1
|
Wen L, Zhang X, Yang Q, Zhou F. Chromatin accessibility profiling of Treg cells in acute urticaria. Epigenetics 2025; 20:2503126. [PMID: 40355834 PMCID: PMC12077484 DOI: 10.1080/15592294.2025.2503126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/20/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Acute urticaria can be a presenting symptom of anaphylaxis characterized by transient red swellings or fulminant wheals, often accompanied by severe pruritus. Numerous studies have substantiated the important involvement of regulatory T cells (Tregs) in the occurrence of allergic diseases and autoimmune diseases. However, the role of Tregs in the pathogenesis of acute urticaria is unclear. In this study, we found that the frequency of Tregs in peripheral blood mononuclear cells (PBMCs) was decreased in patients with acute urticaria compared with normal controls by flow cytometry. Analysis of Assay for transposase-accessible chromatin with sequencing (ATAC-seq) data identified 28 differentially accessible regions comparing Tregs from healthy individuals and patients with acute urticaria, all showing increased chromatin accessibility in the Tregs from acute urticaria. IL-1b was highly expressed in sera of patients with acute urticaria and the level of IL-1b was moderately positively related to white blood cell count. The elevated expression of IL-1b may be due to the diminished immune-suppressive function following the decline of Tregs in this study. We found that IL1B gene expression was also significantly increased in the skin lesions of both chronic spontaneous urticaria and solar urticaria compared to healthy controls. IL1B might play a key role in the development of acute urticaria and IL1B could be a potential prognostic biomarker and therapeutic target in urticaria.
Collapse
Affiliation(s)
- Leilei Wen
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojing Zhang
- Department of Dermatology, Hangzhou First People’s Hospital Xiasha Campus, Hangzhou Rehabilitation Hospital, Hangzhou, China
| | - Qiaoshan Yang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
2
|
Lu M, Zhao J, Zeng M, Zhu A, Li J. Four-week IgE/baseline IgE ratio combined with tryptase predicts clinical outcome in omalizumab-treated children with moderate-to-severe asthma. Open Med (Wars) 2025; 20:20251176. [PMID: 40417314 PMCID: PMC12103107 DOI: 10.1515/med-2025-1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 05/27/2025] Open
Abstract
Objective The aim of this study was to investigate the feasibility of the 4-week IgE/baseline IgE ratio and tryptase to predict the clinical efficacy of omalizumab in the treatment of pediatric moderate-to-severe asthma. Methods Moderate-to-severe asthma patients were selected, and their baseline IgE levels were recorded, and the IgE levels were tested again after 4 weeks of treatment with omalizumab to calculate the 4-week IgE/baseline IgE ratio. Serum tryptase was measured. Treatment efficacy was assessed. Patients were divided into response and non-response groups. Receiver operating characteristic curves were plotted for the sensitivity and specificity of the indices in predicting response to omalizumab treatment. Results Serum total IgE levels increased to 655.89 IU/mL, serum tryptase was 5.31 ng/mL after 4 weeks of treatment, which was higher than at baseline. There was a significant difference in total serum IgE between children in response and non-response groups after 4 weeks of treatment. The response group children had a higher 4-week IgE/baseline IgE ratio, whereas tryptase was lower. Combined metrics had moderate predictive value for the efficacy of omalizumab therapy. Conclusion The 4-week IgE/baseline IgE ratio combined with tryptase can predict, to a certain extent, the clinical efficacy of omalizumab in the treatment of pediatric moderate-to-severe asthma.
Collapse
Affiliation(s)
- Min Lu
- Department of Pediatrics, Suzhou Research Center of Medical School, Suzhou Hospital, Affliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, China
| | - Jing Zhao
- Department of Child Health Care, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Mei Zeng
- Department of Emergency Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, 610000, China
| | - AiMin Zhu
- Department of Pediatrics, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, 730050, China
| | - JinFen Li
- Department of Pediatrics, The Fourth Affiliated Hospital of Soochow University, No.9, Chongwen Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
3
|
Yang B, Yu H, Yao W, Wang H. Case Report: Successful management of refractory palmoplantar pustulosis with upadacitinib. Front Immunol 2025; 16:1476584. [PMID: 40129975 PMCID: PMC11931074 DOI: 10.3389/fimmu.2025.1476584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Palmoplantar Pustulosis (PPP) is a rare chronic skin disorder characterized by recurrent sterile pustules on palms and soles, leading to significant pain and functional impairment. Treatments include topical medications, phototherapy, systemic treatments, and biologics, but nonconclusive strategy exists. Here we report a case of a 66-year-old Chinese woman who developed refractory PPP after COVID-19 vaccination, characterized by painful, itchy pustules on her hands and feet. Initial treatments such as topical corticosteroids, calcipotriol, methotrexate, and cyclosporine were ineffective. Due to potential hypersensitivity reactions post-vaccination and elevated Immunoglobulin (Ig)E levels, anti-IgE therapy was administrated. Omalizumab treatment resulted some improvement, but noticeable symptoms persisted. Upon switching to upadacitinib, the patient experienced rapid and complete resolution of pustules and desquamation, with continued symptom control and no severe adverse reactions over a year. Throughout the treatment, clinical symptoms and the patient's quality of life were assessed using the Palmoplantar Pustular Psoriasis Area and Severity Index (PPP ASI), the Palmoplantar Pustulosis Physician Global Assessment (PPP PGA), and the Dermatology Life Quality Index (DLQI). Serum IgE and food-specific (FS)-IgG4 levels were monitored. Additionally, reductions in cytokine levels (interleukin (IL)-4, IL-13, IL-25, IL-33, and tumor necrosis factor (TNF)-α) were observed after upadacitinib treatment. This case highlights the potential of upadacitinib, as an effective treatment for PPP, emphasizing the need for further research into targeted therapies addressing multiple signaling pathways involved in PPP's pathogenesis.
Collapse
Affiliation(s)
- Boyun Yang
- Department of Allergy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hanxiao Yu
- Clinical Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wo Yao
- Department of Allergy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiying Wang
- Department of Allergy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Xu BL, Wang YY, Chu XL, Dong CM. Research progress and immunological insights of shrimp allergens. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110051. [PMID: 39608732 DOI: 10.1016/j.fsi.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Allergic diseases have become a major health issue in the 21st century. The FAO has pinpointed the eight most prevalent allergens worldwide, with shrimp allergy attracting global concern due to its escalating incidence. This review delves into the current knowledge of shrimp allergen types and traits, immune response mechanisms, advancements in cross-reactivity research, and breakthroughs in diagnostic and therapeutic methods. It highlights the variety of shrimp allergens, such as tropomyosin and arginine kinase, and concentrates on IgE-mediated immediate hypersensitivity reactions, involving mast cells and basophils, alongside the role of T cells and cytokines in non-IgE-mediated delayed hypersensitivity reactions. The exploration of cross-reactivity underscores the connection between shrimp allergy and allergies to other animals. Utilizing bioinformatics tools, including homology analysis, epitope prediction, and molecular modeling, has enhanced our comprehension of allergen molecular features. In treatment and diagnosis, innovative approaches like immunotherapy and gene editing technology hold potential to decrease allergic sensitivity, while emerging reduction techniques like heat treatment and enzymatic hydrolysis offer new strategies for the prevention and management of food allergies. The evolution of allergen detection and purification technologies has spurred innovation in testing methodologies, encompassing traditional in vivo tests like SPT and DBPCFC, in addition to a range of other techniques such as immunoassays, biochip technology, PCR, and histamine release experiments, propelling the instantaneous and accurate identification of allergens. These scientific breakthroughs not only expand our understanding of shrimp allergen biology but also lay the foundation for developing more effective allergy prevention and control strategies.
Collapse
Affiliation(s)
- Bao-Liang Xu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan-Yuan Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xin-Lei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Chun-Ming Dong
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Vickery BP, Bird JA, Chinthrajah RS, Jones SM, Keet CA, Kim EH, Leung DYM, Shreffler WG, Sicherer SH, Sindher S, Spergel J, Wood RA. Omalizumab Implementation in Practice: Lessons Learned From the OUtMATCH Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2947-2954. [PMID: 39293782 PMCID: PMC11560495 DOI: 10.1016/j.jaip.2024.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
In February 2024, omalizumab was approved by the U.S. Food and Drug Administration for the treatment of food allergy, based on data from the landmark phase 3 clinical trial, Omalizumab as Monotherapy and as Adjunct Therapy in Children and Adults (OUtMATCH). In this Rostrum, OUtMATCH investigators share their perspectives on the trial results, the implications for translation into daily practice, and on remaining gaps in the field. The study met its primary and key secondary end points, demonstrating a large effect size in multiallergen desensitization compared with placebo; yet there were some participants who did not respond, and the percentage of responders tolerating all 3 food allergens was lower than that for single foods. Clinicians are likely to have many questions about appropriate patient selection, monitoring for treatment responsiveness, and how to manage off-label considerations such as dietary incorporation or cotreatment with oral immunotherapy. Additional research is needed to answer these remaining questions and ensure that the translation of omalizumab in real-world practice leads to high-quality outcomes.
