1
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
2
|
Pilat JM, Jacobse J, Buendia MA, Choksi YA. Animal models of eosinophilic esophagitis. J Leukoc Biol 2024; 116:349-356. [PMID: 38507307 PMCID: PMC11518583 DOI: 10.1093/jleuko/qiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Eosinophilic esophagitis is a chronic inflammatory disorder of the esophagus. Over the past 25 yr, great strides have been made toward understanding its pathogenesis, in part due to studies in several types of animal models. The vast majority of these models have been characterized in mice. In this review, we summarize the histopathological features of eosinophilic esophagitis recapitulated by these animal models, as well as discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Jennifer M. Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
| | - Matthew A. Buendia
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children’s Way, Nashville, TN 37232, United States
| | - Yash A. Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Veterans Affairs Tennessee Valley Healthcare System, 1310 24th Ave S, Nashville, TN 37232, United States
- Program in Cancer Biology, School of Medicine, Vanderbilt University, 1075 Medical Research Building IV, B-2215 Garland Ave, Nashville, TN 37232, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, 1030 Medical Research Building IV, 2215 Garland Ave, Nashville, TN 37232, United States
| |
Collapse
|
3
|
Mohamed MME, Amrani Y. Obesity Enhances Non-Th2 Airway Inflammation in a Murine Model of Allergic Asthma. Int J Mol Sci 2024; 25:6170. [PMID: 38892358 PMCID: PMC11172812 DOI: 10.3390/ijms25116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Obese patients with asthma present with aggravated symptoms that are also harder to treat. Here, we used a mouse model of allergic asthma sensitised and challenged to house dust mite (HDM) extracts to determine whether high-fat-diet consumption would exacerbate the key features of allergic airway inflammation. C57BL/6 mice were intranasally sensitised and challenged with HDM extracts over a duration of 3 weeks. The impact of high-fat-diet (HFD) vs. normal diet (ND) chow was studied on HDM-induced lung inflammation and inflammatory cell infiltration as well as cytokine production. HFD-fed mice had greater inflammatory cell infiltration around airways and blood vessels, and an overall more severe degree of inflammation than in the ND-fed mice (semiquantitative blinded evaluation). Quantitative assessment of HDM-associated Th2 responses (numbers of lung CD4+ T cells, eosinophils, serum levels of allergen-specific IgE as well as the expression of Th2 cytokines (Il5 and Il13)) did not show significant changes between the HFD and ND groups. Interestingly, the HFD group exhibited a more pronounced neutrophilic infiltration within their lung tissues and an increase in non-Th2 cytokines (Il17, Tnfa, Tgf-b, Il-1b). These findings provide additional evidence that obesity triggered by a high-fat-diet regimen may exacerbate asthma by involving non-Th2 and neutrophilic pathways.
Collapse
Affiliation(s)
| | - Yassine Amrani
- Department of Respiratory Sciences, Clinical Sciences, Glenfield Hospital, University of Leicester, Leicester LE3 9QP, UK;
| |
Collapse
|
4
|
Dong L, Gao J, Yu L, Liu S, Zhao Y, Zhang W, Liang Y, Wang H. Polarized Th2 cells attenuate high-fat-diet induced obesity through the suppression of lipogenesis. BMC Immunol 2024; 25:4. [PMID: 38195424 PMCID: PMC10777604 DOI: 10.1186/s12865-024-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Immune cells, such as macrophages, B cells, neutrophils and T cell subsets, have been implicated in the context of obesity. However, the specific role of Th2 cells in adipose tissue function has remained elusive. Eight-week-old male CD3ε─/─ mice were randomly divided into two groups (≥ 5 mice per group): one received intravenous injection of Th2 cells isolated from LATY136F mice, while the other receiving PBS as a control. Both of groups were subjected to a high-fat diet (HFD). The adoptive transfer of polarized Th2 cells led to a significant reduction in obesity following a HFD. This reduction was accompanied by improvements in hepatic steatosis, glucose intolerance, and insulin resistance. Mechanistically, Th2 cell treatment promoted oxidative phosphorylation of adipocytes, thereby contributing to a reduction of lipid droplet accumulation. These findings suggest that Th2 cell therapy represents a novel approach for treating diet-induced obesity and other diseases involving lipid droplet accumulation disorders.
