenesis of AD. Furthermore, cinnamaldehyde reduced caspase-3 activity more than topical corticosteroids and anti-inflammatory effects might be investigated in AD therapy with future studies.
Collapse
Affiliation(s)
- Eda Ustaoglu
- From the Department of Dermatology, Bursa City Hospital, Bursa, Turkey
| | - Zafer Turkoglu
- Department of Dermatology, Basaksehir Cam and Sakura Hospital, Istanbul, Turkey
| | - Ovgu A. Ulgen
- Department of Pathology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Ceyda Caytemel
- Department of Dermatology, Basaksehir Cam and Sakura Hospital, Istanbul, Turkey
| | - Senay Agirgol
- Department of Dermatology, Basaksehir Cam and Sakura Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
trans-Cinnamaldehyde as a Novel Candidate to Overcome Bacterial Resistance: An Overview of In Vitro Studies. Antibiotics (Basel) 2023; 12:antibiotics12020254. [PMID: 36830165 PMCID: PMC9952841 DOI: 10.3390/antibiotics12020254] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The increasing of drug-resistant bacteria and the scanty availability of novel effective antibacterial agents represent alarming problems of the modern society, which stimulated researchers to investigate novel strategies to replace or assist synthetic antibiotics. A great deal of attention has been devoted over the years to essential oils that contain mixtures of volatile compounds and have been traditionally exploited as antimicrobial remedies. Among the essential oil phytochemicals, remarkable antimicrobial and antibiotic-potentiating activities have been highlighted for cinnamaldehyde, an α,β-unsaturated aldehyde, particularly abundant in the essential oils of Cinnamomum spp., and widely used as a food additive in industrial products. In line with this evidence, in the present study, an overview of the available literature has been carried out in order to define the bacterial sensitizing profile of cinnamaldehyde. In vitro studies displayed the ability of the substance to resensitize microbial strains to drugs and increase the efficacy of different antibiotics, especially cefotaxime, ciprofloxacin, and gentamicin; however, in vivo, and clinical trials are lacking. Based on the collected findings, cinnamaldehyde appears to be of interest as an adjuvant agent to overcome superbug infections and antibiotic resistance; however, future more in-dept studies and clinical investigations should be encouraged to clarify its efficacy and the mechanisms involved.
Collapse
|
18
|
Sun Q, Zhang X, Fan J, Zhang L, Ji H, Xue J, Zhang C, Chen R, Zhao J, Chen J, Liu X, Song D. Geniposide protected against cerebral ischemic injury through the anti-inflammatory effect via the NF-κB signaling pathway. Transl Neurosci 2023; 14:20220273. [PMID: 37333874 PMCID: PMC10276575 DOI: 10.1515/tnsci-2022-0273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 06/20/2023] Open
Abstract
Context Accumulated evidence indicates that geniposide exhibits neuroprotective effects in ischemic stroke. However, the potential targets of geniposide remain unclear. Objective We explore the potential targets of geniposide in ischemic stroke. Materials and methods Adult male C57BL/6 mice were subjected to the middle cerebral artery occlusion (MCAO) model. Mice were randomly divided into five groups: Sham, MCAO, and geniposide-treated (i.p. twice daily for 3 days before MCAO) at doses of 25, 75, or 150 mg/kg. We first examined the neuroprotective effects of geniposide. Then, we further explored via biological information analysis and verified the underlying mechanism in vivo and in vitro. Results In the current study, geniposide had no toxicity at concentrations of up to 150 mg/kg. Compared with the MCAO group, the 150 mg/kg group of geniposide significantly (P < 0.05) improved neurological deficits, brain edema (79.00 ± 0.57% vs 82.28 ± 0.53%), and infarct volume (45.10 ± 0.24% vs 54.73 ± 2.87%) at 24 h after MCAO. Biological information analysis showed that the protective effect was closely related to the inflammatory response. Geniposide suppressed interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) expression in the brain homogenate, as measured by enzyme-linked immunosorbent assay (ELISA). Geniposide upregulated A20 and downregulated TNF receptor-associated factor-6 and nuclear factor kappa-B phosphorylation in the MCAO model and lipopolysaccharide-treated BV2 cells at 100 μM. Conclusions Geniposide exhibited a neuroprotective effect via attenuating inflammatory response, as indicated by biological information analysis, in vivo and in vitro experiments, which may provide a potential direction for the application of geniposide in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jingyi Fan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Hui Ji
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Degang Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
- Department of Neurology, First Hospital of Qinhuangdao, Hebei, China
| |
Collapse
|
19
|
Luan F, Lei Z, Peng X, Chen L, Peng L, Liu Y, Rao Z, Yang R, Zeng N. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact 2022; 368:110245. [DOI: 10.1016/j.cbi.2022.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
|
20
|
Anxiolytic-like Effect of Inhaled Cinnamon Essential Oil and Its Main Component Cinnamaldehyde in Animal Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227997. [PMID: 36432096 PMCID: PMC9693619 DOI: 10.3390/molecules27227997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Aromatherapy is one of the most common safer alternative treatments for psychiatric disorders with fewer side effects than conventional drugs. Here, we investigated the effects of cinnamon essential oil (CIEO) inhalation on mouse behaviors by performing different behavioral tests. CIEO inhalation showed anxiolytic effects in the elevated plus maze test, as inferred from increased time spent in open arms and decreased time spent in closed arms. Moreover, the CIEO treatment enhanced social behavior by increasing the total contact number, time spent in the center, distance traveled in the center, and total distance in the social interaction test. However, CIEO inhalation did not have any effect on performance in the open field test, tail suspension test, forced swimming test, and Y maze tests. The microarray analysis indicated that the CIEO treatment downregulated 17 genes and upregulated 15 genes in the hippocampus. Among them, Dcc, Egr2, and Fos are the most crucial genes that are involved in anxiety-related biological processes and pathways, including the regulation of neuronal death and neuroinflammation. Gas chromatography/mass spectrometry analysis revealed that cinnamaldehyde is the main component of CIEO. Cinnamaldehyde recovered MK-801-induced anxiety-related changes in the electroencephalogram power spectrum in zebrafish. Taken together, our findings suggest that CIEO and its main component cinnamaldehyde have an anxiolytic effect through the regulation of the expression of genes related to neuroinflammatory response and neuronal death.
