1
|
Lim JJ, Jones CM, Loh TJ, Dao HT, Tran MT, Tye-Din JA, La Gruta NL, Rossjohn J. A naturally selected αβ T cell receptor binds HLA-DQ2 molecules without co-contacting the presented peptide. Nat Commun 2025; 16:3330. [PMID: 40199885 PMCID: PMC11979002 DOI: 10.1038/s41467-025-58690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
αβ T cell receptors (TCR) co-recognise peptide (p) antigens that are presented by major histocompatibility complex (MHC) molecules. While marked variations in TCR-p-MHC docking topologies have been observed from structural studies, the co-recognition paradigm has held fast. Using HLA-DQ2.5-peptide tetramers, here we identify a TRAV12-1+-TRBV5-1+ G9 TCR from human peripheral blood that binds HLA-DQ2.5 in a peptide-agnostic manner. The crystal structures of TCR-HLA-DQ2.5-peptide complexes show that the G9 TCR binds HLA-DQ2.5 in a reversed docking topology without contacting the peptide, with the TCR contacting the β1 region of HLA-DQ2.5 and distal from the peptide antigen binding cleft. High-throughput screening of HLA class I and II molecules finds the G9 TCR to be pan-HLA-DQ2 reactive, with leucine-55 of HLA-DQ2.5 being a key determinant underpinning G9 TCR specificity excluding other HLA-II allomorphs. Consistent with the functional assays, the interactions of the G9 TCR and HLA-DQ2.5 precludes CD4 binding, thereby impeding T cell activation. Collectively, we describe a naturally selected αβTCR from human peripheral blood that deviates from the TCR-p-MHC co-recognition paradigm.
Collapse
MESH Headings
- Humans
- HLA-DQ Antigens/metabolism
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/chemistry
- HLA-DQ Antigens/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Peptides/metabolism
- Peptides/immunology
- Peptides/chemistry
- Protein Binding
- Crystallography, X-Ray
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hien Thy Dao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mai T Tran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
2
|
Lievense JJ, Nijenhuis C, Jedema I, Jonker-Hoogerkamp A, Moyers JT, Hamid O, Beijnen JH, Haanen JBAG, Nuijen B. Defining the Quality Attributes for Tumor-Infiltrating Lymphocyte Medicinal Products. Transplant Cell Ther 2025; 31:S610-S625. [PMID: 40089330 DOI: 10.1016/j.jtct.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/19/2024] [Indexed: 03/17/2025]
Abstract
Tumor-infiltrating lymphocyte (TIL) medicinal products (MPs) show promise for treating solid tumors, especially metastatic melanoma, in the clinical trial setting. Through these studies, TIL developers have gained an immunological perspective into the mechanism of action (MoA) and infusion product characteristics that influence clinical response. However, to reach marketing authorization for any of the TIL MPs, it will be beneficial to gain a pharmaceutical (process) development perspective as well, from which control of the TIL MPs manufacturing process can be demonstrated and a suitable control strategy can be developed. To do this, a well-defined TIL MP must be established. Defining and optimizing MPs from a pharmaceutical perspective is done by identifying and improving product characteristics or quality attributes (QAs) thought to impact safety and efficacy. Through awareness of the QAs relevant to TIL MPs and considering them throughout pharmaceutical development, improvements and changes can be validated. This approach to pharmaceutical development is part of the quality-by-design workflow, of which this review tackles the first steps. Here, the QAs are structured within a quality target product profile (QTPP), and the corresponding regulatory expectations are considered, spanning quantity, identity, purity, microbiological assays, and biological activity. Based on the regulatory expectations and available literature, the (critical) QAs and points of consideration are proposed when developing TIL MPs. The active pharmaceutical ingredient of the TIL MP is defined as the CD45+CD3+ cells. By analyzing identity attributes correlated to clinical efficacy, four broadly applicable in vivo functionalities associated with TIL MPs MoA and clinical effectiveness are described: tumor recognition, cytotoxic capacity, tumor homing, and persistence. How these in vivo functionalities are quantified in potency assays and the limitations of their methods/readouts are also discussed. The QTPP is a foundation for developing a robust, substantiated control strategy for regulatory approval and increasing patient access. Harmonizing TIL MP development under a unified QTPP applicable in different settings could also facilitate comparisons and, therefore, the development of safer and more efficacious TIL MP variations.
Collapse
Affiliation(s)
- Justin J Lievense
- BioTherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Cynthia Nijenhuis
- BioTherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Justin T Moyers
- The Angeles Clinic & Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California
| | - Omid Hamid
- The Angeles Clinic & Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California
| | - Jos H Beijnen
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - John B A G Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Khalaf K, Chamieh M, Welc N, Singh C, Kaouk JL, Kaouk A, Mackiewicz A, Kaczmarek M, Perek B. Cellular aspects of immunity involved in the development of atherosclerosis. Front Immunol 2025; 16:1461535. [PMID: 39944697 PMCID: PMC11813763 DOI: 10.3389/fimmu.2025.1461535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/09/2025] [Indexed: 05/09/2025] Open
Abstract
Atherosclerosis, previously regarded as a lipid storage disease, has now been classified as a chronic inflammatory disease. The hardening of arterial vessels characterizes atherosclerosis due to the accumulation of lipids in the arterial walls, eliciting an inflammatory response. The development of atherosclerosis occurs in various stages and is facilitated by many clinical factors, such as hypertension, hyperlipidemia, and inflammatory status. A large arsenal of cells has been implicated in its development. This review will summarize the phases of atherosclerotic formation and all the cells involved in either promoting or inhibiting its development.
