1
|
Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS, Uchendu IK, Pascal AM, Nikitina NM, Rusanov AS, Sanikovich VD, Pirogova YN, Boroda A, Moiseeva AV, Sekacheva MI. Innovative Therapies Targeting Drug-Resistant Biomarkers in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC). Int J Mol Sci 2024; 26:265. [PMID: 39796121 PMCID: PMC11720203 DOI: 10.3390/ijms26010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
A thorough study of Clear Cell Renal Cell Carcinoma (ccRCC) shows that combining tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICI) shows promising results in addressing the tumor-promoting influences of abnormal immunological and molecular biomarkers in metastatic Clear Cell Renal Cell Carcinoma (ccRCC). These abnormal biomarkers enhance drug resistance, support tumor growth, and trigger cancer-related genes. Ongoing clinical trials are testing new treatment options that appear more effective than earlier ones. However, more research is needed to confirm their long-term safety use and potential side effects. This study highlights vital molecular and immunological biomarkers associated with drug resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Furthermore, this study identifies a number of promising drug candidates and biomarkers that serve as significant contributors to the enhancement of the overall survival of ccRCC patients. Consequently, this article offers pertinent insights on both recently completed and ongoing clinical trials, recommending further toxicity study for the prolonged use of this treatment strategy for patients with metastatic ccRCC, while equipping researchers with invaluable information for the progression of current treatment strategies.
Collapse
Affiliation(s)
- Moses Owoicho Abah
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Department of Cancer Bioinformatics and Molecular Biology, Royal Society of Clinical and Academic Researchers (ROSCAR) International, Abuja 900104, Nigeria
| | - Deborah Oganya Ogenyi
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Angelina V. Zhilenkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Freddy Elad Essogmo
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yvan Sinclair Ngaha Tchawe
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Ikenna Kingsley Uchendu
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Akaye Madu Pascal
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Natalia M. Nikitina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander S. Rusanov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Varvara D. Sanikovich
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yuliya N. Pirogova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander Boroda
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Aleksandra V. Moiseeva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Marina I. Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| |
Collapse
|
2
|
Özalp FR, Yörükoğlu K, Yıldırım EÇ, Uzun M, Semiz HS. Prognostic value of B7-H3 expression in metastatic renal cell carcinoma and its impact on immunotherapy response. BMC Cancer 2024; 24:1471. [PMID: 39614178 DOI: 10.1186/s12885-024-13238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is characterised by its immunogenic and proangiogenic nature and its resistance to conventional therapies. The advent of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) has significantly improved patient survival, but resistance to these treatments remains a challenge. B7-H3, a potential immune checkpoint, has been implicated in modulating the tumour microenvironment and immune escape mechanisms in RCC. METHODS Immunohistochemical analysis of B7-H3 expression was performed in 84 metastatic RCC patients. Tissue microarrays and separate sections of formalin-fixed paraffin-embedded tissue were used for immunohistochemical staining. Membranous staining of the tumor cells was scored and statistical analyses were performed to assess the correlation between B7-H3 expression and treatment outcome. RESULTS B7-H3 expression was absent in 31% of patients, while 33.3% had a score of 1+, 31% had 2+, and 4.8% had 3+. High B7-H3 expression correlated with poorer OS (20 months vs. 45 months, p = 0.012). In patients receiving nivolumab, those with high B7-H3 expression had shorter PFS (2 months vs. 8 months, p = 0.037) and OS (17 months vs. 51 months, p = 0.01). B7-H3 expression was the only factor significantly affecting PFS and OS in multivariate analysis. CONCLUSION High B7-H3 expression is associated with poorer survival outcomes and reduced response to nivolumab in metastatic RCC patients. B7-H3 may serve as a predictive biomarker for immunotherapy response. Future studies should explore targeting B7-H3 in combination with existing therapies to enhance treatment efficacy.
Collapse
Affiliation(s)
- Faruk Recep Özalp
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| | - Kutsal Yörükoğlu
- Department of Pathology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Eda Çalışkan Yıldırım
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Uzun
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Hüseyin Salih Semiz
- Department of Medical Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
3
|
Sun J, Chang J, Guo Z, Sun H, Xu J, Liu X, Sun W. Proteomics Analysis of Renal Cell Line Caki-2 with AFMID Overexpression and Potential Biomarker Discovery in Urine. J Proteome Res 2024; 23:4495-4507. [PMID: 39213636 DOI: 10.1021/acs.jproteome.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aromatic caninurine formamase (AFMID) is an enzyme involved in the tryptophan pathway, metabolizing N-formylkynurenine to kynurenine. AFMID had been found significantly downregulated in clear cell renal cell carcinoma (ccRCC) in both tissue and urine samples. Although ccRCC is characterized by a typical Warburg-like phenotype, mitochondrial dysfunction, and elevated fat deposition, it is unknown whether AFMID plays a role in tumorigenesis and the development of ccRCC. In the present study, AFMID overexpression had inhibitory effects for ccRCC cells, decreasing the rate of cell proliferation. Quantitative proteomics showed that AFMID overexpression altered cellular signaling pathways involved in cell growth and cellular metabolism pathways, including lipid metabolism and inositol phosphate metabolism. Further urine proteomic analysis indicated that cellular function dysfunction with AFMID overexpression could be reflected in the urine. The activity of predicted upregulators DDX58, TREX1, TGFB1, SMARCA4, and TNF in ccRCC cells and urine showed opposing change trends. Potential urinary biomarkers were tentatively discovered and further validated using an independent cohort. The protein panel of APOC3, UMOD, and CILP achieved an AUC value of 0.862 for the training cohort and 0.883 for the validation cohort. The present study is of significance in terms of highlighting various aspects of pathway changes associated with AFMID enzymes, discovering potential specific biomarkers for potential patient diagnosis, and therapeutic targeting.
Collapse
Affiliation(s)
- Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Jinchun Chang
- National Institute of Biological Sciences,7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- School of Health, Quanzhou Medical College, No. 2 Anji Road, Luojiang District, Quanzhou City, Fujian Province 362011, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Jiyu Xu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| |
Collapse
|
4
|
Lara PN, Villanueva L, Ibanez C, Erman M, Lee JL, Heinrich D, Lipatov ON, Gedye C, Gokmen E, Acevedo A, Semenov A, Park SH, Gafanov RA, Kose F, Jones M, Du X, Munteanu M, Perini R, Choueiri TK, Motzer RJ. A randomized, open-label, phase 3 trial of pembrolizumab plus epacadostat versus sunitinib or pazopanib as first-line treatment for metastatic renal cell carcinoma (KEYNOTE-679/ECHO-302). BMC Cancer 2024; 23:1253. [PMID: 39054430 PMCID: PMC11270760 DOI: 10.1186/s12885-023-10971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/16/2023] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Immunotherapy-based combinations have emerged as standard therapies for patients with metastatic renal cell carcinoma (mRCC). Pembrolizumab, a PD-1 inhibitor, combined with epacadostat, an indoleamine 2,3-deoxygenase 1 selective inhibitor, demonstrated promising antitumor activity in a phase 1 study in advanced solid tumors, including mRCC. METHODS KEYNOTE-679/ECHO-302 was a randomized, open-label, parallel-group, multicenter, phase 3 study (NCT03260894) that compared pembrolizumab plus epacadostat with sunitinib or pazopanib as first-line treatment for mRCC. Eligible patients had histologically confirmed locally advanced or metastatic clear cell RCC and had not received systemic therapy. Patients were randomly assigned 1:1 to pembrolizumab 200 mg IV every 3 weeks plus epacadostat 100 mg orally twice daily versus sunitinib 50 mg orally once daily (4 weeks on treatment followed by 2 weeks off treatment) or pazopanib 800 mg orally once daily. Original dual primary end points were progression-free survival and overall survival. Enrollment was stopped when a phase 3 study in melanoma of pembrolizumab plus epacadostat compared with pembrolizumab monotherapy did not meet its primary end point. This protocol was amended, and primary end point was changed to investigator-assessed objective response rate (ORR) per RECIST 1.1. RESULTS One-hundred-twenty-nine patients were randomly assigned to receive pembrolizumab plus epacadostat (n = 64) or sunitinib/pazopanib (n = 65). Median (range) follow-up, defined as time from randomization to data cutoff, was 10.3 months (2.2-14.3) and 10.3 months (2.7-13.8) in the pembrolizumab plus epacadostat and sunitinib/pazopanib arms, respectively. ORRs were similar between pembrolizumab plus epacadostat (31.3% [95% CI 20.2-44.1] and sunitinib/pazopanib (29.2% [18.6-41.8]). Grade 3-5 treatment-related adverse events occurred in 34.4% and 42.9% of patients in the pembrolizumab plus epacadostat and sunitinib/pazopanib arms, respectively. One patient in the sunitinib/pazopanib arm died of septic shock (not treatment-related). Circulating kynurenine levels decreased in the pembrolizumab plus epacadostat arm, but not to levels observed in healthy subjects. CONCLUSIONS ORRs were similar between pembrolizumab plus epacadostat and sunitinib/pazopanib as first-line treatment in patients with mRCC. Safety and tolerability appeared similar between treatment arms; no new safety concerns were identified. Antitumor responses observed in patients with RCC receiving pembrolizumab plus epacadostat may be driven primarily by pembrolizumab. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; NCT03260894 .