Collapse
|
21
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
22
|
Gao ZY, Chen TY, Yu TT, Zhang LP, Zhao SJ, Gu XY, Pan Y, Kong LD. Cinnamaldehyde prevents intergenerational effect of paternal depression in mice via regulating GR/miR-190b/BDNF pathway. Acta Pharmacol Sin 2022; 43:1955-1969. [PMID: 34983931 PMCID: PMC9343651 DOI: 10.1038/s41401-021-00831-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/23/2021] [Indexed: 11/09/2022]
Abstract
Paternal stress exposure-induced high corticosterone (CORT) levels may contribute to depression in offspring. Clinical studies disclose the association of depressive symptoms in fathers with their adolescent offspring. However, there is limited information regarding the intervention for intergenerational inheritance of depression. In this study we evaluated the intervention of cinnamaldehyde, a major constituent of Chinese herb cinnamon bark, for intergenerational inheritance of depression in CORT- and CMS-induced mouse models of depression. Depressive-like behaviors were induced in male mice by injection of CORT (20 mg·kg-1·d-1, sc) for 6 weeks or by chronic mild stress (CMS) for 6 weeks. We showed that co-administration of cinnamaldehyde (10, 20, or 40 mg·kg-1·d-1, ig) for 6 weeks in F0 males prevented the depressive-like phenotypes of F1 male offspring. In addition, co-administration of cinnamaldehyde (20 mg·kg-1·d-1, ig) for 4 weeks significantly ameliorated depressive-like behaviors of chronic variable stress (CVS)-stimulated F1 offspring born to CMS mice. Notably, cinnamaldehyde had no reproductive toxicity, while positive drug fluoxetine showed remarkable reproductive toxicity. We revealed that CMS and CORT significantly reduced testis glucocorticoid receptor (GR) expression, and increased testis and sperm miR-190b expression in F0 depressive-like models. Moreover, pre-miR-190b expression was upregulated in testis of F0 males. The amount of GR on miR-190b promoter regions was decreased in testis of CORT-stimulated F0 males. Cinnamaldehyde administration reversed CORT-induced GR reduction in testis, miR-190b upregulation in testis and sperm, pre-miR-190b upregulation in testis, and the amount of GR on miR-190b promoter regions of F0 males. In miR-190b-transfected Neuro 2a (N2a) cells, we demonstrated that miR-190b might directly bind to the 3'-UTR of brain-derived neurotrophic factor (BDNF). In the hippocampus of F1 males of CORT- or CMS-induced depressive-like models, increased miR-190b expression was accompanied by reduced BDNF and GR, which were ameliorated by cinnamaldehyde. In conclusion, cinnamaldehyde is a potential intervening agent for intergenerational inheritance of depression, probably by regulating GR/miR-190b/BDNF pathway.
Collapse
Affiliation(s)
- Zhi-ying Gao
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Tian-yu Chen
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Ting-ting Yu
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Li-ping Zhang
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Si-jie Zhao
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Xiao-yang Gu
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Ying Pan
- School of Life Sciences, Nanjing University, Nanjing, 210023, China. .,Institute of Chinese Medicine, Nanjing University, Nanjing, 210023, China.
| | - Ling-dong Kong
- grid.41156.370000 0001 2314 964XSchool of Life Sciences, Nanjing University, Nanjing, 210023 China ,grid.41156.370000 0001 2314 964XInstitute of Chinese Medicine, Nanjing University, Nanjing, 210023 China
| |
Collapse
|
23
|
Meng N, Dong Y, Huo T, Song M, Jiang X, Xiao Y, Lv P. Past Exposure to Cigarette Smoke Aggravates Cognitive Impairment in a Rat Model of Vascular Dementia via Neuroinflammation. Cell Mol Neurobiol 2022; 42:1021-1034. [PMID: 33156450 PMCID: PMC11441291 DOI: 10.1007/s10571-020-00992-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Smoking is a risk factor for dementia. Cognitive function can be partially restored after quitting smoking, but still lower than never smoked group. The underlying mechanisms still remain unclear. The effects of smoking cessation combined with cerebral chronic hypoperfusion (CCH) on cognitive function have never been described. Here, we established a cigarette smoking cessation model, a CCH model, and a cigarette smoking cessation plus CCH model. We investigated cognitive function in these models and the mechanisms of the neuroinflammation, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)/cysteine aspartate-specific proteinase (caspase-1)/interleukin- 1β (IL-1β) pathway, and eucaryotic initiation factor 2α (eIF2α) /autophagy pathway. We used morris water maze (MWM) and novel object recognition (NOR) test to evaluate cognitive function in rats. Nissl staining was performed to observe cell morphology in the hippocampal CA1 area. A neuroinflammatory marker (glial fibrillary acidic protein, GFAP) was assessed by Western blot analysis and immunohistochemistry staining. IL-1β levels were detected by ELISA. The protein levels of NLRP3/caspase-1/ IL-1β and eIF2α/autophagy pathway were evaluated by Western blot analysis. LC3 was assessed by immunofluorescence staining. CCH can affect cognitive function by influencing neuroinflammation, NLRP3/caspase-1/IL-1β pathway, and eIF2α/autophagy pathway. Past exposure to cigarette smoke can also affect cognitive function by influencing neuroinflammation and NLRP3/caspase-1/IL-1β pathway, which may be induced by smoking and may not be alleviated after smoking cessation. Past exposure to cigarette smoke does not influence autophagy, which may be increased by smoking and then decrease to normal levels after smoking cessation. Past exposure to smoking can further aggravate cognitive impairment and neuroinflammation in VaD animals: cognitive impairment induced by CCH via neuroinflammation, NLRP3/caspase-1/IL-1β, and eIF2α/autophagy pathway and cognitive impairment induced by past exposure to cigarette smoke via neuroinflammation and NLRP3/caspase-1/IL-1β pathway. The combined group had the worst cognitive impairment because of harmful reasons.
Collapse
Affiliation(s)
- Nan Meng
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Meiyi Song
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China.
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China.
| |
Collapse
|
24
|
Mazhar M, Yang G, Mao L, Liang P, Tan R, Wang L, Xu H, Yang L, Ren W, Yang S. Zhilong Huoxue Tongyu Capsules Ameliorate Early Brain Inflammatory Injury Induced by Intracerebral Hemorrhage via Inhibition of Canonical NFкβ Signalling Pathway. Front Pharmacol 2022; 13:850060. [PMID: 35431931 PMCID: PMC9008889 DOI: 10.3389/fphar.2022.850060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Intracerebral hemorrhage (ICH) is a debilitating and fatal condition with continuously rising incidence globally, without effective treatment available. Zhilong Huoxue Tongyu (ZLHXTY) capsule is a traditional Chinese medicine that is used for ICH treatment in China. However, the evidence based mechanism is not clear. Purpose: To study the protective effects of ZLHXTY capsules against ICH pathogenesis via targetting nuclear factor kappa β (NFкβ) canonical signalling pathway. Methods: C57BL/6 J mice ICH models using autologous blood injection were used to study the effect of ZLHXTY (1.4 g/kg P.O.) after 24 and 72 hrs of ICH induction. The neurological scoring, corner turn test and balance beam with scoring was performed to assess neurological damage. Hematoxylin/eosin and nissl staining was used for histopathological evaluation. Levels of TNFα, NFкB, iNOS, COX2, IL1, IL6 were measured using real time qPCR and western blotting. Protein levels of IKKβ and IкBα were analyzed through western blotting. Immunofluorescence for co-expression of NeuN/TNFα, NeuN/NFкB, Iba1/TNFα, and Iba1/NFкB was also performed. Results: Treatment with ZLHXTY capsules after ICH ameliorated inflammatory brain injury after 24 and 72 h; revealed by neurological scoring, hematoxylin/eosin and nissl staining. The qPCR and western blot analyses demonstrated significant downregulation of TNFα, NFкB, iNOS, COX2, IL1β and IL6. Further, the IKKβ and IкBα revealed significant downregulation and upregulation respectively in western blot. Immunofluorescence also revealed attenuated expression of TNFα and NFкB in neurons and also low expression of Iba1. Conclusion: ZLHXTY capsules elicit its neuroprotective effect by targetting the NFкβ canonical signalling pathway, thereby ameliorating the ICH induced brain injury.
