1
|
Neves L, Smeby K, Broch OJ, Johnsen G, Ardelan MV, Skjermo J. Particulate and dissolved organic carbon losses in high latitude seaweed farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179677. [PMID: 40388871 DOI: 10.1016/j.scitotenv.2025.179677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
The role of macroalgae as natural sinks for carbon dioxide (CO2) has long been recognized, and interest for climate mitigating solutions from seaweed cultivation is quickly rising. Erosion of biomass provides natural avenues for carbon sequestration at sea, yet data is still lacking for important European cultivars, particularly combining particulate (POC) and dissolved (DOC) organic carbon losses. In this study, data is provided on carbon uptake, lamina growth and erosion over two consecutive seasons for the kelp Saccharina latissima (Phaeophyceae) deployed in Autumn and Winter in Hitra, Norway. A short-term carbon exudation experiment was performed with the same kelp in 2023. By April, the typical harvest time for food applications, average losses to POC and DOC pools amounted to 15 and 34 g C m-2 yr-1, respectively, or 9 % and 19 % of the carbon net primary production (C-NPP) of the farm. Combined POC and DOC losses reached 101-247 g C m-2 yr-1 (40-47 % of C-NPP) by June. DOC exudation rates reached 4.1-7.6 mg C g-1 h-1 after 4 h incubation, reducing significantly after 24 h. On average, 29 % and 12 % of the carbon fixed by S. latissima was released as DOC from Autumn and Winter deployments, respectively, before the progression of bryozoan biofouling. POC and DOC losses provide a continuous source for carbon deposition, burial or further breakdown into RDOC, crucial for environmental impact assessments and carbon accounting methodologies. The study provides valuable data for future research on macroalgae cultivation and its contribution to global carbon mitigation efforts.
Collapse
Affiliation(s)
- Luiza Neves
- Department of Chemistry, Norwegian University of Science and Technology NTNU, Trondheim, Norway; Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway.
| | - Kristin Smeby
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ole Jacob Broch
- Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Jorunn Skjermo
- Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway
| |
Collapse
|
2
|
Kennedy JR, Blain CO. A systematic review of marine macroalgal degradation: Toward a better understanding of macroalgal carbon sequestration potential. JOURNAL OF PHYCOLOGY 2025. [PMID: 40423688 DOI: 10.1111/jpy.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 05/28/2025]
Abstract
Although macroalgae are gaining recognition for their potential role in marine carbon sequestration, critical knowledge gaps related to the fate of macroalgal carbon limit our capacity to quantify rates of macroalgal carbon sequestration. Understanding the degradation dynamics of macroalgal-derived biomaterials-including tissue/wrack, particulate organic matter/carbon (POM/POC), and dissolved organic carbon (DOC)-as well as the environmental drivers of decomposition are critical for assessing the longevity of macroalgal carbon and the potential storage capacity of macroalgae. Thus, a systematic literature review of macroalgal degradation studies was conducted to compile data, estimate the relative recalcitrance (i.e., relative stability) of macroalgal biomaterials, and elucidate key drivers of macroalgal decomposition dynamics. We found that macroalgal decay trajectories are highly variable and not always best described by the often-cited exponential decay models. Our analysis demonstrated that temperature was a notable driver of decomposition, with higher temperatures eliciting faster rates of decomposition. Furthermore, we found that brown algae had significantly higher proportions of recalcitrant biomaterials when compared to red algae. The impact of other factors, including biomaterial type, degradation environment, and tissue carbon and nitrogen content on macroalgal degradation, is variable across contexts, warranting further study. These results help to provide a foundation from which to plan and assess future studies on macroalgal degradation, which will improve our understanding of how macroalgae contribute to marine carbon cycles, trophic subsidies, and, potentially, marine carbon sequestration.
Collapse
Affiliation(s)
- Jessica R Kennedy
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Caitlin O Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
- Coastal People: Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Ferreira AP, Francelino AC, Costa TM. Effects of marine heatwaves on primary and secondary production in macroalgae-amphipod systems. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107231. [PMID: 40398005 DOI: 10.1016/j.marenvres.2025.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/30/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Marine heatwaves are becoming more frequent and intense as climate change progresses, with potential consequences for the functioning of marine ecosystems, particularly macroalgal beds and their associated mesoherbivores. While the direct effects of heatwaves on macroalgae have been well studied, the interactions between species at different trophic levels that affect ecosystem functioning remain underexplored. The aim of this study was to investigate how marine heatwaves affect primary and secondary productivity in marine ecosystems. We conducted a mesocosm experiment combining the macroalga Sargassum filipendula and the mesoherbivore amphipod Cymadusa filosa under two temperature scenarios: a current summer temperature (27 °C) and a heatwave scenario (32 °C), with and without herbivores. The experiment lasted 30 days, with 5 days of marine heatwave. All replicates were kept at 27 °C for ten days. Then, the 'heatwave' treatment replicates were exposed to 32 °C for five days. Subsequently, all replicates were returned to 27 °C and maintained for 15 days until the end of the experiment. We evaluated the variation in macroalgal biomass and the variation in amphipod biomass and abundance. The results showed that heatwaves reduced primary and secondary productivity, with the greatest effects observed on primary producers. The reduction in primary productivity suggests that these extreme events may compromise the ability of macroalgae to support the base of the coastal food web and facilitate the occurrence of an abundant and diverse associated fauna. Thus, changes in mesoherbivore biomass may have significant implications for higher trophic levels, affecting the dynamics and stability of marine ecosystems. These results suggest that marine heatwaves affect the functioning of marine ecosystems by reducing productivity, potentially altering the flow of energy and matter along the food web, and affecting ecosystem services such as carbon storage by algae.
Collapse
Affiliation(s)
- Ana Paula Ferreira
- Postgraduate Program in Biodiversity in Coastal Environments, Unesp, Institute of Biosciences, São Vicente, 11330-900, SP, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Infante Dom Henrique Square, São Vicente, 11330-900, SP, Brazil.