Collapse
Affiliation(s)
- Lijun Dong
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingtao Gao
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China
| | - Lu Yu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China
| | - Shibo Liu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China
| | - Yuxin Zhao
- Department of Immunology, Xinjiang Medical University, Urumqi, PR China
| | - Wen Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Henan Province, Xinxiang, 453003, PR China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China.
- Department of Immunology, Xinjiang Medical University, Urumqi, PR China.
| |
Collapse
|
5
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Appanna R, Gargano D, Caputo A, De Bartolomeis F, Ricciardi L, Santonicola A, Stefanelli B, Caiazza L, Guarciariello M, D'Antonio A, D'Auria R, Conti V, Casolaro V, Iovino P. Changes in mucosal IgG4 +- and IL-10 +-cell frequencies in adults with eosinophilic esophagitis on a two-food elimination diet. Clin Immunol 2023; 257:109853. [PMID: 38013163 DOI: 10.1016/j.clim.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Eosinophilic esophagitis (EoE) is increasingly diagnosed in patients with dysphagia. Type-2 immunity can induce EoE histopathology via non-IgE-dependent mechanisms, possibly involving IgG4 and IL-10. To elucidate the contribution of this response to EoE pathogenesis, we examined its association with clinical and histologic endpoints in adult EoE patients given a two-food elimination diet. IgG4- and IL-10-expressing cells were counted in esophageal biopsies and serum food-specific IgG4 measured at baseline and follow-up. Variables were correlated with histologic measures of disease activity. Patients exhibited significant reduction in esophageal eosinophilia and overall histology. A significant decrease in IL-10+-cell frequencies correlated with histologic changes. In contrast, a decline in serum and esophageal IgG4, while substantial, did not correlate with IL-10+-cell frequencies or histologic parameters. These results suggest a critical role of IL-10 in EoE pathogenesis. Conversely, IgG4 expression, while reflecting exposure to food antigens, is not obviously related to EoE histopathology or IL-10 expression.
Collapse
Affiliation(s)
- Ramapraba Appanna
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | | | - Alessandro Caputo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy; San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | | | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Antonella Santonicola
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy; San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Laura Caiazza
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | | | - Antonio D'Antonio
- San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy; San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy; San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy.
| | - Paola Iovino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy; San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy.
| |
Collapse
|
7
|
Qi X, Li Z, Han J, Liu W, Xia P, Cai X, Liu X, Liu X, Zhang J, Yu P. Multifaceted roles of T cells in obesity and obesity-related complications: A narrative review. Obes Rev 2023; 24:e13621. [PMID: 37583087 DOI: 10.1111/obr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Obesity is characterized by chronic low-grade inflammatory responses in the adipose tissue, accompanied by pronounced insulin resistance and metabolic anomalies. It affects almost all body organs and eventually leads to diseases such as fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Recently, T cells have emerged as interesting therapeutic targets because the dysfunction of T cells and their cytokines in the adipose tissue is implicated in obesity-induced inflammation and their complicated onset. Although several recent narrative reviews have provided a brief overview of related evidence in this area, they have mainly focused on either obesity-associated T cell metabolism or modulation of T cell activation in obesity. Moreover, at present, no published review has reported on the multifaceted roles of T cells in obesity and obesity-related complications, even though there has been a significant increase in studies on this topic since 2019. Therefore, this narrative review aims to comprehensively summarize current advances in the mechanistic roles of T cells in the development of obesity and its related complications. Further, we aim to discuss relevant drugs for weight loss as well as the contradictory role of T cells in the same disease so as to highlight key findings regarding this topic and provide a valid basis for future treatment strategies.