Collapse
Affiliation(s)
- Primo N Lara
- University of California Davis Comprehensive Cancer Center, University of California Davis, 4501 X Street, Davis, Sacramento, CA, 95817, USA.
| | - Luis Villanueva
- Oncology Department, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago, Chile
| | - Carolina Ibanez
- Hematology and Oncology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mustafa Erman
- Department of Medical Oncology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Jae Lyun Lee
- Department of Oncology and Internal Medicine Asan Medical Center, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Daniel Heinrich
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Department of Oncology and Radiotherapy, Innlandet Hospital Gjøvik, Gjøvik, Norway
| | | | - Craig Gedye
- Department of Medical Oncology, Calvary Mater Newcastle, Waratah, NSW, Australia
| | - Erhan Gokmen
- Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | - Se Hoon Park
- Department of Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Fatih Kose
- Department of Medical Oncology, Baskent University, Ankara, Turkey
| | | | | | | | | | | | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Sjöberg E. Molecular mechanisms and clinical relevance of endothelial cell cross-talk in clear cell renal cell carcinoma. Ups J Med Sci 2024; 129:10632. [PMID: 38863726 PMCID: PMC11165252 DOI: 10.48101/ujms.v129.10632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer in adults and stands out as one of the most vascularized and immune-infiltrated solid tumors. Overproduction of vascular endothelial growth factor A promotes uncontrolled growth of abnormal vessels and immunosuppression, and the tumor microenvironment (TME) has a prominent role in disease progression, drug targeting and drug response, and for patient outcome. Methods Studies of experimental models, large-scale omics approaches, and patient prognosis and therapy prediction, using gene expression signatures and tissue biomarker analysis, have been reviewed for enhanced understanding of the endothelium in ccRCC and the interplay with the surrounding TME. Results Preclinical and clinical studies have discovered molecular mechanisms of endothelial cross-talk of relevance for disease progression, patient prognosis, and therapy prediction. There is, however, a lack of representative ccRCC experimental models. Omics approaches have identified clinically relevant subsets of angiogenic and immune-infiltrated tumors with distinct molecular signatures and distinct endothelial cell and immune cell populations in patients. Conclusions Recent genetically engineered ccRCC mouse models together with emerging evidence from single cell RNA sequencing data open up for future validation studies, including multiplex imaging of ccRCC patient cohorts. These studies are of importance for therapy benefit and personalized treatment of ccRCC patients.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
7
|
Dovrolis N, Katifelis H, Grammatikaki S, Zakopoulou R, Bamias A, Karamouzis MV, Souliotis K, Gazouli M. Inflammation and Immunity Gene Expression Patterns and Machine Learning Approaches in Association with Response to Immune-Checkpoint Inhibitors-Based Treatments in Clear-Cell Renal Carcinoma. Cancers (Basel) 2023; 15:5637. [PMID: 38067341 PMCID: PMC10705515 DOI: 10.3390/cancers15235637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Despite the rapid evolution of targeted therapies, immunotherapy with checkpoint inhibition (ICI) as well as combination therapies, the cure of metastatic ccRCC (mccRCC) is infrequent, while the optimal use of the various novel agents has not been fully clarified. With the different treatment options, there is an essential need to identify biomarkers to predict therapeutic efficacy and thus optimize therapeutic approaches. This study seeks to explore the diversity in mRNA expression profiles of inflammation and immunity-related circulating genes for the development of biomarkers that could predict the effectiveness of immunotherapy-based treatments using ICIs for individuals with mccRCC. Gene mRNA expression was tested by the RT2 profiler PCR Array on a human cancer inflammation and immunity crosstalk kit and analyzed for differential gene expression along with a machine learning approach for sample classification. A number of mRNAs were found to be differentially expressed in mccRCC with a clinical benefit from treatment compared to those who progressed. Our results indicate that gene expression can classify these samples with high accuracy and specificity.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Hector Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Stamatiki Grammatikaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| | - Roubini Zakopoulou
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (R.Z.); (A.B.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, 22100 Corinth, Greece;
- Health Policy Institute, 15123 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (N.D.); (H.K.); (S.G.)
| |
Collapse
|
8
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
9
|
Samnani S, Sachedina F, Gupta M, Guo E, Navani V. Mechanisms and clinical implications in renal carcinoma resistance: narrative review of immune checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:416-429. [PMID: 37457122 PMCID: PMC10344724 DOI: 10.20517/cdr.2023.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma. The prognosis for patients with ccRCC has improved over recent years with the use of combination therapies with an anti-programmed death-1 (PD-1) backbone. This has enhanced the quality of life and life expectancy of patients with this disease. Unfortunately, not all patients benefit; eventually, most patients will develop resistance to therapy and progress. Recent molecular, biochemical, and immunological research has extensively researched anti-angiogenic and immune-based treatment resistance mechanisms. This analysis offers an overview of the principles underpinning the resistance pathways related to immune checkpoint inhibitors (ICIs). Additionally, novel approaches to overcome resistance that may be considered for the trial context are discussed.
Collapse
Affiliation(s)
- Sunil Samnani
- Department of Internal Medicine, The University of Calgary, Calgary T2N 1N4, Canada
| | - Faraz Sachedina
- Department of Internal Medicine, The University of Calgary, Calgary T2N 1N4, Canada
| | - Mehul Gupta
- Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Canada
| | - Edward Guo
- Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Canada
| | - Vishal Navani
- Department of Medical Oncology, Tom Baker Cancer Centre, Calgary T2N 4N2, Canada
| |
Collapse
|
10
|
Tian J, Cheng C, Gao J, Fu G, Xu Z, Chen X, Wu Y, Jin B. POLD1 as a Prognostic Biomarker Correlated with Cell Proliferation and Immune Infiltration in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076849. [PMID: 37047824 PMCID: PMC10095303 DOI: 10.3390/ijms24076849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
DNA polymerase delta 1 catalytic subunit (POLD1) plays a vital role in genomic copy with high fidelity and DNA damage repair processes. However, the prognostic value of POLD1 and its relationship with tumor immunity in clear cell renal cell carcinoma (ccRCC) remains to be further explored. Transcriptional data sets and clinical information were obtained from the TCGA, ICGC, and GEO databases. Differentially expressed genes (DEGs) were derived from the comparison between the low and high POLD1 expression groups in the TCGA–KIRC cohort. KEGG and gene ontology (GO) analyses were performed for those DEGs to explore the potential influence of POLD1 on the biological behaviors of ccRCC. The prognostic clinical value and mutational characteristics of patients were described and analyzed according to the POLD1 expression levels. TIMER and TISIDB databases were utilized to comprehensively investigate the potential relevance between the POLD1 levels and the status of the immune cells, as well as the tumor infiltration of immune cells. In addition, RT-qPCR, Western blot, immunohistochemistry and several functional and animal experiments were performed for clinical, in vitro and in vivo validation. POLD1 was highly expressed in a variety of tumors including ccRCC, and further verified in a validation cohort of 60 ccRCC samples and in vitro cell line experiments. POLD1 expression levels in the ccRCC samples were associated with various clinical characteristics including pathologic tumor stage and histologic grade. ccRCC patients with high POLD1 expression have poor clinical outcomes and exhibit a higher rate of somatic mutations than those with low POLD1 expression. Cox regression analysis also showed that POLD1 could act as a potential independent prognostic biomarker. The DEGs associated with POLD1 were significantly enriched in the immunity-related pathways. Moreover, further immune infiltration analysis indicated that high POLD1 expression was associated with high NK CD56bright cells, Treg cells, and myeloid-derived suppressor cells’ (MDSCs) infiltration scores, as well as their marker gene sets of immune cell status. Meanwhile, POLD1 exhibited resistance to various drugs when highly expressed. Finally, the knockdown of POLD1 inhibited the proliferation and migration, and promoted the apoptosis of ccRCC cells in vitro and in vivo, as well as influenced the activation of oncogenic signaling. Our current study demonstrated that POLD1 is a potential prognostic biomarker for ccRCC patients. It might create a tumor immunosuppressive microenvironment and inhibit the susceptibility to ferroptosis leading to a poor prognosis.
Collapse
Affiliation(s)
- Junjie Tian
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Cheng Cheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Jianguo Gao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310024, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou 310024, China
| |
Collapse
|
11
|
Bailleux C, Chardin D, Gal J, Guigonis JM, Lindenthal S, Graslin F, Arnould L, Cagnard A, Ferrero JM, Humbert O, Pourcher T. Metabolomic Signatures of Scarff-Bloom-Richardson (SBR) Grade in Non-Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15071941. [PMID: 37046602 PMCID: PMC10093598 DOI: 10.3390/cancers15071941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE Identification of metabolomic biomarkers of high SBR grade in non-metastatic breast cancer. METHODS This retrospective bicentric metabolomic analysis included a training set (n = 51) and a validation set (n = 49) of breast cancer tumors, all classified as high-grade (grade III) or low-grade (grade I-II). Metabolomes of tissue samples were studied by liquid chromatography coupled with mass spectrometry. RESULTS A molecular signature of the top 12 metabolites was identified from a database of 602 frequently predicted metabolites. Partial least squares discriminant analyses showed that accuracies were 0.81 and 0.82, the R2 scores were 0.57 and 0.55, and the Q2 scores were 0.44431 and 0.40147 for the training set and validation set, respectively; areas under the curve for the Receiver Operating Characteristic Curve were 0.882 and 0.886. The most relevant metabolite was diacetylspermine. Metabolite set enrichment analyses and metabolic pathway analyses highlighted the tryptophan metabolism pathway, but the concentration of individual metabolites varied between tumor samples. CONCLUSIONS This study indicates that high-grade invasive tumors are related to diacetylspermine and tryptophan metabolism, both involved in the inhibition of the immune response. Targeting these pathways could restore anti-tumor immunity and have a synergistic effect with immunotherapy. Recent studies could not demonstrate the effectiveness of this strategy, but the use of theragnostic metabolomic signatures should allow better selection of patients.
Collapse
Affiliation(s)
- Caroline Bailleux
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d'Azur, 06189 Nice, France
| | - David Chardin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Department of Nuclear Medicine, Antoine Lacassagne Centre, 06189 Nice, France
| | - Jocelyn Gal
- Department of Epidemiology and Biostatistics, Antoine Lacassagne Centre, University of Côte d'Azur, 06189 Nice, France
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| | - Sabine Lindenthal
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| | - Fanny Graslin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Department of Nuclear Medicine, Antoine Lacassagne Centre, 06189 Nice, France
| | - Laurent Arnould
- Department of Tumour Biology and Pathology, Georges-François Leclerc Centre, 21079 Dijon, France
- Cenre de Ressources Biologiques (CRB) Ferdinand Cabanne, 21000 Dijon, France
| | - Alexandre Cagnard
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| | - Jean-Marc Ferrero
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d'Azur, 06189 Nice, France
| | - Olivier Humbert
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
- Department of Nuclear Medicine, Antoine Lacassagne Centre, 06189 Nice, France
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d'Azur (UCA), 06100 Nice, France
| |
Collapse
|
12
|
Pichler R, Siska PJ, Tymoszuk P, Martowicz A, Untergasser G, Mayr R, Weber F, Seeber A, Kocher F, Barth DA, Pichler M, Thurnher M. A chemokine network of T cell exhaustion and metabolic reprogramming in renal cell carcinoma. Front Immunol 2023; 14:1095195. [PMID: 37006314 PMCID: PMC10060976 DOI: 10.3389/fimmu.2023.1095195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Renal cell carcinoma (RCC) is frequently infiltrated by immune cells, a process which is governed by chemokines. CD8+ T cells in the RCC tumor microenvironment (TME) may be exhausted which most likely influence therapy response and survival. The aim of this study was to evaluate chemokine-driven T cell recruitment, T cell exhaustion in the RCC TME, as well as metabolic processes leading to their functional anergy in RCC. Eight publicly available bulk RCC transcriptome collectives (n=1819) and a single cell RNAseq dataset (n=12) were analyzed. Immunodeconvolution, semi-supervised clustering, gene set variation analysis and Monte Carlo-based modeling of metabolic reaction activity were employed. Among 28 chemokine genes available, CXCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1 mRNA expression were significantly increased in RCC compared to normal kidney tissue and also strongly associated with tumor-infiltrating effector memory and central memory CD8+ T cells in all investigated collectives. M1 TAMs, T cells, NK cells as well as tumor cells were identified as the major sources of these chemokines, whereas T cells, B cells and dendritic cells were found to predominantly express the cognate receptors. The cluster of RCCs characterized by high chemokine expression and high CD8+ T cell infiltration displayed a strong activation of IFN/JAK/STAT signaling with elevated expression of multiple T cell exhaustion-associated transcripts. Chemokinehigh RCCs were characterized by metabolic reprogramming, in particular by downregulated OXPHOS and increased IDO1-mediated tryptophan degradation. None of the investigated chemokine genes was significantly associated with survival or response to immunotherapy. We propose a chemokine network that mediates CD8+ T cell recruitment and identify T cell exhaustion, altered energy metabolism and high IDO1 activity as key mechanisms of their suppression. Concomitant targeting of exhaustion pathways and metabolism may pose an effective approach to RCC therapy.