Collapse
Affiliation(s)
- Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Wei Ren, ; Maryam Mazhar,
| | - Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ruizhi Tan
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Wei Ren, ; Maryam Mazhar,
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang, ; Wei Ren, ; Maryam Mazhar,
| |
Collapse
|
25
|
Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022. [PMID: 35215469 DOI: 10.3390/nu14040819.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
|
26
|
Caruso G, Godos J, Privitera A, Lanza G, Castellano S, Chillemi A, Bruni O, Ferri R, Caraci F, Grosso G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer's Disease. Nutrients 2022; 14:819. [PMID: 35215469 PMCID: PMC8875888 DOI: 10.3390/nu14040819] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment, also known as cognitive decline, can occur gradually or suddenly and can be temporary or more permanent. It represents an increasingly important public health problem and can depend on normal aging or be linked to different neurodegenerative disorders, including Alzheimer's disease (AD). It is now well-established that lifestyle factors including dietary patterns play an important role in healthy aging as well as in the prevention of cognitive decline in later life. Among the natural compounds, dietary polyphenols including phenolic acids have been recently the focus of major attention, with their supplementation being associated with better cognitive status and prevention of cognitive decline. Despite their therapeutic potential, human studies investigating the relation between phenolic acids intake and cognitive outcomes are rather scarce. In this review, we provide preclinical evidence that different dietary polyphenols such as rosmarinic acid, ellagic acid, and cinnamic aldehyde can exert neuroprotective and pro-cognitive activities through different molecular mechanisms including the modulation of pro-oxidant and antioxidant machinery as well as inflammatory status. Future and more numerous in vivo studies are needed to strengthen the promising results obtained at the preclinical level. Despite the excellent pharmacokinetic properties of phenolic acids, which are able to be accumulated in the brain at pharmacologically relevant levels, future studies should also identify which among the different metabolites produced as a consequence of phenolic acids' consumption may be responsible for the potential neuroprotective effects of this subgroup of polyphenols.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Alessio Chillemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, 00185 Rome, Italy;
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (A.P.)
- Research Operative Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (A.C.); (G.G.)
| |
Collapse
|
27
|
Min W, Wu Y, Fang Y, Hong B, Dai D, Zhou Y, Liu J, Li Q. Bone marrow mesenchymal stem cells-derived exosomal microRNA-124-3p attenuates hypoxic-ischemic brain damage through depressing tumor necrosis factor receptor associated factor 6 in newborn rats. Bioengineered 2022; 13:3194-3206. [PMID: 35067167 PMCID: PMC8973938 DOI: 10.1080/21655979.2021.2016094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes (Exo) are beneficial in the use of brain damages. Restrictively, the mechanism of Exo expressing miR-124-3p in hypoxic-ischemic brain damage (HIBD) is not completely comprehended. Thereupon, this work was put forward to reveal the action of bone marrow MSCs-derived Exo (BMSCs-Exo) expressing miR-124-3p in the illness. BMSCs were isolated and transfected with miR-124-3p agomir. Then, BMSCs-Exo were extracted and identified. The newborn HIBD rats were injected with miR-124-3p-modified BMSCs-Exo or tumor necrosis factor receptor associated factor 6 (TRAF6)-related vectors. Next, neurological functions, neuron pathological and structural damages, oxidative stress and neuronal apoptosis were observed. miR-124-3p and TRAF6 expression was tested, along with their targeting relationship. miR-124-3p was down-regulated, and TRAF6 was up-regulated in newborn HIBD rats. miR-124-3p targeted TRAF6. BMSCs-Exo improved neurological functions, alleviated neuron pathological and structural damages, suppressed oxidative stress and reduced neuronal apoptosis in newborn HIBD rats, whereas BMSCs-Exo-mediated effects were enhanced by restoring miR-124-3p. Silencing TRAF6 attenuated HIBD in newborn rats, but overexpression of TRAF6 reversed the protective role of miR-124-3p-overexpressing BMSCs-Exo. This work makes it comprehensive that up-regulated exosomal miR-124-3p ameliorates HIBD in newborn rats by targeting TRAF6, which replenishes the potential agents for curing HIBD.
Collapse
Affiliation(s)
| | | | | | - Bo Hong
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Dongwei Dai
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Yu Zhou
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Jianmin Liu
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| | - Qiang Li
- Changhai Stroke Center, Changhai Hospital, Second Military Medical University, Shanghai China
| |
Collapse
|
28
|
Liu Y, Dang W, Zhang S, Wang L, Zhang X. Artesunate attenuates inflammatory injury and inhibits the NF-κB pathway in a mouse model of cerebral ischemia. J Int Med Res 2021; 49:3000605211053549. [PMID: 34743632 PMCID: PMC8579345 DOI: 10.1177/03000605211053549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Inflammation is an important factor in the pathological process of cerebral ischemia. Artesunate exhibits a broad range of anti-inflammatory properties in many diseases. We investigated the potential protective effect of artesunate against cerebral ischemia and the related mechanisms. METHODS Mice were divided into distal middle cerebral artery occlusion (dMCAO), sham, low dose, and high dose groups and subjected to dMCAO, except for the sham group. The low and high dose groups were administered artesunate (15 and 30 mg/kg), and the neuroprotective effects were analyzed by evaluating infarct volumes and neurological deficits. Microglial activation and neutrophil infiltration were evaluated by immunofluorescence, immunohistochemical staining, and western blotting. Inflammatory mediators were measured by enzyme-linked immunosorbent assays. Nuclear factor (NF)-κB nuclear translocation was detected by immunofluorescence and western blotting. RESULTS Compared with the dMCAO group, artesunate significantly improved neurological deficit scores and infarct volumes and ameliorated inflammation by reducing neutrophil infiltration, suppressing microglial activation, and downregulating tumor necrosis factor-α and interleukin-1β expression. Furthermore, artesunate inhibited nuclear translocation of NF-κB and inhibitor protein α proteolysis. CONCLUSIONS Artesunate protected against inflammatory injury by reducing neutrophil infiltration and microglial activation, suppressing inflammatory cytokines, and inhibiting the NF-κB pathway. Therefore, artesunate is a potential ischemic stroke treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, 71213Second Hospital of Hebei Medical University, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease
| | - Wei Dang
- Linxi County People's Hospital, Linxi, Hebei, China
| | - Shiyang Zhang
- Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Lina Wang
- Department of Neurology, 71213Second Hospital of Hebei Medical University, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease
| | - Xiangjian Zhang
- Department of Neurology, 71213Second Hospital of Hebei Medical University, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease
| |
Collapse
|
29
|
Zhang T, Chen X, Qu Y, Ding Y. Curcumin Alleviates Oxygen-Glucose-Deprivation/Reperfusion-Induced Oxidative Damage by Regulating miR-1287-5p/LONP2 Axis in SH-SY5Y Cells. Anal Cell Pathol (Amst) 2021; 2021:5548706. [PMID: 34589382 PMCID: PMC8476263 DOI: 10.1155/2021/5548706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress-induced neuronal damage is a main cause of ischemia/reperfusion injury. Curcumin (Cur), the principal constituent extracted from dried rhizomes of Curcuma longa L. (turmeric), exhibits excellent antioxidant effects. Previous studies have indicated that miR-1287-5p was downregulated in patients with ischemic stroke. Additionally, we predicted that Lon Peptidase 2, Peroxisomal (LONP2), which is involved in oxidative stress regulation, is targeted by miR-1287-5p. The aim of the current study is to investigate the effect of Cur on ischemia/reperfusion damage and its underlying mechanism. To mimic ischemia/reperfusion damage environment, SH-SY5Y cells were subjected to oxygen-glucose-deprivation/reperfusion (OGD/R). OGD/R treatment downregulated miR-1287-5p and upregulated LONP2 in SH-SY5Y cells, but Cur alleviated OGD/R-induced oxidative damage and reversed the effect of OGD/R on the expression of miR-1287-5p and LONP2. Furthermore, we confirmed the interactive relationship between miR-1287-5p and LONP2 (negative regulation). We revealed that miR-1287-5p overexpression alleviated OGD/R-induced oxidative damage alleviation, similar to the effect of Cur. MiR-1287-5p inhibition accentuated OGD/R-induced oxidative damage in SH-SY5Y cells, which was reversed by Cur. The expression of LONP2 in OGD/R-treated SH-SY5Y cells was decreased by miR-1287-5p overexpression and increased by miR-1287-5p inhibition, and Cur counteracted the increase in LONP2 expression induced by miR-1287-5p inhibition. In conclusion, we suggest that Cur alleviates OGD/R-induced oxidative damage in SH-SY5Y cells by regulating the miR-1287-5p/LONP2 axis. The findings provide a theoretical basis for the clinical application of curcumin.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Xiaomin Chen