Collapse
Affiliation(s)
- Brian P Vickery
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga; Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, Ga.
| | - J Andrew Bird
- Division of Allergy and Immunology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas
| | - R Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Departments of Medicine and Pediatrics, Stanford University, Stanford, Calif
| | - Stacie M Jones
- Division of Allergy and Immunology, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Corinne A Keet
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, NC
| | - Edwin H Kim
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, NC
| | | | - Wayne G Shreffler
- Food Allergy Center and Division of Pediatric Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Scott H Sicherer
- Elliot and Roslyn Jaffe Food Allergy Institute, Division of Allergy and Immunology, Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY
| | - Sayantani Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Departments of Medicine and Pediatrics, Stanford University, Stanford, Calif
| | - Jonathan Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
7
|
Cunico D, Giannì G, Scavone S, Buono EV, Caffarelli C. The Relationship Between Asthma and Food Allergies in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1295. [PMID: 39594870 PMCID: PMC11592619 DOI: 10.3390/children11111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Asthma and food allergy are two complex allergic diseases with an increasing prevalence in childhood. They share risk factors, including atopic family history, atopic dermatitis, allergen sensitization, and T2 inflammatory pathways. Several studies have shown that in children with a food allergy, the risk of developing asthma, particularly in early childhood, is high. Food allergen intake or the inhalation of aerosolized allergens can induce respiratory symptoms such as bronchospasm. Patients with both conditions have an increased risk of severe asthma exacerbations, hospitalization, and mortality. The current management of clinical food hypersensitivity primarily involves the dietary avoidance of food allergens and the use of self-injectable adrenaline for severe reactions. Poorly controlled asthma limits the prescription of oral immunotherapy to foods, which has emerged as an alternative therapy for managing food allergies. Biological therapies that are effective in severe asthma have been explored for treating food allergies. Omalizumab improves asthma control and, either alone or in combination with oral immunotherapy, increases the threshold of allergen tolerance. Understanding the interplay between asthma and food allergy is crucial for developing successful treatment approaches and ameliorating patient results.
Collapse
Affiliation(s)
| | | | | | | | - Carlo Caffarelli
- Clinica Pediatrica, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (D.C.); (G.G.); (S.S.); (E.V.B.)
| |
Collapse
|
8
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Bozek A, Rogala B, Miodonska M, Canonica GW. Progressive clinical effects of the combination omalizumab and HDM - allergen immunotherapy in asthma. J Asthma 2024; 61:532-538. [PMID: 38064236 DOI: 10.1080/02770903.2023.2293057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE The combination of allergen immunotherapy (AIT) and omalizumab is used to treat patients at risk of anaphylaxis. There is currently a very little evidence that this combination increases the effectiveness of AIT in patients with inhalant allergies. The study aimed to evaluate the effectiveness of HDM-SCIT therapy (injection immunotherapy for house dust mites) in combination with omalizumab in treating HDM-induced asthma. METHODS This study was a placebo-controlled, randomized, multicenter trial including 82 patients with HDM-driven mild to moderate asthma. Omalizumab alone (A), HDM SCIT + omalizumab (B), SCIT alone (C), or placebo (D) for 24 months were applied. All patients received asthma treatment in accordance with GINA recommendations. The treatment efficacy was defined by a reduction in the daily dose of inhaled steroids (ICS) and a reduction in the number of asthma exacerbations (AX). RESULTS After 24 months of therapy, a statistically significant reduction in the daily doses of ICS in groups A and B was observed (p = 0.021 and p = 0.008). Daily ICS reduction was considerably more significant in group B (p = 0.01). During 24 months of observation, the AX was significantly reduced in all study groups, with the greatest significant difference observed between groups A and B and groups C and D (placebo) as follows: 0.42 patient/per year vs. 0.39 vs. 0.84 vs. 0.91 (p = 0.023). CONCLUSION The combination of HDM SCIT and omalizumab is significantly and progressively reducing ICS use and AX in a 24-month study. The combination is significantly more effective than the single treatments or placebo.
Collapse
Affiliation(s)
- Andrzej Bozek
- Clinical Department of Internal Diseases, Dermatology and Allergology, Medical University of Silesia, Katowice, Poland
| | | | - Martyna Miodonska
- Clinical Department of Internal Diseases, Dermatology and Allergology, Medical University of Silesia, Katowice, Poland
| | - Giorgio Walter Canonica
- Head Personalized Medicine Asthma & Allergy Clinic-Humanitas, Research Hospital, Humanitas University, Milano, Italy
| |
Collapse
|
10
|
Nguyen A, du Toit G, Lack G, Marrs T. Optimising the management of peanut allergy by targeting immune plasticity. Clin Exp Allergy 2024; 54:169-184. [PMID: 38423799 DOI: 10.1111/cea.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 03/02/2024]
Abstract
Randomised controlled trials investigating the efficacy of oral tolerance induction to peanut have enabled detailed comparison of their clinical and immunological success. They have demonstrated that the regular consumption of peanut for at least 2 years by babies who are not allergic enables protection from developing peanut allergy. The LEAP study intervention tested the impact of regular peanut consumption for 4 years and demonstrated a sustained protection against the development of peanut allergy even after 12 months of peanut avoidance from 5 to 6 years of age. The PreventADALL trial introduced multiple allergens into babies' diets from early infancy and reduced the prevalence of food allergy at 3 years, especially by protecting against peanut allergy. Immunological studies from the LEAP cohort demonstrated that regular peanut consumption was associated with a prompt induction of peanut-specific IgG4 and reduced manufacture of peanut and Ara h 2-specific IgE. Even after stopping peanut consumption for 5 years, there continued to be a significant fall in peanut-specific Ara h 2 IgE in the consumption group from 5 to 6 years of age (p < .01). Children who developed peanut allergy by 5 years started to develop increasing sensitisation to linear sequential peanut epitopes from 2.5 years of age, suggesting that putative disease-modifying interventions should commence before 3 years. Data comparing clinical outcomes between children undergoing peanut immunotherapy from infancy suggest that younger children can consume higher portions of peanut without reaction on challenge whilst taking immunotherapy, have fewer side effects and are more likely to enjoy remission of PA. Peanut oral immunotherapy modulates T-cell populations in order to bring about hypo-responsiveness of allergy effector cells. Studies are now needed to characterise and compare different states of immunological tolerance. This will accelerate the design of interventions which can promote primary, secondary and tertiary levels of PA prevention across a range of age groups.
Collapse
Affiliation(s)
- Alan Nguyen
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - George du Toit
- Paediatric Allergy, Department of Women and Children's Health, King's College London, Strand, UK
- Children's Allergies, Evelina London, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | - Gideon Lack
- Paediatric Allergy, Department of Women and Children's Health, King's College London, Strand, UK
| | - Tom Marrs
- Paediatric Allergy, Department of Women and Children's Health, King's College London, Strand, UK
- Children's Allergies, Evelina London, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| |
Collapse
|
11
|
Menchén-Martínez D, Martínez-Blanco M, Lozano-Ojalvo D, Berin MC. Evaluation of the Suppressive Capacity of Regulatory T Cells in Food Allergy Research. Methods Mol Biol 2024; 2717:191-205. [PMID: 37737985 DOI: 10.1007/978-1-0716-3453-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regulatory T cells (Treg) exert a crucial role in the suppression of exacerbated T helper (Th) cell responses, including those of type 2 Th (Th2) cells, and in the maintenance of tolerance to environmental antigens and food allergens. The functional capacity of Tregs to suppress Th2 responses has been studied through activation and immunosuppression assays using cells from mice and humans. The immunosuppression assay is an essential in vitro tool that allows the evaluation of the Treg capacity to limit the proliferation and expansion of conventional T cells. This approach enables the determination of the suppressive ability of different Treg subsets. In this chapter, we describe a basic and well-established immunosuppression protocol for human and murine Treg that has been widely applied in food allergy research.
Collapse
Affiliation(s)
- David Menchén-Martínez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Daniel Lozano-Ojalvo
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Agar Muñoz AM, Galván Calle CA. [Application of biologicals in patients with food allergies]. REVISTA ALERGIA MÉXICO 2023; 70:297-299. [PMID: 38506875 DOI: 10.29262/ram.v70i4.1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
Despite promising advancements in oral immunotherapy for food allergies, medical implementation faces limitations. Non-specific treatment options based on inhibiting the type 2 inflammatory pathway, including monoclonal antibodies, are under investigation. TNX-901 and omalizumab have demonstrated increased reaction thresholds, reducing adverse events in peanut-allergic patients. Dupilumab, blocking the IL-4 receptor, shows positive results in both food allergies and eosinophilic esophagitis. Antibodies against alarmins and anti-IL-5, such as etokimab and mepolizumab, have proven efficacy in preclinical studies and clinical trials. While further studies are needed to establish their practical clinical use and determine suitability for different types of food allergies, these monoclonal antibodies present a promising horizon for the treatment of such conditions.
Collapse
Affiliation(s)
| | - César Alberto Galván Calle
- Médico Asistente, Alergólogo e Inmunólogo Clínico, Clínica Internacional Lima-Peru; Director Médico en Emedic Salud, Lima, Perú
| |
Collapse
|
13
|
Rojo Gutiérrez MI, Moncayo-Coello CV. [Prevention in food allergies]. REVISTA ALERGIA MÉXICO 2023; 70:293-296. [PMID: 38506874 DOI: 10.29262/ram.v70i4.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024] Open
Abstract
Preventing food allergies is key to reducing the incidence of the disease. Exclusive breastfeeding is recommended during the first months of life, in addition to supplementation with vitamin D and, due to the importance of the microbiota, addition of probiotics, prebiotics and symbiotic. Currently, late exposure to foods is controversial, and it is suggested to introduce allergenic foods early, trying not to expose the cutaneous route. The application of biologics in food allergy is an evolving area of research and treatment. Biologics are indicated in diseases evaluated in various studies, such as atopic dermatitis, and are approved by the FDA for prescription; However, its potential administration in the treatment of severe allergic reactions caused by food is still debated. These therapies may change the way food allergy is addressed in the future, but they are still in experimental stages and not widely available. Food anaphylaxis is a life-threatening allergic reaction that requires quick action. Prevention involves avoiding the triggering food, awareness of symptoms, and availability of epinephrine for immediate administration in case of a reaction.