Collapse
Affiliation(s)
- Renate Pichler
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Renate Pichler,
| | - Peter J. Siska
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Agnieszka Martowicz
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Roman Mayr
- Department of Urology, Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany
| | - Florian Weber
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Andreas Seeber
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik A. Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNAs and Genome Editing, Medical University of Graz, Graz, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Benito-Lopez JJ, Marroquin-Muciño M, Perez-Medina M, Chavez-Dominguez R, Aguilar-Cazares D, Galicia-Velasco M, Lopez-Gonzalez JS. Partners in crime: The feedback loop between metabolic reprogramming and immune checkpoints in the tumor microenvironment. Front Oncol 2023; 12:1101503. [PMID: 36713558 PMCID: PMC9879362 DOI: 10.3389/fonc.2022.1101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment (TME) is a complex and constantly changing cellular system composed of heterogeneous populations of tumor cells and non-transformed stromal cells, such as stem cells, fibroblasts, endothelial cells, pericytes, adipocytes, and innate and adaptive immune cells. Tumor, stromal, and immune cells consume available nutrients to sustain their proliferation and effector functions and, as a result of their metabolism, produce a wide array of by-products that gradually alter the composition of the milieu. The resulting depletion of essential nutrients and enrichment of by-products work together with other features of the hostile TME to inhibit the antitumor functions of immune cells and skew their phenotype to promote tumor progression. This review briefly describes the participation of the innate and adaptive immune cells in recognizing and eliminating tumor cells and how the gradual metabolic changes in the TME alter their antitumor functions. In addition, we discuss the overexpression of the immune checkpoints and their ligands as a result of nutrient deprivation and by-products accumulation, as well as the amplification of the metabolic alterations induced by the immune checkpoints, which creates an immunosuppressive feedback loop in the TME. Finally, the combination of metabolic and immune checkpoint inhibitors as a potential strategy to treat cancer and enhance the outcome of patients is highlighted.
Collapse
Affiliation(s)
- Jesus J Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
14
|
Renal Carcinoma and Angiogenesis: Therapeutic Target and Biomarkers of Response in Current Therapies. Cancers (Basel) 2022; 14:cancers14246167. [PMID: 36551652 PMCID: PMC9776425 DOI: 10.3390/cancers14246167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the aberrant hypervascularization and the high immune infiltration of renal tumours, current therapeutic regimens of renal cell carcinoma (RCC) target angiogenic or immunosuppressive pathways or both. Tumour angiogenesis plays an essential role in tumour growth and immunosuppression. Indeed, the aberrant vasculature promotes hypoxia and can also exert immunosuppressive functions. In addition, pro-angiogenic factors, including VEGF-A, have an immunosuppressive action on immune cells. Despite the progress of treatments in RCC, there are still non responders or acquired resistance. Currently, no biomarkers are used in clinical practice to guide the choice between the different available treatments. Considering the role of angiogenesis in RCC, angiogenesis-related markers are interesting candidates. They have been studied in the response to antiangiogenic drugs (AA) and show interest in predicting the response. They have been less studied in immunotherapy alone or combined with AA. In this review, we will discuss the role of angiogenesis in tumour growth and immune escape and the place of angiogenesis-targeted biomarkers to predict response to current therapies in RCC.
Collapse
|
15
|
Hong J, Cai X. Construction of a Novel Oxidative Stress Response-Related Gene Signature for Predicting the Prognosis and Therapeutic Responses in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:6201987. [PMID: 36133439 PMCID: PMC9484914 DOI: 10.1155/2022/6201987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor outcomes, and the assessment of its prognosis as well as its response to therapy is still challenging. In this study, we aimed to construct an oxidative stress response-related genes-(OSRGs-) based gene signature for predicting prognosis and estimating treatment response in patients with HCC. We integrated the transcriptomic data and clinicopathological information of HCC patients from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. LASSO Cox regression analysis was utilized to establish an integrated multigene signature in the TCGA cohort, and its prediction performance was validated in the ICGC cohort. The CIBERSORT algorithm was employed to evaluate immune cell infiltration. The response rate to immune checkpoint inhibition (ICI) therapy was assessed using a TIDE platform. Drug activity data from the Cancer Genome Project and NCI-60 human cancer cell lines were used to predict sensitivity to chemotherapy. We successfully established a gene signature comprising G6PD, MT3, CBX2, CDKN2B, CCNA2, MAPT, EZH2, and SLC7A11. The risk score of each patient, which was determined by the multigene signature, was identified as an independent prognostic marker. The immune cell infiltration patterns, response rates to ICI therapy, and the estimated sensitivity of 89 chemotherapeutic drugs were associated with risk scores. Individual prognostic genes were also associated with susceptibility to various FDA-approved drugs. Our study indicates that a comprehensive transcriptomic analysis of OSRGs can provide a reliable molecular model to predict prognosis and therapeutic response in patients with HCC.
Collapse
Affiliation(s)
- Junjie Hong
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
16
|
Simonetti S, Iuliani M, Stellato M, Cavaliere S, Vincenzi B, Tonini G, Santini D, Pantano F. Extensive plasma proteomic profiling revealed receptor activator of nuclear factor kappa-Β ligand (RANKL) as emerging biomarker of nivolumab clinical benefit in patients with metastatic renal cell carcinoma. J Immunother Cancer 2022; 10:jitc-2022-005136. [PMID: 36104102 PMCID: PMC9476128 DOI: 10.1136/jitc-2022-005136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background The advent of immune checkpoint inhibitors (ICIs) have led to a paradigm change in the management of metastatic renal cell carcinoma (mRCC), nevertheless, the benefit of treatment is confined to a limited proportion of patients. Therefore, the identification of predictive biomarkers for response to ICIs represents an unmet clinical need. Here, we performed a large-scale plasma proteomic profile of patients with mRCC, treated with nivolumab, to identify soluble molecules potentially associated with clinical benefit. Methods We analyzed the levels of 507 soluble molecules in the pretreatment plasma of 16 patients with mRCC (discovery set) who received nivolumab therapy as a single agent. The ELISA assay was performed to confirm the protein level of candidate biomarkers associated to clinical benefit in 15 patients with mRCC (validation set). Survival curves of complete cohort were estimated by the Kaplan-Meier method and compared with the log-rank test. Results Out of 507 screened molecules, 135 factors were selected as expressed above background and 12 of them were significantly overexpressed in patients who did not benefit from treatment (non-responders (NR)) compared with responders (R) group. After multiplicity adjustment, receptor activator of nuclear factor kappa-Β ligand (RANKL) was the only molecule that retained the statistical significance (false discovery rate: 0.023). RANKL overexpression in NR patients was confirmed both in discovery (median NR: 528 pg/mL vs median R: 288 pg/mL, p=0.011) and validation set (median NR: 440 pg/mL vs median R: 253 pg/mL, p<0.001). Considering the complete cohort of patients (discovery+validation set), significantly higher RANKL levels were found in patients who primarily progressed from treatment compared with those who had a partial response (p=0.003) or stable disease (p=0.006). Moreover, patients with low RANKL levels had significant improvements in progression-free survival (median 14.0 months vs 3.4 months, p=0.004) and overall survival (median not reached vs 30.1 months, p=0.003). Conclusions Our exploratory study suggests RANKL as a novel independent biomarker of response and survival in patients with mRCC treated with nivolumab.
Collapse
Affiliation(s)
- Sonia Simonetti
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Michele Iuliani
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Marco Stellato
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy .,Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Silvia Cavaliere
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Bruno Vincenzi
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Giuseppe Tonini
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| | - Daniele Santini
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy.,UOC Oncologia Universitaria, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University, Roma, Italy
| |
Collapse
|
17
|
Luo X, Zou W, Wei Z, Yu S, Zhao Y, Wu Y, Wang A, Lu Y. Inducing vascular normalization: A promising strategy for immunotherapy. Int Immunopharmacol 2022; 112:109167. [PMID: 36037653 DOI: 10.1016/j.intimp.2022.109167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
In solid tumors, the vasculature is highly abnormal in structure and function, resulting in the formation of an immunosuppressive tumor microenvironment by limiting immune cells infiltration into tumors. Vascular normalization is receiving much attention as an alternative strategy to anti-angiogenic therapy, and its potential therapeutic targets include signaling pathways, angiogenesis-related genes, and metabolic pathways. Endothelial cells play an important role in the formation of blood vessel structure and function, and their metabolic processes drive blood vessel sprouting in parallel with the control of genetic signals in cancer. The feedback loop between vascular normalization and immunotherapy has been discussed extensively in many reviews. In this review, we summarize the impact of aberrant tumor vascular structure and function on drug delivery, metastasis, and anti-tumor immune responses. In addition, we present evidences for the mutual regulation of immune vasculature. Based on the importance of endothelial metabolism in controlling angiogenesis, we elucidate the crosstalk between endothelial cells and immune cells from the perspective of metabolic pathways and propose that targeting abnormal endothelial metabolism to achieve vascular normalization can be an alternative strategy for cancer treatment, which provides a new theoretical basis for future research on the combination of vascular normalization and immunotherapy.
Collapse
Affiliation(s)
- Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
18
|
The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112756. [PMID: 35681736 PMCID: PMC9179436 DOI: 10.3390/cancers14112756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in the tumor microenvironment (TME). Recent studies have shown that the main cellular components of TME interact with each other through this pathway to promote the formation of tumor immunosuppressive microenvironment. Here, we review the role of the immunosuppression mechanisms mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as a new tumor immunotherapy target, as well as the current clinical research progress.