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Yueqing Qu
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Yanbing Ding
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| |
Collapse
|
30
|
Kuru Bektaşoğlu P, Koyuncuoğlu T, Demir D, Sucu G, Akakın D, Peker Eyüboğlu İ, Yüksel M, Çelikoğlu E, Yeğen BÇ, Gürer B. Neuroprotective Effect of Cinnamaldehyde on Secondary Brain Injury After Traumatic Brain Injury in a Rat Model. World Neurosurg 2021; 153:e392-e402. [PMID: 34224887 DOI: 10.1016/j.wneu.2021.06.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the possible neuroprotective effects of cinnamaldehyde (CA) on secondary brain injury after traumatic brain injury (TBI) in a rat model. METHODS Rats were randomly divided into 4 groups: control (n = 9), TBI (n = 9), vehicle (0.1% Tween 80; n = 8), and CA (100 mg/kg) (n = 9). TBI was induced by the weight-drop model. In brain tissues, myeloperoxidase activity and the levels of luminol-enhanced and lucigenin-enhanced chemiluminescence were measured. Interleukin 1β, interleukin 6, tumor necrosis factor α, tumor growth factor β, caspase-3, and cleaved caspase-3 were evaluated with an enzyme-linked immunosorbent assay method. Brain injury was histopathologically graded after hematoxylin-eosin staining. Y-maze and novel object recognition tests were performed before TBI and within 24 hours of TBI. RESULTS Higher myeloperoxidase activity levels in the TBI group (P < 0.001) were suppressed in the CA group (P < 0.05). Luminol-enhanced and lucigenin-enhanced chemiluminescence, which were increased in the TBI group (P < 0.001, for both), were decreased in the group that received CA treatment (P < 0.001 for both). Compared with the increased histologic damage scores in the cerebral cortex and dentate gyrus of the TBI group (P < 0.001), scores of the CA group were lower (P < 0.001). Decreased number of entries and spontaneous alternation percentage in the Y-maze test of the TBI group (P < 0.05 and P < 0.01, respectively) were not evident in the CA group. CONCLUSIONS CA has shown neuroprotective effects by limiting neutrophil recruitment, suppressing reactive oxygen species and reducing histologic damage and acute hippocampal dysfunction.
Collapse
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Türkan Koyuncuoğlu
- Department of Physiology, Biruni University Faculty of Medicine, Istanbul, Turkey
| | - Dilan Demir
- Department of Neurosurgery, University of Health Sciences, Kartal Dr. Lutfi Kırdar Education and Research Hospital, Istanbul, Turkey
| | - Gizem Sucu
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - İrem Peker Eyüboğlu
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health-Related Services, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
31
|
The Extracts of Angelica sinensis and Cinnamomum cassia from Oriental Medicinal Foods Regulate Inflammatory and Autophagic Pathways against Neural Injury after Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9663208. [PMID: 34257822 PMCID: PMC8257381 DOI: 10.1155/2021/9663208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKβ and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1β, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.
Collapse
|
32
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
33
|
Administration of 4-Hydroxy-3,5-Di-Tertbutyl Cinnamic Acid Restores Mitochondrial Function in Rabbits with Cerebral Ischemia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the study is to evaluate the effect of 4-hydroxy-3,5- di-tertbutyl cinnamic acid on the change in mitochondrial function under conditions of experimental cerebral ischemia in rabbits. The study was performed on 48 male rabbits, which were used for modeling permanent cerebral ischemia by occlusion of the common carotid arteries. The test compound was administered before modeling ischemia for 14 days and after the occurrence of reproducing ischemia, in a similar time interval. After that, neurological deficit and the parameters of mitochondrial respiration, the intensity of anaerobic processes, the latent opening time of the mitochondrial permeability transition pore, the value of the mitochondrial membrane potential and the concentration of caspase – 3 were determined. The administration of 100 mg/kg of 4-hydroxy-3,5-di-tertbutyl cinnamic acid into the animals reduced neurological deficit and restored the mitochondrial membrane potential. Prophylactic administration of 4-hydroxy- 3,5-di-tertbutyl cinnamic acid, contributed to an increase in ATPgenerating ability, the maximum level of respiration and respiratory capacity by 4.1 times (p<0.01), 4.8 times (p<0.01) and 4.3 times (p<0.01), respectively. With therapeutic administration, these indicators increased by 11 times (p<0.01), 12.2 times (p<0.01) and 8.6 times (p<0.01), respectively. Also, both the prophylactic and therapeutic use of 4-hydroxy-3,5-di-tret-butyl cinnamic acid normalized aerobic/anaerobic metabolism, as well as reduced the concentration of caspase-3. Based on the obtained data, significant cerebroprotective properties of 4-hydroxy-3,5- di-tertbutyl cinnamic acid can be assumed. Moreover, the potential mechanism of action of this compound may be mediated by the normalization of mitochondrial function.
Collapse
|
34
|
Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J, Wang X. Inhibition of Acyl-CoA Synthetase Long-Chain Family Member 4 Facilitates Neurological Recovery After Stroke by Regulation Ferroptosis. Front Cell Neurosci 2021; 15:632354. [PMID: 33889074 PMCID: PMC8055945 DOI: 10.3389/fncel.2021.632354] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ischemic stroke is the main cause of disability worldwide, leading to a serious socioeconomic burden. Ferroptosis is a non-apoptotic form of programmed cell death and is related to various diseases. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is considered a target of ferroptosis, but its specific role in ischemic stroke remains unclear. In this study, we investigate whether the inhibition of ACSL4 promotes the recovery of neurological function in a way that prevents ferroptosis. Methods A transient cerebral ischemia model was established for mice by middle cerebral artery occlusion (MCAO); glutathione peroxidase 4 (GPx4), ACSL4 and cyclooxygenase 2 (COX2) were detected by Western blot, and changes to mitochondria were observed by a transmission electron microscope. A kit was used to determine iron levels and lipid peroxide indicators, such as glutathione peroxidase (GPx), reduced glutathione (GSH), total glutathione/oxidized glutathione (GSH/GSSG), lipid peroxidation, reactive oxygen species, superoxide and malonaldehyde. Following MCAO, a ferroptosis inhibitor, liproxstatin-1, was administered intranasally immediately at a concentration of 10 mg/kg. Rosiglitazone was used to inhibit ACSL4 and was administered intravenously 1 h before MCAO at a concentration of 0.4 mg/kg. Brain injury was determined by neurological deficit scores, neuroscore (28-point), corner test and gait analyses, at 24 and 72 h after stroke. Brain infarct volume was determined by 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining at 72 h after stroke. Results After MCAO, GPx4 protein expression decreased, ACSL4 and COX2 protein expression increased, GPx activity decreased and iron accumulation. Transmission electron microscopy confirmed that the outer mitochondrial membrane of neurons had ruptured and mitochondrial cristae had decreased or disappeared. Liproxstatin-1 could significantly attenuate the decrease of GPx4 and the increase of COX2 after MCAO, dramatically reducing iron accumulation and decreasing GPx activity, accompanied by a marked reduction in changes in lipid peroxidation indicators. The use of rosiglitazone to inhibit ACSL4 could significantly improve neurological function and reduce the brain infarct volume at 72 h after stroke. Importantly, inhibiting ACSL4 could significantly attenuate the decline of GPx4 after MCAO and markedly attenuate iron accumulation and a decrease in GPx activity. Additionally, changes in lipid peroxidation indicators were also significantly inhibited. Conclusion This study indicates that inhibiting ACSL4 can promote the recovery of neurological function after stroke by suppression of ferroptosis.