| | - Ana Carolina Francelino
- São Paulo State University (UNESP), Institute of Biosciences, Infante Dom Henrique Square, São Vicente, 11330-900, SP, Brazil
| | - Tania Marcia Costa
- Postgraduate Program in Biodiversity in Coastal Environments, Unesp, Institute of Biosciences, São Vicente, 11330-900, SP, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Infante Dom Henrique Square, São Vicente, 11330-900, SP, Brazil; Postgraduate Program in Biological Sciences (Zoology), Bioscience Institute, São Paulo State University - UNESP, Botucatu Campus, SP, 18618-000, Brazil
| |
Collapse
|
4
|
Arafeh-Dalmau N, Villaseñor-Derbez JC, Schoeman DS, Mora-Soto A, Bell TW, Butler CL, Costa M, Dunga LV, Houskeeper HF, Lagger C, Pantano C, Del Pozo DL, Sink KJ, Sletten J, Vincent T, Micheli F, Cavanaugh KC. Global floating kelp forests have limited protection despite intensifying marine heatwave threats. Nat Commun 2025; 16:3173. [PMID: 40180911 PMCID: PMC11968876 DOI: 10.1038/s41467-025-58054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Kelp forests are one of the earth's most productive ecosystems and are at great risk from climate change, yet little is known regarding their current conservation status and global future threats. Here, by combining a global remote sensing dataset of floating kelp forests with climate data and projections, we find that exposure to projected marine heatwaves will increase ~6 to ~16 times in the long term (2081-2100) compared to contemporary (2001-2020) exposure. While exposure will intensify across all regions, some southern hemisphere areas which have lower exposure to contemporary and projected marine heatwaves may provide climate refugia for floating kelp forests. Under these escalating threats, less than 3% of global floating kelp forests are currently within highly restrictive marine protected areas (MPAs), the most effective MPAs for protecting biodiversity. Our findings emphasize the urgent need to increase the global protection of floating kelp forests and set bolder climate adaptation goals.
Collapse
Affiliation(s)
- Nur Arafeh-Dalmau
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA.
- Department of Geography, University of California Los Angeles, Los Angeles, California, USA.
- Centre for Biodiversity Conservation, School of the Environment, University of Queensland, St. Lucia, QLD, Australia.
- MasKelp Foundation, Monterey, California, USA.
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland.
| | - Juan Carlos Villaseñor-Derbez
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Department of Environmental Science and Policy, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL, USA
- Frost Institute of Data Science & Computing, University of Miami, Miami, FL, USA
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Department of Zoology, Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha, South Africa
| | - Alejandra Mora-Soto
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, Massachusetts, USA
| | - Claire L Butler
- Institute of Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Maycira Costa
- Department of Geography, University of Victoria, Victoria, British Columbia, Canada
| | - Loyiso V Dunga
- IUCN Species Survival Commission, Seaweed Specialist Group, Gland, Switzerland
- University of Cape Town, Cape Town, South Africa
- South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Henry F Houskeeper
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, Massachusetts, USA
| | - Cristian Lagger
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | | | | | - Kerry J Sink
- South African National Biodiversity Institute, Kirstenbosch, Cape Town, South Africa
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Jennifer Sletten
- ProtectedSeas, Anthropocene Institute, Palo Alto, California, USA
| | - Timothe Vincent
- ProtectedSeas, Anthropocene Institute, Palo Alto, California, USA
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, California, USA
| | - Kyle C Cavanaugh
- Department of Geography, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Carlot J. Restoring coastal resilience: The role of macroalgal forests in oxygen production and pH regulation. JOURNAL OF PHYCOLOGY 2025; 61:255-257. [PMID: 40308156 DOI: 10.1111/jpy.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Affiliation(s)
- Jérémy Carlot
- Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| |
Collapse
|
6
|
Gómez I, Loaiza J, Palacios M, Osman D, Huovinen P. Functionality of photobiological traits of the giant kelp (Macrocystis pyrifera) as key determinant to thrive in contrasting habitats in a sub-Antarctic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179055. [PMID: 40068419 DOI: 10.1016/j.scitotenv.2025.179055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Because of its large size and foundational role, the form and function of the giant kelp Macrocystis pyrifera define key responses to the environmental shifts and ecosystem services. The present study compared several morphological, bio-optical and fluorescence-based photobiological traits as well biomass allocation patterns of the kelp in three sites with different environmental settings along the west coast of the sub-Antarctic strait of Magellan. The morpho-functional and bio-optical characteristics of the algae varied between the sites, following differences in underwater light and tidal range between Atlantic (Buque Quemado and San Gregorio) and Pacific (Bahía Buzos) sectors. Traits measured in blades and individual thalli contributed differently to the total variability within the giant kelp populations. The individuals from the intertidal muddy flats from Buque Quemado differed in many traits, especially biomass allocation along the thallus and bio-optics, with respect to the subtidal rocky assemblages from San Gregorio and especially Bahía Buzos. Photosynthetic characteristics revealed shade adaptation with Ek values normally ≤400 μmol m-2 s-1. In San Gregorio, a site with lower water transparency, light requirements coincide with irradiances at depths between 11 and 4 m, while Ek values estimated for Bahía Buzos indicated photosynthesize at depths >20 m.
Collapse
Affiliation(s)
- Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Jaime Loaiza
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Mauricio Palacios
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Programa Marino, Fundación Rewilding Chile, Puerto Varas, Chile
| | - D Osman
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
7
|
Li J, Alperstein L, Tatsumi M, de Nys R, Nappi J, Egan S. Bacterial Supplements Significantly Improve the Growth Rate of Cultured Asparagopsis armata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:65. [PMID: 40085266 PMCID: PMC11909060 DOI: 10.1007/s10126-025-10440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Seaweed aquaculture is an expanding industry with innovative applications beyond the traditional uses as human foods and phycocolloids. Asparagopsis armata, a red seaweed, is cultivated as a feed supplement to reduce methane emission from ruminants. The manipulation of microbiota with seaweed beneficial microorganisms (SBMs) has shown promise in enhancing disease resistance and growth in seaweeds and has potential to aid the cultivation of A. armata. In this study, we developed a growth assay for the rapid selection of bacteria that promote the growth of A. armata tetrasporophytes. We tested bacterial strains from the genera Phaeobacter and Pseudoalteromonas for their impact on the growth of A. armata, as these bacteria have been recognized for their beneficial traits in other seaweeds. All strains significantly enhanced the specific growth rate (SGR) of A. armata tetrasporophytes compared to controls without bacterial treatment. Bacterial 16S rRNA gene amplicon sequencing confirmed the presence of the inoculated growth-promoting SBMs (SBM-Gs) in A. armata cultures with no significant impacts on the resident microbial community. Co-occurrence network analysis of the resulting communities demonstrated that the inoculated Phaeobacter spp. formed distinct modules, exclusively interacting with resident Phaeobacter species, while the Pseudoalteromonas sp. was absent from the network. These results demonstrate that microbial inoculation is an effective strategy for incorporating SBM-Gs into the A. armata microbiota to promote growth. The tested SBM-Gs may exert their influence by interacting with specific resident species or by directly affecting host physiology, resulting in minimal undesired effects on the microbiome.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
- Poultry Research Foundation, The University of Sydney, Camden, Sydney, NSW, 2570, Australia
| | - Lucien Alperstein
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Masayuki Tatsumi
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, TAS, 7190, Australia
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, TAS, 7190, Australia
- College of Science and Engineering, James Cook University, Townsville, 4810, Australia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Bulleri F, Pedicini L, Bertocci I, Ravaglioli C. The impact of a marine heatwave on the productivity and carbon budget of a NW Mediterranean seaweed forest. MARINE POLLUTION BULLETIN 2025; 212:117595. [PMID: 39879851 DOI: 10.1016/j.marpolbul.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/30/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Marine forests support coastal biodiversity and ecosystem functioning. Nonetheless, how their productivity and carbon uptake might be affected by extreme events, such as marine heatwaves (MHWs), is yet to be explored. We experimentally evaluated the changes in oxygen and carbon budgets of the benthic community formed by the fucoid Ericaria brachycarpa induced by the exposure to a MHW. Rocks colonized by E. brachycarpa and associated macroalgal and invertebrate assemblages were collected at Capraia Island (NW Mediterranean) and put into six 500 L tanks at 23 °C. After 10 days of acclimation, the seawater temperature in three randomly chosen tanks was gradually elevated to 30.5 °C and maintained for 5 days, to simulate a MHW predicted by the end of the century under the RCP 8.5 scenario. Oxygen and carbon metabolic rates of the whole community were evaluated under light and dark conditions, using transparent and black incubation chambers, respectively. The exposure to the MHW caused a reduction in Net Community Productivity (NCP) and increased Community Respiration (CR). There was a trend for MHW to enhance total DIC release through the reduction of calcification and the increase of respiration rates, thus shifting the community metabolism to net heterotrophic. Lower net productivity and carbon uptake suggest that the role of these forests in sustaining coastal food webs and mitigating CO2 emissions could be reduced under future climates. These results have implications for devising climate-proof strategies of conservation and restoration of macroalgal forests.