Collapse
Affiliation(s)
- Khalil Khalaf
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marc Chamieh
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Welc
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chandpreet Singh
- Department of Internal Medicine, University of California, Los Angeles (UCLA) - Kern Medical Center, Bakersfield, CA, United States
| | - Joanne Lynn Kaouk
- Department of Science, Louisiana State University, Lousiana, LA, United States
| | - Aiden Kaouk
- Department of Natural Sciences, The University of Texas at Austin, Texas, TX, United States
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
| | - Bartlomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Zhang P, Bang S, Lee H. Self-Contemplating In-Context Learning Enhances T Cell Receptor Generation for Novel Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634873. [PMID: 39975148 PMCID: PMC11838339 DOI: 10.1101/2025.01.27.634873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Computational design of T cell receptors (TCRs) that bind to epitopes holds the potential to revolutionize targeted immunotherapy. However, computational design of TCRs for novel epitopes is challenging due to the scarcity of training data, and the absence of known cognate TCRs for novel epitopes. In this study, we aim to generate high-quality cognate TCRs particularly for novel epitopes with no known cognate TCRs, a problem that remains under-explored in the field. We propose to incorporate in-context learning, successfully used with large language models to perform new generative tasks, to the task of TCR generation for novel epitopes. By providing cognate TCRs as additional context, we enhance the model's ability to generate high-quality TCRs for novel epitopes. We first unlock the power of in-context learning by training a model to generate new TCRs based on both a target epitope and a small set of its cognate TCRs, so-called in-context training (ICT). We then self-generate its own TCR contexts based on a target epitope, as novel epitopes lack known binding TCRs, and use it as an inference prompt, referred to as self-contemplation prompting (SCP). Our experiments first demonstrate that aligning training and inference distribution by ICT is critical for effectively leveraging context TCRs. Subsequently, we show that providing context TCRs significantly improves TCR generation for novel epitopes. Furthermore, we show TCR generation using SCP-synthesized context TCRs achieves performance comparable to, and sometimes surpassing, ground-truth context TCRs, especially when combined with refined prompt selection based on binding affinity and authenticity metrics.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, 85281, AZ, USA
- Biodesign Institute, Arizona State University, Tempe, 85281, AZ, USA
| | - Seojin Bang
- Google DeepMind, Mountain View, 94043, CA, USA
| | - Heewook Lee
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, 85281, AZ, USA
- Biodesign Institute, Arizona State University, Tempe, 85281, AZ, USA
| |
Collapse
|
5
|
Sampson JM, Morrissey KA, Mikolajova KJ, Zimmerly KM, Gemmell NJ, Gardner MG, Bertozzi T, Miller RD. Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus. Front Immunol 2025; 15:1524471. [PMID: 39850903 PMCID: PMC11754216 DOI: 10.3389/fimmu.2024.1524471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered. Here, we begin to address how the loss of γδ T cells may have impacted the evolution of the squamate immune system. Using the skink Tiliqua rugosa, we found that squamates have not significantly increased the complexity of conventional T cell receptor beta (TCRβ or TRB) chain V regions compared to that of the nearest living squamate relative, the tuatara, Sphenodon punctatus or other amniotes. Our analyses include a putative new TCR locus. This novel locus contains V, D, and J gene segments that undergo V(D)J recombination, albeit with a limited number of gene segments in most squamate species. Based on conserved residues, the predicted protein chain would be expected to form a heterodimer with TCRα. This new TCR locus appears to be derived from an ancient duplication of the TRB locus and is homologous to the recently described T cell receptor epsilon (TRE). TRE is absent from the genomes of the tuatara and all Archosaurs examined and appears squamate specific.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Gene Duplication
- Phylogeny
- Reptiles/immunology
- Reptiles/genetics
- Lizards/immunology
- Lizards/genetics
- Evolution, Molecular
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- Jordan M. Sampson
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Kimberly A. Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Kieran J. Mikolajova
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Kourtney M. Zimmerly
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael G. Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Terry Bertozzi
- South Australian Museum, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Robert D. Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
6
|
Dolton G, Thomas H, Tan LR, Rius Rafael C, Doetsch S, Ionescu GA, Cardo LF, Crowther MD, Behiry E, Morin T, Caillaud ME, Srai D, Parolini L, Hasan MS, Fuller A, Topley K, Wall A, Hopkins JR, Omidvar N, Alvares C, Zabkiewicz J, Frater J, Szomolay B, Sewell AK. MHC-related protein 1-restricted recognition of cancer via a semi-invariant TCR-α chain. J Clin Invest 2025; 135:e181895. [PMID: 39744940 PMCID: PMC11684821 DOI: 10.1172/jci181895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025] Open
Abstract
The T cell antigen presentation platform MR1 consists of 6 allomorphs in humans that differ by no more than 5 amino acids. The principal function of this highly conserved molecule involves presenting microbial metabolites to the abundant mucosal-associated invariant T (MAIT) cell subset. Recent developments suggest that the role of MR1 extends to presenting antigens from cancer cells, a function dependent on the K43 residue in the MR1 antigen binding cleft. Here, we successfully cultured cancer-activated, MR1-restricted T cells from multiple donors and confirmed that they recognized a wide range of cancer types expressing the most common MR1*01 and/or MR1*02 allomorphs (over 95% of the population), while remaining inert to healthy cells including healthy B cells and monocytes. Curiously, in all but one donor these T cells were found to incorporate a conserved TCR-α chain motif, CAXYGGSQGNLIF (where X represents 3-5 amino acids), because of pairing between 10 different TRAV genes and the TRAJ42 gene segment. This semi-invariance in the TCR-α chain is reminiscent of MAIT cells and suggests recognition of a conserved antigen bound to K43.
Collapse
MESH Headings
- Humans
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/immunology
- Minor Histocompatibility Antigens/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mucosal-Associated Invariant T Cells/immunology
- Mucosal-Associated Invariant T Cells/metabolism
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Amino Acid Motifs
- Cell Line, Tumor
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius Rafael
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephanie Doetsch
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Giulia-Andreea Ionescu
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lucia F. Cardo
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael D. Crowther
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Enas Behiry
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Marine E. Caillaud
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Devinder Srai
- Nuffield Department of Medicine and Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Nuffield Department of Medicine and Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jade R. Hopkins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nader Omidvar
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Caroline Alvares
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Joanna Zabkiewicz
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - John Frater
- Nuffield Department of Medicine and NIHR Biomedical Research Centre University of Oxford, Oxford, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunology Research Institute, Cardiff University Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunology Research Institute, Cardiff University Cardiff, United Kingdom
- Division of Infection and Immunity, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Le HN, de Freitas MV, Antunes DA. Strengths and limitations of web servers for the modeling of TCRpMHC complexes. Comput Struct Biotechnol J 2024; 23:2938-2948. [PMID: 39104710 PMCID: PMC11298609 DOI: 10.1016/j.csbj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cellular immunity relies on the ability of a T-cell receptor (TCR) to recognize a peptide (p) presented by a class I major histocompatibility complex (MHC) receptor on the surface of a cell. The TCR-peptide-MHC (TCRpMHC) interaction is a crucial step in activating T-cells, and the structural characteristics of these molecules play a significant role in determining the specificity and affinity of this interaction. Hence, obtaining 3D structures of TCRpMHC complexes offers valuable insights into various aspects of cellular immunity and can facilitate the development of T-cell-based immunotherapies. Here, we aimed to compare three popular web servers for modeling the structures of TCRpMHC complexes, namely ImmuneScape (IS), TCRpMHCmodels, and TCRmodel2, to examine their strengths and limitations. Each method employs a different modeling strategy, including docking, homology modeling, and deep learning. The accuracy of each method was evaluated by reproducing the 3D structures of a dataset of 87 TCRpMHC complexes with experimentally determined crystal structures available on the Protein Data Bank (PDB). All selected structures were limited to human MHC alleles, presenting a diverse set of peptide ligands. A detailed analysis of produced models was conducted using multiple metrics, including Root Mean Square Deviation (RMSD) and standardized assessments from CAPRI and DockQ. Special attention was given to the complementarity-determining region (CDR) loops of the TCRs and to the peptide ligands, which define most of the unique features and specificity of a given TCRpMHC interaction. Our study provides an optimistic view of the current state-of-the-art for TCRpMHC modeling but highlights some remaining challenges that must be addressed in order to support the future application of these tools for TCR engineering and computer-aided design of TCR-based immunotherapies.