Collapse
Affiliation(s)
- Xinrui Qi
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiashu Han
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenqing Liu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Roach KA, Kodali V, Shoeb M, Meighan T, Kashon M, Stone S, McKinney W, Erdely A, Zeidler-Erdely PC, Roberts JR, Antonini JM. Examination of the exposome in an animal model: The impact of high fat diet and rat strain on local and systemic immune markers following occupational welding fume exposure. Toxicol Appl Pharmacol 2023; 464:116436. [PMID: 36813138 DOI: 10.1016/j.taap.2023.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
The goal of this study was to investigate the impact of multiple exposomal factors (genetics, lifestyle factors, environmental/occupational exposures) on pulmonary inflammation and corresponding alterations in local/systemic immune parameters. Accordingly, male Sprague-Dawley (SD) and Brown Norway (BN) rats were maintained on either regular (Reg) or high fat (HF) diets for 24wk. Welding fume (WF) exposure (inhalation) occurred between 7 and 12wk. Rats were euthanized at 7, 12, and 24wk to evaluate local and systemic immune markers corresponding to the baseline, exposure, and recovery phases of the study, respectively. At 7wk, HF-fed animals exhibited several immune alterations (blood leukocyte/neutrophil number, lymph node B-cell proportionality)-effects which were more pronounced in SD rats. Indices of lung injury/inflammation were elevated in all WF-exposed animals at 12wk; however, diet appeared to preferentially impact SD rats at this time point, as several inflammatory markers (lymph node cellularity, lung neutrophils) were further elevated in HF over Reg animals. Overall, SD rats exhibited the greatest capacity for recovery by 24wk. In BN rats, resolution of immune alterations was further compromised by HF diet, as many exposure-induced alterations in local/systemic immune markers were still evident in HF/WF animals at 24wk. Collectively, HF diet appeared to have a greater impact on global immune status and exposure-induced lung injury in SD rats, but a more pronounced effect on inflammation resolution in BN rats. These results illustrate the combined impact of genetic, lifestyle, and environmental factors in modulating immunological responsivity and emphasize the importance of the exposome in shaping biological responses.
Collapse
Affiliation(s)
- K A Roach
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA.
| | - V Kodali
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - M Shoeb
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - T Meighan
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - M Kashon
- Bioanalytics Branch (BB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - S Stone
- Physical Effects Research Branch (PERB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - W McKinney
- Physical Effects Research Branch (PERB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - A Erdely
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - P C Zeidler-Erdely
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J R Roberts
- Allergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - J M Antonini
- Pathology and Physiology Research Branch (PPRB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
9
|
Zhao W, Wang B, Zhang L, Jin H. Eosinophils Infiltration in Esophageal Muscularis Propria Induces Achalasia-like Esophageal Motility Disorder in Mice. Biomolecules 2022; 12:biom12121865. [PMID: 36551293 PMCID: PMC9775547 DOI: 10.3390/biom12121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Eosinophil infiltration in esophageal muscularis propria is common in achalasia (AC). This study aims to evaluate the effect of eosinophil infiltration in muscularis propria of the esophagus on esophageal motility in mice. A mouse model with eosinophil infiltration in the esophageal muscle layer was established by long term Ovalbumin (OVA) exposure. The histopathology features of esophageal muscularis propria as well as parameters of esophageal motility, such as lower esophageal sphincter pressure (LESP) and esophageal emptying, were compared between model and control group. In addition, the histopathology and motility of esophagus at each time point in the model group were compared. The esophageal motor function severely deteriorated in the model group, mimicking the abnormal esophageal motility of AC, with more eosinophils and fewer SOX-10-IR cells in esophageal muscularis propria in the model group, compared with control. With the prolongation of OVA treatment, esophageal motility disorder was aggravated, accompanied by increased eosinophils in the the muscle layer of esophagus and decreased SOX-10-IR cells in the model group. In addition, the eosinophil count was negatively correlated with SOX-10-IR cells. Long-term exposure to OVA assisted by alum may induce eosinophil infiltration in esophageal muscularis propria, reduced SOX-10-IR cells and abnormal esophageal motility, which simulates the functional and histopathological features of some AC patients. This suggests that eosinophil infiltration in esophageal muscularis propria may play a role in the pathogenesis of a subgroup of AC.
Collapse
Affiliation(s)
| | | | - Lili Zhang
- Correspondence: (L.Z.); (H.J.); Tel./Fax: +86-2260362608 (H.J.)
| | - Hong Jin
- Correspondence: (L.Z.); (H.J.); Tel./Fax: +86-2260362608 (H.J.)