Collapse
Affiliation(s)
- Junmin Chen
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lan Yang
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianxia Geng
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junna He
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Chen
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Sun
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhao
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaopeng Wang
- Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Saleh HA, Yousef MH, Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front Immunol 2021; 12:606069. [PMID: 33868227 PMCID: PMC8044831 DOI: 10.3389/fimmu.2021.606069] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Innate immune response induces positive inflammatory transducers and regulators in order to attack pathogens, while simultaneously negative signaling regulators are transcribed to maintain innate immune homeostasis and to avoid persistent inflammatory immune responses. The gene expression of many of these regulators is controlled by different epigenetic modifications. The remarkable impact of epigenetic changes in inducing or suppressing inflammatory signaling is being increasingly recognized. Several studies have highlighted the interplay of histone modification, DNA methylation, and post-transcriptional miRNA-mediated modifications in inflammatory diseases, and inflammation-mediated tumorigenesis. Targeting these epigenetic alterations affords the opportunity of attenuating different inflammatory dysregulations. In this regard, many studies have identified the significant anti-inflammatory properties of distinct naturally-derived phytochemicals, and revealed their regulatory capacity. In the current review, we demonstrate the signaling cascade during the immune response and the epigenetic modifications that take place during inflammation. Moreover, we also provide an updated overview of phytochemicals that target these mechanisms in macrophages and other experimental models, and go on to illustrate the effects of these phytochemicals in regulating epigenetic mechanisms and attenuating aberrant inflammation.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed H. Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
36
|
Momtaz S, Navabakhsh M, Bakouee N, Dehnamaki M, Rahimifard M, Baeeri M, Abdollahi A, Abdollahi M, Farzaei MH, Abdolghaffari AH. Cinnamaldehyde targets TLR-4 and inflammatory mediators in acetic-acid induced ulcerative colitis model. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00725-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
He J, Zhang X, He W, Xie Y, Chen Y, Yang Y, Chen R. Neuroprotective effects of zonisamide on cerebral ischemia injury via inhibition of neuronal apoptosis. ACTA ACUST UNITED AC 2021; 54:e10498. [PMID: 33656055 PMCID: PMC7917778 DOI: 10.1590/1414-431x202010498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
It is known that neuronal apoptosis contributes to pathology of cerebral ischemia injury. Zonisamide (ZNS) has shown anti-apoptosis effects in recent studies. The present study investigated whether the anti-apoptotic effect can account for the neuroprotective action of ZNS on cerebral ischemia. Neuronal cells were maintained under oxygen-glucose deprivation conditions to simulate cerebral ischemia and treated with ZNS simultaneously. The apoptosis of the cells and expression of apoptosis-related proteins were investigated by flow cytometry and western blot analysis, respectively. A cerebral ischemia mouse model was created via middle cerebral artery occlusion, and the mice were treated with ZNS. Neurological deficit scores and infarct volumes of the cerebral ischemia mice were measured. The apoptosis status of the neuronal cells was evaluated by TUNEL staining. In vitro, the ZNS treatment inhibited both the apoptosis of the neuronal cells and apoptosis-related protein expression (caspase-3, caspase-8, and calpain-1) induced by the oxygen-glucose deprivation. The anti-apoptosis effect of ZNS could occur through the blocking of reactive oxygen species. Moreover, ZNS treatment significantly ameliorated neurological deficits and reduced infarct volumes in the cerebral ischemia mice model. In this study, ZNS exerted neuroprotective effects by inhibition of apoptosis in neuronal cells in cerebral ischemia. Therefore, ZNS might be a promising therapy for cerebral ischemia.
Collapse
Affiliation(s)
- Junna He
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanzhao Xie
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanxia Chen
- Department of Endocrinology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yang Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| |
Collapse
|
38
|
Almoiliqy M, Wen J, Qaed E, Sun Y, Lian M, Mousa H, Al-Azab M, Zaky MY, Chen D, Wang L, AL-Sharabi A, Liu Z, Sun P, Lin Y. Protective Effects of Cinnamaldehyde against Mesenteric Ischemia-Reperfusion-Induced Lung and Liver Injuries in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4196548. [PMID: 33381264 PMCID: PMC7748914 DOI: 10.1155/2020/4196548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to characterize and reveal the protective effects of cinnamaldehyde (CA) against mesenteric ischemia-reperfusion- (I/R-) induced lung and liver injuries and the related mechanisms. Sprague-Dawley (SPD) rats were pretreated for three days with 10 or 40 mg/kg/d, ig of CA, and then induced with mesenteric ischemia for 1 h and reperfusion for 2 h. The results indicated that pretreatment with 10 or 40 mg/kg of CA attenuated morphological damage in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment significantly restored the levels of aspartate transaminase (AST) and alanine transaminase (ALT) in mesenteric I/R-injured liver tissues, indicating the improvement of hepatic function. CA also significantly attenuated the inflammation via reducing myeloperoxidase (MOP) activity and downregulating the expression of inflammation-related proteins, including interleukin-6 (IL-6), interleukin-1β (IL-1β), cyclooxygenase-2 (Cox-2), and tumor necrosis factor receptor type-2 (TNFR-2) in both lung and liver tissues of mesenteric I/R-injured rats. Pretreatment with CA significantly downregulated nuclear factor kappa B- (NF-κB-) related protein expressions (NF-κB p65, NF-κB p50, I kappa B alpha (IK-α), and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ)) in both lung and liver tissues of mesenteric I/R-injured rats. CA also significantly downregulated the protein expression of p53 family members, including caspase-3, caspase-9, Bax, and p53, and restored Bcl-2 in both lung and liver tissues of mesenteric I/R-injured rats. CA pretreatment significantly reduced TUNEL-apoptotic cells and significantly inhibited p53 and NF-κB p65 nuclear translocation in both lung and liver tissues of mesenteric I/R-injured rats. CA neither induced pulmonary and hepatic histological alterations nor affected the parameters of inflammation and apoptosis in sham rats. We conclude that CA alleviated mesenteric I/R-induced pulmonary and hepatic injuries via attenuating apoptosis and inflammation through inhibition of NF-κB and p53 pathways in rats, suggesting the potential role of CA in remote organ ischemic injury protection.