Collapse
Affiliation(s)
- María Isabel Rojo Gutiérrez
- Pediatra, Alergóloga e Inmunóloga; profesora de Alergia pediátrica, Facultad de Medicina; Presidenta electa de la Sociedad Latinoamericana de Alergia, Asma e Inmunología (SLAAI) Montevideo,
| | | |
Collapse
|
14
|
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
15
|
Liu Z, Xie Y, Liu S, Shen S, Zhu Y, Gou Q. Identification of the ferroptosis regulator HELLS with prognostic value for adrenocortical carcinoma based on integrated analysis and experimental validation. Gland Surg 2023; 12:1251-1270. [PMID: 37842529 PMCID: PMC10570968 DOI: 10.21037/gs-22-736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/27/2023] [Indexed: 10/17/2023]
Abstract
Background For adrenocortical carcinoma (ACC), a rare endocrine malignancy with a high rate of mortality and recurrence, it is difficult for clinicians to predict overall survival and select the most effective treatment. Targeting ferroptosis, a form of cell death, has been reported to be a promising therapeutic strategy for ACC; however, the core ferroptosis regulator and its prognostic value in ACC remain unknown. Methods RNA sequencing data and clinical information were downloaded from public databases. Differentially expressed gene and survival analyses were performed to identify candidate ferroptosis regulators. A multivariate Cox regression model was used to construct a gene signature, and a nomogram was constructed to predict the overall survival of patients with ACC. Gene set variation analysis (GSVA) was used to identify underlying aberrant pathways and the relative immune cell infiltration levels of each ACC sample. Immunohistochemistry staining was performed in formalin-fixed paraffin-embedded tumor tissue sections. Results Ultimately, 23 differentially expressed ferroptosis regulators were identified between normal adrenal gland and ACC tissues, and 50 ferroptosis regulators were related to prognosis, with 13 ferroptosis regulators being simultaneously found to satisfy the differential expression and prognostic value. According to the multivariate Cox regression model, a ferroptosis regulator signature was constructed from 3 genes in The Cancer Genome Atlas (TCGA; hazard ratio =9.01; P=1.39×10-10), and the area under the curve (AUC) values of 3-, 5-, 8-year overall survival were 0.924, 0.906, and 0.866, respectively. The survival analysis and the receiver operating characteristic (ROC) analysis validated the prognostic value of the ferroptosis regulator signature in 3 validation datasets. Moreover, metabolism-, E2F-, MYC-, and G2/M checkpoint-related pathways and aberrant immune cell infiltration levels were identified as being responsible for the different prognosis of risk groups in ACC. HELLS was found to be a significantly differentially expressed ferroptosis-suppressor gene with a prognostic value in ACC and to be highly associated with immune cell infiltration levels and multiple biological functions. Conclusions A ferroptosis regulator signature showed promising power for predicting the prognosis of ACC, and HELLS was identified as a hub ferroptosis regulator in the initiation and progression of ACC.
Collapse
Affiliation(s)
- Zijian Liu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shengzhuo Liu
- Urology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Sikui Shen
- Urology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchun Zhu
- Urology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Yang BG, Kim AR, Lee D, An SB, Shim YA, Jang MH. Degranulation of Mast Cells as a Target for Drug Development. Cells 2023; 12:1506. [PMID: 37296626 PMCID: PMC10253146 DOI: 10.3390/cells12111506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells act as key effector cells of inflammatory responses through degranulation. Mast cell degranulation is induced by the activation of cell surface receptors, such as FcεRI, MRGPRX2/B2, and P2RX7. Each receptor, except FcεRI, varies in its expression pattern depending on the tissue, which contributes to their differing involvement in inflammatory responses depending on the site of occurrence. Focusing on the mechanism of allergic inflammatory responses by mast cells, this review will describe newly identified mast cell receptors in terms of their involvement in degranulation induction and patterns of tissue-specific expression. In addition, new drugs targeting mast cell degranulation for the treatment of allergy-related diseases will be introduced.
Collapse
Affiliation(s)
- Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - A-Ram Kim
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Dajeong Lee
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Seong Beom An
- Research Institute, GI Biome Inc., Seongnam 13201, Republic of Korea; (A.-R.K.); (D.L.); (S.B.A.)
| | - Yaein Amy Shim
- Research Institute, GI Innovation Inc., Songpa-gu, Seoul 05855, Republic of Korea;
| | - Myoung Ho Jang
- Research Institute, GI Innovation Inc., Songpa-gu, Seoul 05855, Republic of Korea;
| |
Collapse
|
17
|
LaHood NA, Min J, Keswani T, Richardson CM, Amoako K, Zhou J, Marini-Rapoport O, Bernard H, Hazebrouck S, Shreffler WG, Love JC, Pomes A, Pedersen LC, Mueller GA, Patil SU. Immunotherapy-induced neutralizing antibodies disrupt allergen binding and sustain allergen tolerance in peanut allergy. J Clin Invest 2023; 133:e164501. [PMID: 36647835 PMCID: PMC9843057 DOI: 10.1172/jci164501] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 01/18/2023] Open
Abstract
In IgE-mediated food allergies, exposure to the allergen activates systemic allergic responses. Oral immunotherapy (OIT) treats food allergies through incremental increases in oral allergen exposure. However, OIT only induces sustained clinical tolerance and decreased basophil sensitivity in a subset of individuals despite increases in circulating allergen-specific IgG in all treated individuals. Therefore, we examined the allergen-specific antibodies from 2 OIT cohorts of patients with sustained and transient responses. Here, we compared antibodies from individuals with sustained or transient responses and discovered specific tolerance-associated conformational epitopes of the immunodominant allergen Ara h 2 recognized by neutralizing antibodies. First, we identified what we believe to be previously unknown conformational, intrahelical epitopes using x-ray crystallography with recombinant antibodies. We then identified epitopes only recognized in sustained tolerance. Finally, antibodies recognizing tolerance-associated epitopes effectively neutralized allergen to suppress IgE-mediated effector cell activation. Our results demonstrate the molecular basis of antibody-mediated protection in IgE-mediated food allergy, by defining how these antibodies disrupt IgE-allergen interactions to prevent allergic reactions. Our approach to studying the structural and functional basis for neutralizing antibodies demonstrates the clinical relevance of specific antibody clones in antibody-mediated tolerance. We anticipate that our findings will form the foundation for treatments of peanut allergy using neutralizing antibodies and hypoallergens.
Collapse
Affiliation(s)
- Nicole A. LaHood
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jungki Min
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Tarun Keswani
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Kwasi Amoako
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jingjia Zhou
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Hervé Bernard
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Wayne G. Shreffler
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Lars C. Pedersen
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Geoffrey A. Mueller
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Sarita U. Patil
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Targeting CD22 on memory B cells to induce tolerance to peanut allergens. J Allergy Clin Immunol 2022; 150:1476-1485.e4. [PMID: 35839842 PMCID: PMC9813968 DOI: 10.1016/j.jaci.2022.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.
Collapse
|
19
|
Palomares O, Elewaut D, Irving PM, Jaumont X, Tassinari P. Regulatory T cells and immunoglobulin E: A new therapeutic link for autoimmunity? Allergy 2022; 77:3293-3308. [PMID: 35852798 DOI: 10.1111/all.15449] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Autoimmune diseases have a prevalence of approximately 7 to 9% and are classified as either organ-specific diseases, including type I diabetes, multiple sclerosis, inflammatory bowel disease and myasthenia gravis, or systemic diseases, including systemic lupus erythematosus, rheumatoid arthritis and Sjögren's syndrome. While many advancements have been made in understanding of the mechanisms of autoimmune disease, including the nature of self-tolerance and its breakdown, there remain unmet needs in terms of effective and highly targeted treatments. T regulatory cells (Tregs) are key mediators of peripheral tolerance and are implicated in many autoimmune diseases, either as a result of reduced numbers or altered function. Tregs may be broadly divided into those generated in the thymus (tTregs) and those generated in the periphery (pTregs). Tregs target many different immune cell subsets and tissues to suppress excessive inflammation and to support tissue repair and homeostasis: there is a fine balance between Treg cell stability and the plasticity that is required to adjust Tregs' regulatory purposes to particular immune responses. The central role of immunoglobulin E (IgE) in allergic disease is well recognized, and it is becoming increasingly apparent that this immunoglobulin also has a wider role encompassing other diseases including autoimmune disease. Anti-IgE treatment restores the capacity of plasmacytoid dendritic cells (pDCs) impaired by IgE- high-affinity IgE receptor (FcεR1) cross-linking to induce Tregs in vitro in atopic patients. The finding that anti-IgE therapy restores Treg cell homeostasis, and that this mechanism is associated with clinical improvement in asthma and chronic spontaneous urticaria suggests that anti-IgE therapy may also have a potential role in the treatment of autoimmune diseases in which Tregs are involved.
Collapse
Affiliation(s)
| | - Dirk Elewaut
- Department of Rheumatology, VIB Center for Inflammation Research, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Peter M Irving
- Guy's and St Thomas' Hospital Foundation Trust, London, UK
- King's College London, London, UK
| | | | | |
Collapse
|
20
|
Imran S, Neeland MR, Peng S, Vlahos A, Martino D, Dharmage SC, Tang MLK, Sawyer S, Dang TD, McWilliam V, Peters RL, Koplin JJ, Perrett KP, Novakovic B, Saffery R. Immuno-epigenomic analysis identifies attenuated interferon responses in naïve CD4 T cells of adolescents with peanut and multi-food allergy. Pediatr Allergy Immunol 2022; 33:e13890. [PMID: 36433861 DOI: 10.1111/pai.13890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND IgE-mediated food allergies have been linked to suboptimal naïve CD4 T (nCD4T) cell activation in infancy, underlined by epigenetic and transcriptomic variation. Similar attenuated nCD4T cell activation in adolescents with food allergy have also been reported, but these are yet to be linked to specific epigenetic or transcriptional changes. METHODS We generated genome-wide DNA methylation data in purified nCD4 T cells at quiescence and following activation in a cohort of adolescents (aged 10-15 years old) with peanut allergy (peanut only or peanut + ≥1 additional food allergy) (FA, n = 29), and age-matched non-food allergic controls (NA, n = 18). Additionally, we assessed transcriptome-wide gene expression and cytokine production in these cells following activation. RESULTS We found widespread changes in DNA methylation in both NA and FA nCD4T cells in response to activation, associated with the T cell receptor signaling pathway. Adolescents with FA exhibit unique DNA methylation signatures at quiescence and post-activation at key genes involved in Th1/Th2 differentiation (RUNX3, RXRA, NFKB1A, IL4R), including a differentially methylated region (DMR) at the TNFRSF6B promoter, linked to Th1 proliferation. Combined analysis of DNA methylation, transcriptomic data and cytokine output in the same samples identified an attenuated interferon response in nCD4T cells from FA individuals following activation, with decreased expression of several interferon genes, including IFN-γ and a DMR at a key downstream gene, BST2. CONCLUSION We find that attenuated nCD4T cell responses from adolescents with food allergy are associated with specific epigenetic variation, including disruption of interferon responses, indicating dysregulation of key immune pathways that may contribute to a persistent FA phenotype. However, we recognize the small sample size, and the consequent restraint on reporting adjusted p-value statistics as limitations of the study. Further study is required to validate these findings.