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review will present what is known from recent research on the involvement of mast cells in eosinophilic esophagitis and identify questions requiring further investigation. RECENT FINDINGS In the adults and children with eosinophilic esophagitis, there is increasing evidence that mastocytosis can persist, despite resolution of eosinophilia and is associated with persistent mucosal abnormalities and symptoms. Despite, treatment mast cells have an activated transcriptome. Mast cells likely contribute to epithelial barrier dysfunction, smooth muscle hypertrophy and contraction, and subepithelial fibrosis. It remains unclear whether targeting MCs alone has therapeutic efficacy to improve tissue damage. SUMMARY Mast cells appear to play a key role in eosinophilic esophagitis and serve as a biomarker of mucosal healing in conjunction with eosinophils. Excessive mast cell activation likely contributes to tissue damage in eosinophilic esophagitis and need to be considered as a target of therapy along with eosinophils.
Collapse
|
11
|
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022; 13:999001. [PMID: 36225386 PMCID: PMC9549250 DOI: 10.3389/fmicb.2022.999001] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut possesses millions of microbes that define a complex microbial community. The gut microbiota has been characterized as a vital organ forming its multidirectional connecting axis with other organs. This gut microbiota axis is responsible for host-microbe interactions and works by communicating with the neural, endocrinal, humoral, immunological, and metabolic pathways. The human gut microorganisms (mostly non-pathogenic) have symbiotic host relationships and are usually associated with the host’s immunity to defend against pathogenic invasion. The dysbiosis of the gut microbiota is therefore linked to various human diseases, such as anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes, inflammatory bowel disease, and cancer. The mechanism leading to the disease development has a crucial correlation with gut microbiota, metabolic products, and host immune response in humans. The understanding of mechanisms over gut microbiota exerts its positive or harmful impacts remains largely undefined. However, many recent clinical studies conducted worldwide are demonstrating the relation of specific microbial species and eubiosis in health and disease. A comprehensive understanding of gut microbiota interactions, its role in health and disease, and recent updates on the subject are the striking topics of the current review. We have also addressed the daunting challenges that must be brought under control to maintain health and treat diseases.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Afzaal,
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Faculdade de Ciências de Ourense, Universidade de Vigo, Ourense, Spain
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Rana Muhammad Aadil,
| |
Collapse
|
12
|
Shah MZ, Polk BI. Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2022; 42:761-770. [DOI: 10.1016/j.iac.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
14
|
Cai D, Tian B, Liang S, Cen Y, Fang J, Ma X, Zhong Z, Ren Z, Shen L, Gou L, Wang Y, Zuo Z. More Active Intestinal Immunity Developed by Obese Mice Than Non-Obese Mice After Challenged by Escherichia coli. Front Vet Sci 2022; 9:851226. [PMID: 35720836 PMCID: PMC9205201 DOI: 10.3389/fvets.2022.851226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Obese mice presented lower mortality to non-fatal pneumonia induced by Escherichia coli (E. coli) than the non-obese mice. However, it remained obscure whether the intestine contributed to the protective effect of obese mice with infection. The 64 non-obese (NOB) mice were divided into NOB-uninfected and NOB-E. coli groups, while 64 high-fat diet-induced obesity (DIO) mice were divided into DIO-uninfected and DIO-E. coli groups. Mice in E. coli groups were intranasally instilled with 40 μl E. coli (4.0 ×109 colony-forming units [CFUs]), while uninfected groups with the same volume of phosphate buffer saline (PBS). The T subsets of Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) in the intestine were collected for flow cytometry analysis at 0, 12, 24, and 72 h post-infection, also the duodenum and colon were harvested to survey histopathological change. The results showed that the percentage of CD3+T cells in LPLs in DIO-E. coli group was significantly lower than that in the DIO-uninfected group after infection (p < 0.05). The percentage of CD4+T cells in IELs in NOB-E. coli was significantly lower than that in DIO-E. coli after infection (p < 0.05). The percentage of CD8+T cells in LPLs in NOB-E. coli was significantly lower than that in DIO-E. coli at 12 and 24 h (p < 0.05). The immunoglobulin A (IgA)+ cells in DIO-uninfected were higher than that in NOB-uninfected at all time points (p < 0.05). The IgA+ cells in DIO-E. coli were higher than that in DIO-uninfected at 12, 24, and 72 h (p < 0.05). The results revealed that the level of intestinal mucosal immunity in obese mice was more active than that in non-obese mice.