Collapse
Affiliation(s)
- Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy
| | - Ludovica Pedicini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy.
| | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy
| |
Collapse
|
9
|
Xu L, Yang Y, Cui Z, Wang Q. Carbon dynamics in seawater and sediment: A case study of shellfish and seaweed mariculture systems. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106897. [PMID: 39662383 DOI: 10.1016/j.marenvres.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Shellfish and seaweed, the primary mariculture species in China, generate significant amounts of dissolved organic matter (DOM) during growth. This production significantly influences the carbon cycle in the marine environment. In the present study, we evaluated the DOM changes during growth in both seawater and sediments in Nan'ao, Guangdong Province, southern China. The results showed that both shellfish and seaweed growth increased organic carbon content in seawater and sediments. DOM and water-extractable organic matter in the seaweed cultivation area exhibited greater aromaticity and hydrophobicity, indicating that seaweed-produced organic matter is more difficult to decompose and resistant to consumption. This implies a potential to expand the refractory dissolved organic carbon (RDOC) pool in the marine environment. We also estimated carbon removal and carbon sequestration by shellfish and seaweed culture in Guangdong Province from 2012 to 2021. Average carbon removal by shellfish cultivation is at 227.81 Gg C yr-1, and the release of carbon is at 205.71 Gg C yr-1. Carbon removal by seaweed cultivation is at 22.95 Gg C yr-1 with carbon sequestration of 11.89 Gg C yr-1. Compared with shellfish, seaweed has a large carbon sequestration potential. The integrated aquaculture of shellfish and seaweed in adjacent areas, given the environmental and socioeconomic benefits of absorbing nitrogen and phosphorus nutrients, mitigating eutrophication, and ocean acidification, is advisable for coastal developing countries to promote shellfish-seaweed farming.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Hydrobiology, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Yufeng Yang
- Institute of Hydrobiology, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China.
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing Wang
- Institute of Hydrobiology, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China.
| |
Collapse
|
10
|
Zhao L, Xing H, Xin R, Liu J, Qin H, Ma Y, Tian Z, Wang M, Ma Y, Zhang M. Marine anoxia impede the transformation of dissolved organic carbon released by kelp into refractory dissolved organic carbon. MARINE POLLUTION BULLETIN 2025; 211:117429. [PMID: 39652999 DOI: 10.1016/j.marpolbul.2024.117429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/13/2025]
Abstract
The transformation of dissolved organic carbon (DOC) released by macroalgae into refractory dissolved organic carbon (RDOC) through microbial carbon pump (MCP) represents a crucial carbon sequestration process. This process mainly takes place in coastal areas, where it is likely affected by marine anoxia. The interactions between the components of DOC released by kelp and the community structure of heterotrophic bacteria both under normoxic and anoxic conditions were studied by three-dimensional fluorescence parallel factor analysis (PARAFAC), Fourier Transform-Ion Cyclotron Resonance-Mass Spectrometry (FT-ICR-MS) and 16S rRNA high-throughput sequencing. Following 240 days of decomposition, we found that the proportion of labile dissolved organic carbon (LDOC) was 4.61 % greater under anoxic conditions compared to normoxic conditions. Conversely, the proportion of RDOC was 8.06 % lower under anoxic conditions than under normoxic conditions. These findings suggest that anoxia hinders the conversion of LDOC to RDOC in the DOC released by kelp. Although normoxic conditions favor RDOC production, anoxic conditions could be more advantageous for the transport of DOC to the deep ocean, potentially enhancing carbon sequestration. The cultivation of macroalgae in anoxic zones may further boost their carbon sequestration potential.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongyan Xing
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Rongyu Xin
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jichen Liu
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Huawei Qin
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yuanqing Ma
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Zefeng Tian
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Mengjie Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yaoyang Ma
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingliang Zhang
- Marine Carbon Sink Research Center, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China.
| |
Collapse
|
11
|
Li H, Feng X, Xiong T, Zhang Z, Huang S, Zhang Y. Herbivore grazing enhances macroalgal organic carbon release and alters their carbon sequestration fate in the ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106842. [PMID: 39547109 DOI: 10.1016/j.marenvres.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Herbivore grazing on macroalgae promotes the release of macroalgal organic carbons into seawater and potentially impacts their bioavailability. However, the influence of herbivores on the fate of macroalgal organic carbon remains unclear, hindering a comprehensive and in-depth understanding of the role of macroalgae in ocean carbon cycle. Here, we cocultured suspended herbivore (Apohyale sp.) and benthic herbivore (Nereis diversicolor) with macroalgae (Ulva prolifera) in the laboratory, and found that the two grazers promote the release of macroalgal organic carbon through different pathways. Apohyale sp. Can simultaneously increase the release of different forms of organic carbon by feeding on U. prolifera thalli, including dissolved organic carbon (DOC), particluate organic carbon (POC), and algal organic detritus; while N. diversicolor demonstrated a preference for ingesting algal detritus and POC, thereby reducing the detrital carbon but greatly promoting their conversion to DOC. The amount of organic carbon released per day after predation by Apohyale sp. is much higher (7.2 vs 0.5 mg C d-1) than by N. diversicolor. Meanwhile, through long-term microbial degradation experiments, we found that herbivores significantly alter the fate of macroalgae organic carbon. Although the proportions of stable carbon (recalcitrant DOC and recalcitrant POC) in different forms of macroalgal organic carbon varied after predation, the absolute amount of their residuals in seawater were 2-3 times higher than those not ingested by herbivores. Our results highlight that herbivores play a pivotal role in promoting carbon flow in marine food webs and have a significant impact on macroalgal carbon sequestration.