Collapse
Affiliation(s)
- Samira Imran
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Melanie R Neeland
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Stephen Peng
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Amanda Vlahos
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - David Martino
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Telethon Kids Institute, University of Western, Perth, Nedlands, Australia
| | - Shyamali C Dharmage
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan Sawyer
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Centre for Adolescent Health, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Thanh D Dang
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Vicki McWilliam
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jennifer J Koplin
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Abstract
Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.
Collapse
|
22
|
Nagata Y, Suzuki R. FcεRI: A Master Regulator of Mast Cell Functions. Cells 2022; 11:cells11040622. [PMID: 35203273 PMCID: PMC8870323 DOI: 10.3390/cells11040622] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mast cells (MCs) perform multiple functions thought to underlie different manifestations of allergies. Various aspects of antigens (Ags) and their interactions with immunoglobulin E (IgE) cause diverse responses in MCs. FcεRI, a high-affinity IgE receptor, deciphers the Ag–IgE interaction and drives allergic responses. FcεRI clustering is essential for signal transduction and, therefore, determines the quality of MC responses. Ag properties precisely regulate FcεRI dynamics, which consequently initiates differential outcomes by switching the intracellular-signaling pathway, suggesting that Ag properties can control MC responses, both qualitatively and quantitatively. Thus, the therapeutic benefits of FcεRI-targeting strategies have long been examined. Disrupting IgE–FcεRI interactions is a potential therapeutic strategy because the binding affinity between IgE and FcεRI is extremely high. Specifically, FcεRI desensitization, due to internalization, is also a potential therapeutic target that is involved in the mechanisms of allergen-specific immunotherapy. Several recent findings have suggested that silent internalization is strongly associated with FcεRI dynamics. A comprehensive understanding of the role of FcεRI may lead to the development of novel therapies for allergies. Here, we review the qualitatively diverse responses of MCs that impact the attenuation/development of allergies with a focus on the role of FcεRI toward Ag exposure.
Collapse
|
23
|
Diluvio L, Pensa C, Piccolo A, Lanna C, Bianchi L, Campione E. Coesisting inflammatory skin diseases: Tildrakizumab to control psoriasis and Omalizumab for urticaria. Dermatol Ther 2022; 35:e15359. [PMID: 35138022 DOI: 10.1111/dth.15359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
In Western countries the number of individuals suffering from an autoimmune condition is constantly growing and often patients suffering from autoimmune disease are susceptible to developing a second autoimmune disorder. We report a case of an adult female patient affected by psoriasis vulgaris and treated with tildrakizumab, a humanized monoclonal antibody targeting interleukin-23, who later developed chronic spontaneous urticaria and started omalizumab, a humanized antibody to IgE, showing a favorable outcome. We speculate that the two combined therapies have restored the cytokine balance bringing it towards tolerance and remission of the two pathologies. It is conceivable that tildrakizumab may have a synergic action with omalizumab in the treatment of urticaria in patients affected by both psoriasis and urticaria. Our case and the study of the mechanisms of action of the two drugs suggest how the two therapies can act with an interlocking mechanism in achieving the final therapeutic effect.
Collapse
Affiliation(s)
- Laura Diluvio
- Department of Dermatology, University of Rome Tor Vergata, Viale Oxford, Rome, Italy
| | - Chiara Pensa
- Department of Dermatology, University of Rome Tor Vergata, Viale Oxford, Rome, Italy
| | - Arianna Piccolo
- Department of Dermatology, University of Rome Tor Vergata, Viale Oxford, Rome, Italy
| | - Caterina Lanna
- Department of Dermatology, University of Rome Tor Vergata, Viale Oxford, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, University of Rome Tor Vergata, Viale Oxford, Rome, Italy
| | - Elena Campione
- Department of Dermatology, University of Rome Tor Vergata, Viale Oxford, Rome, Italy
| |
Collapse
|
24
|
Zhang Y, Li L, Genest G, Zhao W, Ke D, Bartolucci S, Pavey N, Al-Aubodah TA, Lejtenyi D, Torabi B, Ben-Shoshan M, Mazer B, Piccirillo CA. Successful Milk Oral Immunotherapy Promotes Generation of Casein-Specific CD137 + FOXP3 + Regulatory T Cells Detectable in Peripheral Blood. Front Immunol 2021; 12:705615. [PMID: 34887847 PMCID: PMC8650635 DOI: 10.3389/fimmu.2021.705615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Oral immunotherapy (OIT) is an emerging treatment for cow's milk protein (CMP) allergy in children. The mechanisms driving tolerance following OIT are not well understood. Regulatory T cells (TREG) cells are key inhibitors of allergic responses and promoters of allergen-specific tolerance. In an exploratory study, we sought to detect induction of allergen-specific TREG in a cohort of subjects undergoing OIT. Methods Pediatric patients with a history of allergic reaction to cow's milk and a positive Skin Pick Test (SPT) and/or CMP-specific IgE >0.35 kU, as well as a positive oral challenge to CMP underwent OIT with escalating doses of milk and were followed for up to 6 months. At specific milestones during the dose escalation and maintenance phases, casein-specific CD4+ T cells were expanded from patient blood by culturing unfractionated PBMCs with casein in vitro. The CD4+ T cell phenotypes were quantified by flow cytometry. Results Our culture system induced activated casein-specific FOXP3+Helios+ TREG cells and FOXP3- TEFF cells, discriminated by expression of CD137 (4-1BB) and CD154 (CD40L) respectively. The frequency of casein-specific TREG cells increased significantly with escalating doses of milk during OIT while casein-specific TEFF cell frequencies remained constant. Moreover, expanded casein-specific TREG cells expressed higher levels of FOXP3 compared to polyclonal TREG cells, suggesting a more robust TREG phenotype. The induction of casein-specific TREG cells increased with successful CMP desensitization and correlated with increased frequencies of casein-specific Th1 cells among OIT subjects. The level of casein-specific TREG cells negatively correlated with the time required to reach the maintenance phase of desensitization. Conclusions Overall, effective CMP-OIT successfully promoted the expansion of casein-specific, functionally-stable FOXP3+ TREG cells while mitigating Th2 responses in children receiving OIT. Our exploratory study proposes that an in vitro TREG response to casein may correlate with the time to reach maintenance in CMP-OIT.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lei Li
- Department of Otolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Wei Zhao
- Program in Translational Research in Respiratory Diseases, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Dan Ke
- Program in Translational Research in Respiratory Diseases, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Sabrina Bartolucci
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Nils Pavey
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Tho-Alfakar Al-Aubodah
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Duncan Lejtenyi
- Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Bahar Torabi
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Moshe Ben-Shoshan
- Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Bruce Mazer
- Program in Translational Research in Respiratory Diseases, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada.,Division of Allergy Immunology and Clinical Dermatology, Montreal Children's Hospital, McGill University, Montréal, QC, Canada
| | - Ciriaco A Piccirillo
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
25
|
Mori F, Giovannini M, Barni S, Jiménez-Saiz R, Munblit D, Biagioni B, Liccioli G, Sarti L, Liotti L, Ricci S, Novembre E, Sahiner U, Baldo E, Caimmi D. Oral Immunotherapy for Food-Allergic Children: A Pro-Con Debate. Front Immunol 2021; 12:636612. [PMID: 34650547 PMCID: PMC8507468 DOI: 10.3389/fimmu.2021.636612] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
The prevalence of food allergy has increased in recent years, especially in children. Allergen avoidance, and drugs in case of an allergic reaction, remains the standard of care in food allergy. Nevertheless, increasing attention has been given to the possibility to treat food allergy, through immunotherapy, particularly oral immunotherapy (OIT). Several OIT protocols and clinical trials have been published. Most of them focus on children allergic to milk, egg, or peanut, although recent studies developed protocols for other foods, such as wheat and different nuts. OIT efficacy in randomized controlled trials is usually evaluated as the possibility for patients to achieve desensitization through the consumption of an increasing amount of a food allergen, while the issue of a possible long-term sustained unresponsiveness has not been completely addressed. Here, we evaluated current pediatric OIT knowledge, focusing on the results of clinical trials and current guidelines. Specifically, we wanted to highlight what is known in terms of OIT efficacy and effectiveness, safety, and impact on quality of life. For each aspect, we reported the pros and the cons, inferable from published literature. In conclusion, even though many protocols, reviews and meta-analysis have been published on this topic, pediatric OIT remains a controversial therapy and no definitive generalized conclusion may be drawn so far. It should be an option provided by specialized teams, when both patients and their families are prone to adhere to the proposed protocol. Efficacy, long-term effectiveness, possible role of adjuvant therapies, risk of severe reactions including anaphylaxis or eosinophilic esophagitis, and impact on the quality of life of both children and caregivers are all aspects that should be discussed before starting OIT. Future studies are needed to provide firm clinical and scientific evidence, which should also consider patient reported outcomes.