Collapse
Affiliation(s)
- Marwan Almoiliqy
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
- Key Lab of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, Yibin University, Yibin, 644000 Sichuan, China
| | - Jin Wen
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Eskandar Qaed
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yuchao Sun
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Mengqiao Lian
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Haithm Mousa
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Mohamed Y. Zaky
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian 116044, China
| | - Li Wang
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Abdulkarem AL-Sharabi
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yuan Lin
- Department of Pharmacology, Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
39
|
Pan Z, He X, Zhou X, Li X, Rong B, Wang F. Combination of ellagic acid and trans-cinnamaldehyde alleviates aging-induced cognitive impairment via modulation of mitochondrial function and inflammatory and apoptotic mediators in the prefrontal cortex of aged rats. CHINESE J PHYSIOL 2020; 63:218-226. [PMID: 33109788 DOI: 10.4103/cjp.cjp_55_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cognitive impairments are associated with advancing age. Trans-cinnamaldehyde (CIN) and ellagic acid (ELA) have multiplex activities to reduce various age-related cognitive disorders. In this study, we investigated the effects of these compounds separately or in combination on the cognitive outcomes, mitochondrial function, and inflammatory and apoptotic mediators in aged male Wistar rats. Thirty-two old (22 months old) and eight young (5 months old) rats were randomly allocated to five groups of young control, aged control, ELA-aged, CIN-aged, and ELA + CIN-aged. ELA (15 mg/kg, orally) and CIN (50 mg/kg, intraperitoneally) separately or in combination were administered for 1 month in aged animals. Spatial memory and cognitive activity were evaluated by the Barnes maze and novel object recognition tests. Mitochondrial function (its reactive oxygen species [ROS], mitochondrial membrane potential and ATP level), pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6 and pro-apoptotic caspase 3 and Bax, and anti-apoptotic Bcl2 levels and their ratio were assessed in the prefrontal cortex. Behavioral results revealed that CIN separately or in combination with ELA significantly alleviates aging-induced memory impairment. Moreover, co-administration of agents effectively decreased inflammatory cytokines, cleaved-caspase 3, Bax and Bax/Bcl2 levels, mitochondrial ROS production, and mitochondrial membrane depolarization and increased Bcl2 and ATP level as compared with untreated aged control rats. Combination therapy was greater than those of individual treatments in all parameters. Therefore, combination therapy with CIN and ELA improved aging-induced cognitive impairment through anti-inflammatory, anti-apoptotic, and mitochondrial-boosting effects in aged rats.
Collapse
Affiliation(s)
- Zengjun Pan
- Department of Neurosurgery, Binzhou Central Hospital, Binzhou, Shandong, China
| | - Xining He
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, Shandong, China
| | - Xianwen Zhou
- Department of Neurosurgery, Binzhou Central Hospital, Binzhou, Shandong, China
| | - Xiaoqiang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Bo Rong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Natural Cinnamaldehyde and Its Derivatives Ameliorate Neuroinflammatory Pathways in Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1034325. [PMID: 33274192 PMCID: PMC7683109 DOI: 10.1155/2020/1034325] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/15/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are devastating and incurable disorders characterized by neuronal dysfunction. The major focus of experimental and clinical studies are conducted on the effects of natural products and their active components on neurodegenerative diseases. This review will discuss an herbal constituent known as cinnamaldehyde (CA) with the neuroprotective potential to treat neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Accumulating evidence supports the notion that CA displays neuroprotective effects in AD and PD animal models by modulating neuroinflammation, suppressing oxidative stress, and improving the synaptic connection. CA exerts these effects through its action on multiple signaling pathways, including TLR4/NF-κB, NLRP3, ERK1/2-MEK, NO, and Nrf2 pathways. To summarize, CA and its derivatives have been shown to improve pathological changes in AD and PD animal models, which may provide a new therapeutic option for neurodegenerative interventions. To this end, further experimental and clinical studies are required to prove the neuroprotective effects of CA and its derivatives.
Collapse
|
41
|
Pekoglu E, Buyukakilli B, Turkseven CH, Balli E, Bayrak G, Cimen B, Balci S. Effects of Trans-Cinnamaldehyde on Reperfused Ischemic Skeletal Muscle and the Relationship to Laminin. J INVEST SURG 2020; 34:1329-1338. [PMID: 32752972 DOI: 10.1080/08941939.2020.1802538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Ischemia-reperfusion (I-R) injury is a serious problem caused by vascular trauma, tourniquet use and/or compartment syndrome. Studies have reported that skeletal muscle function is impaired due to the lower extremity I-R injury. There are insufficient studies on the treatment methods used for the recovery of dysfunction. This study is designed to investigate the effects of trans-cinnamaldehyde (TCA), a volatile oil of cinnamon structure, on the contractile dysfunction due to I-R injury of rat extensor-digitorum-longus (EDL) muscle. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into three groups. Except for the animals in the control group, all animals received saline (3-ml/kg) or TCA solution (30-mg/kg) which was administered orally three times with an 8-h interval before ischemia. After 24-hours, experimental groups were subjected to 3-h of lower extremity ischemia followed by 5-h reperfusion period. Then, the compound muscle action potential (CMAP) and mechanical activity of muscle were recorded using the standard electro-biophysical techniques. RESULTS There was a decrease in the maximum contractile force in I-R group compared to the control group (p < 0.05). Oxidative damage indicator (MDA) and antioxidant indicator (CAT) increased in the EDL muscle and serum samples in the I-R group (p < 0.05). Laminin expression showed a reduction in the I-R group (p < 0.05). It was seen that TCA achieve again the maximum contraction force in the EDL muscle (p < 0.05) and maintain the expression of laminin (p > 0.05). CONCLUSION We concluded that TCA has a potential protective effect with antioxidant effects against I-R injury and may maintain laminin levels.
Collapse
Affiliation(s)
- Esra Pekoglu
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Belgin Buyukakilli
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | | | - Ebru Balli
- Department of Histology & Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gulsen Bayrak
- Department of Histology & Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Burak Cimen
- Department of Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Senay Balci
- Department of Biochemistry, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
42
|
Chen JC, Hsieh PS, Chen SM, Hwang JH. Effects of Cinnamaldehyde on the Viability and Expression of Chemokine Receptor Genes in Temozolomide-treated Glioma Cells. In Vivo 2020; 34:595-599. [PMID: 32111758 DOI: 10.21873/invivo.11812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The effects of cinnamaldehyde on glioma are still unclear. We aimed to investigate the effects of cinnamaldehyde on the viability and expression of chemokine receptors CXCR4 and CXCR7 in temozolomide (TMZ)-treated glioma cells. MATERIALS AND METHODS Cell viability and CXCR4 and CXCR7 expression were measured by western blotting at 72 h after treatment with various concentrations of cinnamaldehyde and TMZ. RESULTS Cell viability was significantly lower after treatment with 300 μM TMZ, 50 μM cinnamaldehyde, 75 μM cinnamaldehyde, or combined treatment with 300 μM TMZ plus 50 μM or 75 μM cinnamaldehyde than after no treatment (i.e., without TMZ or cinnamaldehyde); and significantly lower after combined treatment with 300 μM TMZ plus 75 μM cinnamaldehyde but not 50 μM cinnamaldehyde, than treatment with 300 μM TMZ alone. Western blotting showed that either single treatments or combined treatments had lower CXCR4 expression (compared to the no-treatment control). Compared to 300 μM TMZ alone, both combined treatment of 300 μM TMZ plus 50 μM cinnamaldehyde or 75 μM cinnamaldehyde had significantly lowered CXCR4 expression. However, CXCR7 expression was not significantly different in all groups. CONCLUSION Cinnamaldehyde, acting with TMZ, reduces glioma cell viability possibly via decreasing CXCR4 expression.