Collapse
Affiliation(s)
- Hongmei Li
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China
| | - Xiuting Feng
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianqi Xiong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zenghu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China
| | - Shengrong Huang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongyu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China.
| |
Collapse
|
12
|
Guo Y, Zuo T, Gong S, Chen A, Jin H, Liu J, Wang Q, Liu J, Kang S, Li P, Wei F, Ma S. Multi-Element Fingerprinting Combined with Chemometrics for Identification of Seaweeds and Innovative Risk-Benefit Assessment. Foods 2024; 13:4159. [PMID: 39767101 PMCID: PMC11675776 DOI: 10.3390/foods13244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Seaweeds are one of the major marine foods with high values. The diversity of seaweed species significantly impacts their quality and is closely linked to their purity and safety. For the first time, this study established a model to discriminate seaweed species using a multi-element fingerprinting approach for species identification. Twenty-nine elements derived from seaweeds were analyzed. Chemometrics showed that seaweed samples could be well separated by the established multi-element fingerprints, of which Ag, Mn, Sr, and K were the most important variables for discrimination. Furthermore, the present study proposed an innovative risk-benefit assessment strategy for seaweeds that considers both risks and benefits, developing a novel risk-benefit assessment model from both dietary and medicinal perspectives for the first time. Our innovative strategy was well-conceived to accurately and effectively differentiate seaweeds based on species and scientifically evaluate both benefits and risks associated with seaweeds. This strategy is poised to offer invaluable insights into the sustainable growth of the seaweed sector and to bolster public health initiatives, ensuring a robust and forward-looking approach to both industry and healthcare advancements.
Collapse
Affiliation(s)
- Yuansheng Guo
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Tiantian Zuo
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Shuo Gong
- School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Anzhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao 266073, China;
| | - Hongyu Jin
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Jing Liu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Qi Wang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Jingjing Liu
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Shuai Kang
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Ping Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Feng Wei
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing 100050, China; (Y.G.); (T.Z.); (H.J.); (J.L.); (Q.W.); (J.L.); (S.K.)
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
13
|
Roy S, Nozais C, Johnson LE, Noisette F. Subarctic sugar kelp (Saccharina latissima, Phaeophyceae) summer productivity and contribution to carbon budgets. JOURNAL OF PHYCOLOGY 2024; 60:1585-1600. [PMID: 39585718 DOI: 10.1111/jpy.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Kelp forests are known to be very productive ecosystems and constitute a central component of the marine carbon cycle in coastal areas. Nevertheless, crucial carbon-related data are missing to be able to include them properly in carbon budgets. A thorough understanding of the kelp contribution to the carbon cycle is especially important in regions prone to experiencing strong seasonal fluctuations in environmental conditions, such as subarctic regions. This study aimed to quantify primary productivity through growth rates and oxygen fluxes of a dominant kelp species in subarctic regions, Saccharina latissima, and to link oxygen fluxes to environmental parameters. Our results showed that strong primary productivity oxygen fluxes coincided with high light levels in July and most of August, while growth rates stayed similar all summer. An overall decline in all primary productivity proxies happened from late August, suggesting a seasonal slowing down of S. latissima metabolism. The estimated quantity of carbon stored in tissue during growth represented from 6% to 28% of the gross primary productivity. Further research is needed to explore how and how much carbon transits through living kelp tissue in different seasons, to better understand the contribution of subarctic kelp to coastal carbon budgets.
Collapse
Affiliation(s)
- Stéphanie Roy
- Institut des Sciences de la Mer, Université du Québec à Rimouski, and Québec-Océan, Rimouski, Québec, Canada
| | - Christian Nozais
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, and Québec-Océan, Rimouski, Québec, Canada
| | - Ladd E Johnson
- Département de biologie, Université Laval, and Québec-Océan, Québec, Québec, Canada
| | - Fanny Noisette
- Institut des Sciences de la Mer, Université du Québec à Rimouski, and Québec-Océan, Rimouski, Québec, Canada
| |
Collapse
|
14
|
Zhao M, Li H, Bi R, Zhang H, Huang S, Li L, Ding Y, Zhang Y, Zhao M. Lipid biomarkers indicate the dynamics of particulate organic carbon and its carbon sequestration effects during the degradation of Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117152. [PMID: 39442358 DOI: 10.1016/j.marpolbul.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Millions of tons of Ulva prolifera sink to the seafloor and gradually degrade after green tide occurred annually in the Yellow Sea, releasing substantial amounts of particulate organic carbon (POC) into marine environments. However, monitoring the dynamics of macroalgae-derived POC and its carbon sequestration effects is challenging due to severe environmental disturbances. Here, we conducted a long-term simulated degradation experiment with U. prolifera in the laboratory. During degradation, 86-90 % of U. prolifera-derived POC was readily degraded by microorganisms, while 10-14 % was stabilized in seawater as bio-recalcitrant POC. Microbial community structure underwent significant succession, driving the degradation of U. prolifera and the release and transformation of POC. 28-isofucosterol and POC concentrations changed concurrently and showed a significant positive correlation throughout the degradation. Hence, we propose that lipid biomarkers, i.e. 28-isofucosterol, can be used to track the release of U. prolifera-derived POC and to potentially reveal its carbon sequestration in marine environments.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hongmei Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Rong Bi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | | | - Shengrong Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Li Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yang Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Meixun Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
15
|
Bennett E, Paine ER, Britton D, Schwoerbel J, Hurd CL. The effect of temperature on rates of dissolved organic carbon (DOC) release by the kelp Ecklonia radiata (phylum Ochrophyta): Implications for the future coastal ocean carbon cycle. JOURNAL OF PHYCOLOGY 2024; 60:1471-1484. [PMID: 39660554 DOI: 10.1111/jpy.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024]
Abstract
Dissolved organic carbon (DOC) released by macroalgae is an intrinsic component of the coastal ocean carbon cycle, yet knowledge of how future ocean warming may influence this is limited. Temperature is one of the primary abiotic regulators of macroalgal physiology, but there is minimal understanding of how it influences the magnitude and mechanisms of DOC release. To investigate this, we examined the effect of a range of temperatures on DOC release rates and physiological traits of Ecklonia radiata, the most abundant and widespread kelp in Australia that represents a potentially significant contribution to coastal ocean carbon cycling. Juvenile sporophytes were incubated at eight temperatures (4-28°C) for 14 days, after which time, DOC concentrations and physiological traits (growth, photosynthesis, respiration, Fv/Fm, photosynthetic pigment content, and carbon, and nitrogen content) were analyzed using thermal performance curves (TPCs) or regression analyses. Thermal optima were 15.63°C for growth and 25.84°C for photosynthesis, highlighting vulnerability to future ocean warming. Dissolved organic carbon concentrations increased when the temperature was above ~22°C, being greatest at the highest temperature tested (28°C), which was likely driven by photosynthetic overflow and thermal stress. Mean Fv/Fm, total chlorophyll, and total fucoxanthin content were lowest at 28°C. The C:N ratio of blades increased linearly with temperature from 23.9 ± 1.30 at 4°C to 33.0 ± 1.22 at 28°C. We demonstrate increased DOC release by E. radiata under elevated seawater temperatures and discuss potential implications for coastal carbon cycling under future ocean warming given the complex and uncertain fate of macroalgal DOC in the marine environment.