Collapse
Affiliation(s)
- Hoa Nhu Le
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| | | | - Dinler Amaral Antunes
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| |
Collapse
|
8
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
9
|
Heil L, Jewell S, Lines JL, Garvy BA. The Altered Neonatal CD8 + T Cell Immunodominance Hierarchy during Influenza Virus Infection Impacts Peptide Vaccination. Viruses 2024; 16:1271. [PMID: 39205245 PMCID: PMC11359775 DOI: 10.3390/v16081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neonates are more susceptible to influenza virus infection than adults, resulting in increased morbidity and mortality and delayed clearance of the virus. Generating effective CD8+ T cell responses may be important for improving vaccination outcomes in vulnerable populations, but neonatal T cells frequently respond differently than adult cells. We sought to understand CD8+ T cell specificity and immunodominance during neonatal influenza infection and how any differences from the adult hierarchy might impact peptide vaccine effectiveness. Neonatal C57BL/6 mice displayed an altered CD8+ T cell immunodominance hierarchy during influenza infection, preferentially responding to an epitope in the influenza protein PA rather than the co-dominant adult response to NP and PA. Heterosubtypic infections in mice first infected as pups also displayed altered immunodominance and reduced protection compared to mice first infected as adults. Adoptive transfer of influenza-infected bone-marrow-derived dendritic cells promoted an NP-specific CD8+ T cell response in influenza-virus-infected pups and increased viral clearance. Finally, pups responded to PA (224-233), but not NP (366-374) during peptide vaccination. PA (224-233)-vaccinated mice were not protected during viral challenge. Epitope usage should be considered when designing vaccines that target T cells when the intended patient population includes infants and adults.
Collapse
Affiliation(s)
- Luke Heil
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
| | - Samantha Jewell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Department of Physical and Life Sciences, Nevada State University, Henderson, NV 89002, USA
| | - J. Louise Lines
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Beth A. Garvy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA; (L.H.); (S.J.); (J.L.L.)
- Division of Infectious Diseases, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
11
|
Kath J, Franke C, Drosdek V, Du W, Glaser V, Fuster-Garcia C, Stein M, Zittel T, Schulenberg S, Porter CE, Andersch L, Künkele A, Alcaniz J, Hoffmann J, Abken H, Abou-el-Enein M, Pruß A, Suzuki M, Cathomen T, Stripecke R, Volk HD, Reinke P, Schmueck-Henneresse M, Wagner DL. Integration of ζ-deficient CARs into the CD3ζ gene conveys potent cytotoxicity in T and NK cells. Blood 2024; 143:2599-2611. [PMID: 38493479 PMCID: PMC11196866 DOI: 10.1182/blood.2023020973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR)-redirected immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in nonphysiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Random gene transfer modalities pose a risk of malignant transformation by insertional mutagenesis. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR expression and redirection of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3ζ-CD19-CAR-T cells exhibited comparable leukemia control to TCRα chain constant (TRAC)-replaced and lentivirus-transduced CAR-T cells in vivo. Tuning of CD3ζ-CAR-expression levels significantly improved the in vivo efficacy. Notably, CD3ζ gene editing enabled redirection of NK cells without impairing their canonical functions. Thus, CD3ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes.
Collapse
Affiliation(s)
- Jonas Kath
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Clemens Franke
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Vanessa Drosdek
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Glaser
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Carla Fuster-Garcia
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Tatiana Zittel
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Caroline E. Porter
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Joshua Alcaniz
- Experimental Pharmacology & Oncology Berlin Buch GmbH, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology & Oncology Berlin Buch GmbH, Berlin, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair Genetic Immunotherapy, University of Regensburg, Regensburg, Germany
| | - Mohamed Abou-el-Enein
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
- USC/CHLA Cell Therapy Program, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, CA
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Renata Stripecke
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne, Cologne, Germany
- Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Hans-Dieter Volk
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Dimitrios L. Wagner
- Berlin Center for Advanced Therapies, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Soleiman Ekhtiyari M, Kfoury Junior JR. Landscape of unconventional γδ T cell subsets in cancer. Mol Biol Rep 2024; 51:238. [PMID: 38289417 DOI: 10.1007/s11033-024-09267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
T cells are broadly categorized into two groups, namely conventional and unconventional T cells. Conventional T cells are the most prevalent and well-studied subset of T cells. On the other hand, unconventional T cells exhibit diverse functions shared between innate and adaptive immune cells. During recent decades, γδ T cells have received attention for their roles in cancer immunity. These cells can detect various molecules, such as lipids and metabolites. Also, they are known for their distinctive ability to recognize and target cancer cells in the tumor microenvironment (TME). This feature of γδ T cells could provide a unique therapeutic tool to fight against cancer. Understanding the role of γδ T cells in TME is essential to prepare the groundwork to use γδ T cells for clinical purposes. Here, we provide recent knowledge regarding the role γδ T cell subsets in different cancer types.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
Buhler S, Sollet ZC, Bettens F, Schäfer A, Ansari M, Ferrari-Lacraz S, Villard J. HLA variants and TCR diversity against SARS-CoV-2 in the pre-COVID-19 era. HLA 2023; 102:720-730. [PMID: 37461808 DOI: 10.1111/tan.15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 11/11/2023]
Abstract
HLA antigen presentation and T-cell mediated immunity are critical to control acute viral infection such as COVID-19 caused by SARS-CoV-2. Recent data suggest that both the depth of peptide presentation and the breadth of the T-cell repertoire are associated with disease outcome. It has also been shown that unexposed subjects can develop strong T-cell responses against SARS-CoV-2 due to heterologous immunity. In this study, we explored the anti-SARS-CoV-2 T-cell repertoire by analyzing previously published T-cell receptor (TCR) CDR3β immunosequencing data in a cohort of 116 healthy donors and in the context of immune reconstitution after allogeneic hematopoietic stem cell transplantation in 116 recipients collected during the pre-COVID-19 era. For this, 143,310 publicly available SARS-CoV-2 specific T-cell sequences were investigated among the 3.5 million clonotypes in the cohort. We also performed HLA class I peptide binding predictions using the reference proteome of the virus and high resolution genotyping data in these patients. We could demonstrate that individuals are fully equipped at the genetic level to recognize SARS-CoV-2. This is evidenced by the 5% median cumulative frequency of clonotypes having their sequence matched to a SARS-CoV-2 specific T-cell. In addition, any combination of HLA class I variants in this cohort is associated with a broad capacity of presenting hundreds of SARS-CoV-2 derived peptides. These results could be explained by heterologous immunity and random somatic TCR recombination. We speculate that these observations could explain the efficacy of the specific immune response against SARS-CoV-2 in individuals without risk factors of immunodeficiency and infected prior to vaccination.