Collapse
|
19
|
Zhang R, Wang Y, Liu D, Luo Q, Du P, Zhang H, Wu W. Sodium Tanshinone IIA Sulfonate as a Potent IDO1/TDO2 Dual Inhibitor Enhances Anti-PD1 Therapy for Colorectal Cancer in Mice. Front Pharmacol 2022; 13:870848. [PMID: 35571116 PMCID: PMC9091350 DOI: 10.3389/fphar.2022.870848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Although the antitumor efficacy of immune checkpoint blockade (ICB) has been proved in colorectal cancer (CRC), the results are unsatisfactory, presumably owing to the presence of tryptophan metabolism enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2). However, only a few dual inhibitors for IDO1 and TDO2 have been reported. Here, we discovered that sodium tanshinone IIA sulfonate (STS), a sulfonate derived from tanshinone IIA (TSN), reduced the enzymatic activities of IDO1 and TDO2 with a half inhibitory concentration (IC50) of less than 10 μM using enzymatic assays for natural product screening. In IDO1- or TDO2- overexpressing cell lines, STS decreased kynurenine (kyn) synthesis. STS also reduced the percentage of forkhead box P3 (FOXP3) T cells in lymphocytes from the mouse spleen cocultured with CT26. In vivo, STS suppressed tumor growth and enhanced the antitumor effect of the programmed cell death 1 (PD1) antibody. Compared with anti-PD1 (α-PD1) monotherapy, combined with STS had lower level of plasma kynurenine. Immunofluorescence assay suggested that STS decreased the number of FOXP3+ T cells and increased the number of CD8+ T cells in tumors. Flow cytometry analysis of immune cells in tumor tissues demonstrated an increase in the percentage of tumor-infiltrating CD8+ T cells. According to our findings, STS acts as an immunotherapy agent in CRC by inhibiting both IDO1 and TDO2.
Collapse
Affiliation(s)
- Rongjie Zhang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuanfeiyi Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Dan Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qing Luo
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Peixin Du
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Haiyan Zhang
- Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China.,The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Pham NB, Abraham N, Velankar KY, Schueller NR, Philip EJ, Jaber Y, Gawalt ES, Fan Y, Pal SK, Meng WS. Localized PD-1 Blockade in a Mouse Model of Renal Cell Carcinoma. FRONTIERS IN DRUG DELIVERY 2022; 2. [PMID: 36132332 PMCID: PMC9486680 DOI: 10.3389/fddev.2022.838458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Herein we report the impact of localized delivery of an anti-mouse PD-1-specific monoclonal antibody (aPD1) on Renca tumors in the resulting T cell responses and changes in broader immune gene expression profiles. Renca is a BALB/c mice syngeneic tumor that has been used to model human renal cell carcinoma In this study, T cell subsets were examined in tumors and draining lymph nodes of mice treated with localized PD-1 with and without the addition of adenosine deaminase (ADA), an enzyme that catabolizes adenosine (ADO), identified as an immune checkpoint in several types of human cancers. The biologics, aPD1, or aPD1 with adenosine deaminase (aPD1/ADA), were formulated with the self-assembling peptides Z15_EAK to enhance retention near the tumor inoculation site. We found that both aPD1 and aPD1/ADA skewed the local immune milieu towards an immune stimulatory phenotype by reducing Tregs, increasing CD8 T cell infiltration, and upregulating IFNɣ. Analysis of tumor specimens using bulk RNA-Seq confirmed the impact of the localized aPD1 treatment and revealed differential gene expressions elicited by the loco-regional treatment. The effects of ADA and Z15_EAK were limited to tumor growth delay and lymph node enlargement. These results support the notion of expanding the use of locoregional PD-1 blockade in solid tumors.
Collapse
Affiliation(s)
- Ngoc B. Pham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ketki Y. Velankar
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Nathan R. Schueller
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Errol J. Philip
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Yasmeen Jaber
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ellen S. Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sumanta K. Pal
- Department of Medical Oncology and Developmental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Wilson S. Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Correspondence: Wilson S. Meng,
| |
Collapse
|
21
|
Du L, He H, Xiao Z, Xiao H, An Y, Zhong H, Lin M, Meng X, Han S, Shuai X. GSH-Responsive Metal-Organic Framework for Intratumoral Release of NO and IDO Inhibitor to Enhance Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107732. [PMID: 35218310 DOI: 10.1002/smll.202107732] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Immunotherapy brings great benefits for tumor therapy in clinical treatments but encounters the severe challenge of low response rate mainly because of the immunosuppressive tumor microenvironment. Multifunctional nanoplatforms integrating effective drug delivery and medical imaging offer tremendous potential for cancer treatment, which may play a critical role in combinational immunotherapy to overcome the immunosuppressive microenvironment for efficient tumor therapy. Here, a nanodrug (BMS-SNAP-MOF) is prepared using glutathione (GSH)-sensitive metal-organic framework (MOF) to encapsulate an immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) inhibitor BMS-986205, and the nitric oxide (NO) donor s-nitrosothiol groups. The high T1 relaxivity allows magnetic resonance imaging to monitor nanodrug distribution in vivo. After the nanodrug accumulation in tumor tissue via the EPR effect and subsequent internalization into tumor cells, the enriched GSH therein triggers cascade reactions with MOF, which disassembles the nanodrug to rapidly release the IDO-inhibitory BMS-986205 and produces abundant NO. Consequently, the IDO inhibitor and NO synergistically modulate the immunosuppressive tumor microenvironment with increase CD8+ T cells and reduce Treg cells to result in highly effective immunotherapy. In an animal study, treatment using this theranostic nanodrug achieves obvious regressions of both primary and distant 4T1 tumors, highlighting its application potential in advanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haozhe He
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Department of pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongcheng An
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
22
|
Song X, Si Q, Qi R, Liu W, Li M, Guo M, Wei L, Yao Z. Indoleamine 2,3-Dioxygenase 1: A Promising Therapeutic Target in Malignant Tumor. Front Immunol 2022; 12:800630. [PMID: 35003126 PMCID: PMC8733291 DOI: 10.3389/fimmu.2021.800630] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis is a complex multifactorial and multistep process in which tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade host immune attacks. The degradation of tryptophan into immunosuppressive kynurenine is considered an important immunosuppressive mechanism in the tumor microenvironment. There are three enzymes, namely, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1), and indoleamine 2,3-dioxygenase 2 (IDO2), involved in the metabolism of tryptophan. IDO1 has a wider distribution and higher activity in catalyzing tryptophan than the other two; therefore, it has been studied most extensively. IDO1 is a cytosolic monomeric, heme-containing enzyme, which is now considered an authentic immune regulator and represents one of the promising drug targets for tumor immunotherapy. Collectively, this review highlights the regulation of IDO1 gene expression and the ambivalent mechanisms of IDO1 on the antitumoral immune response. Further, new therapeutic targets via the regulation of IDO1 are discussed. A comprehensive analysis of the expression and biological function of IDO1 can help us to understand the therapeutic strategies of the inhibitors targeting IDO1 in malignant tumors.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Qianqian Si
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Rui Qi
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Weidan Liu
- Department of Clinical Laboratory, The People's Hospital, Pingxiang County, Xingtai, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Mengyue Guo
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| | - Zhiyan Yao
- Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, China
| |
Collapse
|
23
|
Kynurenine induces T cell fat catabolism and has limited suppressive effects in vivo. EBioMedicine 2021; 74:103734. [PMID: 34875457 PMCID: PMC8652007 DOI: 10.1016/j.ebiom.2021.103734] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background L-kynurenine is a tryptophan-derived immunosuppressive metabolite and precursor to neurotoxic anthranilate and quinolinate. We evaluated the stereoisomer D-kynurenine as an immunosuppressive therapeutic which is hypothesized to produce less neurotoxic metabolites than L-kynurenine. Methods L-/D-kynurenine effects on human and murine T cell function were examined in vitro and in vivo (homeostatic proliferation, colitis, cardiac transplant). Kynurenine effects on T cell metabolism were interrogated using [13C] glucose, glutamine and palmitate tracing. Kynurenine was measured in tissues from human and murine tumours and kynurenine-fed mice. Findings We observed that 1 mM D-kynurenine inhibits T cell proliferation through apoptosis similar to L-kynurenine. Mechanistically, [13C]-tracing revealed that co-stimulated CD4+ T cells exposed to L-/D-kynurenine undergo increased β-oxidation depleting fatty acids. Replenishing oleate/palmitate restored effector T cell viability. We administered dietary D-kynurenine reaching tissue kynurenine concentrations of 19 μM, which is close to human kidney (6 μM) and head and neck cancer (14 μM) but well below the 1 mM required for apoptosis. D-kynurenine protected Rag1–/– mice from autoimmune colitis in an aryl-hydrocarbon receptor dependent manner but did not attenuate more stringent immunological challenges such as antigen mismatched cardiac allograft rejection. Interpretation Our dietary kynurenine model achieved tissue concentrations at or above human cancer kynurenine and exhibited only limited immunosuppression. Sub-suppressive kynurenine concentrations in human cancers may limit the responsiveness to indoleamine 2,3-dioxygenase inhibition evaluated in clinical trials. Funding The study was supported by the NIH, the Else Kröner-Fresenius-Foundation, Laffey McHugh foundation, and American Society of Nephrology.
Collapse
|
24
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
25
|
Tang H, Li H, Sun Z. Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0806. [PMID: 34403220 PMCID: PMC8610166 DOI: 10.20892/j.issn.2095-3941.2020.0806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
The emergence and clinical application of immunotherapy is considered a promising breakthrough in cancer treatment. According to the literature, immune checkpoint blockade (ICB) has achieved positive clinical responses in different cancer types, although its clinical efficacy remains limited in some patients. The main obstacle to inducing effective antitumor immune responses with ICB is the development of an immunosuppressive tumor microenvironment. Myeloid-derived suppressor cells (MDSCs), as major immune cells that mediate tumor immunosuppression, are intimately involved in regulating the resistance of cancer patients to ICB therapy and to clinical cancer staging and prognosis. Therefore, a combined treatment strategy using MDSC inhibitors and ICB has been proposed and continually improved. This article discusses the immunosuppressive mechanism, clinical significance, and visualization methods of MDSCs. More importantly, it describes current research progress on compounds targeting MDSCs to enhance the antitumor efficacy of ICB.