Collapse
Affiliation(s)
- Dongjie Cai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuang Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Cen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo
| |
Collapse
|
15
|
Minokawa Y, Sawada Y, Nakamura M. Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata. Int J Mol Sci 2022; 23:ijms23031038. [PMID: 35162962 PMCID: PMC8835065 DOI: 10.3390/ijms23031038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alopecia areata is a representative inflammatory skin disease that is associated with various environmental stimuli. While psychological stress is believed to be a major pathogenetic trigger in alopecia areata, infants and newborns also suffer from the disease, suggesting the possible presence of other environmental factors. Daily lifestyle is well known to be involved in various inflammatory diseases and influences the severity of inflammatory skin diseases. However, only a limited number of studies have summarized these influences on alopecia areata. In this review article, we summarize lifestyle factor-related influences on the pathogenesis of alopecia areata and focus on environmental factors, such as smoking, alcohol consumption, sleep, obesity, fatty acids, and gluten consumption.
Collapse
|
16
|
Boyle RJ, Shamji MH. Developments in the field of allergy in 2020 through the eyes of Clinical and Experimental Allergy. Clin Exp Allergy 2021; 51:1531-1537. [PMID: 34750898 DOI: 10.1111/cea.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
While 2020 will be remembered for the global coronavirus pandemic, there were also important advances in the field of allergy. In this review article, we summarize key findings reported in Clinical and Experimental Allergy during 2020. We hope this provides readers with an accessible snapshot of the work published in our journal during this time.
Collapse
Affiliation(s)
- Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| |
Collapse
|
17
|
Pinkerton JW, Kim RY, Brown AC, Rae BE, Donovan C, Mayall JR, Carroll OR, Khadem Ali M, Scott HA, Berthon BS, Baines KJ, Starkey MR, Kermani NZ, Guo YK, Robertson AAB, O'Neill LAJ, Adcock IM, Cooper MA, Gibson PG, Wood LG, Hansbro PM, Horvat JC. Relationship between type 2 cytokine and inflammasome responses in obesity-associated asthma. J Allergy Clin Immunol 2021; 149:1270-1280. [PMID: 34678326 DOI: 10.1016/j.jaci.2021.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.
Collapse
Affiliation(s)
- James W Pinkerton
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Brittany E Rae
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Olivia R Carroll
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Md Khadem Ali
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia; Priority Research Centre GrowUpWell, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, United Kingdom
| | - Yi-Ke Guo
- Data Science Institute, Department of Computing, Imperial College London, London, United Kingdom
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia.
| |
Collapse
|
18
|
Immunogenetic, Molecular and Microbiotic Determinants of Eosinophilic Esophagitis and Clinical Practice-A New Perspective of an Old Disease. Int J Mol Sci 2021; 22:ijms221910830. [PMID: 34639170 PMCID: PMC8509128 DOI: 10.3390/ijms221910830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophilic oesophagitis (EoE) is a chronic, allergic disease associated with a T-lymphocyte response inducing esophageal eosinophilic infiltration in the esophagus. Inflammation and tissue fibrosis are responsible for the main clinical symptoms such as food impaction and dysphagia. The etiopathogenesis is multifactorial in which genetic and environmental factors coexist. The most common trigger is a non-IgE-mediated food allergy to milk, wheat, egg, soybean, nuts, fish, and seafood. The second factor we focus on is the contribution of genetic variation to the risk of EoE, describing the expression profile of selected genes associated with eosinophilic oesophagitis. We raise the topic of treatment, aiming to eliminate inflammation through an elimination diet and/or use of pharmacologic therapy with the use of proton pump inhibitors or steroids and endoscopic procedures to dilate the esophagus. We demonstrate that early diagnosis and effective treatment prevent the development of food impaction and decreased quality of life. The increasing presence of EoE requires bigger awareness among medical specialists concerning clinical features, the course of EoE, diagnostic tools, and management strategies.