Collapse
Affiliation(s)
- Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Bettens
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Antonia Schäfer
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Kath J, Franke C, Drosdek V, Du W, Glaser V, Fuster-Garcia C, Stein M, Zittel T, Schulenberg S, Porter CE, Andersch L, Künkele A, Alcaniz J, Hoffmann J, Abken H, Abou-El-Enein M, Pruß A, Suzuki M, Cathomen T, Stripecke R, Volk HD, Reinke P, Schmueck-Henneresse M, Wagner DL. Integration of ζ-deficient CARs into the CD3-zeta gene conveys potent cytotoxicity in T and NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.565518. [PMID: 38116030 PMCID: PMC10729737 DOI: 10.1101/2023.11.10.565518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chimeric antigen receptor (CAR)-reprogrammed immune cells hold significant therapeutic potential for oncology, autoimmune diseases, transplant medicine, and infections. All approved CAR-T therapies rely on personalized manufacturing using undirected viral gene transfer, which results in non-physiological regulation of CAR-signaling and limits their accessibility due to logistical challenges, high costs and biosafety requirements. Here, we propose a novel approach utilizing CRISPR-Cas gene editing to redirect T cells and natural killer (NK) cells with CARs. By transferring shorter, truncated CAR-transgenes lacking a main activation domain into the human CD3 ζ (CD247) gene, functional CAR fusion-genes are generated that exploit the endogenous CD3 ζ gene as the CAR's activation domain. Repurposing this T/NK-cell lineage gene facilitated physiological regulation of CAR-expression and reprogramming of various immune cell types, including conventional T cells, TCRγ/δ T cells, regulatory T cells, and NK cells. In T cells, CD3 ζ in-frame fusion eliminated TCR surface expression, reducing the risk of graft-versus-host disease in allogeneic off-the-shelf settings. CD3 ζ-CD19-CAR-T cells exhibited comparable leukemia control to T cell receptor alpha constant ( TRAC )-replaced and lentivirus-transduced CAR-T cells in vivo . Tuning of CD3 ζ-CAR-expression levels significantly improved the in vivo efficacy. Compared to TRAC -edited CAR-T cells, integration of a Her2-CAR into CD3 ζ conveyed similar in vitro tumor lysis but reduced susceptibility to activation-induced cell death and differentiation, presumably due to lower CAR-expression levels. Notably, CD3 ζ gene editing enabled reprogramming of NK cells without impairing their canonical functions. Thus, CD3 ζ gene editing is a promising platform for the development of allogeneic off-the-shelf cell therapies using redirected killer lymphocytes. Key points Integration of ζ-deficient CARs into CD3 ζ gene allows generation of functional TCR-ablated CAR-T cells for allogeneic off-the-shelf use CD3 ζ-editing platform allows CAR reprogramming of NK cells without affecting their canonical functions.
Collapse
|
15
|
Das S, Acharya D. Immunological Assessment of Recent Immunotherapy for Colorectal Cancer. Immunol Invest 2023; 52:1065-1095. [PMID: 37812224 DOI: 10.1080/08820139.2023.2264906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy with increased incidence and mortality rates worldwide. Traditional treatment approaches have attempted to efficiently target CRC; however, they have failed in most cases, owing to the cytotoxicity and non-specificity of these therapies. Therefore, it is essential to develop an effective alternative therapy to improve the clinical outcomes in heterogeneous CRC cases. Immunotherapy has transformed cancer treatment with remarkable efficacy and overcomes the limitations of traditional treatments. With an understanding of the cancer-immunity cycle and tumor microenvironment evolution, current immunotherapy approaches have elicited enhanced antitumor immune responses. In this comprehensive review, we outline the latest advances in immunotherapy targeting CRC and provide insights into antitumor immune responses reported in landmark clinical studies. We focused on highlighting the combination approaches that synergistically induce immune responses and eliminate immunosuppression. This review aimed to understand the limitations and potential of recent immunotherapy clinical studies conducted in the last five years (2019-2023) and to transform this knowledge into a rational design of clinical trials intended for effective antitumor immune responses in CRC.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biotechnology, GIET University, Gunupur, India
| | | |
Collapse
|
16
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Yu ED, Wang E, Garrigan E, Sutherland A, Khalil N, Kearns K, Pham J, Schulten V, Peters B, Frazier A, Sette A, da Silva Antunes R. Ex vivo assays show human gamma-delta T cells specific for common allergens are Th1-polarized in allergic donors. CELL REPORTS METHODS 2022; 2:100350. [PMID: 36590684 PMCID: PMC9795325 DOI: 10.1016/j.crmeth.2022.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/15/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.
Collapse
Affiliation(s)
- Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Natalie Khalil
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kendall Kearns
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - John Pham
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Veronique Schulten
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Mendes MFDA, de Souza Bragatte M, Vianna P, de Freitas MV, Pöhner I, Richter S, Wade RC, Salzano FM, Vieira GF. MatchTope: A tool to predict the cross reactivity of peptides complexed with Major Histocompatibility Complex I. Front Immunol 2022; 13:930590. [PMID: 36389840 PMCID: PMC9650389 DOI: 10.3389/fimmu.2022.930590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 10/12/2023] Open
Abstract
The therapeutic targeting of the immune system, for example in vaccinology and cancer treatment, is a challenging task and the subject of active research. Several in silico tools used for predicting immunogenicity are based on the analysis of peptide sequences binding to the Major Histocompatibility Complex (pMHC). However, few of these bioinformatics tools take into account the pMHC three-dimensional structure. Here, we describe a new bioinformatics tool, MatchTope, developed for predicting peptide similarity, which can trigger cross-reactivity events, by computing and analyzing the electrostatic potentials of pMHC complexes. We validated MatchTope by using previously published data from in vitro assays. We thereby demonstrate the strength of MatchTope for similarity prediction between targets derived from several pathogens as well as for indicating possible cross responses between self and tumor peptides. Our results suggest that MatchTope can enhance and speed up future studies in the fields of vaccinology and cancer immunotherapy.