Collapse
Affiliation(s)
- Hongchao Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
26
|
Tang XY, Shi AP, Xiong YL, Zheng KF, Liu YJ, Shi XG, Jiang T, Zhao JB. Clinical Research on the Mechanisms Underlying Immune Checkpoints and Tumor Metastasis. Front Oncol 2021; 11:693321. [PMID: 34367975 PMCID: PMC8339928 DOI: 10.3389/fonc.2021.693321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
This study highlights aspects of the latest clinical research conducted on the relationship between immune checkpoints and tumor metastasis. The overview of each immune checkpoint is divided into the following three sections: 1) structure and expression; 2) immune mechanism related to tumor metastasis; and 3) clinical research related to tumor metastasis. This review expands on the immunological mechanisms of 17 immune checkpoints, including TIM-3, CD47, and OX-40L, that mediate tumor metastasis; evidence shows that most of these immune checkpoints are expressed on the surface of T cells, which mainly exert immunomodulatory effects. Additionally, we have summarized the roles of these immune checkpoints in the diagnosis and treatment of metastatic tumors, as these checkpoints are considered common predictors of metastasis in various cancers such as prostate cancer, non-Hodgkin lymphoma, and melanoma. Moreover, certain immune checkpoints can be used in synergy with PD-1 and CTLA-4, along with the implementation of combination therapies such as LIGHT-VTR and anti-PD-1 antibodies. Presently, most monoclonal antibodies generated against immune checkpoints are under investigation as part of ongoing preclinical or clinical trials conducted to evaluate their efficacy and safety to establish a better combination treatment strategy; however, no significant progress has been made regarding monoclonal antibody targeting of CD28, VISTA, or VTCN1. The application of immune checkpoint inhibitors in early stage tumors to prevent tumor metastasis warrants further evidence; the immune-related adverse events should be considered before combination therapy. This review aims to elucidate the mechanisms of immune checkpoint and the clinical progress on their use in metastatic tumors reported over the last 5 years, which may provide insights into the development of novel therapeutic strategies that will assist with the utilization of various immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi’an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
27
|
He P, Cheng S, Hu F, Ma Z, Xia Y. Up-regulation of DGAT1 in cancer tissues and tumor-infiltrating macrophages influenced survival of patients with gastric cancer. BMC Cancer 2021; 21:252. [PMID: 33750350 PMCID: PMC7941926 DOI: 10.1186/s12885-021-07976-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Diacylglycerol-acyltransferase 1 (DGAT1) plays an important role in the energy storage and is involved in cancer progression. A growing number of evidences showed that elevated expression of DGAT1 in cancer tissue indicated a poor outcome in cancer patients. However, the relationship between DGAT1 and gastric cancer is still unclear. Thus, Transcriptomic analysis and in vitro experiments were performed to investigate the role of DGAT1 in gastric cancer, as well as the potential therapy target in gastric cancer treatment. Methods We screened the public cancer datasets to identify the expression and function of DGAT1 in gastric cancer and tumor infiltrating lymphocytes. Then we testified the DGAT1 expression and function after sodium oleate treatment in AGS and MKN45 cell line. Finally, we analyzed ration of apoptosis, necrosis in gastric cancer cells by using flow cytometry after administration of DGAT1 inhibitor. Results Our results showed a highly expression of DGAT1 in gastric cancer tissues (n = 5, p = 0.0004), and tumor-infiltrating macrophages with elevated DGAT1 expression is associated with poor overall survival in gastric cancer patients. In addition, gastric cell lines AGS (n = 3, p < 0.05) and MKN45 (n = 3, p < 0.01) expressed higher level of DGAT1 than human gastric mucosal epithelial cell line GES-1. Administration of DGAT1 inhibitor effectively suppressed functional factors expression and induced cell death in MKN45. Conclusion The findings of this research provide an in-depth insight into the potential role and influences involved in DGAT1 in the gastric cancer patients. And higher expression of DGAT1 leads to lower overall survival (OS) rate in patients with poorly differentiated gastric cancer. Our findings suggest a potential role for DGAT1 in the gastric cancer progression and inhibiting DGAT1 might be a promising strategy in gastric cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07976-5.
Collapse
Affiliation(s)
- Ping He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Shihuan Cheng
- Department of Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China. .,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, 130021, Jilin, China.
| | - Yan Xia
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
28
|
Chen J, Zhang H, Zhou L, Hu Y, Li M, He Y, Li Y. Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms. Front Oncol 2021; 10:584367. [PMID: 33614478 PMCID: PMC7886973 DOI: 10.3389/fonc.2020.584367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor vaccines aim to expand tumor-specific T cells and reactivate existing tumor-specific T cells that are in a dormant or unresponsive state. As such, there is growing interest in improving the durable anti-tumor activity of tumor vaccines. Failure of vaccine-activated T cells to protect against tumors is thought to be the result of the immune escape mechanisms of tumor cells and the intricate immunosuppressive tumor microenvironment. In this review, we discuss how tumor cells and the tumor microenvironment influence the effects of tumor infiltrating lymphocytes and summarize how to improve the efficacy of tumor vaccines by improving the design of current tumor vaccines and combining tumor vaccines with other therapies, such as metabolic therapy, immune checkpoint blockade immunotherapy and epigenetic therapy.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
29
|
Sumitomo M, Takahara K, Zennami K, Nagakawa T, Maeda Y, Shiogama K, Yamamoto Y, Muto Y, Nukaya T, Takenaka M, Fukaya K, Ichino M, Sasaki H, Saito K, Shiroki R. Tryptophan 2,3-dioxygenase in tumor cells is associated with resistance to immunotherapy in renal cell carcinoma. Cancer Sci 2021; 112:1038-1047. [PMID: 33410234 PMCID: PMC7935775 DOI: 10.1111/cas.14797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023] Open
Abstract
Indoleamine 2,3‐dioxygenase 1 (IDO1) is a key enzyme associated with immunomodulation through its regulation of the tryptophan‐kynurenine (Kyn) pathway in advanced cancers, including metastatic renal cell carcinoma (mRCC). However, the failure of IDO1 inhibitors when used in combination with immune checkpoint inhibitors (ICIs), as observed in clinical trials, raises a number of questions. This study aimed to investigate the association of tryptophan 2,3‐dioxygenase (TDO) and IDO1 with cancer development and resistance to immunotherapy in patients with RCC. In our analysis of RCC tissue samples, tissue Kyn levels were elevated in advanced‐stage RCC and correlated well with TDO expression levels in RCC tumor cells. In patients with mRCC, TDO rather than IDO1 was expressed in RCC tumor cells, showing a strong association with Kyn expression. Furthermore, immunohistochemical staining of TDO was strongly associated with the staining intensity of forkhead box P3, as well as ICI therapy response and survival in patients with mRCC. Our study is the first to show that TDO expression in tumor tissues is associated with progression and survival, confirming its potential as a predictive biomarker of primary resistance to immunotherapy in patients with mRCC. Our findings suggest that strategies aimed at inhibiting TDO, rather than IDO1, in combination with ICI therapy may aid in the control of mRCC progression.
Collapse
Affiliation(s)
- Makoto Sumitomo
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan.,Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kiyoshi Takahara
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kenji Zennami
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tomomi Nagakawa
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yasuhiro Maeda
- Research Promotion and Support Headquarters, Center for Joint Research Facilities Support, Fujita Health University, Toyoake, Japan
| | - Kazuya Shiogama
- Department of Pathology, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Japan
| | - Yoshinari Muto
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Takuhisa Nukaya
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Masashi Takenaka
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kosuke Fukaya
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Manabu Ichino
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hitomi Sasaki
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
30
|
Kocher F, Amann A, Zimmer K, Geisler S, Fuchs D, Pichler R, Wolf D, Kurz K, Seeber A, Pircher A. High indoleamine-2,3-dioxygenase 1 (IDO) activity is linked to primary resistance to immunotherapy in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res 2021; 10:304-313. [PMID: 33569314 PMCID: PMC7867793 DOI: 10.21037/tlcr-20-380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Metabolic profiling in non-small cell lung cancer (NSCLC) may identify key metabolic vulnerabilities and shows enormous discovery potential. Preclinical studies showed that metabolic rewiring in cancer plays an essential role in modulation of immunotherapy response. However, this situation is understudied in the clinical setting. Therefore, we aimed to evaluate the plasma metabolic profile of immune checkpoint inhibitor (CI) responding versus non-responding NSCLC patients. The aim of this project is to identify potential predictive biomarkers for CI response. Methods Plasma samples from CI treated NSCLC patients were analysed at baseline and at the first follow up scan by using a broad targeted metabolomics mass spectrometry panel, and were compared to healthy controls. For further validation of identified key alterations high-performance liquid chromatography (HPLC) for tryptophan (Trp) and kynurenine (Kyn) as indicator of IDO-activity was performed. Results Sixty-seven metabolites were significantly altered in NSCLC patients compared to healthy controls. The metabolic profile of patients with primary CI resistance showed an increase in indoleamine-2,3-dioxygenase (IDO) and a decrease in branched-chain amino acids (BCAA) compared to baseline concentrations. Deregulated IDO activity was validated by additional HPLC measurements, which revealed that baseline Trp levels were predictive for CI response. According to receiver operating characteristic (ROC)-analysis baseline Trp levels ≥49.3 µmol/L predicted disease control at the first follow up scan with a sensitivity of 89% and a specificity of 71%. Conclusions We showed that NSCLC patients are characterized by a distinct metabolic profile compared to healthy controls. Moreover, metabolic changes during CI therapy were observed. Of those IDO metabolism seemed to play an important role in primary CI resistance. Trp as a surrogate parameter of IDO activity is a promising biomarker in patients undergoing treatment with CIs and might be a future marker in trials investigating IDO inhibitors.
Collapse
Affiliation(s)
- Florian Kocher
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Arno Amann
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai Zimmer
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Geisler
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.,Medical Clinic III, Oncology, Hematology, Immunoncology and Rheumatology, University Clinic Bonn (UKB), University of Bonn, Bonn, Germany
| | - Katharina Kurz
- Department of Internal Medicine II (Infectious Diseases, Immunology, Pneumology, Rheumatology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Hematology and Oncology), Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
32
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
33
|
Marcelo-Lewis KL, Moorthy S, Ileana-Dumbrava E. Tumor Genotype Is Shaping Immunophenotype and Responses to Immune Checkpoint Inhibitors in Solid Tumors. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:121-127. [PMID: 35663256 PMCID: PMC9165574 DOI: 10.36401/jipo-20-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/03/2020] [Indexed: 05/22/2023]
Abstract
A major breakthrough in cancer treatment was ushered in by the development of immune checkpoint blockade therapy such as anti-CTLA4 antibody and anti-PD-1 and anti-programmed cell death-ligand 1 antibodies that are now approved for use in an increasing number of malignancies. Despite the relative success of immune checkpoint inhibitors with certain tumor types, many patients still fail to respond to such therapies, and the field is actively trying to understand the mechanisms of resistance, intrinsic or acquired, to immune checkpoint blockade. Herein, we discuss the roles that somatic genomic mutations in oncogenic pathways play in immune editing, as well as some of the current approaches toward improving response to immunotherapy.