Collapse
Affiliation(s)
- Eloise Bennett
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| | - Ellie R Paine
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| | - Jakop Schwoerbel
- Australian National Algae Culture Collection (ANACC), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Battery Point, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania (UTAS), Battery Point, Tasmania, Australia
| |
Collapse
|
16
|
Xu L, Wang Q, Ou X, Zou L, Liu C, Yang Y. Seaweed burial mitigated the release of organic carbon and nutrients by regulating microbial activity. MARINE POLLUTION BULLETIN 2024; 208:116963. [PMID: 39299191 DOI: 10.1016/j.marpolbul.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Seaweed debris is susceptible to being buried in sediments due to natural environmental changes and human activities. So far, the effect of buried seaweeds on the environment and its decomposition mechanism remains unclear. This study simulated the decomposition of seaweed Gracilariopsis lemaneiformis for 180 days with different burial depths (0 cm and 10 cm) and burial weights (10 g and 20 g). Our findings revealed that compared with Gracilariopsis decomposition on the sediment surface, the seaweed buried in sediment slowed down the release of N, P, and dissolved organic carbon (DOC) by enhancing the activity of diverse anaerobic microbes (i.e. Draconibacterium, Desulfuromusa, Sediminispirochaeta), which were associated with organic matter decomposition. The enhanced burial quantity of Gracilariopsis resulted in a 3.28 % increase in sediment OC and enriched the humification degree of DOC in seawater. These results highlight the role of seaweed burial in enhancing OC sequestration in marine environments.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Qing Wang
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Xiaoli Ou
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Ligong Zou
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Chun Liu
- Department of Ecology, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Yufeng Yang
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China,.
| |
Collapse
|
17
|
Eger AM, Blain CO, Brown AL, Chan SSW, Miller KI, Vergés A. Kelp forests versus urchin barrens: a comparison of ecosystem functions and services provided by two alternative stable marine habitats. Proc Biol Sci 2024; 291:20241539. [PMID: 39501886 PMCID: PMC11538989 DOI: 10.1098/rspb.2024.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Kelp forests and urchin barrens are two stable states in rocky reef ecosystems, each providing unique ecosystem functions like habitat for marine species and primary production. While studies frequently show that kelp forests support higher levels of some ecosystem functions than urchin barren habitats, no research has yet compared average differences. To address this gap, we first conducted a meta-analysis of studies that directly compared the ecosystem functions, services and general attributes provided by each habitat. We also compiled individual studies on ecosystem properties from both habitats and qualitatively assessed the benefits provided. The meta-analysis included 388 observations from 55 studies across 14 countries. We found that kelp forests consistently delivered higher levels of ecosystem properties such as biodiversity, species richness, abalone abundance and sea urchin roe quality. Urchin barrens supported higher urchin density and crustose coralline algae cover. The qualitative review further supported these findings, showing that kelp forests ranked higher in 11 out of 15 ecosystem properties. These findings can help guide decisions on managing rocky reef habitats and demonstrate the benefits of preserving or expanding kelp forests.
Collapse
Affiliation(s)
- Aaron M. Eger
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
- Kelp Forest Alliance, Sydney2034, Australia
| | - Caitlin O. Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| | - Amelia L. Brown
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Sharon S. W. Chan
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Kelsey I. Miller
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
| | - Adriana Vergés
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| |
Collapse
|
18
|
Hung CC, Chang JS, Liao CH, Lee TM. Exploring the impact of ocean warming and nutrient overload on macroalgal blooms and carbon sequestration in deep-sea sediments of the subtropical western North Pacific. MARINE POLLUTION BULLETIN 2024; 208:116918. [PMID: 39265309 DOI: 10.1016/j.marpolbul.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The role of macroalgae as blue carbon (BC) under changing climate was investigated in the subtropical western North Pacific. Sea surface temperatures (SSTs) and nutrient influx increased over the past two decades (2001-2021). The proliferation of climate-resilient macroalgae was facilitated. Using Pterocladiella capillacea and Turbinaria ornata, outdoor laboratory experiments and elemental assays underscored the influence of nutrient enrichment on their resilience under ocean warming and low salinity. Macroalgal incorporation into marine sediments, indicated by environmental DNA barcoding, total organic carbon (TOC), and stable isotope analysis. Over time, an increase in δ13C and δ15N values, particularly at greater depths, suggests a tendency of carbon signature towards macroalgaeand nitrogen pollution or high tropic levels. eDNA analysis revealed selective deposition of these species. The species-dependent nature of macroalgae in deep-sea sediments highlights the role of nutrients on climate-resilient macroalgal blooms as carbon sinks in the western North Pacific.
Collapse
Affiliation(s)
- Chin-Chang Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jui-Sheng Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20234, Taiwan
| | - Chin-Hsin Liao
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
19
|
Hunt D, Dewar A, Dal Molin F, Willey N. Does it run in the family? - Improving radiological risk assessment in the coastal environment using taxonomic and phylogenetic perspectives in macroalgae species. MARINE POLLUTION BULLETIN 2024; 207:116863. [PMID: 39213886 DOI: 10.1016/j.marpolbul.2024.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Marine macroalgae are widely used indicator species for monitoring environmental radioactivity. Empirical studies have demonstrated a range in radionuclide transfer coefficients, or concentration ratios (CRs), between taxonomic groups, however the CR values used for dose estimation assume that macroalgae are a homogenous group, represented by a single CR. This study demonstrates the presence of a taxonomic signal in macroalgae CRs for multiple anthropogenic and naturally occurring radionuclides (137Cs, 241Am, 239+240Pu, 210Po) based on a collation of available data. A Residual Maximum Likelihood (REML) mixed model was applied, producing relative estimate CRs specific to each species within the datasets. The collated data was also analysed for a phylogenetic signal, but only a weak signal was found for one radionuclide in one group (239+240Pu in Phaeophyceae). A theoretical case study using the estimated CRs and the ERICA tool was carried out to demonstrate the implications of these findings in a real-world scenario.