Collapse
Affiliation(s)
- Marcus Fabiano de Almeida Mendes
- Bioinformatic Core, Immunogenetics Laboratory, Genetics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo de Souza Bragatte
- Bioinformatic Core, Immunogenetics Laboratory, Genetics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Priscila Vianna
- Bioinformatic Core, Immunogenetics Laboratory, Genetics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Martiela Vaz de Freitas
- Bioinformatic Core, Immunogenetics Laboratory, Genetics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Stefan Richter
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Francisco Mauro Salzano
- Bioinformatic Core, Immunogenetics Laboratory, Genetics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Fioravanti Vieira
- Bioinformatic Core, Immunogenetics Laboratory, Genetics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduation Program in Health and Human Development, Universidade La Salle Canoas, Canoas, Brazil
| |
Collapse
|
19
|
Hornak I, Rieger H. Stochastic model of T Cell repolarization during target elimination (II). Biophys J 2022; 121:1246-1265. [PMID: 35196513 PMCID: PMC9034251 DOI: 10.1016/j.bpj.2022.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/08/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cytotoxic T lymphocytes (T cells) and natural killer cells form a tight contact, the immunological synapse (IS), with target cells, where they release their lytic granules containing perforin/granzyme and cytokine-containing vesicles. During this process the cell repolarizes and moves the microtubule organizing center (MTOC) toward the IS. In the first part of our work we developed a computational model for the molecular-motor-driven motion of the microtubule cytoskeleton during T cell polarization and analyzed the effects of cortical-sliding and capture-shrinkage mechanisms. Here we use this model to analyze the dynamics of the MTOC repositioning in situations in which 1) the IS is in an arbitrary position with respect to the initial position of the MTOC and 2) the T cell has two IS at two arbitrary positions. In the case of one IS, we found that the initial position determines which mechanism is dominant and that the time of repositioning does not rise monotonously with the MTOC-IS distance. In the case of two IS, we observe several scenarios that have also been reported experimentally: the MTOC alternates stochastically (but with a well-defined average transition time) between the two IS; it wiggles in between the two IS without transiting to one of the two; or it is at some point pulled to one of the two IS and stays there. Our model allows one to predict which scenario emerges in dependency of the mechanisms in action and the number of dyneins present. We report that the presence of capture-shrinkage mechanism in at least one IS is necessary to assure the transitions in every cell configuration. Moreover, the frequency of transitions does not decrease with the distance between the two IS and is the highest when both mechanisms are present in both IS.
Collapse
Affiliation(s)
- Ivan Hornak
- Department of Theoretical Physics, Center for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Heiko Rieger
- Department of Theoretical Physics, Center for Biophysics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
20
|
Zhao L, Tang L, Greene MS, Sa Y, Wang W, Jin J, Hong H, Lu JQ, Hu XH. Deep Learning of Morphologic Correlations To Accurately Classify CD4+ and CD8+ T Cells by Diffraction Imaging Flow Cytometry. Anal Chem 2022; 94:1567-1574. [DOI: 10.1021/acs.analchem.1c03337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Zhao
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
- School of Information Science & Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Liwen Tang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Information Science & Technology, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Marion S. Greene
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| | - Yu Sa
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Wenjin Wang
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Jiahong Jin
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
- School of Physics & Electronic Science, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Heng Hong
- Department of Pathology and Comparative Medicine, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jun Q. Lu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| | - Xin-Hua Hu
- Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
21
|
Crowther MD, Legut M, Sewell AK. Ligand Identification for Orphan MHC-Agnostic T-Cell Receptors by Whole Genome CRISPR-Cas9 Screening. Methods Mol Biol 2022; 2574:3-14. [PMID: 36087195 DOI: 10.1007/978-1-0716-2712-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Killer T-cells play important roles in immunity to infection and cancer by detecting intracellular anomalies at the cell surface and destroying the cells that bear them. Conventional killer T-cells scan the intracellular proteome by sampling peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. It is becoming apparent that some T-cells can also respond to pathogens and neoplasms by sensing intracellular changes through molecules other than MHC. We describe an unbiased methodology for T-cell receptor ligand discovery that requires no a priori knowledge regarding the nature of the antigen.