Collapse
Affiliation(s)
- Kathrina L. Marcelo-Lewis
- Department of Thoracic/ Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shhyam Moorthy
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina Ileana-Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Dora D, Rivard C, Yu H, Bunn P, Suda K, Ren S, Lueke Pickard S, Laszlo V, Harko T, Megyesfalvi Z, Moldvay J, Hirsch FR, Dome B, Lohinai Z. Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution. Mol Oncol 2020; 14:1947-1965. [PMID: 32506804 PMCID: PMC7463307 DOI: 10.1002/1878-0261.12741] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Small cell lung cancer (SCLC) has recently been subcategorized into neuroendocrine (NE)-high and NE-low subtypes showing 'immune desert' and 'immune oasis' phenotypes, respectively. Here, we aimed to characterize the tumor microenvironment according to immune checkpoints and NE subtypes in human SCLC tissue samples at the protein level. In this cross-sectional study, we included 32 primary tumors and matched lymph node (LN) metastases of resected early-stage, histologically confirmed SCLC patients, which were previously clustered into NE subtypes using NE-associated key RNA genes. Immunohistochemistry (IHC) was performed on formalin-fixed paraffin-embedded TMAs with antibodies against CD45, CD3, CD8, MHCII, TIM3, immune checkpoint poliovirus receptor (PVR), and indoleamine 2,3-dioxygenase (IDO). The stroma was significantly more infiltrated by immune cells both in primary tumors and in LN metastases compared to tumor nests. Immune cell (CD45+ cell) density was significantly higher in tumor nests (P = 0.019), with increased CD8+ effector T-cell infiltration (P = 0.003) in NE-low vs NE-high tumors. The expression of IDO was confirmed on stromal and endothelial cells and was positively correlated with higher immune cell density both in primary tumors and in LN metastases, regardless of the NE pattern. Expression of IDO and PVR in tumor nests was significantly higher in NE-low primary tumors (vs NE-high, P < 0.05). We also found significantly higher MHC II expression by malignant cells in NE-low (vs NE-high, P = 0.004) tumors. TIM3 expression was significantly increased in NE-low (vs NE-high, P < 0.05) tumors and in LN metastases (vs primary tumors, P < 0.05). To our knowledge, this is the first human study that demonstrates in situ that NE-low SCLCs are associated with increased immune cell infiltration compared to NE-high tumors. PVR, IDO, MHCII, and TIM3 are emerging checkpoints in SCLC, with increased expression in the NE-low subtype, providing key insight for further prospective studies on potential biomarkers and targets for SCLC immunotherapies.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and EmbryologyFaculty of MedicineSemmelweis UniversityBudapestHungary
| | - Christopher Rivard
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Hui Yu
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Paul Bunn
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Kenichi Suda
- Division of Thoracic SurgeryDepartment of SurgeryFaculty of MedicineKindai UniversityOsaka‐SayamaJapan
| | - Shengxiang Ren
- Shanghai Pulmonary HospitalTongji UniversityShanghaiChina
| | - Shivaun Lueke Pickard
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Viktoria Laszlo
- National Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
- Division of Thoracic SurgeryDepartment of SurgeryComprehensive Cancer CenterMedical University of ViennaAustria
| | - Tunde Harko
- National Korányi Institute of PulmonologyBudapestHungary
| | - Zsolt Megyesfalvi
- National Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
- Division of Thoracic SurgeryDepartment of SurgeryComprehensive Cancer CenterMedical University of ViennaAustria
| | - Judit Moldvay
- National Korányi Institute of PulmonologyBudapestHungary
| | - Fred R. Hirsch
- Division of Medical OncologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Tisch Cancer InstituteCenter for Thoracic OncologyMount Sinai Health SystemNew YorkNYUSA
| | - Balazs Dome
- National Korányi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
- Division of Thoracic SurgeryDepartment of SurgeryComprehensive Cancer CenterMedical University of ViennaAustria
| | - Zoltan Lohinai
- National Korányi Institute of PulmonologyBudapestHungary
| |
Collapse
|
35
|
Tierney JF, Vogle A, Finnerty B, Zarnegar R, Ghai R, Gattuso P, Fahey TJ, Keutgen XM. Indoleamine 2,3-Dioxygenase-1 Expression in Adrenocortical Carcinoma. J Surg Res 2020; 256:90-95. [PMID: 32683062 DOI: 10.1016/j.jss.2020.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO-1) is overexpressed in many human carcinomas and a successful target for therapy in mouse models. Prognosis of patients with advanced adrenocortical carcinoma (ACC) is poor due to the lack of effective treatments, and new therapies are therefore needed. Herein, we investigate whether IDO-1 is expressed in human ACC tissues. METHODS 53 tissue samples from patients with ACC, adrenal adenoma (AA), adrenocortical tumors (ACTs), and normal adrenal were identified. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded slides for IDO-1. Samples were scored for cytoplasmic staining as per intensity and the percent of positive cells and for stromal staining by percent of positive cells. Tumor characteristics, PD-L1, PDL-2, and CD-8+ T-lymphocyte expression were also determined. RESULTS Samples from 32 ACC, 3 ACT, 15 AA, and 3 normal adrenal were analyzed. IDO-1 was expressed in tumor tissue in 22 of 32 ACC samples, compared with 8 of 15 AA sample (P = 0.344). IDO-1 expression was significantly increased in stromal tissue of ACC samples (16 of 33), compared with AA samples (0 of 15) (P = 0.001). IDO-1 expression in ACC and AA samples was associated with PD-L2 expression (P = 0.034). IDO-1 expression in ACC stromal tissue was associated with CD8+ T-lymphocyte infiltration (P = 0.028). CONCLUSIONS IDO-1 is expressed in a majority of ACC samples. Its expression in tumor tissue is associated with PD-L2 expression, and expression in stroma is associated with CD8+ cell infiltration. IDO-1 inhibition, alone or in combination with PD-1 inhibition, could therefore be an interesting target in treatment of ACC.
Collapse
Affiliation(s)
- John F Tierney
- Rush University Medical Center, Division of Surgical Oncology, Department of Surgery, Chicago, Illinois
| | - Alyx Vogle
- Rush University Medical Center, Division of Surgical Oncology, Department of Surgery, Chicago, Illinois
| | - Brendan Finnerty
- New York Presbyterian Hospital-Weill Cornell Medical Center, Department of Surgery, New York, New York
| | - Rasa Zarnegar
- New York Presbyterian Hospital-Weill Cornell Medical Center, Department of Surgery, New York, New York
| | - Ritu Ghai
- Rush University Medical Center, Department of Pathology, Chicago, Illinois
| | - Paolo Gattuso
- Rush University Medical Center, Department of Pathology, Chicago, Illinois
| | - Thomas J Fahey
- New York Presbyterian Hospital-Weill Cornell Medical Center, Department of Surgery, New York, New York
| | - Xavier M Keutgen
- The University of Chicago Medical Center, Division of Endocrine Surgery, Department of Surgery, Chicago, Illinois.
| |
Collapse
|
36
|
Moreira M, Pobel C, Epaillard N, Simonaggio A, Oudard S, Vano YA. Resistance to cancer immunotherapy in metastatic renal cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:454-471. [PMID: 35582435 PMCID: PMC8992500 DOI: 10.20517/cdr.2020.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/06/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
The prognosis of metastatic clear cell renal cell carcinoma (mccRCC) has changed dramatically over the years with the emergence of immune checkpoint inhibitors (ICI) used alone, or in combination with another ICI, or with vascular endothelial growth factor receptor tyrosine kinase inhibitor. Although major response rates have been observed with ICI, many patients do not respond, reflecting primary resistance, and durable responses remain exceptional, reflecting secondary resistance. Factors contributing to primary and acquired resistance are manifold, including patient-intrinsic factors, tumor cell-intrinsic factors and factors associated with the tumoral microenvironment (TME). While some mechanisms of resistance are common to several tumor types, others are specific to mccRCC. Predictive biomarkers and alternative strategies are needed to overcome this resistance. This review provides an overview of the major ICI resistance mechanisms, highlights the potential of the TME to induce resistance to ICI, and discusses the predictive biomarkers available to guide therapeutic choice.
Collapse
Affiliation(s)
- Marco Moreira
- Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris F-75006, France.,Both authors contributed equally
| | - Cedric Pobel
- Department of Medical Oncology, European Hospital Georges Pompidou - APHP, Paris 75015, France.,University François Rabelais, Tours 37200, France.,Both authors contributed equally
| | - Nicolas Epaillard
- Department of Medical Oncology, European Hospital Georges Pompidou - APHP, Paris 75015, France
| | - Audrey Simonaggio
- Department of Medical Oncology, European Hospital Georges Pompidou - APHP, Paris 75015, France
| | - Stéphane Oudard
- Department of Medical Oncology, European Hospital Georges Pompidou - APHP, Paris 75015, France.,INSERM UMR-S1147, Paris 75006, France
| | - Yann-Alexandre Vano
- Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Paris F-75006, France.,Department of Medical Oncology, European Hospital Georges Pompidou - APHP, Paris 75015, France
| |
Collapse
|
37
|
|
38
|
Latest progress in molecular biology and treatment in genitourinary tumours. Clin Transl Oncol 2020; 22:2175-2195. [PMID: 32440915 DOI: 10.1007/s12094-020-02373-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022]
Abstract
The management of genitourinary cancer, including bladder, prostate, renal and testicular cancer, has evolved dramatically in recent years due to a better understanding of tumour genetic mutations, alterations in molecular pathways, and to the development of new kinds of drugs such as targeted therapies and immunotherapies. In the field of immunotherapy, new drugs focused on stimulating, enhancing and modulating the immune system to detect and destroy cancer, have been recently discovered. Research in oncology moves quickly and new data of great relevance for clinical practice are communicated every year. For this reason, a group of experts, focused exclusively on the treatment of genitourinary tumours and who get together every year in the BestGU conference to assess the latest progress in this field have summarized the most important advances in a single review, along with a critical assessment of whether these results should alter daily clinical practice.
Collapse
|
39
|
PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: comparative study of primary and metastatic lesions. J Cancer Res Clin Oncol 2020; 146:2607-2620. [PMID: 32388585 DOI: 10.1007/s00432-020-03242-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Programmed death ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunosuppressive proteins known to be associated with poor prognosis in various cancers. However, their expression and clinical relevance in osteosarcoma remain unknown. In this study, the relationships of PD-L1 and IDO1 expression with clinicopathological features and prognosis were explored. METHODS The expression of PD-L1, IDO1, CD3, CD4, and CD8 in 112 formalin-fixed, paraffin-embedded tumor tissues collected by biopsy or surgical resection from 56 osteosarcoma patients was evaluated immunohistochemically. Moreover, four osteosarcoma cell lines were evaluated for the effects of IFNγ on PD-L1 and IDO1 mRNA expression by real-time reverse-transcription polymerase chain reaction. RESULTS In pre-neoadjuvant chemotherapy (NAC) primary specimens, 10 cases (17%) showed PD-L1 expression and 12 (21%) showed IDO1 expression. Six of ten cases (60%) with PD-L1 positivity co-expressed IDO1. In post-NAC metastatic lesions, the frequency of immunoexpression of PD-L1 and IDO1 was increased compared with that in pre-NAC specimens. PD-L1 and/or IDO1 expression was not associated with poor prognosis. PD-L1 immunoexpression was significantly associated with the infiltration of CD3+ T cells, CD4+ T cells, and CD8+ T cells; while, IDO1 immunoexpression was significantly associated with the infiltration of CD3+ T cells and CD4+ T cells. In all osteosarcoma cell lines, PD-L1 and IDO1 expression was upregulated by stimulation with IFNγ. CONCLUSION Our results suggest that the PD-L1 and IDO1 immune checkpoint inhibitors may provide clinical benefit in osteosarcoma patients with metastatic lesions after conventional chemotherapy.