Collapse
Affiliation(s)
- Francesca Mori
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Simona Barni
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-IP), Madrid, Spain.,Department of Immunology & Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| | - Benedetta Biagioni
- Allergy Outpatient Clinic, Division of Internal Medicine, IRCCS Azienda Ospedaliera Universitaria, Bologna, Italy
| | - Giulia Liccioli
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Lucrezia Sarti
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Lucia Liotti
- Department of Pediatrics, Salesi Children's Hospital, Azienda Ospedaliera Universitaria (AOU) Ospedali Riuniti Ancona, Ancona, Italy
| | - Silvia Ricci
- Division of Immunology, Section of Pediatrics, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Elio Novembre
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Umit Sahiner
- Department of Pediatric Allergy, Hacettepe University, Ankara, Turkey
| | - Ermanno Baldo
- "Giovan Battista Mattei" Research Institute, Stenico, Italy
| | - Davide Caimmi
- Allergy Unit, CHU de Montpellier, Univ Montpellier, Montpellier, France.,IDESP, UA11, INSERM-Univ Montpellier, Montpellier, France
| |
Collapse
|
26
|
Ogata M, Kido J, Nakamura K. Oral Immunotherapy for Children with Cow's Milk Allergy. Pathogens 2021; 10:1328. [PMID: 34684278 PMCID: PMC8539286 DOI: 10.3390/pathogens10101328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cow's milk allergy (CMA) is one of the most common IgE-dependent food allergies in children. Some children develop severe and persistent CMA, with near-fatal reactions after exposure to trace amounts of cow's milk (CM). Because milk and dairy products are included in various processed food products, it is difficult to completely remove milk, which negatively affects the quality of life of children with CMA. Oral immunotherapy (OIT) can alleviate food allergen-induced anaphylaxis under continuous ingestion of a little of the causative food. Children with severe CMA may benefit from OIT, but the treatment requires a long time and poses a risk of anaphylaxis. Moreover, in recent years, new therapies, including omalizumab, sublingual immunotherapy, and epicutaneous immunotherapy, have played the role of optional OIT. In this review, we present the current methods of and other attempts at OIT, and discuss OIT for safely treating CMA.
Collapse
Affiliation(s)
- Mika Ogata
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto City 860-8556, Japan; (M.O.); (K.N.)
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City 860-8556, Japan
- Kumamoto Medical Center, Department of Pediatrics, National Hospital Organization, Kumamoto City 860-8556, Japan
| | - Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto City 860-8556, Japan; (M.O.); (K.N.)
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto City 860-8556, Japan; (M.O.); (K.N.)
| |
Collapse
|
27
|
Ramsey N, Berin MC. Pathogenesis of IgE-mediated food allergy and implications for future immunotherapeutics. Pediatr Allergy Immunol 2021; 32:1416-1425. [PMID: 33715245 PMCID: PMC9096874 DOI: 10.1111/pai.13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the immune basis of food allergy has grown rapidly in parallel with the development of new immune-targeted interventions for the treatment of food allergy. Local tissue factors, including the composition of skin and gastrointestinal microbiota and production of Th2-inducing cytokines (TSLP, IL-33, and IL-25) from barrier sites, have been shown not only to contribute to the development of food allergy, but also to act as effective targets for treatment in mice. Ongoing clinical trials are testing the targeting of these factors in human disease. There is a growing understanding of the contribution of IL-13 to the induction of high-affinity IgE and the need for continual T-cell help in the maintenance of long-lived IgE. This provides a strong rationale to test biologics targeting both IL-4 and IL-13 in the treatment of established food allergy. Various forms of allergen immunotherapy for food allergy have clearly shown that low specific IgE and elevated specific IgG4 are predictive of sustained treatment effect. Treatments that mimic that immune response, for example, lowering IgE, with monoclonal antibodies such as omalizumab, or administering allergen-specific IgG, are in various stages of investigation. As we gain more opportunities to use immune-modifying treatments for the treatment of food allergy, studies of the immune and clinical response to those interventions will continue to rapidly advance our understanding of the immune basis of food allergy and tolerance.
Collapse
Affiliation(s)
- Nicole Ramsey
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Guilleminault L, Michelet M, Reber LL. Combining Anti-IgE Monoclonal Antibodies and Oral Immunotherapy for the Treatment of Food Allergy. Clin Rev Allergy Immunol 2021; 62:216-231. [PMID: 34550555 DOI: 10.1007/s12016-021-08902-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Immunoglobulin E (IgE)-mediated food allergy is a real public health problem worldwide. The prevalence of food allergy is particularly high in children. Patients with food allergy experience high morbidity with a change in quality of life due to the risk of severe anaphylaxis. Current treatment options are poor. Allergen avoidance is widely recommended but exposes patients to accidental ingestion. Oral immunotherapy is also used in patients with food allergies to the most common allergens. Oral immunotherapy consists of a daily administration of small, gradually increasing amounts of allergens to induce desensitisation. This procedure aims at inducing immune tolerance to the ingested food allergens. However, some patients experience adverse reactions and discontinue oral immunotherapy.Given that IgE plays a crucial role in food allergy and anti-IgE are effective in allergic asthma, the use of anti-IgE therapeutic monoclonal antibodies (mAbs) such as omalizumab has been assessed in food allergy patients. The use of omalizumab as a monotherapy in food allergy has not been extensively studied but looks promising. There is more published evidence regarding the effect of omalizumab and oral immunotherapy in food allergy. Given the promising results of oral immunotherapy regarding sustained tolerance in clinical trials and the potential capacity of omalizumab to reduce symptoms in case of accidental exposure, a strategy combining oral immunotherapy with omalizumab pre-treatment has been suggested as a safer option in patients with severe food allergy compared to isolated therapy. Omalizumab seems useful in ensuring safer administration of oral immunotherapy with the oral immunotherapy maintenance dose being reached more rapidly. Quality-of-life improvement is greater with oral immunotherapy + omalizumab compared to oral immunotherapy alone. Moreover, sustained unresponsiveness is achieved more frequently with omalizumab. Considering that precision medicine and personalised therapy are major goals for allergic diseases, predictive biomarkers are crucial in order to identify food allergy patients more likely to benefit from anti-IgE therapies.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious, Inflammatory Diseases (Infinity), Inserm U1291, University of Toulouse, C. H. U. Purpan, CNRS, U5282, Toulouse, France. .,Department of Respiratory Medicine and Allergic Diseases, Toulouse University Hospital Centre, Toulouse, France.
| | - Marine Michelet
- Toulouse Institute for Infectious, Inflammatory Diseases (Infinity), Inserm U1291, University of Toulouse, C. H. U. Purpan, CNRS, U5282, Toulouse, France.,Paediatric Pneumo-Allergology Department, Children's Hospital, Toulouse University Hospital Centre, 330 Avenue de Grande Bretagne, 31300, Toulouse, France
| | - Laurent Lionel Reber
- Toulouse Institute for Infectious, Inflammatory Diseases (Infinity), Inserm U1291, University of Toulouse, C. H. U. Purpan, CNRS, U5282, Toulouse, France
| |
Collapse
|
29
|
Manohar M, Dunham D, Gupta S, Yan Z, Zhang W, Minnicozzi S, Kirkey M, Bunning B, Chowdhury RR, Galli SJ, Boyd SD, Kost LE, Chinthrajah RS, Desai M, Oettgen HC, Maecker HT, Yu W, DeKruyff RH, Andorf S, Nadeau KC. Immune changes beyond Th2 pathways during rapid multifood immunotherapy enabled with omalizumab. Allergy 2021; 76:2809-2826. [PMID: 33782956 PMCID: PMC8609920 DOI: 10.1111/all.14833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multifood oral immunotherapy (mOIT) with adjunctive anti-IgE (omalizumab, XOLAIR® ) treatment affords safe, effective, and rapid desensitization to multiple foods, although the specific immune mechanisms mediating this desensitization remain to be fully elucidated. METHODS Participants in our phase 2 mOIT trial (NCT02643862) received omalizumab from baseline to week 16 and mOIT from week 8 to week 36. We compared the immune profile of PBMCs and plasma taken at baseline, week 8, and week 36 using high-dimensional mass cytometry, component-resolved diagnostics, the indirect basophil activation test, and Luminex. RESULTS We found (i) decreased frequency of IL-4+ peanut-reactive CD4+ T cells and a marked downregulation of GPR15 expression and CXCR3 frequency among γδ and CD8+ T-cell subsets at week 8 during the initial, omalizumab-alone induction phase; (ii) significant upregulation of the skin-homing receptor CCR4 in peanut-reactive CD4+ T and Th2 effector memory (EM) cells and of cutaneous lymphocyte-associated antigen (CLA) in peanut-reactive CD8+ T and CD8+ EM cells; (iii) downregulation of CD86 expression among antigen-presenting cell subsets; and (iv) reduction in pro-inflammatory cytokines, notably IL-17, at week 36 post-OIT. We also observed significant attenuation of the Th2 phenotype post-OIT, defined by downregulation of IL-4 peanut-reactive T cells and OX40 in Th2EM cells, increased allergen component-specific IgG4/IgE ratio, and decreased allergen-driven activation of indirectly sensitized basophils. CONCLUSIONS This exploratory study provides novel comprehensive insight into the immune underpinnings of desensitization through omalizumab-facilitated mOIT. Moreover, this study provides encouraging results to support the complex immune changes that can be induced by OIT.