Collapse
Affiliation(s)
- Michael D Crowther
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
- National Center for Cancer Immune Therapy, Herlev, Denmark
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
- New York Genome Center, New York City, NY, USA
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
22
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
23
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Dhusia K, Su Z, Wu Y. A structural-based machine learning method to classify binding affinities between TCR and peptide-MHC complexes. Mol Immunol 2021; 139:76-86. [PMID: 34455212 PMCID: PMC10811653 DOI: 10.1016/j.molimm.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/13/2021] [Accepted: 07/25/2021] [Indexed: 11/27/2022]
Abstract
The activation of T cells is triggered by the interactions of T cell receptors (TCRs) with their epitopes, which are peptides presented by major histocompatibility complex (MHC) on the surfaces of antigen presenting cells (APC). While each TCR can only recognize a specific subset from a large repertoire of peptide-MHC (pMHC) complexes, it is very often that peptides in this subset share little sequence similarity. This is known as the specificity and cross-reactivity of T cells, respectively. The binding affinities between different types of TCRs and pMHC are the major driving force to shape this specificity and cross-reactivity in T cell recognition. The binding affinities, furthermore, are determined by the sequence and structural properties at the interfaces between TCRs and pMHC. Fortunately, a wealth of data on binding and structures of TCR-pMHC interactions becomes publicly accessible in online resources, which offers us the opportunity to develop a random forest classifier for predicting the binding affinities between TCR and pMHC based on the structure of their complexes. Specifically, the structure and sequence of a given complex were projected onto a high-dimensional feature space as the input of the classifier, which was then trained by a large-scale benchmark dataset. Based on the cross-validation results, we found that our machine learning model can predict if the binding affinity of a given TCR-pMHC complex is stronger or weaker than a predefined threshold with an overall accuracy approximately around 75 %. The significance of our prediction was estimated by statistical analysis. Moreover, more than 60 % of binding affinities in the ATLAS database can be successfully classified into groups within the range of 2 kcal/mol. Additionally, we show that TCR-pMHC complexes with strong binding affinity prefer hydrophobic interactions between amino acids with large aromatic rings instead of electrostatic interactions. Our results therefore provide insights to design engineered TCRs which enhance the specificity for their targeted epitopes. Taken together, this method can serve as a useful addition to a suite of existing approaches which study binding between TCR and pMHC.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
25
|
Dixon R, Preston SG, Dascalu S, Flammer PG, Fiddaman SR, McLoughlin K, Boyd A, Volf J, Rychlik I, Bonsall MB, Kaspers B, Smith AL. Repertoire analysis of γδ T cells in the chicken enables functional annotation of the genomic region revealing highly variable pan-tissue TCR gamma V gene usage as well as identifying public and private repertoires. BMC Genomics 2021; 22:719. [PMID: 34610803 PMCID: PMC8493715 DOI: 10.1186/s12864-021-08036-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Despite increasing interest in γδ T cells and their non-classical behaviour, most studies focus on animals with low numbers of circulating γδ T cells, such as mice and humans. Arguably, γδ T cell functions might be more prominent in chickens where these cells form a higher proportion of the circulatory T cell compartment. The TCR repertoire defines different subsets of γδ T cells, and such analysis is facilitated by well-annotated TCR loci. γδ T cells are considered at the cusp of innate and adaptive immunity but most functions have been identified in γδ low species. A deeper understanding of TCR repertoire biology in γδ high and γδ low animals is critical for defining the evolution of the function of γδ T cells. Repertoire dynamics will reveal populations that can be classified as innate-like or adaptive-like as well as those that straddle this definition. RESULTS Here, a recent discrepancy in the structure of the chicken TCR gamma locus is resolved, demonstrating that tandem duplication events have shaped the evolution of this locus. Importantly, repertoire sequencing revealed large differences in the usage of individual TRGV genes, a pattern conserved across multiple tissues, including thymus, spleen and the gut. A single TRGV gene, TRGV3.3, with a highly diverse private CDR3 repertoire dominated every tissue in all birds. TRGV usage patterns were partly explained by the TRGV-associated recombination signal sequences. Public CDR3 clonotypes represented varying proportions of the repertoire of TCRs utilising different TRGVs, with one TRGV dominated by super-public clones present in all birds. CONCLUSIONS The application of repertoire analysis enabled functional annotation of the TCRG locus in a species with a high circulating γδ phenotype. This revealed variable usage of TCRGV genes across multiple tissues, a pattern quite different to that found in γδ low species (human and mouse). Defining the repertoire biology of avian γδ T cells will be key to understanding the evolution and functional diversity of these enigmatic lymphocytes in an animal that is numerically more reliant on them. Practically, this will reveal novel ways in which these cells can be exploited to improve health in medical and veterinary contexts.
Collapse
Affiliation(s)
- Robert Dixon
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Stefan Dascalu
- Department of Zoology, University of Oxford, Oxford, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | | | | | | | - Amy Boyd
- Department of Zoology, University of Oxford, Oxford, UK
| | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Bernd Kaspers
- Veterinary Faculty, Ludwig Maximillians University, Planegg, Germany
| | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J Exp Clin Cancer Res 2021; 40:269. [PMID: 34446084 PMCID: PMC8390258 DOI: 10.1186/s13046-021-02076-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy has gained attention as the supreme therapeutic modality for the treatment of various malignancies. Adoptive T-cell therapy (ACT) is one of the most distinctive modalities of this therapeutic approach, which seeks to harness the potential of combating cancer cells by using autologous or allogenic tumor-specific T-cells. However, a plethora of circumstances must be optimized to produce functional, durable, and efficient T-cells. Recently, the potential of ACT has been further realized by the introduction of novel gene-editing platforms such as the CRISPR/Cas9 system; this technique has been utilized to create T-cells furnished with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR) that have precise tumor antigen recognition, minimal side effects and treatment-related toxicities, robust proliferation and cytotoxicity, and nominal exhaustion. Here, we aim to review and categorize the recent breakthroughs of genetically modified TCR/CAR T-cells through CRISPR/Cas9 technology and address the pearls and pitfalls of each method. In addition, we investigate the latest ongoing clinical trials that are applying CRISPR-associated TCR/CAR T-cells for the treatment of cancers.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
27
|
AlSaieedi A, Salhi A, Tifratene F, Raies AB, Hungler A, Uludag M, Van Neste C, Bajic VB, Gojobori T, Essack M. DES-Tcell is a knowledgebase for exploring immunology-related literature. Sci Rep 2021; 11:14344. [PMID: 34253812 PMCID: PMC8275784 DOI: 10.1038/s41598-021-93809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
T-cells are a subtype of white blood cells circulating throughout the body, searching for infected and abnormal cells. They have multifaceted functions that include scanning for and directly killing cells infected with intracellular pathogens, eradicating abnormal cells, orchestrating immune response by activating and helping other immune cells, memorizing encountered pathogens, and providing long-lasting protection upon recurrent infections. However, T-cells are also involved in immune responses that result in organ transplant rejection, autoimmune diseases, and some allergic diseases. To support T-cell research, we developed the DES-Tcell knowledgebase (KB). This KB incorporates text- and data-mined information that can expedite retrieval and exploration of T-cell relevant information from the large volume of published T-cell-related research. This KB enables exploration of data through concepts from 15 topic-specific dictionaries, including immunology-related genes, mutations, pathogens, and pathways. We developed three case studies using DES-Tcell, one of which validates effective retrieval of known associations by DES-Tcell. The second and third case studies focuses on concepts that are common to Grave’s disease (GD) and Hashimoto’s thyroiditis (HT). Several reports have shown that up to 20% of GD patients treated with antithyroid medication develop HT, thus suggesting a possible conversion or shift from GD to HT disease. DES-Tcell found miR-4442 links to both GD and HT, and that miR-4442 possibly targets the autoimmune disease risk factor CD6, which provides potential new knowledge derived through the use of DES-Tcell. According to our understanding, DES-Tcell is the first KB dedicated to exploring T-cell-relevant information via literature-mining, data-mining, and topic-specific dictionaries.