Collapse
|
40
|
Increase in Efficacy of Checkpoint Inhibition by Cytokine-Induced-Killer Cells as a Combination Immunotherapy for Renal Cancer. Int J Mol Sci 2020; 21:ijms21093078. [PMID: 32349280 PMCID: PMC7246811 DOI: 10.3390/ijms21093078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokine-induced killer (CIK) cells are heterogeneous, major histocompatibility complex (MHC)-unrestricted T lymphocytes that have acquired the expression of several natural killer (NK) cell surface markers following the addition of interferon gamma (IFN-γ), OKT3 and interleukin-2 (IL-2). Treatment with CIK cells demonstrates a practical approach in cancer immunotherapy with limited, if any, graft versus host disease (GvHD) toxicity. CIK cells have been proposed and tested in many clinical trials in cancer patients by autologous, allogeneic or haploidentical administration. The possibility of combining them with specific monoclonal antibodies nivolumab and ipilimumab will further expand the possibility of their clinical utilization. Initially, phenotypic analysis was performed to explore CD3, CD4, CD56, PD-1 and CTLA-4 expression on CIK cells and PD-L1/PD-L2 expression on tumor cells. We further treated CIK cells with nivolumab and ipilimumab and measured the cytotoxicity of CIK cells cocultured to renal carcinoma cell lines, A-498 and Caki-2. We observed a significant decrease in viability of renal cell lines after treating with CIK cells (p < 0.0001) in comparison to untreated renal cell lines and anti-PD-1 or anti-CTLA-4 treatment had no remarkable effect on the viability of tumor cells. Using CCK-8, Precision Count Beads™ and Cell Trace™ violet proliferation assays, we proved significant increased proliferation of CIK cells in the presence of a combination of anti-PD-1 and anti-CTLA-4 antibodies compared to untreated CIK cells. The IFN-γ secretion increased significantly in the presence of A-498 and combinatorial blockade of PD-1 and CTLA-4 compared to nivolumab or ipilimumab monotreatment (p < 0.001). In conclusion, a combination of immune checkpoint inhibition with CIK cells augments cytotoxicity of CIK cells against renal cancer cells.
Collapse
|
41
|
Deleuze A, Saout J, Dugay F, Peyronnet B, Mathieu R, Verhoest G, Bensalah K, Crouzet L, Laguerre B, Belaud-Rotureau MA, Rioux-Leclercq N, Kammerer-Jacquet SF. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int J Mol Sci 2020; 21:ijms21072532. [PMID: 32260578 PMCID: PMC7177761 DOI: 10.3390/ijms21072532] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma is the third type of urologic cancer and has a poor prognosis with 30% of metastatic patients at diagnosis. The antiangiogenics and targeted immunotherapies led to treatment remodeling emphasizing the role of the tumour microenvironment. However, long-term responses are rare with a high rate of resistance. New strategies are emerging to improve the efficacy and the emerging drugs are under evaluation in ongoing trials. With the different treatment options, there is an urgent need to identify biomarkers in order to predict the efficacy of drugs and to better stratify patients. Owing to the limitations of programmed death-ligand 1 (PD-L1), the most studied immunohistochemistry biomarkers, and of the tumor mutational burden, the identification of more reliable markers is an unmet need. New technologies could help in this purpose.
Collapse
Affiliation(s)
- Antoine Deleuze
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Medical Oncology, Centre Eugene Marquis, 35000 Rennes, France; (L.C.); (B.L.)
| | - Judikaël Saout
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
| | - Frédéric Dugay
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Cytogenetics, University Hospital, 35000 Rennes, France
| | - Benoit Peyronnet
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Romain Mathieu
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Gregory Verhoest
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Karim Bensalah
- Department of Urology, University Hospital, 35000 Rennes, France; (B.P.); (G.V.); (K.B.)
| | - Laurence Crouzet
- Department of Medical Oncology, Centre Eugene Marquis, 35000 Rennes, France; (L.C.); (B.L.)
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugene Marquis, 35000 Rennes, France; (L.C.); (B.L.)
| | - Marc-Antoine Belaud-Rotureau
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Cytogenetics, University Hospital, 35000 Rennes, France
| | - Nathalie Rioux-Leclercq
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Pathology, University Hospital, 35000 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Université Rennes, Inserm, EHESP (Ecole des Hautes Etudes en Santé Publique), IRSET (Institut de recherche en santé, environnement et travail), UMR 1085, 35000 Rennes, France; (A.D.); (J.S.); (F.D.); (R.M.); (M.-A.B.-R.); (N.R.-L.)
- Department of Pathology, University Hospital, 35000 Rennes, France
- Correspondence: ; Tel.: +33-2-99-28-42-79; Fax: +33-2-99-28-42-84
| |
Collapse
|
42
|
The Adaptive and Innate Immune Cell Landscape of Uterine Leiomyosarcomas. Sci Rep 2020; 10:702. [PMID: 31959856 PMCID: PMC6971074 DOI: 10.1038/s41598-020-57627-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Reactivation of the anti-tumor response has shown substantial progress in aggressive tumors such as melanoma and lung cancer. Data on less common histotypes are scanty. Immune checkpoint inhibitor therapy has been applied to few cases of uterine leiomyosarcomas, of which the immune cell composition was not examined in detail. We analyzed the inflammatory infiltrate of 21 such cases in high-dimensional, single cell phenotyping on routinely processed tissue. T-lymphoid cells displayed a composite phenotype common to all tumors, suggestive of antigen-exposure, acute and chronic exhaustion. To the contrary, myelomonocytic cells had case-specific individual combinations of phenotypes and subsets. We identified five distinct monocyte-macrophage cell types, some not described before, bearing immunosuppressive molecules (TIM3, B7H3, VISTA, PD1, PDL1). Detailed in situ analysis of routinely processed tissue yields comprehensive information about the immune status of sarcomas. The method employed provides equivalent information to extractive single-cell technology, with spatial contexture and a modest investment.
Collapse
|
43
|
Rebuzzi SE, Perrone F, Bersanelli M, Bregni G, Milella M, Buti S. Prognostic and predictive molecular biomarkers in metastatic renal cell carcinoma patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Mol Diagn 2019; 20:169-185. [PMID: 31608727 DOI: 10.1080/14737159.2019.1680286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: In recent years, the treatment landscape of metastatic renal cell carcinoma (mRCC) has been improved using immune-checkpoint inhibitors (ICI). Nevertheless, the number of patients experiencing clinical benefit from immunotherapy is still limited, while others obtain more benefit from tyrosine kinase inhibitors (TKI). The identification of prognostic and predictive factors would be crucial to better select patients most likely to benefit from immunotherapy among the other potentially available therapeutic options.Areas covered: This systematic review summarizes the current knowledge (2010-2019) on molecular prognostic and predictive biomarkers, assessed in peripheral blood and/or from tumor tissue, in mRCC patients treated with ICI.Expert opinion: Among all the biomarkers analyzed, PD-L1 expression on tumor tissue is the most studied. It has an unfavorable prognostic role for patients treated with TKI, which seems to be overcome by ICI-based combinations. Nevertheless, no clear predictive role of immunotherapy efficacy has been observed for PD-L1 in mRCC. Emerging evidence regarding pro-angiogenic or pro-immunogenic genomic and transcriptomic signatures suggests a potential predictive role in patients treated with ICI-based combinations. The rationale for TKI-ICI combinations is based on tumor microenvironment and genomic background, which represent the target of these two main therapeutic options for mRCC.
Collapse
Affiliation(s)
- Sara Elena Rebuzzi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.,Department of Medical Oncology, IRCCS San Martino IST, Genova, Italy
| | - Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Melissa Bersanelli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giacomo Bregni
- Department of Medical Oncology, IRCCS San Martino IST, Genova, Italy
| | - Michele Milella
- Section of Medical Oncology, Department of Medicine, University of Verona and University Hospital Trust, Verona, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
44
|
Onesti CE, Boemer F, Josse C, Leduc S, Bours V, Jerusalem G. Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med 2019; 17:239. [PMID: 31337401 PMCID: PMC6652004 DOI: 10.1186/s12967-019-1984-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase catalyzes the conversion of tryptophan to kynurenine, an immunosuppressive metabolite involved in T regulatory cell differentiation. Indoleamine 2,3-dioxygenase is expressed in many cancer types, including breast cancer. Here, we analyze kynurenine and tryptophan and their ratio in breast cancer patients and healthy controls. Methods Breast cancer patients and healthy controls were prospectively enrolled in our study. All subjects underwent blood sample withdrawal at diagnosis or on the day of screening mammography for the healthy controls. Plasmatic kynurenine and tryptophan were determined on a TQ5500 tandem mass spectrometer after chromatographic separation. Results We enrolled 146 healthy controls and 202 women with stages I–III breast cancer of all subtypes. All patients underwent surgery, 126 underwent neoadjuvant chemotherapy with 43 showing a pathological complete response, and 43 underwent adjuvant chemotherapy. We observed significantly higher plasmatic kynurenine, tryptophan and their ratio for the healthy controls compared to patients with breast cancer. We observed a lower plasmatic tryptophan and a higher kynurenine/tryptophan ratio in hormone receptor-negative patients compared to hormone receptor-positive cancers. Lobular cancers showed a lower ratio than any other histologies. Advanced cancers were associated with a lower tryptophan level and higher grades with an increased kynurenine/tryptophan ratio. Pathological complete response was associated with higher kynurenine values. The plasmatic kynurenine, tryptophan and kynurenine/tryptophan ratios were not predictive of survival. Conclusions The plasmatic kynurenine, tryptophan and kynurenine/tryptophan ratio could differentiate breast cancer patients from healthy controls. The Kyn/Trp ratio and Trp also showed different values according to hormone receptor status, TNM stage, T grade and histology. These results suggest a rapid metabolism in breast cancer, but no associations with outcome or sensitivity to chemotherapy were observed. Electronic supplementary material The online version of this article (10.1186/s12967-019-1984-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Concetta Elisa Onesti
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium
| | - François Boemer
- Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Claire Josse
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium. .,Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium.
| | - Stephane Leduc
- Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium.,Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Guy Jerusalem
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Liège University, Liège, Belgium
| |
Collapse
|
45
|
Heidegger I, Pircher A, Pichler R. Targeting the Tumor Microenvironment in Renal Cell Cancer Biology and Therapy. Front Oncol 2019; 9:490. [PMID: 31259150 PMCID: PMC6587703 DOI: 10.3389/fonc.2019.00490] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Renal cell cancer (RCC) is a highly vascularized and immunogenic tumor type. The inhibition of vessel formation by anti-angiogenic therapies, as well as the stimulation of the immune system by immunotherapy has revolutionized the therapeutic landscape of RCC in recent years. Nevertheless, both therapies are associated with therapy resistance due to a highly dynamic, adaptive and heterogeneous tumor microenvironment (TME). The aim of this short review article is to provide an overview of the components of the RCC TME as well as to discuss their contribution to disease progression. In addition, we report on preclinical and clinical findings and how the different TME components can be modulated to impede treatment progression as well as to overcome therapy resistance to anti-angiogenic or immunomodulating therapy concepts. Furthermore, we discuss the predictive and prognostic role of the TME in RCC therapy. We also report on the concept of combinational targeting of anti-angiogenic therapies and immune checkpoint inhibitor therapy, also including the latest results of clinical studies discussed at recent oncological meetings. Finally, promising new therapeutic targets within the TME are mentioned.