Collapse
Affiliation(s)
- D Hunt
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK; Centre for Research In Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK.
| | - A Dewar
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - F Dal Molin
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - N Willey
- Centre for Research In Bioscience, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
20
|
Bennett E, Paine ER, Hovenden M, Smith G, Fitzgibbon Q, Hurd CL. Short-term hyposalinity stress increases dissolved organic carbon (DOC) release by the macroalga Sargassum fallax (Ochrophyta). JOURNAL OF PHYCOLOGY 2024; 60:1210-1219. [PMID: 39133164 DOI: 10.1111/jpy.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Dissolved organic carbon (DOC) released by macroalgae supports coastal ocean carbon cycling and contributes to the total oceanic DOC pool. Salinity fluctuates substantially in coastal marine environments due to natural and anthropogenic factors, yet there is limited research on how salinity affects DOC release by ecologically important macroalgae. Here we determined the effect of short-term salinity changes on rates of DOC release by the habitat-forming fucalean seaweed Sargassum fallax (Ochrophyta). Lateral branches (~4 g) cut at the axes of mature individuals were incubated across a salinity gradient (4-46) for 24 h under a 12:12 light:dark cycle, and seawater was sampled for DOC at 0, 12, and 24 h. Physiological assays (tissue water content, net photosynthesis, respiration, tissue carbon, and nitrogen content) were undertaken at the end of the 24-h experiment. Dissolved organic carbon release increased with decreasing salinity while net photosynthesis decreased. Dissolved organic carbon release rates at the lowest salinity tested (4) were ~3.3 times greater in the light than in the dark, indicating two potential DOC release mechanisms: light-mediated active exudation and passive release linked to osmotic stress. Tissue water content decreased with increasing salinity. These results demonstrate that hyposalinity stress alters the osmotic status of S. fallax, reducing photosynthesis and increasing DOC release. This has important implications for understanding how salinity conditions encountered by macroalgae may affect their contribution to the coastal ocean carbon cycle.
Collapse
Affiliation(s)
- Eloise Bennett
- Institute for Marine and Antarctic Studies, University of Tasmania (UTAS), Hobart, Tasmania, Australia
| | - Ellie R Paine
- Institute for Marine and Antarctic Studies, University of Tasmania (UTAS), Hobart, Tasmania, Australia
| | - Mark Hovenden
- School of Natural Sciences, University of Tasmania (UTAS), Hobart, Tasmania, Australia
| | - Gregory Smith
- Institute for Marine and Antarctic Studies, University of Tasmania (UTAS), Hobart, Tasmania, Australia
| | - Quinn Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania (UTAS), Hobart, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania (UTAS), Hobart, Tasmania, Australia
| |
Collapse
|
21
|
Schubert N, Tuya F, Peña V, Horta PA, Salazar VW, Neves P, Ribeiro C, Otero-Ferrer F, Espino F, Schoenrock K, Ragazzola F, Olivé I, Giaccone T, Nannini M, Mangano MC, Sará G, Mancuso FP, Tantillo MF, Bosch-Belmar M, Martin S, Le Gall L, Santos R, Silva J. "Pink power"-the importance of coralline algal beds in the oceanic carbon cycle. Nat Commun 2024; 15:8282. [PMID: 39333525 PMCID: PMC11436964 DOI: 10.1038/s41467-024-52697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Current evidence suggests that macroalgal-dominated habitats are important contributors to the oceanic carbon cycle, though the role of those formed by calcifiers remains controversial. Globally distributed coralline algal beds, built by pink coloured rhodoliths and maerl, cover extensive coastal shelf areas of the planet, but scarce information on their productivity, net carbon flux dynamics and carbonate deposits hampers assessing their contribution to the overall oceanic carbon cycle. Here, our data, covering large bathymetrical (2-51 m) and geographical ranges (53°N-27°S), show that coralline algal beds are highly productive habitats that can express substantial carbon uptake rates (28-1347 g C m-2 day-1), which vary in function of light availability and species composition and exceed reported estimates for other major macroalgal habitats. This high productivity, together with their substantial carbonate deposits (0.4-38 kilotons), renders coralline algal beds as highly relevant contributors to the present and future oceanic carbon cycle.
Collapse
Affiliation(s)
- Nadine Schubert
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal.
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Viviana Peña
- BioCost Research Group, Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| | - Paulo A Horta
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Vinícius W Salazar
- Laboratório de Ficologia, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, Brazil
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, Australia
| | - Pedro Neves
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (OOM/ ARDITI), Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal
| | - Cláudia Ribeiro
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
- IFCN-Instituto das Florestas e Conservação da Natureza, IP-RAM, Madeira, Funchal, Portugal
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Telde, Spain
- Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS), Telde, Spain
| | - Fernando Espino
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Kathryn Schoenrock
- Department of Zoology, School of Natural Sciences, The Ryan Institute for Environmental, Marine and Energy Research, University of Galway, Galway, Ireland
| | - Federica Ragazzola
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Genoa Marine Centre, Genova, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Thalassia Giaccone
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Department of Integrative Marine Ecology (EMI), Anton Dohrn Zoological Station, Sicily Marine Centre, Messina, Italy
| | - Matteo Nannini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Genoa Marine Centre, Genova, Italy
| | - M Cristina Mangano
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Sicily Marine Centre Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy
| | - Gianluca Sará
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Francesco Paolo Mancuso
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Mario Francesco Tantillo
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Mar Bosch-Belmar
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
- Laboratory of Ecology, Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Palermo, Italy
| | - Sophie Martin
- UMR 7144 Adaptation et Diversité en Milieu Marin, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Line Le Gall
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Rui Santos
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - João Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
22
|
Carlson AK, Yoshimura T, Kudo I. Kelp dissolved organic carbon release is seasonal and annually enhanced during senescence. JOURNAL OF PHYCOLOGY 2024; 60:980-1000. [PMID: 39031293 DOI: 10.1111/jpy.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 07/22/2024]
Abstract
Macroalgae influence local and global biogeochemical cycles through their production of dissolved organic carbon (DOC). Yet, data remain scarce and annualized estimates are typically based on high growth periods without considering seasonal variability. Although the mechanisms of active exudation and passive leakage need clarifying, ecophysiological stress is known to enhance DOC release. Therefore, DOC leakage from seasonally senescent macroalgae may be overlooked. This study focuses on the annual kelp Saccharina japonica var. religiosa (class Phaeophyceae) from Oshoro Bay, Hokkaido, Japan. Three years (2020-2022) of seasonal data were collected and analyzed, with least squares mean DOC release rates established for kelp (n = 88) across 16 incubation experiments (t ≥ 4 d, DOC samples ≥1 · d-1) under different photosynthetically active radiation (PAR) treatments (200, 400, 1200, or 1500 μmol photons · m-2 · s-1). Differences in PAR, dry weight biomass (g DW), sea surface temperature, or salinity could not explain DOC release-rate variability, which was high between individual kelp. Instead, there were significant intra-annual differences, with mean DOC release rates (mg C · g-1 DW · d-1 ± standard error between n kelp) higher during the autumn "late decay" period (0.71 ± 0.10, n = 27) compared to the winter "early growth" period (0.14 ± 0.025, n = 10) and summer "early decay" period (0.25 ± 0.050, n = 24). This relationship between seasonal senescence and macroalgal DOC release is further evidence that long-term, place-based studies of DOC dynamics are essential and that global extrapolations are premature.