Collapse
Affiliation(s)
- Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | - Diane Dunham
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | - Sheena Gupta
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
| | - Zheng Yan
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | - Samantha Minnicozzi
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Matthew Kirkey
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | - Bryan Bunning
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | | | - Stephen J. Galli
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
- Department of Microbiology and Immunology, Stanford, CA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | | | | - Manisha Desai
- Department of Biomedical and Data Science, Stanford University, Stanford, CA
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Holden T. Maecker
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford, CA
| | - Wong Yu
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| | | | - Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, Divisions of Biomedical Informatics and Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA
| |
Collapse
|
30
|
Bergantini L, d'Alessandro M, Cameli P, Pianigiani T, Fanetti M, Sestini P, Bargagli E. Follicular T Helper and Breg Cell Balance in Severe Allergic Asthma Before and After Omalizumab Therapy. Mol Diagn Ther 2021; 25:593-605. [PMID: 34342843 PMCID: PMC8410727 DOI: 10.1007/s40291-021-00545-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Severe allergic asthma (SAA) is based on type 2 (T2-high) immune responses to allergens promoting type 2 T helper (Th2) cell cytokine responses and production of IgE antibodies. Omalizumab was the first biological drug licensed for clinical use in the management of IgE-mediated SAA. Despite emerging evidence supporting the prominent role of follicular T cells (Tfh), Breg and Treg subsets, in the development and progression of SAA, no data are available on the impact of omalizumab therapy. METHODS Ten SAA patients monitored at the Respiratory Diseases Unit of Siena University Hospital and ten healthy sex- and age-matched controls were enrolled in the study. Clinical and functional parameters were collected at baseline (T0) and after 6 months of therapy (T6). Cellular population analysis was determined through multicolour flow cytometry. RESULTS SAA patients showed higher percentages of Th17.1, Tfh and Tfh2 while CD24hiCD27hi Breg cell, Treg and Tfr percentages were significantly lower than in controls. Higher percentages of Tfh2 in patients with nasal polyps than in those without and in controls were observed. At T6, significant decreases in Tfh and Tfh2 compared with T0 were observed. A slightly significant increase in Teffs was reported at T6 compared to T0. ΔIgE levels in serum were correlated with ΔCD19+CD24+CD27+ Breg cell percentages (r = - 0.86, p = 0.0022). CONCLUSIONS Our data explored the changes in Tfh cells, Tregs and Bregs in severe asthma. The restoration of immunological imbalance in SAA patients after omalizumab is certainly intriguing and represents a glimpse into the comprehension of immunological effects of treatment.
Collapse
Affiliation(s)
- Laura Bergantini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy.
| | - Miriana d'Alessandro
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Paolo Cameli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Tommaso Pianigiani
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Matteo Fanetti
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Piersante Sestini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| | - Elena Bargagli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, University of Siena, 53100, Siena, Italy
| |
Collapse
|
31
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Krempski JW, Warren C, Han X, Zhang W, He Z, Lejeune S, Nadeau K. Food Allergies: An Example of Translational Research. Immunol Allergy Clin North Am 2021; 41:143-163. [PMID: 33863476 DOI: 10.1016/j.iac.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food allergies have been rising in prevalence since the 1990s, imposing substantial physical, psychosocial, and economic burdens on affected patients and their families. Until recently, the only therapy for food allergy was strict avoidance of the allergenic food. Recent advances in translational studies, however, have led to insights into allergic sensitization and tolerance. This article provides an overview of cutting-edge research into food allergy and immune tolerance mechanisms utilizing mouse models, human studies, and systems biology approaches. This research is being translated and implemented in the clinical setting to improve diagnosis and reduce food allergy's public health burden.
Collapse
Affiliation(s)
- James Walter Krempski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA.
| | - Christopher Warren
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Ziyuan He
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Stéphanie Lejeune
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Michelet M, Reber L, Guilleminault L. Mise au point sur l’omalizumab dans l’allergie alimentaire. REVUE FRANÇAISE D'ALLERGOLOGIE 2021. [DOI: 10.1016/j.reval.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Barshow SM, Kulis MD, Burks AW, Kim EH. Mechanisms of oral immunotherapy. Clin Exp Allergy 2021; 51:527-535. [PMID: 33417257 PMCID: PMC9362513 DOI: 10.1111/cea.13824] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 10/19/2023]
Abstract
Food allergy presents a significant global health concern with up to 10% of the population affected in developed nations and a steadily increasing prevalence. In many cases, particularly with peanut, tree nut and shellfish, food allergy is a lifelong and potentially life-threatening diagnosis. While no 'cure' for IgE-mediated food allergy exists, oral immunotherapy (OIT) is a promising treatment modality with the peanut OIT drug Palforzia (Aimmune Therapeutics) the only treatment for food allergy that is currently approved by the United States Food and Drug Administration. OIT primarily induces a state of desensitization with only a minority of subjects achieving sustained unresponsiveness, a state of limited clinical remission that appears to be immunologically distinct from natural tolerance. Early humoural changes during OIT include an initial increase in allergen-specific IgE, which eventually decreases to below baseline levels as OIT progresses, and a gradual increase in allergen-specific IgA and IgG4 that continues throughout the course of OIT. Basophil hyporesponsiveness and decreased skin prick test wheal size are observed within the first year of OIT, and persistence after completion of therapy has been associated with sustained unresponsiveness. In the T-cell compartment, there is an initial expansion followed by a decline in the number and activity of T helper 2 (TH 2) cells, the latter of which may be dependent on an expansion of IL-10-producing cells, including regulatory T-cells. Our understanding of the immunomodulatory effects of OIT continues to evolve, with new technologies such as single-cell transcriptional profiling and antibody epitope analysis allowing for more detailed study of T-cell and B-cell responses to OIT. In this review, we present evidence to illustrate what is currently known about the immunologic changes induced by OIT, explore potential mechanisms and emphasize knowledge gaps where future research is needed.
Collapse
Affiliation(s)
- Suzanne M Barshow
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Michael D Kulis
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - A Wesley Burks
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Edwin H Kim
- University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Passanisi S, Caminiti L, Zirilli G, Lombardo F, Crisafulli G, Aversa T, Pajno GB. Biologics in food allergy: up-to-date. Expert Opin Biol Ther 2021; 21:1227-1235. [PMID: 33733975 DOI: 10.1080/14712598.2021.1904888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: In recent years, the advent of immunotherapy has remarkably improved the management of IgE-mediated food allergy. However, some barriers still exist. Therefore, the effort of researchers aims to investigate new perspectives in the field of non-allergen specific therapy, also based on the current knowledge of the pathogenesis of this disease.Areas covered: This review aims to focus on the role of biologics as a treatment option in patients with IgE-mediated food allergy. These agents are characterized by their ability to inactivate the Th2 pro-inflammatory pathways. Biologics can be used both alone and in association with immunotherapy. Monoclonal antibodies targeting IgE, the IL-4/IL-13 axis, IL-5, and alarmins have been proposed and investigated for treating food allergy.Expert opinion: The clinical efficacy and safety of biologics have been demonstrated in several preclinical studies and randomized controlled trials. Future studies are still required to address current unmet needs, including the identification of the optimal dose to be used by ensuring the effectiveness of therapy.
Collapse
Affiliation(s)
- Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Lucia Caminiti
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Giuseppina Zirilli
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Giuseppe Crisafulli
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Tommaso Aversa
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| | - Giovanni B Pajno
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi, University of Messin, Messina (Italy)
| |
Collapse
|
36
|
Albuhairi S, Rachid R. Biologics and Novel Therapies for Food Allergy. Immunol Allergy Clin North Am 2021; 41:271-283. [PMID: 33863483 DOI: 10.1016/j.iac.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food allergy is a significant public health burden affecting around 10% of adults and 8% of children. Although the first peanut oral immunotherapy product received Food and Drug Administration approval in 2020, there is still an unmet need for more effective therapeutic options that minimize the risk of anaphylaxis, nutritional deficiencies, and patient's quality of life. Biologics are promising modalities, as they may improve compliance, target multiple food allergies, and treat other concomitant atopic diseases. Although omalizumab has been evaluated extensively, most biologics are more novel and have broader immunologic impact. Careful evaluation of their safety profile should therefore be conducted.
Collapse
Affiliation(s)
- Sultan Albuhairi
- Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Tashima T. Delivery of Orally Administered Digestible Antibodies Using Nanoparticles. Int J Mol Sci 2021; 22:ijms22073349. [PMID: 33805888 PMCID: PMC8036930 DOI: 10.3390/ijms22073349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oral administration of medications is highly preferred in healthcare owing to its simplicity and convenience; however, problems of drug membrane permeability can arise with any administration method in drug discovery and development. In particular, commonly used monoclonal antibody (mAb) drugs are directly injected through intravenous or subcutaneous routes across physical barriers such as the cell membrane, including the epithelium and endothelium. However, intravenous administration has disadvantages such as pain, discomfort, and stress. Oral administration is an ideal route for mAbs. Nonetheless, proteolysis and denaturation, in addition to membrane impermeability, pose serious challenges in delivering peroral mAbs to the systemic circulation, biologically, through enzymatic and acidic blocks and, physically, through the small intestinal epithelium barrier. A number of clinical trials have been performed using oral mAbs for the local treatment of gastrointestinal diseases, some of which have adopted capsules or tablets as formulations. Surprisingly, no oral mAbs have been approved clinically. An enteric nanodelivery system can protect cargos from proteolysis and denaturation. Moreover, mAb cargos released in the small intestine may be delivered to the systemic circulation across the intestinal epithelium through receptor-mediated transcytosis. Oral Abs in milk are transported by neonatal Fc receptors to the systemic circulation in neonates. Thus, well-designed approaches can establish oral mAb delivery. In this review, I will introduce the implementation and possibility of delivering orally administered mAbs with or without nanoparticles not only to the local gastrointestinal tract but also to the systemic circulation.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan
| |
Collapse
|
38
|
Rachid R, Stephen-Victor E, Chatila TA. The microbial origins of food allergy. J Allergy Clin Immunol 2021; 147:808-813. [PMID: 33347905 PMCID: PMC8096615 DOI: 10.1016/j.jaci.2020.12.624] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA.