Collapse
|
19
|
The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
TSLP-induced collagen type-I synthesis through STAT3 and PRMT1 is sensitive to calcitriol in human lung fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119083. [PMID: 34147561 DOI: 10.1016/j.bbamcr.2021.119083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Airway wall remodeling, a main pathology of asthma was linked to vitamin-D deficiency and protein arginine methyltransferase-1 (PRMT1) expression in sub-epithelial cell layers. Calcitriol reduced remodeling in asthma model, but its mode of action is unclear. This study assessed the effect of calcitriol on PRMT1-dependent fibroblast remodeling in human lung fibroblasts, and allergen-induced asthma in E3-rats. Fibroblasts were activated with thymic stromal lymphopoietin (TLSP); asthma was induced by ovalbumin inhalation in rats. The airway structure was assessed by immunohistology. Protein expression in fibroblasts and activation of the mitogen activated protein kinases were detected by Western-blotting. Transcription factor activation was determined by luciferase reporter assay. PRMT1 action was blocked by siRNA and PRMT-inhibition. Ovalbumin upregulated the expression of TSLP, PRMT1, matrix metallopro-teinase-1 (MMP1), interleukin-25, and collagen type-I in sub-epithelial fibroblasts. In isolated fibroblasts, TSLP induced the same proteins, which were blocked by inhibition of Erk1/2 and p38. TLSP induced PRMT1 through activation of signal transducer and activator of transcription-3. PRMT1 inhibition reduced collagen type-I expression and suppressed MMP1. In fibroblasts, calcitriol supplementation over 12 days prevented TSLP-induced remodeling by blocking the PRMT1 levels. Interestingly, short-term calcitriol treatment had no such effect. The data support the beneficial role of calcitriol in asthma therapy.
Collapse
|
21
|
Votto M, De Filippo M, Olivero F, Raffaele A, Cereda E, De Amici M, Testa G, Marseglia GL, Licari A. Malnutrition in Eosinophilic Gastrointestinal Disorders. Nutrients 2020; 13:E128. [PMID: 33396413 PMCID: PMC7824578 DOI: 10.3390/nu13010128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022] Open
Abstract
Primary eosinophilic gastrointestinal disorders (EGIDs) are emerging chronic/remittent inflammatory diseases of unknown etiology, which may involve any part of the gastrointestinal (GI) tract, in the absence of secondary causes of GI eosinophilia. Eosinophilic esophagitis is the prototype of eosinophilic gastrointestinal disorders and is clinically characterized by symptoms related to esophageal inflammation and dysfunction. A few studies have assessed the nutritional status of patients with eosinophilic gastrointestinal disorders, showing conflicting results. This review summarizes the current evidence on the nutritional status of patients with EGIDs, focusing on the pediatric point of view and also speculating potential etiological mechanisms.
Collapse
Affiliation(s)
- Martina Votto
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
| | - Maria De Filippo
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
| | - Francesca Olivero
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
| | - Alessandro Raffaele
- Pediatric Surgery Unit, Department of Maternal and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mara De Amici
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
- Immuno-Allergology Laboratory of the Clinical Chemistry Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giorgia Testa
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
| | - Gian Luigi Marseglia
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
| | - Amelia Licari
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS-Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.D.F.); (F.O.); (M.D.A.); (G.T.); (G.L.M.)
| |
Collapse
|
22
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of clinical and experimental allergy, part I mechanisms. Clin Exp Allergy 2020; 50:1294-1301. [PMID: 33283368 DOI: 10.1111/cea.13777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2019. Experimental models of allergic disease, basic mechanisms, clinical mechanisms and allergens are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
23
|
Dolence JJ, Kita H. Allergic sensitization to peanuts is enhanced in mice fed a high-fat diet. AIMS ALLERGY AND IMMUNOLOGY 2020; 4:88-99. [PMID: 38304556 PMCID: PMC10831907 DOI: 10.3934/allergy.2020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The incidence of peanut (PN) allergy is on the rise. As peanut allergy rates have continued to climb over the past few decades, obesity rates have increased to record highs, suggesting a link between obesity and the development of peanut allergy. While progress has been made, much remains to be learned about the mechanisms driving the development of allergic immune responses to peanut. Remaining unclear is whether consuming a Western diet, a diet characterized by overeating foods rich in saturated fat, salt, and refined sugars, supports the development of PN allergy. To address this, we fed mice a high fat diet to induce obesity. Once diet-induced obesity was established, mice were exposed to PN flour via the airways using our 4-week inhalation model. Mice were subsequently challenged with PN extract to induce anaphylaxis. Mice fed a high-fat diet developed significantly higher titers of PN-specific IgE, as well as stronger anaphylactic responses, when compared to their low-fat diet fed counterparts. These results suggest that obesity linked to eating a high-fat diet promotes the development of allergic immune responses to PN in mice. Such knowledge is critical to advance our growing understanding of the immunology of PN allergy.