Collapse
Affiliation(s)
- Ahdab AlSaieedi
- Department of Medical Laboratory Technology (MLT), Faculty of Applied Medical Sciences (FAMS), King Abdulaziz University (KAU), Jeddah, 21589-80324, Saudi Arabia
| | - Adil Salhi
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Faroug Tifratene
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa Bin Raies
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arnaud Hungler
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Christophe Van Neste
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
28
|
[Clonality analysis in practice]. DER PATHOLOGE 2021; 42:241-251. [PMID: 33575888 DOI: 10.1007/s00292-021-00915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Malignant lymphomas are derived from a common progenitor cell with a unique rearrangement of immunoglobulin or T‑cell receptor genes. Polymerase chain reaction (PCR)-based analyses allow detection of the clone and are an important adjunct for the diagnosis of difficult lymphoproliferations, e.g. for the discrimination of reactive versus malignant lesions. Further applications are detection of disease dissemination and evaluation of the clonal relationship of two lymphomas. However, clonality analysis is not a stand-alone test and must always be considered in context with clinical, histological and immunophenotypic data. For the correct use of clonality analysis, comprehensive knowledge of the biological basis, technical requirements and interpretation are needed in order to avoid incorrect conclusions.
Collapse
|
29
|
Attaf M, Roider J, Malik A, Rius Rafael C, Dolton G, Prendergast AJ, Leslie A, Ndung'u T, Kløverpris HN, Sewell AK, Goulder PJ. Cytomegalovirus-Mediated T Cell Receptor Repertoire Perturbation Is Present in Early Life. Front Immunol 2020; 11:1587. [PMID: 33101265 PMCID: PMC7554308 DOI: 10.3389/fimmu.2020.01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus, particularly in sub-Saharan Africa, where it is endemic from infancy. The T cell response against CMV is important in keeping the virus in check, with CD8 T cells playing a major role in the control of CMV viraemia. Human leukocyte antigen (HLA) B*44:03-positive individuals raise a robust response against the NEGVKAAW (NW8) epitope, derived from the immediate-early-2 (IE-2) protein. We previously showed that the T cell receptor (TCR) repertoire raised against the NW8-HLA-B*44:03 complex was oligoclonal and characterised by superdominant clones, which were shared amongst unrelated individuals (i.e., "public"). Here, we address the question of how stable the CMV-specific TCR repertoire is over the course of infection, and whether substantial differences are evident in TCR repertoires in children, compared with adults. We present a longitudinal study of four HIV/CMV co-infected mother-child pairs, who in each case express HLA-B*44:03 and make responses to the NW8 epitope, and analyse their TCR repertoire over a period spanning more than 10 years. Using high-throughput sequencing, the paediatric CMV-specific repertoire was found to be highly diverse. In addition, paediatric repertoires were remarkably similar to adults, with public TCR responses being shared amongst children and adults alike. The CMV-specific repertoire in both adults and children displayed strong fluctuations in TCR clonality and repertoire architecture over time. Previously characterised superdominant clonotypes were readily identifiable in the children at high frequency, suggesting that the distortion of the CMV-specific repertoire is incurred as a direct result of CMV infection rather than a product of age-related "memory inflation." Early distortion of the TCR repertoire was particularly apparent in the case of the TCR-β chain, where oligoclonality was low in children and positively correlated with age, a feature we did not observe for TCR-α. This discrepancy between TCR-α and -β chain repertoire may reflect differential contribution to NW8 recognition. Altogether, the results of the present study provide insight into the formation of the TCR repertoire in early life and pave the way to better understanding of CD8 T cell responses to CMV at the molecular level.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Child
- Child, Preschool
- Coinfection
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/metabolism
- Cytomegalovirus Infections/virology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Female
- HIV Infections/immunology
- HIV Infections/virology
- HLA Antigens/immunology
- High-Throughput Nucleotide Sequencing
- Humans
- Infant
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Peptides/chemistry
- Peptides/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Viral Load
- Young Adult
Collapse
Affiliation(s)
- Meriem Attaf
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Julia Roider
- Human Immunodeficiency Virus Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- German Centre for Infection Research, Munich, Germany
- Department of Infectious Diseases, Ludwig-Maximilians-University, Munich, Germany
| | - Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Cristina Rius Rafael
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Alasdair Leslie
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
| | - Thumbi Ndung'u
- Human Immunodeficiency Virus Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
- Virology and Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Henrik N. Kløverpris
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Infection and Immunity, University College London, London, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Philip J. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| |
Collapse
|
30
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
31
|
Hornak I, Rieger H. Stochastic Model of T Cell Repolarization during Target Elimination I. Biophys J 2020; 118:1733-1748. [PMID: 32130873 DOI: 10.1016/j.bpj.2020.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic T lymphocytes (T) and natural killer cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (i.e., target cells). Once a natural killer or T cell has identified a target cell, they form a tight contact zone, the immunological synapse (IS). One then observes a repolarization of the cell involving the rotation of the microtubule (MT) cytoskeleton and a movement of the MT organizing center (MTOC) to a position that is just underneath the plasma membrane at the center of the IS. Concomitantly, a massive relocation of organelles attached to MTs is observed, including the Golgi apparatus, lytic granules, and mitochondria. Because the mechanism of this relocation is still elusive, we devise a theoretical model for the molecular-motor-driven motion of the MT cytoskeleton confined between plasma membrane and nucleus during T cell polarization. We analyze different scenarios currently discussed in the literature, the cortical sliding and capture-shrinkage mechanisms, and compare quantitative predictions about the spatiotemporal evolution of MTOC position and MT cytoskeleton morphology with experimental observations. The model predicts the experimentally observed biphasic nature of the repositioning due to an interplay between MT cytoskeleton geometry and motor forces and confirms the dominance of the capture-shrinkage over the cortical sliding mechanism when the MTOC and IS are initially diametrically opposed. We also find that the two mechanisms act synergistically, thereby reducing the resources necessary for repositioning. Moreover, it turns out that the localization of dyneins in the peripheral supramolecular activation cluster facilitates their interaction with the MTs. Our model also opens a way to infer details of the dynein distribution from the experimentally observed features of the MT cytoskeleton dynamics. In a subsequent publication, we will address the issue of general initial configurations and situations in which the T cell established two ISs.