Collapse
Affiliation(s)
- Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
39
|
Abstract
Biologics are drugs that are derived or synthesized from biological sources. A particular class are recombinant monoclonal antibodies. Their targeted application against distinct molecules of intercellular communication is of significant relevance in the treatment of tumor, inflammatory, or allergic diseases. But also in the context of allergen immunotherapy (AIT) they can be of special value. This is exemplified by the anti-IgE antibody omalizumab, which allows to achieve allergen tolerance in patients suffering from severe allergic reactions and increased risk of AIT-induced anaphylaxis. Furthermore, omalizumab administration during AIT effectively lowers the rsik of allergic side effects. This is demonstrated by a variety of studies and case reports of patients suffering either form respiratory, food, or insect venom allergy. Besides a direct blocking of IgE-mediated effects, T-cellular immune mechanisms might also be involved. Another interesting option is the applcation of recombinant IgG antibodes directed against specific epitopes of an allergen. Similar to AIT-induced IgG antibodies they can prevent the binding of allergens to IgE-antibodes as well as the hereby elicited allergic reactions.
Collapse
|
40
|
Bergantini L, Cameli P, d'Alessandro M, Vietri L, Perruzza M, Pieroni M, Lanzarone N, Refini RM, Fossi A, Bargagli E. Regulatory T Cells in Severe Persistent Asthma in the Era of Monoclonal Antibodies Target Therapies. Inflammation 2021; 43:393-400. [PMID: 31853715 DOI: 10.1007/s10753-019-01157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asthma is an immunoinflammatory disease characterized by bronchial hyper-reactivity to different external stimuli. New monoclonal target treatments have been developed, but few studies have investigated the role of regulatory T cells in severe asthma and the modulatory effect of biological therapy on regulatory T cell functions. Their dysfunction may contribute to the development and exacerbation of asthma. Here we review the recent literature on the potential immunological role of regulatory T cells in the pathogenesis of severe asthma. The analysis of the role of regulatory T cells was performed in terms of functions and their possible interactions with mechanisms of action of the novel treatment for severe asthma. In an era of biological therapies for severe asthma, little data is available on the potential effects of what could be a new therapy: monoclonal antibody targeting of regulatory T cell numbers and functions.
Collapse
Affiliation(s)
- L Bergantini
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy.
| | - P Cameli
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - M d'Alessandro
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - L Vietri
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - M Perruzza
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - M Pieroni
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - N Lanzarone
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - R M Refini
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - A Fossi
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| | - E Bargagli
- Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplantation Section, University of Siena, Viale Bracci, 1, 53100, Siena, Italy
| |
Collapse
|
41
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Boyman O, Caramori G, Cari L, Fan Chung K, Diamant Z, Eguiluz-Gracia I, Knol EF, Kolios A, Levi-Schaffer F, Nocentini G, Palomares O, Redegeld F, Van Esch B, Stellato C. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021; 76:90-113. [PMID: 32593226 DOI: 10.1111/all.14478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Therapeutic advances using targeted biologicals and small-molecule drugs have achieved significant success in the treatment of chronic allergic, autoimmune, and inflammatory diseases particularly for some patients with severe, treatment-resistant forms. This has been aided by improved identification of disease phenotypes. Despite these achievements, not all severe forms of chronic inflammatory and autoimmune diseases are successfully targeted, and current treatment options, besides allergen immunotherapy for selected allergic diseases, fail to change the disease course. T cell-based therapies aim to cure diseases through the selective induction of appropriate immune responses following the delivery of engineered, specific cytotoxic, or regulatory T cells (Tregs). Adoptive cell therapies (ACT) with genetically engineered T cells have revolutionized the oncology field, bringing curative treatment for leukemia and lymphoma, while therapies exploiting the suppressive functions of Tregs have been developed in nononcological settings, such as in transplantation and autoimmune diseases. ACT with Tregs are also being considered in nononcological settings such as cardiovascular disease, obesity, and chronic inflammatory disorders. After describing the general features of T cell-based approaches and current applications in autoimmune diseases, this position paper reviews the experimental models testing or supporting T cell-based approaches, especially Treg-based approaches, in severe IgE-mediated responses and chronic respiratory airway diseases, such as severe asthma and COPD. Along with an assessment of challenges and unmet needs facing the application of ACT in these settings, this article underscores the potential of ACT to offer curative options for patients with severe or treatment-resistant forms of these immune-driven disorders.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Ian M Adcock
- Molecular Cell Biology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence Center, Lund University, Lund, Sweden
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), Respiratory Medicine Unit, University of Messina, Messina, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute, Imperial College London & Royal Brompton & Harefield NHS Trust, London, UK
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University Groningen, University Medical Center Groningen and QPS-NL, Groningen, Netherlands
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Málaga-Instituto de Investigación Biomédica de Málaga (IBIMA)-ARADyAL, Málaga, Spain
| | - Edward F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty Van Esch
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
42
|
Eisenstein AS, Hilliard B, Silwal S, Wang A. Food Allergy: Searching for the Modern Environmental Culprit. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:733-747. [PMID: 33380935 PMCID: PMC7757057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Food allergy is a modern disease. Its exponential increase in prevalence in the last 70 years cannot be explained by genetic factors alone. In this review we discuss the hypotheses that have been suggested previously, and the evidence that supports them, to explain this rise in prevalence as well as the medical treatments that have developed as a result of basic exploration within these paradigms. We argue that one major area of fruitful exploration that would help generate new ideas may be systematic analyses of the unknown factors of the modern environment that may contribute to the formation of food allergy. Through this lens, we review the current understanding of food allergy pathogenesis and propose novel research directions, with implications for the current strategies for managing food allergy.
Collapse
Affiliation(s)
- Anna S. Eisenstein
- Department of Dermatology, Yale University School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Anna Eisenstein, The Anlyan
Center, 300 Cedar Street, New Haven, CT, 06519; Tel: 203-500-3918; Fax: 203-785-7053;
. Andrew Wang, The Anlyan Center, 300 Cedar Street, New
Haven, CT, 06519; Tel: 203-785-2454; Fax: 203-785-7053;
| | - Brandon Hilliard
- Department of Dermatology, Yale University School of Medicine, New Haven, CT,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | | | - Andrew Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Department of Medicine (Rheumatology), Yale
University School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Anna Eisenstein, The Anlyan
Center, 300 Cedar Street, New Haven, CT, 06519; Tel: 203-500-3918; Fax: 203-785-7053;
. Andrew Wang, The Anlyan Center, 300 Cedar Street, New
Haven, CT, 06519; Tel: 203-785-2454; Fax: 203-785-7053;
| |
Collapse
|
43
|
van der Heiden M, Nopp A, Brandström J, Carvalho-Queiroz C, Nilsson C, Sverremark-Ekström E. A pilot study towards the immunological effects of omalizumab treatment used to facilitate oral immunotherapy in peanut-allergic adolescents. Scand J Immunol 2020; 93:e13005. [PMID: 33244763 PMCID: PMC7988572 DOI: 10.1111/sji.13005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
Anti-IgE treatments, such as omalizumab, have shown promising effects in allergy treatment. Our previous work has shown that individualized omalizumab treatment (OT) allows a safe initiation and rapid up-dosing of peanut oral immunotherapy (OIT) in peanut-allergic adolescents. However, the broader immunological effects of this OT are incompletely understood. In this pilot study, we longitudinally followed the total B- and T-cell immunity during OT, using flow cytometry, ELISpot and ELISA. Peripheral blood mononuclear cells (PBMCs) and plasma were collected from participants (n = 17) at several timepoints during treatment, before starting OT (baseline), prior to starting OIT during OT (start OIT) and at maintenance dose OIT prior to OT reduction (maintenance). OT did not affect the total B-cell compartment over treatment time, but our results suggest an association between the OT dosage scheme and the B-cell compartment. Further, in vitro polyclonal T-cell activation at the different timepoints suggests a cytokine skewing towards the Th1 phenotype at the expense of Th2- and Th9-related cytokines during treatment. No differences in the frequencies or phenotype of regulatory T cells (Tregs) over treatment time were observed. Finally, plasma chemokine levels were stable over treatment time, but suggest elevated gut homing immune responses in treatment successes during the treatment as compared to treatment failures. The novel and explorative results of this pilot study help to improve our understanding on the immunological effects of OT used to facilitate OIT and provide guidance for future immunological investigation in large clinical trials.