Collapse
Affiliation(s)
- Joseph J. Dolence
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849
| | - Hirohito Kita
- Department of Medicine and Immunology, Mayo Clinic Scottsdale, Scottsdale, AZ 85259
| |
Collapse
|
24
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
25
|
Bajinka O, Tan Y, Abdelhalim KA, Özdemir G, Qiu X. Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 2020; 10:130. [PMID: 32710186 PMCID: PMC7381537 DOI: 10.1186/s13568-020-01066-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
From the emerging studies, the more diverse the microbial population in the gut, the healthier the gut. Health benefits are associated with the functional characteristics of these diverse microbial genes. Extrinsic factors causing dysbiosis are extensively studied however, linking the varying degree of consequences to the respective factors and therapeutic possibilities are not explored at length. This review aims to examine from previous studies and put forward the types of dysbiosis, the immediate consequences and the scientific approaches to restore disrupted microbiota. Dietary supplements are found to be one of the factors contributing profoundly to the alteration of gut microbiota. While diet rich in fibre and fermented food established a diverse microbiome and produce vital metabolites, high fat, animal proteins and high caloric carbohydrate are as well relative to dysbiosis among infants, adult or diseases individuals. The intermittent fasting, feeding methods, the pH and water quality are among the factors associated with dysbiosis. Prebiotics and Probiotics maintain and restore gut homeostasis. Antibiotic-induced dysbiosis are relatively on the spectrum of activity, the pharmacokinetics properties, the dose taken during the treatment route of administration and the duration of drug therapy. The higher the altitude, the lesser the diversity. Extreme temperatures as well are related to reduced microbial activity and metabolism. Delivery through caserium-section deprived the newborn from restoring valuable vaginal bacterial species and the baby will instead assumed intestinal microbiota-like. While exercise and oxidative stress contribute even though moderately, fecal microbial transfer (FMT) also influence gut microbiota.
Collapse
|
26
|
A high fat diet with a high C18:0/C16:0 ratio induced worse metabolic and transcriptomic profiles in C57BL/6 mice. Lipids Health Dis 2020; 19:172. [PMID: 32693810 PMCID: PMC7372854 DOI: 10.1186/s12944-020-01346-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Differential effects of individual saturated fatty acids (SFAs), particularly stearic acid (C18:0), relative to the shorter-chain SFAs have drawn interest for more accurate nutritional guidelines. However, specific biologic and pathologic functions that can be assigned to particular SFAs are very limited. The present study was designed to compare changes in metabolic and transcriptomic profiles in mice caused by a high C18:0 diet and high palmitic acid (C16:0) diet. METHODS Male C57BL/6 mice were assigned to a normal fat diet (NFD), a high fat diet with high C18:0/C16:0 ratio (HSF) or an isocaloric high fat diet with a low C18:0/C16:0 ratio (LSF) for 10 weeks. An oral glucose tolerance test, 72-h energy expenditure measurement and CT scan of body fat were done before sacrifice. Fasting glucose and lipids were determined by an autobiochemical analyzer. Blood insulin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels were measured by enzyme-linked immunosorbent assay methods. Free fatty acids (FFAs) profiles in blood and liver were determined by using gas chromatography-mass spectrometry. Microarray analysis was applied to investigate changes in transcriptomic profiles in the liver. Pathway analysis and gene ontology analysis were applied to describe the roles of differentially expressed mRNAs. RESULTS Compared with the NFD group, body weight, body fat ratio, fasting blood glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), triglyceride, IL-6, serum and liver FFAs including total FFAs, C16:0 and C18:0 were increased in both high fat diet groups and were much higher in the HSF group than those in the LSF group. Both HSF and LSF mice exhibited distinguishable long non-coding RNA (lncRNA), microRNA and mRNA expression profiles when compared with those of NFD mice. Additionally, more differentially expressed lncRNAs and mRNAs were observed in the HSF group than in the LSF group. Some biological functions and pathways, other than energy metabolism regulation, were identified as differentially expressed mRNAs between the HSF group and the LSF group. CONCLUSION The high fat diet with a high C18:0/C16:0 ratio induced more severe glucose and lipid metabolic disorders and inflammation and affected expression of more lncRNAs and mRNAs than an isocaloric low C18:0/C16:0 ratio diet in mice. These results provide new insights into the differences in biological functions and related mechanisms, other than glucose and lipid metabolism, between C16:0 and C18:0.