Collapse
Affiliation(s)
- Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Takada K, Shimokawa M, Tanaka K, Kohashi K, Haro A, Osoegawa A, Tagawa T, Azuma K, Okamoto I, Oda Y, Mori M. Association between peripheral blood markers and immune-related factors on tumor cells in patients with resected primary lung adenocarcinoma. PLoS One 2019; 14:e0217991. [PMID: 31163080 PMCID: PMC6548429 DOI: 10.1371/journal.pone.0217991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
We sought to identify peripheral blood markers associated with two immune-related factors-programmed cell death-ligand-2 (PD-L2) and indoleamine 2,3-dioxygenase-1 (IDO1)-that are expressed on tumor cells in primary lung adenocarcinoma (AD) specimens. We randomly selected 448 patients (70%) from 640 consecutive patients with resected stage I-III primary lung AD, who had been treated at that point with surgery alone. Expression of PD-L2 and IDO1 in these patients was assessed by immunohistochemistry, and evaluated with respect to peripheral blood markers measured before surgery, including white blood cells, absolute neutrophil count, absolute lymphocyte count, absolute monocyte count (AMC), absolute eosinophil count (AEC), serum C-reactive protein, and serum lactate dehydrogenase levels. Membrane PD-L2 expression and cytoplasmic IDO1 expression were defined by tumor proportion score (TPS); samples with TPS < 1% were considered negative. Logistic regression models were used to identify variables associated with the immune-related factors. Advanced stage (P = 0.0090), higher AMC (P = 0.0195), and higher AEC (P = 0.0015) were independent predictors of IDO1 expression. PD-L2 expression was not associated with any tested peripheral blood markers. Peripheral blood markers, especially AMC and AEC, could potential predict IDO1 expression in lung AD. This study should be replicated in another cohort; further efforts to explore other biomarkers that predict PD-L2 or IDO1 expression are also warranted.
Collapse
Affiliation(s)
- Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kensuke Tanaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Haro
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Osoegawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Guo C, Zhao H, Wang Y, Bai S, Yang Z, Wei F, Ren X. Prognostic Value of the Neo-Immunoscore in Renal Cell Carcinoma. Front Oncol 2019; 9:439. [PMID: 31192136 PMCID: PMC6546810 DOI: 10.3389/fonc.2019.00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Objective: This study evaluated the prognostic value of the newly-built Immunoscore (neo-Immunoscore) in patients with renal cell carcinoma (RCC). Methods: Eighty-two patients with RCC were enrolled in this study. Their 3- and 5-year survival rates and overall survival (OS) were evaluated. The clinicopathologic data of the 82 patients were collected and analyzed. CD3, CD4, CD8, CD45RO, Foxp3, tumor necrosis factor receptor type II (TNFR2), programmed death ligand-1 (PD-L1), CD68, programmed death-1 (PD-1), cytokeratin (CK), and indoleamine 2,3-dioxygenase (IDO) were separated into two panels and stained using multiplex fluorescent immunohistochemistry methods. An immunologic prediction model of RCC patients, the neo-Immunoscore (neo-IS), was constructed using a Cox regression model. For the prognostic prediction of RCC, the neo-IS with the immunoscore (IS) proposed by the Society for Immunotherapy of Cancer (SITC) were compared by receiver operator characteristic (ROC) curve analysis. Survivals between the neo-ISlow and neo-IShigh groups were analyzed using the Kaplan–Meier method. Multivariate Cox regression survival analysis was applied to analyze independent indicators. Results: The Cox regression model allowed the establishment of a neo-IS based on three features: CD3CT+, CD4+Foxp3+CD45ROCT+, and CD8+PD-1IM+. Compared to that of the IS proposed by the SITC, the neo-IS obtained a better prediction. The 3- and 5-year survival rates in neo-IShigh RCC patients were significantly higher than those in neo-ISlow RCC patients (94.7 vs. 77.4%, P = 0.035 and 94.7 vs. 64.5%, P = 0.002, respectively). The OS in the neo-ISlow group was significantly shorter than that in the neo-IShigh group (73 vs. 97 months, P = 0.000). In comparisons of the neo-IS with clinical pathological factors, we found that the risk stratification and neo-IS were independent factors for the prognosis of patients with RCC. Moreover, the OS rate of neo-IShigh RCC patients with low- and intermediate- risk was higher than that of neo-ISlow patients. Conclusion: The newly-constructed IS model more precisely predicted the survival of patients with RCC and may supplement the prognostic value of risk stratification.
Collapse
Affiliation(s)
- Congfang Guo
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Emergency, Tianjin First Center Hospital, Tianjin, China
| | - Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Wang
- Department of Emergency, Tianjin First Center Hospital, Tianjin, China
| | - Shuai Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zizhong Yang
- Nankai University School of Medicine, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
48
|
Gide TN, Allanson BM, Menzies AM, Ferguson PM, Madore J, Saw RPM, Thompson JF, Long GV, Wilmott JS, Scolyer RA. Inter- and intrapatient heterogeneity of indoleamine 2,3-dioxygenase expression in primary and metastatic melanoma cells and the tumour microenvironment. Histopathology 2019; 74:817-828. [PMID: 30589949 DOI: 10.1111/his.13814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2023]
Abstract
AIMS Indoleamine 2,3-dioxygenase (IDO), an immunomodulatory enzyme, facilitates immune escape by tumours and promotes tumour progression. IDO inhibitors with and without additional anti-PD-1 therapy have been evaluated in recent and ongoing melanoma clinical trials, but IDO expression in melanoma tumours, and therefore its potential role as a predictive biomarker remains unknown. This study sought to evaluate IDO expression in immunotherapy-naive metastatic melanoma patients in order to determine patterns of expression in corresponding primary melanomas, locoregional metastases and distant metastases. METHODS AND RESULTS Here, we evaluated IDO expression using immunohistochemistry in 99 melanoma tumour samples from 43 immunotherapy-naive patients with metastatic melanoma to determine patterns of expression in primary melanomas (n = 29), locoregional metastases (n = 36) and distant metastases (n = 34). Thirty-seven per cent of patients demonstrated tumour IDO expression in at least one specimen. Twelve of 35 patients (34%) with longitudinal specimens (i.e. two or more separate specimens from different disease stages in the same patient) displayed heterogeneous IDO staining between samples. Tumour IDO expression positively correlated with tumour-infiltrating lymphocyte (TIL) score as well as the number of IDO-expressing mononuclear cells in the primary melanoma (P < 0.0001 and P = 0.0011, respectively) and nodal metastases (P = 0.049 and P = 0.037, respectively), but not in distant metastases. Furthermore, tumour IDO expression correlated positively with PD-L1 expression by melanoma cells among all specimens (P = 0.0073). CONCLUSIONS Therefore, while assessment of tumour IDO expression warrants evaluation in melanoma patient cohorts treated with IDO inhibitors dosed at levels proven to inhibit the target by pharmacodynamic assessment, its utility as a biomarker may be limited by intertumoral heterogeneity.
Collapse
Affiliation(s)
- Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Benjamin M Allanson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Royal North Shore Hospital, Sydney, Australia
- Mater Hospital, North Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Jason Madore
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Mater Hospital, North Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Mater Hospital, North Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Royal North Shore Hospital, Sydney, Australia
- Mater Hospital, North Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
49
|
Rathmell WK, Rathmell JC, Linehan WM. Metabolic Pathways in Kidney Cancer: Current Therapies and Future Directions. J Clin Oncol 2018; 36:JCO2018792309. [PMID: 30372395 PMCID: PMC6488445 DOI: 10.1200/jco.2018.79.2309] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) has become known as a metabolic disease, owing to the diverse array of metabolic defects and perturbations that occur as a result of the unique genetics that can drive these tumors. Recent attention to this feature of RCCs has fueled interest in targeting metabolism as a therapeutic strategy. METHODS We conducted a literature search to develop themes around discrete pathways or processes of cellular metabolism, provide a framework for understanding emerging therapeutic strategies, and consider future interventions. RESULTS Defects occur in metabolic pathways ranging from glycolysis to mitochondrial function and affect not only the tumor cell functionality, but also the local environment. We identified opportunities for therapeutic intervention associated with each pathway. CONCLUSION The metabolism of RCC cells presents a special environment of tumor susceptibilities, with opportunities for novel imaging applications and treatment paradigms that are being tested in monotherapy or as adjuncts to targeted or immune-based strategies.
Collapse
Affiliation(s)
- W. Kimryn Rathmell
- Vanderbilt-Ingram Cancer Center, 691 Preston Building, Nashville, TN 37232, USA
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Jeffrey C. Rathmell
- Vanderbilt-Ingram Cancer Center, 691 Preston Building, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
50
|
Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front Oncol 2018; 8:367. [PMID: 30250827 PMCID: PMC6139307 DOI: 10.3389/fonc.2018.00367] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic cells that in turn initiates new vessel formation, which is prerequisite for further tumor growth and progression. This first endothelial lining is patchy, disordered in structure and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result, tumors were characterized by areas with an apparent oversupply in addition to areas with an undersupply of vessels, which complicates an efficient administration of intravenous drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT) because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor blood vessels contribute to the tumor escape from immunity by the lack of response to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion molecule expression. However, tumor vessels can remodel by the association with and integration of pericytes and smooth muscle cells which stabilize these immature vessels resulting in normalization of the vascular structures. This normalization of the tumor vascular bed could improve the efficiency of previously established therapeutic approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen distribution, and/or by overcoming endothelial anergy. This review highlights the current investigations that take advantage of a proper vascular function for improving cancer therapy with a special focus on the endothelial-immune system interplay.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|