Collapse
Affiliation(s)
- Marieke van der Heiden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna Nopp
- Sachs' Children and Youth Hospital, Södersjukhuset, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, Sweden
| | - Josef Brandström
- Sachs' Children and Youth Hospital, Södersjukhuset, Karolinska Institute, Stockholm, Sweden.,Clinical Epidemiology Division, Department of Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Claudia Carvalho-Queiroz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Caroline Nilsson
- Sachs' Children and Youth Hospital, Södersjukhuset, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institute, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
44
|
Breiteneder H, Peng Y, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O'Hehir RE, O'Mahony L, Pfaar O, Torres MJ, Wang D, Zhang L, Akdis CA. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020; 75:3039-3068. [PMID: 32893900 PMCID: PMC7756301 DOI: 10.1111/all.14582] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Modern health care requires a proactive and individualized response to diseases, combining precision diagnosis and personalized treatment. Accordingly, the approach to patients with allergic diseases encompasses novel developments in the area of personalized medicine, disease phenotyping and endotyping, and the development and application of reliable biomarkers. A detailed clinical history and physical examination followed by the detection of IgE immunoreactivity against specific allergens still represents the state of the art. However, nowadays, further emphasis focuses on the optimization of diagnostic and therapeutic standards and a large number of studies have been investigating the biomarkers of allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, food allergy, urticaria and anaphylaxis. Various biomarkers have been developed by omics technologies, some of which lead to a better classification of distinct phenotypes or endotypes. The introduction of biologicals to clinical practice increases the need for biomarkers for patient selection, prediction of outcomes and monitoring, to allow for an adequate choice of the duration of these costly and long‐lasting therapies. Escalating healthcare costs together with questions about the efficacy of the current management of allergic diseases require further development of a biomarker‐driven approach. Here, we review biomarkers in diagnosis and treatment of asthma, atopic dermatitis, allergic rhinitis, viral infections, chronic rhinosinusitis, food allergy, drug hypersensitivity and allergen immunotherapy with a special emphasis on specific IgE, the microbiome and the epithelial barrier. In addition, EAACI guidelines on biologicals are discussed within the perspective of biomarkers.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Ya‐Qi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Otorhinolaryngology Hospital The First Affiliated Hospital Sun Yat‐Sen University Guangzhou China
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University of Brasov Brasov Romania
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Institute for Clinical Science Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
- Department of Clinical Pharmacy & Pharmacology University of GroningenUniversity Medical Center Groningen Groningen Netherlands
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute Hospital for Sick Children Toronto ON Canada
- Department of Immunology University of Toronto Toronto ON Canada
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Hospital for Sick Children Departments of Paediatrics and Immunology University of Toronto Toronto ON Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐T Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- ZIEL ‐ Institute for Food & Health Technical University of Munich Freising‐Weihenstephan Germany
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford CA USA
| | - Robyn E. O'Hehir
- Department of Allergy, immunology and Respiratory Medicine Central Clinical School Monash University Melbourne Vic. Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Vic. Australia
| | - Liam O'Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of Malaga‐IBIMA‐UMA‐ARADyAL Malaga Spain
| | - De‐Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing TongRen Hospital Beijing China
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University Zurich Davos Switzerland
- CK CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
45
|
Turner JA, Stephen-Victor E, Wang S, Rivas MN, Abdel-Gadir A, Harb H, Cui Y, Fanny M, Charbonnier LM, Fong JJH, Benamar M, Wang L, Burton OT, Bansal K, Bry L, Zhu C, Li QZ, Clement RL, Oettgen HC, Crestani E, Rachid R, Sage PT, Chatila TA. Regulatory T Cell-Derived TGF-β1 Controls Multiple Checkpoints Governing Allergy and Autoimmunity. Immunity 2020; 53:1202-1214.e6. [PMID: 33086036 DOI: 10.1016/j.immuni.2020.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-β1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-β1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.
Collapse
Affiliation(s)
- Jacob A Turner
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sen Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Magali Noval Rivas
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (IIDRC), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Azza Abdel-Gadir
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hani Harb
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Cui
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Manoussa Fanny
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Jun Hung Fong
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Leighanne Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Oliver T Burton
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridgeshire CB22 3AT, UK
| | - Kushagra Bansal
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chengsong Zhu
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel L Clement
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Diluvio L, Vollono L, Zangrilli A, Manfreda V, Prete MD, Massaro A, Modica S, Greco E, Bianchi L, Campione E. Omalizumab and adalimumab: a winning couple. Immunotherapy 2020; 12:1287-1292. [PMID: 32957824 DOI: 10.2217/imt-2020-0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: We report a case of a young female patient, previously affected by psoriatic arthritis, and treated with adalimumab, who developed a chronic spontaneous urticaria and started a concomitant therapy with omalizumab. Methods & results: A 50% reduction of the Dermatology Life Quality Index (from 7 at baseline to 4 in weeks 12 and 24) and a complete reset of the Urticaria Activity Score for 7 days (from 27 at baseline to 0 in weeks 12 and 24) were recorded. During all treatment with omalizumab, administering of adalimumab was continued. Due to complete control of urticaria symptoms, the patient stopped treatment with omalizumab after 24 weeks. Conclusion: The combination of adalimumab and omalizumab could offer a favorable efficacy and safety profile. The synergistic action of the two biological drugs in reducing systemic inflammation could be responsible for a shorter time to obtain clinical response.
Collapse
Affiliation(s)
- Laura Diluvio
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Laura Vollono
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Arianna Zangrilli
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Valeria Manfreda
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Monia Di Prete
- Department of Biomedicine & Prevention, Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Antonio Massaro
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Stella Modica
- Department of Systems Medicine, Reumatology, Allergology & Clinical Immunology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Elisabetta Greco
- Department of Systems Medicine, Reumatology, Allergology & Clinical Immunology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Luca Bianchi
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| | - Elena Campione
- Department of Systems Medicine, Dermatology, University of Rome Tor Vergata, Viale Oxford, 81 00133 Rome, Italy
| |
Collapse
|
47
|
Stephen-Victor E, Crestani E, Chatila TA. Dietary and Microbial Determinants in Food Allergy. Immunity 2020; 53:277-289. [PMID: 32814026 PMCID: PMC7467210 DOI: 10.1016/j.immuni.2020.07.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
The steep rise in food allergy (FA) has evoked environmental factors involved in disease pathogenesis, including the gut microbiota, diet, and their metabolites. Early introduction of solid foods synchronizes with the "weaning reaction," a time during which the microbiota imprints durable oral tolerance. Recent work has shown that children with FA manifest an early onset dysbiosis with the loss of Clostridiales species, which promotes the differentiation of ROR-γt+ regulatory T cells to suppress FA. This process can be reversed in pre-clinical mouse models by targeted bacteriotherapy. Here, we review the dominant tolerance mechanisms enforced by the microbiota to suppress FA and discuss therapeutic intervention strategies that act to recapitulate the early life window of opportunity in stemming the FA epidemic.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Abstract
BACKGROUND In the last twenty years, several studies have been conducted in the search for new therapeutic strategies in patients with food allergy; in particular, after the failure of injection immunotherapy, three different routes of administration, oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT), have been tested. The aim of this manuscript is to review OIT, SLIT, and EPIT clinical trials on food allergies and to suggest advantages and limits of the different routes of immunotherapy administration. MAIN BODY Of the three different routes of immunotherapy used in the treatment of food allergy, OIT is, at present, the only one actually able to induce an increase in tolerance in the majority of patients. However, its use is affected by serious secondary effects, such as major abdominal symptoms and anaphylaxis. The combination with omalizumab reduces the percentage of serious side effects. There are not many studies with SLIT for food allergy, but they have nevertheless shown that it is possible to obtain an increase in tolerance; however, this increase is modest in comparison with that obtained by OIT. EPIT, performed through the diffusion of allergens on intact skin, is the most recent form of immunotherapy. Although there are many works on EPIT carried out in laboratory animals, only few clinical studies have been published in humans. EPIT, unlike OIT and SLIT, is not responsible for systemic secondary effects such as anaphylaxis and eosinophilic oesophagitis but only for local and mild effects in areas where the devices are applied. Moreover, EPIT is characterized by high patient adherence. CONCLUSION OIT seems to have a prevalent application in patients who do not report previous symptoms of systemic or gastroenteric anaphylaxis, while SLIT and EPIT, in particular, could be more preferentially used in patients with a risk of anaphylaxis.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To critically appraise the recent most relevant studies in the rapidly advancing field of food oral and sublingual immunotherapy. RECENT FINDINGS Food allergen-specific immunotherapy via oral (OIT) and sublingual route (SLIT) increases the threshold of reactivity to peanut, cow's milk, egg, wheat, and many other foods in the majority of the treated individuals. This desensitized state is contingent upon the continued ingestion of the maintenance doses of the food. Permanent oral tolerance is achievable in a smaller subset of the treated individuals. The optimal duration of therapy has not been firmly established but is likely dependent on the phenotype (severity and persistence). Efficacy of food-OIT is superior compared with SLIT, whereas the safety of OIT is less favorable. Standardization of treatment protocols, maintenance dosing, duration of therapy, target populations and harmonization of the outcomes are top priorities at this stage. SUMMARY OIT and SLIT represent two different routes of food allergen-specific immunotherapy. Although significant progress has been made in the last decade, both treatment modalities are still in the very early stages of development and further investigations are necessary to optimize the protocols and improve safety while maximizing efficacy.
Collapse
|
50
|
Licari A, Castagnoli R, Marseglia A, Olivero F, Votto M, Ciprandi G, Marseglia GL. Dupilumab to Treat Type 2 Inflammatory Diseases in Children and Adolescents. Paediatr Drugs 2020; 22:295-310. [PMID: 32157553 DOI: 10.1007/s40272-020-00387-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the past decade, significant therapeutic progress has been made in the field of allergic diseases, mainly concerning the pathogenic role of type 2 inflammation. Biologics targeting specific key cytokines, such as interleukin (IL)-4, IL-5, and IL-13, as well as IgE, have emerged as promising innovative therapies for allergic disorders. In this context, dupilumab has emerged as one of the most successful therapies targeting the IL-4R axis. Dupilumab is a human IgG4 antibody anti-IL-4 receptor (IL-4R) α-subunit that blocks IL-4R signaling induced by both IL-4 and IL-13, downregulating the molecular pathways that drive type 2 inflammatory diseases, including atopic dermatitis, allergic rhinitis, allergic asthma, chronic rhinosinusitis with nasal polyps, and eosinophilic esophagitis. This review presents the most recent evidence on dupilumab for the treatment of type 2 inflammatory diseases and discusses the future perspective, focusing on the pediatric age group and adolescents.
Collapse
Affiliation(s)
- Amelia Licari
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, viale Golgi 19, 27100, Pavia, Italy.
| | - Riccardo Castagnoli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, viale Golgi 19, 27100, Pavia, Italy
| | - Alessia Marseglia
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, viale Golgi 19, 27100, Pavia, Italy
| | - Francesca Olivero
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, viale Golgi 19, 27100, Pavia, Italy
| | - Martina Votto
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, viale Golgi 19, 27100, Pavia, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, viale Golgi 19, 27100, Pavia, Italy
| |
Collapse
|