Collapse
|
27
|
Silva FMDCE, de Oliveira EE, Ambrósio MGE, Ayupe MC, de Souza VP, Menegati LM, Reis DRDL, Machado MA, Macedo GC, Ferreira AP. Disodium cromoglycate treatment reduces T H2 immune response and immunohistopathological features in a murine model of Eosinophilic Esophagitis. Int Immunopharmacol 2020; 83:106422. [PMID: 32251959 DOI: 10.1016/j.intimp.2020.106422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is an emergent chronic disease of the esophagus. The immunopathological process in EoE is characterized by Th2 immune response and prominent eosinophilic influx, in response to common food allergens. The classical treatment consists of allergen elimination diet and systemic/topical corticosteroid therapy. Nevertheless, patients do not always comply to treatment, and the prolonged corticosteroid therapy can cause side effects, therefore, there is an immediate need for new therapeutic approach for EoE. Disodium cromoglicate (DSCG) is a substance broadly used in allergic asthma treatment, and a well-known mast cell activation stabilizer. However, its effect in EoE have not been evaluated yet. This study aimed to assess the effects of DSCG treatment in an EoE experimental model. Male Balb/C mice were subcutaneously sensitized for five days with OVA, and subsequently orally OVA-challenged, DSCG administration was performed between the OVA-challenges. DSCG treatment not only reduced eosinophilic and mast cell influx, as well as reduced fibrosis. In addition, tslp, GATA3, IL-5, FoxP3 and IL-10 mRNA expression were reduced in esophageal mucosa, associated with lower Th2 (CD3+CD4+GATA3+IL4+) and B cells (CD19+CD40+) number in peripheral lymphoid organs. In conclusion, the data demonstrate DSCG treatment was effective in reducing mast cell activation and Th2 immune response, important immunopathological EoE features. Therefore, the use of DSCG as an EoE treatment can be considered a promising therapeutic approach to treat this disease.
Collapse
Affiliation(s)
- Flávia Márcia de Castro E Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | | | - Marina Caçador Ayupe
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Viviane Passos de Souza
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Laura Machado Menegati
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | | | | | - Gilson Costa Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Ana Paula Ferreira
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil.
| |
Collapse
|
28
|
Votto M, Marseglia GL, De Filippo M, Brambilla I, Caimmi SME, Licari A. Early Life Risk Factors in Pediatric EoE: Could We Prevent This Modern Disease? Front Pediatr 2020; 8:263. [PMID: 32548083 PMCID: PMC7274037 DOI: 10.3389/fped.2020.00263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic antigen-mediated inflammatory disease that affects the esophagus. In the last 20 years, a large number of epidemiological studies showed a significant increase in the incidence and prevalence of EoE, especially in developed countries. This phenomenon might correlate to the overall increase in pediatric allergic diseases or might be a result of improved medical awareness and knowledge through modern diagnostic instruments. Since 1993, when EoE was first recognized as a distinct clinical entity, several signs of progress in the pathophysiology of EoE were achieved. However, a few studies reported data on early risk factors for pediatric EoE and how these factors may interfere with genes. Currently, the most defined risk factors for EoE are male sex, Caucasian race, and atopic comorbidities. Other putative risk factors may include alterations in epithelial barrier function and fibrous remodeling, esophageal dysbiosis, variation in the nature and timing of oral antigen exposure, and early prescription of proton pump inhibitors and antibiotics. Notably, the timing and nature of food antigen exposure may be fundamental in inducing or reversing immune tolerance, but no studies are reported. This review summarized the current evidence on the risk factors that might contribute to the increasing development of EoE, focusing on the possible preventive role of early interventions.
Collapse
Affiliation(s)
- Martina Votto
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Maria De Filippo
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Silvia Maria Elena Caimmi
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|