Collapse
Affiliation(s)
- Andrew Kalani Carlson
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yoshimura
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Isao Kudo
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
23
|
Lee Y, Kim K, Choi M, Seo SW. Natural transformation of Vibrio natriegens with large genetic cluster enables alginate assimilation for isopentenol production. BIORESOURCE TECHNOLOGY 2024; 406:130988. [PMID: 38885723 DOI: 10.1016/j.biortech.2024.130988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Alginate is a major component of brown macroalgae, and its efficient utilization is critical for developing sustainable technologies. Vibrio natriegens is a fast-growing marine bacterium that has gained massive attention due to its potential as an alternative industrial chassis. However, V. natriegens cannot naturally metabolize alginate, limiting its usage in marine biomass conversion. In this study, V. natriegens was engineered to utilize marine biomass, kelp, as a carbon source. A total of 33.8 kb of the genetic cluster for alginate assimilation from Vibrio sp. dhg was integrated into V. natriegens by natural transformation. Engineered V. natriegens was further modified to produce 1.8 mg/L of isopentenol from 16 g/L of crude kelp powder. This study not only presents the very first case in which V. natriegens can be naturally transformed with large DNA fragments but also highlights the potential of this strain for converting marine biomass into valuable products.
Collapse
Affiliation(s)
- Yungyu Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Keonwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Mincheol Choi
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
24
|
Fleming LE, Landrigan PJ, Ashford OS, Whitman EM, Swift A, Gerwick WH, Heymans JJ, Hicks CC, Morrissey K, White MP, Alcantara-Creencia L, Alexander KA, Astell-Burt T, Berlinck RGS, Cohen PJ, Hixson R, Islam MM, Iwasaki A, Praptiwi RA, Raps H, Remy JY, Sowman G, Ternon E, Thiele T, Thilsted SH, Uku J, Ockenden S, Kumar P. Enhancing Human Health and Wellbeing through Sustainably and Equitably Unlocking a Healthy Ocean's Potential. Ann Glob Health 2024; 90:41. [PMID: 39005643 PMCID: PMC11243763 DOI: 10.5334/aogh.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 07/16/2024] Open
Abstract
A healthy ocean is essential for human health, and yet the links between the ocean and human health are often overlooked. By providing new medicines, technologies, energy, foods, recreation, and inspiration, the ocean has the potential to enhance human health and wellbeing. However, climate change, pollution, biodiversity loss, and inequity threaten both ocean and human health. Sustainable realisation of the ocean's health benefits will require overcoming these challenges through equitable partnerships, enforcement of laws and treaties, robust monitoring, and use of metrics that assess both the ocean's natural capital and human wellbeing. Achieving this will require an explicit focus on human rights, equity, sustainability, and social justice. In addition to highlighting the potential unique role of the healthcare sector, we offer science-based recommendations to protect both ocean health and human health, and we highlight the unique potential of the healthcare sector tolead this effort.
Collapse
Affiliation(s)
- Lora E Fleming
- European Centre for Environment and Human Health of the University of Exeter Medical School, Cornwall, UK
| | - Philip J Landrigan
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | | | - Ella M Whitman
- Program for Global Public Health and the Common Good, Boston College, Boston, Massachusetts, USA and the Centre Scientifique de Monaco, Monaco
| | - Amy Swift
- Ocean Program, at World Resources Institute, London, UK
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, US
| | | | | | - Karyn Morrissey
- Department of Technology, Management and Economics, Technical University of Denmark, Denmark
| | | | - Lota Alcantara-Creencia
- College of Fisheries and Aquatic Sciences, Western Philippines University, Palawan, Philippines
| | - Karen A Alexander
- Marine Governance and Blue Economy at Heriot-Watt University, Orkney, UK
| | - Thomas Astell-Burt
- School of Architecture, Design and Planning, University of Sydney, Sydney, Australia
| | - Roberto G S Berlinck
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | - Philippa J Cohen
- Small-Scale Fisheries Research Program World Fish, Penang, Malaysia
| | - Richard Hixson
- Critical Care, County Durham and Darlington NHS Foundation Trust, Darlington, UK
| | - Mohammad Mahmudul Islam
- Department of Coastal and Marine Fisheries, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Arihiro Iwasaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Radisti A Praptiwi
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | | | - Jan Yves Remy
- Shridath Ramphal Centre, the University of the West Indies, St. Lucia/Barbados
| | - Georgina Sowman
- Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Eva Ternon
- Laboratoire d'Océanographie de Villefranche at Sorbonne Université, Paris, France
| | - Torsten Thiele
- Research Institute for Sustainability - Helmholtz Centre Potsdam (RIFS), Potsdam, Germany
| | - Shakuntala H Thilsted
- Nutrition, Health and Food Security Impact Area Platform Worldfish CGIAR, Penang, Malaysia
| | - Jacqueline Uku
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | | |
Collapse
|
25
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
26
|
Pessarrodona A, Howard J, Pidgeon E, Wernberg T, Filbee-Dexter K. Carbon removal and climate change mitigation by seaweed farming: A state of knowledge review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170525. [PMID: 38309363 DOI: 10.1016/j.scitotenv.2024.170525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The pressing need to mitigate the effects of climate change is driving the development of novel approaches for carbon dioxide removal (CDR) from the atmosphere, with the ocean playing a central role in the portfolio of solutions. The expansion of seaweed farming is increasingly considered as one of the potential CDR avenues among government and private sectors. Yet, comprehensive assessments examining whether farming can lead to tangible climate change mitigation remain limited. Here we examine the results of over 100 publications to synthesize evidence regarding the CDR capacity of seaweed farms and review the different interventions through which an expansion of seaweed farming may contribute to climate change mitigation. We find that presently, the majority of the carbon fixed by seaweeds is stored in short-term carbon reservoirs (e.g., seaweed products) and that only a minority of the carbon ends up in long-term reservoirs that are likely to fit within existing international accounting frameworks (e.g., marine sediments). Additionally, the tiny global area cultivated to date (0.06 % of the estimated wild seaweed extent) limits the global role of seaweed farming in climate change mitigation in the present and mid-term future. A first-order estimate using the best available data suggests that, at present, even in a low emissions scenario, any carbon removal capacity provided by seaweed farms globally is likely to be offset by their emissions (median global balance net emitter: -0.11 Tg C yr-1; range -2.07-1.95 Tg C yr-1), as most of a seaweed farms' energy and materials currently depend on fossil fuels. Enhancing any potential CDR though seaweed farming will thus require decarbonizing of supply chains, directing harvested biomass to long-term carbon storage products, expanding farming outside traditional cultivation areas, and developing robust models tracing the fate of seaweed carbon. This will present novel scientific (e.g., verifying permanence of seaweed carbon), engineering (e.g., developing farms in wave exposed areas), and economic challenges (e.g., increase market demand, lower costs, decarbonize at scale), many of which are only beginning to be addressed.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Conservation International, Arlington, VA, USA; International Blue Carbon Institute, Singapore.