Collapse
Affiliation(s)
- Jin-Cherng Chen
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C.,School of Medicine, Tzu Chi University, Haulien, Taiwan, R.O.C
| | - Pei-Shan Hsieh
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C
| | - Shu-Min Chen
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C
| | - Juen-Haur Hwang
- School of Medicine, Tzu Chi University, Haulien, Taiwan, R.O.C. .,Department of Otolaryngology-Head and Neck Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
43
|
Günaydın C, Arslan G, Bilge SS. Proconvulsant effect of trans-cinnamaldehyde in pentylenetetrazole-induced kindling model of epilepsy: The role of TRPA1 channels. Neurosci Lett 2020; 721:134823. [PMID: 32035165 DOI: 10.1016/j.neulet.2020.134823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily, is widely distributed in the central nervous system (CNS) and plays an important role in pain and inflammation. However, no data has been reported regarding the effects of TRPA1 on epileptic seizures. Thus, this study was designed to investigate the sub-chronic effect of trans-cinnamaldehyde (TCA), an agonist of TRPA1, in pentylenetetrazole (PTZ) induced kindling model via electrocorticography (ECoG). Furthermore, the expressions of cAMP response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and NMDA receptor subunit NR2B were measured using Western blotting. Rats were kindled by intraperitoneal (i.p.) PTZ (35 mg/kg) injections. After electrode implantation and healing period, 10 and 30 mg/kg TCA was given i.p. for 14 consecutive days. On the next day, ECoG recordings were obtained after the injection of PTZ (35 mg/kg, i.p.), and twenty-four hours later, rats were decapitated for molecular analyses. TCA, at a dose of 30 mg/kg, decreased the first myoclonic jerk latency and increased seizure duration and total spike activity. Additionally, both doses of TCA enhanced CREB, BDNF, and NR2B expressions, which were increased by the kindling. The evidence from this study suggests that long term activation of TRPA1 channels causes an exacerbated seizure activity. Moreover, PTZ-induced increases in CREB, BDNF, and NR2B levels were enhanced by the repeated administrations of TCA.
Collapse
Affiliation(s)
- Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gökhan Arslan
- Department of Physiology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - S Sırrı Bilge
- Department of Pharmacology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
44
|
Xia ZY, Luo C, Liu BW, Bian XQ, Li Y, Pang AM, Xu YH, Tan HM, Zhao YH. Shengui Sansheng Pulvis maintains blood-brain barrier integrity by vasoactive intestinal peptide after ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153158. [PMID: 31999981 DOI: 10.1016/j.phymed.2019.153158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/03/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Background Shengui Sansheng Pulvis (SSP) has about 300 years history used for stroke treatment, and evidences suggest it has beneficial effects on neuro-angiogenesis and cerebral energy metabolic amelioration post-stroke. However, its protective action and mechanisms on blood-brain barrier (BBB) is still unknown. Purpose Based on multiple neuroprotective properties of vasoactive intestinal peptide (VIP) in neurological disorders, we investigate if SSP maintaining BBB integrity is associated with VIP pathway in rat permanent middle cerebral artery occlusion (MCAo) model. Methods Three doses of SSP extraction were administered orally. Evaluations of motor and balance abilities and detection of brain edema were performed, and BBB permeability were assessed by Evans blue (EB) staining. Primary brain microvascular endothelial cells (BMECs) were subjected to oxygen-glucose deprivation, and incubated with high dose SSP drug-containing serum and VIP-antagonist respectively. Transendothelial electrical resistance (TEER) assay and Tetramethylrhodamine isothiocyanate (TRITC)-dextran (4.4 kDa) and fluorescein isothiocyanate (FITC)-dextran (70 kDa) were used to evaluate the features of paracellular junction. Western blot detected the expressions of Claudin-5, ZO-1, Occludin and VE-cadherin, matrix metalloproteinase (MMP) 2/9 and VIP receptors 1/2, and immunofluorescence staining tested VIP and Claudin-5 expressions. Results Our results show that SSP significantly reduces EB infiltration in dose-dependent manner in vivo and attenuates TRITC- dextran and FITC-dextran diffusion in vitro, and strengthens endothelial junctional complexes as represented by decreasing Claudin-5, ZO-1, Occludin and VE-cadherin degradations and MMP 2/9 expression, as well as promoting TEER in BMECs after ischemia. Moreover, it suggests that SSP notably enhances VIP and its receptors 1/2 expressions. VIP-antagonist exacerbates paracellular barrier of BMECs, while the result is reversed after incubation with high dose SSP drug-containing serum. Additionally, SSP also improve brain edema and motor and balance abilities after ischemic stroke. Conclusions we firstly demonstrate that the ameliorated efficacy of SSP on BBB permeability is related to the enhancements of VIP and its receptors, suggesting SSP might be an effective therapeutic agent on maintaining BBB integrity post-stroke.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/drug effects
- Brain Ischemia/drug therapy
- Brain Ischemia/metabolism
- Brain Ischemia/physiopathology
- Claudin-5/metabolism
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Permeability
- Rats, Inbred Strains
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Stroke/drug therapy
- Stroke/physiopathology
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Zhen-Yan Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Cheng Luo
- The Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo-Wen Liu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Qing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Yang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Ai-Ming Pang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Experimental Hematology, Tianjin, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Hong-Mei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yong-Hua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao.
| |
Collapse
|
45
|
Gao J, Bai P, Li Y, Li J, Jia C, Wang T, Zhao H, Si Y, Chen J. Metabolomic Profiling of the Synergistic Effects of Ginsenoside Rg1 in Combination with Neural Stem Cell Transplantation in Ischemic Stroke Rats. J Proteome Res 2020; 19:2676-2688. [PMID: 31968172 DOI: 10.1021/acs.jproteome.9b00639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Gao
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Bai
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyuan Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingzhong Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Caixia Jia
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haibin Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yinchu Si
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
46
|
Qu S, Yang K, Chen L, Liu M, Geng Q, He X, Li Y, Liu Y, Tian J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front Microbiol 2019; 10:2895. [PMID: 31921070 PMCID: PMC6930169 DOI: 10.3389/fmicb.2019.02895] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
The problem of food spoilage due to Aspergillus flavus (A. flavus) needs to be resolved. In this study, we found that the minimum inhibitory concentration of cinnamaldehyde (CA) that inhibited A. flavus was 0.065 mg/ml and that corn can be prevented from spoiling at a concentration of 0.13 mg/cm3. In addition to inhibiting spore germination, mycelial growth, and biomass production, CA can also reduce ergosterol synthesis and can cause cytomembrane damage. Our intention was to elucidate the antifungal mechanism of CA. Flow cytometry, fluorescence microscopy, and western blot were used to reveal that different concentrations of CA can cause a series of apoptotic events in A. flavus, including elevated Ca2+ and reactive oxygen species, decrease in mitochondrial membrane potential (Δψ m ), the release of cytochrome c, the activation of metacaspase, phosphatidylserine (PS) externalization, and DNA damage. Moreover, CA significantly increased the expression levels of apoptosis-related genes (Mst3, Stm1, AMID, Yca1, DAP3, and HtrA2). In summary, our results indicate that CA is a promising antifungal agent for use in food preservation.
Collapse
Affiliation(s)
- Su Qu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Lei Chen
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Qingru Geng
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaona He
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongxin Li
- College of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
47
|
Gürer B, Kertmen H, Kuru Bektaşoğlu P, Öztürk ÖÇ, Bozkurt H, Karakoç A, Arıkök AT, Çelikoğlu E. The effects of Cinnamaldehyde on early brain injury and cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Metab Brain Dis 2019; 34:1737-1746. [PMID: 31444631 DOI: 10.1007/s11011-019-00480-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022]
Abstract
The neuroprotective and vasodilatory effects of cinnamaldehyde have been widely studied and documented. On the basis of these findings, we hypothesized that cinnamaldehyde exhibits therapeutic effects on subarachnoid hemorrhage-induced early brain injury and cerebral vasospasm. Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits: control, subarachnoid hemorrhage, subarachnoid hemorrhage + vehicle, and subarachnoid hemorrhage + cinnamaldehyde. An intraperitoneal dose of 50 mg/kg cinnamaldehyde was administered 5 min following an intracisternal blood injection, followed by three further daily injections at identical doses. The animals were sacrificed 72 h after subarachnoid hemorrhage was induced. The cross-sectional areas and arterial wall thicknesses of the basilar artery were measured and hippocampal degeneration scores were evaluated. Treatment with cinnamaldehyde was effective in providing neuroprotection and attenuating cerebral vasospasm after subarachnoid hemorrhage in rabbits. It effectively increased the cross-sectional areas of the basilar artery and reduced the arterial wall thickness; in addition, hippocampal degeneration scores were lower in the cinnamaldehyde group. The findings of this study showed, for the first time to our knowledge, that cinnamaldehyde exhibits neuroprotective activity against subarachnoid hemorrhage-induced early brain injury and that it can prevent vasospasm. Potential mechanisms underlying the neuroprotection and vasodilation were discussed. Cinnamaldehyde could play a role in subarachnoid hemorrhage treatment.
Collapse
Affiliation(s)
- Bora Gürer
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey.
| | - Hayri Kertmen
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Ankara, Turkey
| | - Pınar Kuru Bektaşoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özden Çağlar Öztürk
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Ata Türker Arıkök
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Pathology, University of Health Sciences, Ankara, Turkey
| | - Erhan Çelikoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| |
Collapse
|
48
|
Sharma A, Kumar Y. Nature's Derivative(s) as Alternative Anti-Alzheimer's Disease Treatments. J Alzheimers Dis Rep 2019; 3:279-297. [PMID: 31867567 PMCID: PMC6918879 DOI: 10.3233/adr-190137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD), the 'Plague of Twenty-First Century,' is a crippling neurodegenerative disease that affects a majority of the older population globally. By 2050, the incidence of AD is expected to rise to 135 million, while no treatment(s) that can reverse or control the progression of AD are currently available. The treatment(s) in use are limited in their ability to manage the symptoms or slow the progression of the disease and can lead to some severe side effects. The overall care is economically burdensome for the affected individuals as well as the caretakers or family members. Thus, there is a pressing need to identify and develop much safer alternative therapies that can better manage AD. This review discusses a multitude of such treatments borrowed from Ayurveda, traditional Chinese practices, meditation, and exercising for AD treatment. These therapies are in practice since ancient times and reported to be beneficial as anti-AD therapies. Ayurvedic drugs like turmeric, Brahmi, Ashwagandha, etc., management of stress by meditation, regular exercising, and acupuncture have been reported to be efficient in their anti-AD usage. Besides, a combination of vitamins and natural dietary intakes is likely to play a significant role in combating AD. We conclude that the use of such alternative strategies will be a stepping-stone in preventing, treating, curing, or managing the disease.
Collapse
Affiliation(s)
- Anuja Sharma
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), Formerly Netaji Subhas Institute of Technology (NSIT), Azad Hind Fauz Marg, New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), Formerly Netaji Subhas Institute of Technology (NSIT), Azad Hind Fauz Marg, New Delhi, India
| |
Collapse
|
49
|
Xue J, Yu Y, Zhang X, Zhang C, Zhao Y, Liu B, Zhang L, Wang L, Chen R, Gao X, Jiao P, Song G, Jiang XC, Qin S. Sphingomyelin Synthase 2 Inhibition Ameliorates Cerebral Ischemic Reperfusion Injury Through Reducing the Recruitment of Toll-Like Receptor 4 to Lipid Rafts. J Am Heart Assoc 2019; 8:e012885. [PMID: 31718447 PMCID: PMC6915272 DOI: 10.1161/jaha.119.012885] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Inflammation is recognized as an important contributor of ischemia/reperfusion (I/R) damage after ischemic stroke. Sphingomyelin synthase 2 (SMS2), the key enzyme for the biosynthesis of sphingomyelin, can function as a critical mediator of inflammation. In the present study, we investigated the role of SMS2 in a mouse model of cerebral I/R. Methods and Results Cerebral I/R was induced by 60‐minute transient middle cerebral artery occlusion in SMS2 knockout (SMS2‐/‐) mice and wild‐type mice. Brain injury was determined by neurological deficits and infarct volume at 24 and 72 hours after transient middle cerebral artery occlusion. Microglia activation and inflammatory factors were detected by immunofluorescence staining, flow cytometry, western blot, and RT‐PCR. SMS2 deficiency significantly improved neurological function and minimized infarct volume at 72 hours after transient middle cerebral artery occlusion. The neuroprotective effects of SMS2 deficiency were associated with (1) suppression of microglia activation through Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells pathway and (2) downregulation of the level of galactin‐3 and other proinflammatory cytokines. The mechanisms underlying the beneficial effects of SMS2 deficiency may include altering sphingomyelin components in lipid raft fractions, thus impairing the recruitment of Toll‐like receptor 4 to lipid rafts and subsequently reducing Toll‐like receptor 4/myeloid differentiation factor 2 complex formation on the surface of microglia. Conclusions SMS2 deficiency ameliorated inflammatory injury after cerebral I/R in mice, and SMS2 may be a key modulator of Toll‐like receptor 4/nuclear factor kappa‐light‐chain‐enhancer of activated B cells activation by disturbing the membrane component homeostasis during cerebral I/R.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yang Yu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xiangjian Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Cong Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Yanan Zhao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Boyan Liu
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lan Zhang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Lina Wang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Rong Chen
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xuan Gao
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Peng Jiao
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| | - Xian-Cheng Jiang
- Department of Anatomy and Cell Biology SUNY Downstate Medical Center Brooklyn NY
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis Shandong First Medical University & Shandong Academy of Medical Sciences Taian China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis Shijiazhuang China
| |
Collapse
|
50
|
Tanaka Y, Uchi H, Furue M. Antioxidant cinnamaldehyde attenuates UVB-induced photoaging. J Dermatol Sci 2019; 96:151-158. [PMID: 31735467 DOI: 10.1016/j.jdermsci.2019.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation disrupts skin through several deleterious actions, such as induction of reactive oxygen species (ROS), DNA damage, and collagen degradation. Cinnamaldehyde (CIN) is a major constituent of the cinnamon and it possesses potent antioxidative activity; however, it is unclear whether CIN is capable of inhibiting the adverse effects of UVB. OBJECTIVE To investigate protective effects of CIN against UVB-induced photodamage. METHODS HaCaT keratinocytes were pretreated with CIN, irradiated with UVB, and assessed for the ROS production by flow cytometry and for the DNA damage by ELISA. As in vivo mouse model, Hos:HR-1 hairless mice were treated with ointments containing DMSO or CIN and irradiated multiple times with UVB. After 10 weeks of irradiation, wrinkle formation, epidermal thickness, infiltrating cell number, malondialdehyde amount, collagen amount, MAP kinase signaling, and related gene expressions (Hmox1, Col1a1, Mmp1a, and Mmp13) were analyzed. RESULTS CIN significantly reduced the ROS production and accelerated the repair of DNA damage pyrimidine(6-4)pyrimidone photoproducts in UVB-irradiated human keratinocytes in vitro. In the mouse model, topical application of CIN significantly inhibited wrinkle formation, epidermal hyperplasia, and dermal inflammatory cell infiltration. The antioxidative process was significantly promoted in the CIN-applied site, as evidenced by upregulation of the antioxidative enzyme Hmox1 as well as the reduced accumulation of malondialdehyde. In addition, topical application of CIN normalized the UVB-induced collagen/Col1a1 downregulation and the UVB-induced Mmp13 upregulation, implying the prevention of UVB-induced collagen degradation. CONCLUSIONS CIN and CIN-containing herbal agents may exert potent protective effects against UVB exposure on skin.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, National Hospital organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|