| | - Jennifer Howard
- Conservation International, Arlington, VA, USA; International Blue Carbon Institute, Singapore
| | - Emily Pidgeon
- Conservation International, Arlington, VA, USA; International Blue Carbon Institute, Singapore
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Institute of Marine Research, His, Norway
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Institute of Marine Research, His, Norway
| |
Collapse
|
27
|
Wright LS, Simpkins T, Filbee-Dexter K, Wernberg T. Temperature sensitivity of detrital photosynthesis. ANNALS OF BOTANY 2024; 133:17-28. [PMID: 38142363 PMCID: PMC10921823 DOI: 10.1093/aob/mcad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Kelp forests are increasingly considered blue carbon habitats for ocean-based biological carbon dioxide removal, but knowledge gaps remain in our understanding of their carbon cycle. Of particular interest is the remineralization of detritus, which can remain photosynthetically active. Here, we study a widespread, thermotolerant kelp (Ecklonia radiata) to explore detrital photosynthesis as a mechanism underlying temperature and light as two key drivers of remineralization. METHODS We used meta-analysis to constrain the thermal optimum (Topt) of E. radiata. Temperature and light were subsequently controlled over a 119-day ex situ decomposition experiment. Flow-through experimental tanks were kept in darkness at 15 °C or under a subcompensating maximal irradiance of 8 µmol photons m-2 s-1 at 15, 20 or 25 °C. Photosynthesis of laterals (analogues to leaves) was estimated using closed-chamber oxygen evolution in darkness and under a saturating irradiance of 420 µmol photons m-2 s-1. KEY RESULTS T opt of E. radiata is 18 °C across performance variables (photosynthesis, growth, abundance, size, mass and fertility), life stages (gametophyte and sporophyte) and populations. Our models predict that a temperature of >15 °C reduces the potential for E. radiata detritus to be photosynthetically viable, hence detrital Topt ≤ 15 °C. Detritus is viable under subcompensating irradiance, where it performs better than in darkness. Comparison of net and gross photosynthesis indicates that elevated temperature primarily decreases detrital photosynthesis, whereas darkness primarily increases detrital respiration compared with optimal experimental conditions, in which detrital photosynthesis can persist for ≥119 days. CONCLUSIONS T opt of kelp detritus is ≥3 °C colder than that of the intact plant. Given that E. radiata is one of the most temperature-tolerant kelps, this suggests that photosynthesis is generally more thermosensitive in the detrital phase, which partly explains the enhancing effect of temperature on remineralization. In contrast to darkness, even subcompensating irradiance maintains detrital viability, elucidating the accelerating effect of depth and its concomitant light reduction on remineralization to some extent. Detrital photosynthesis is a meaningful mechanism underlying at least two drivers of remineralization, even below the photoenvironment inhabited by the attached alga.
Collapse
Affiliation(s)
- Luka Seamus Wright
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
| | - Taylor Simpkins
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
| | - Karen Filbee-Dexter
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
- Institute of Marine Research, His, Norway
| | - Thomas Wernberg
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
28
|
Hurd CL, Gattuso JP, Boyd PW. Air-sea carbon dioxide equilibrium: Will it be possible to use seaweeds for carbon removal offsets? JOURNAL OF PHYCOLOGY 2024; 60:4-14. [PMID: 37943584 DOI: 10.1111/jpy.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
To limit global warming below 2°C by 2100, we must drastically reduce greenhouse gas emissions and additionally remove ~100-900 Gt CO2 from the atmosphere (carbon dioxide removal, CDR) to compensate for unavoidable emissions. Seaweeds (marine macroalgae) naturally grow in coastal regions worldwide where they are crucial for primary production and carbon cycling. They are being considered as a biological method for CDR and for use in carbon trading schemes as offsets. To use seaweeds in carbon trading schemes requires verification that seaweed photosynthesis that fixes CO2 into organic carbon results in CDR, along with the safe and secure storage of the carbon removed from the atmosphere for more than 100 years (sequestration). There is much ongoing research into the magnitude of seaweed carbon storage pools (e.g., as living biomass and as particulate and dissolved organic carbon in sediments and the deep ocean), but these pools do not equate to CDR unless the amount of CO2 removed from the atmosphere as a result of seaweed primary production can be quantified and verified. The draw-down of atmospheric CO2 into seawater is via air-sea CO2 equilibrium, which operates on time scales of weeks to years depending upon the ecosystem considered. Here, we explain why quantifying air-sea CO2 equilibrium and linking this process to seaweed carbon storage pools is the critical step needed to verify CDR by discrete seaweed beds and nearshore and open ocean aquaculture systems prior to their use in carbon trading.
Collapse
Affiliation(s)
- C L Hurd
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - J-P Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institute for Sustainable Development and International Relations, Paris, France
| | - P W Boyd
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
29
|
van der Mheen M, Wernberg T, Pattiaratchi C, Pessarrodona A, Janekovic I, Simpkins T, Hovey R, Filbee-Dexter K. Substantial kelp detritus exported beyond the continental shelf by dense shelf water transport. Sci Rep 2024; 14:839. [PMID: 38191572 PMCID: PMC10774291 DOI: 10.1038/s41598-023-51003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Kelp forests may contribute substantially to ocean carbon sequestration, mainly through transporting kelp carbon away from the coast and into the deep sea. However, it is not clear if and how kelp detritus is transported across the continental shelf. Dense shelf water transport (DSWT) is associated with offshore flows along the seabed and provides an effective mechanism for cross-shelf transport. In this study, we determine how effective DSWT is in exporting kelp detritus beyond the continental shelf edge, by considering the transport of simulated sinking kelp detritus from a region of Australia's Great Southern Reef. We show that DSWT is the main mechanism that transports simulated kelp detritus past the continental shelf edge, and that export is negligible when DSWT does not occur. We find that 51% per year of simulated kelp detritus is transported past the continental shelf edge, or 17-29% when accounting for decomposition while in transit across the shelf. This is substantially more than initial global estimates. Because DSWT occurs in many mid-latitude locations around the world, where kelp forests are also most productive, export of kelp carbon from the coast could be considerably larger than initially expected.
Collapse
Affiliation(s)
- Mirjam van der Mheen
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia.
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| | - Charitha Pattiaratchi
- Oceans Graduate School and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Ivica Janekovic
- Oceans Graduate School and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Taylor Simpkins
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Renae Hovey
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Karen Filbee-Dexter
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| |
Collapse
|