Collapse
Affiliation(s)
- Ivan Hornak
- Center for Biophysics (ZBP) and Department of Theoretical Physics, Saarland University, Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics (ZBP) and Department of Theoretical Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
32
|
Jungbluth AA, Frosina D, Fayad M, Pulitzer MP, Dogan A, Busam KJ, Imai N, Gnjatic S. Immunohistochemical Detection of γ/δ T Lymphocytes in Formalin-fixed Paraffin-embedded Tissues. Appl Immunohistochem Mol Morphol 2019; 27:581-583. [PMID: 29517505 PMCID: PMC7790162 DOI: 10.1097/pai.0000000000000650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
T lymphocytes can be distinguished based on the composition of the T-cell receptor (TCR) chain in α/β T cells and γ/δ T cells. Correspondingly, α/β lymphomas can be distinguished from γ/δ lymphomas. The latter are rare neoplasms, which are usually confined to particular organs and tissues and carry a dismal prognosis. Until recently, monoclonal antibody (mAb) clone g3.20 to the TCR γ-chain was the reagent of choice for the immunohistochemical detection of γ/δ T cells and lymphomas in standard formalin-fixed paraffin-embedded tissues. However, due to technical problems, mAb g3.20 became recently unavailable. Our attempts to identify another commercially available clone to the TCR γ-chain were unsuccessful. However, we were able to identify a mAb (clone H-41, SC-100289; Santa Cruz, Dallas, TX) to the TCR δ-chain. H-41 works well in immunohistochemistry on paraffin-embedded tissue and comparison with previously stained cases, shows superior immunolabeling to mAb g3.20. H-41 to the TCR δ-chain appears to be a suitable reagent for the replacement of mAb g3.20.
Collapse
Affiliation(s)
| | - Denise Frosina
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | - Miriam Fayad
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | - Naoko Imai
- Tisch Cancer Institute, Hematology/Oncology, Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sacha Gnjatic
- Tisch Cancer Institute, Hematology/Oncology, Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
33
|
Leem J, de Oliveira SHP, Krawczyk K, Deane CM. STCRDab: the structural T-cell receptor database. Nucleic Acids Res 2019; 46:D406-D412. [PMID: 29087479 PMCID: PMC5753249 DOI: 10.1093/nar/gkx971] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/09/2017] [Indexed: 01/16/2023] Open
Abstract
The Structural T–cell Receptor Database (STCRDab; http://opig.stats.ox.ac.uk/webapps/stcrdab) is an online resource that automatically collects and curates TCR structural data from the Protein Data Bank. For each entry, the database provides annotations, such as the α/β or γ/δ chain pairings, major histocompatibility complex details, and where available, antigen binding affinities. In addition, the orientation between the variable domains and the canonical forms of the complementarity-determining region loops are also provided. Users can select, view, and download individual or bulk sets of structures based on these criteria. Where available, STCRDab also finds antibody structures that are similar to TCRs, helping users explore the relationship between TCRs and antibodies.
Collapse
Affiliation(s)
- Jinwoo Leem
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | | | - Konrad Krawczyk
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| |
Collapse
|
34
|
Gold MR, Reth MG. Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane. Annu Rev Immunol 2019; 37:97-123. [DOI: 10.1146/annurev-immunol-042718-041704] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.
Collapse
Affiliation(s)
- Michael R. Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael G. Reth
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
- Department of Molecular Immunology, Institute of Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
35
|
Dao T, Mun SS, Scott AC, Jarvis CA, Korontsvit T, Yang Z, Liu L, Klatt MG, Guerreiro M, Selvakumar A, Brea EJ, Oh C, Liu C, Scheinberg DA. Depleting T regulatory cells by targeting intracellular Foxp3 with a TCR mimic antibody. Oncoimmunology 2019; 8:1570778. [PMID: 31143508 PMCID: PMC6527296 DOI: 10.1080/2162402x.2019.1570778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Depletion of T regulatory cells (Tregs) in the tumor microenvironment is a promising cancer immunotherapy strategy. Current approaches for depleting Tregs are limited by lack of specificity and concurrent depletion of anti-tumor effector T cells. The transcription factor forkhead box p3 (Foxp3) plays a central role in the development and function of Tregs and is an ideal target in Tregs, but Foxp3 is an intracellular, undruggable protein to date. We have generated a T cell receptor mimic antibody, "Foxp3-#32," recognizing a Foxp3-derived epitope in the context of HLA-A*02:01. The mAb Foxp3-#32 selectively recognizes CD4 + CD25 + CD127low and Foxp3 + Tregs also expressing HLA-A*02:01 and depletes these cells via antibody-mediated cellular cytotoxicity. Foxp3-#32 mAb depleted Tregs in xenografts of PBMCs from a healthy donor and ascites fluid from a cancer patient. A TCRm mAb targeting intracellular Foxp3 epitope represents an approach to deplete Tregs.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Andrew C. Scott
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Immunology Program, Weill Cornell Medicine, New York, NY, USA
| | - Casey A. Jarvis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | - Martin G. Klatt
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Manuel Guerreiro
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Annamalai Selvakumar
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elliott J. Brea
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Claire Oh
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Cheng Liu
- Eureka Therapeutics, Emeryville, CA, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Immunology Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
36
|
Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, Porter DL, Maloney DG, Grupp SA, Mackall CL, June CH, Bishop MR. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother Cancer 2018; 6:137. [PMID: 30514386 PMCID: PMC6278156 DOI: 10.1186/s40425-018-0460-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapies - adoptive T cell therapies that have been genetically engineered for a new antigen-specificity - have displayed significant success in treating patients with hematologic malignancies, leading to three recent US Food and Drug Administration approvals. Based on the promise generated from these successes, the field is rapidly evolving to include new disease indications and CAR designs, while simultaneously reviewing and optimizing toxicity and management protocols. As such, this review provides expert perspective on the significance and clinical considerations of CAR T cell therapies in order to provide timely information to clinicians about this revolutionary new therapeutic class.
Collapse
Affiliation(s)
| | | | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James N Kochenderfer
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcela V Maus
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - David L Porter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephan A Grupp
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Oncology, Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Crystal L Mackall
- Cancer Immunology and Immunotherapy Program, Stanford University, Stanford, CA, USA
| | - Carl H June
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Bishop
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA. .,The University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
37
|
Legut M, Sewell AK. Designer T-cells and T-cell receptors for customized cancer immunotherapies. Curr Opin Pharmacol 2018; 41:96-103. [PMID: 29852403 DOI: 10.1016/j.coph.2018.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
Cancer immunotherapy, focused on harnessing and empowering the immune system against tumours, has transformed modern oncology. One of the most promising avenues in development involves using genetically engineered T-cells to target cancer antigens via specific T-cell receptors (TCRs). TCRs have a naturally low affinity towards cancer-associated antigens, and therefore show scope for improvement. Here we describe approaches to procure TCRs with enhanced affinity and specificity towards cancer, using protein engineering or selection of natural TCRs from unadulterated repertoires. In particular, we discuss novel methods facilitating the targeting of tumour-specific mutations. Finally, we provide a prospective outlook on the potential development of novel, off-the-shelf immunotherapies by leveraging recent advances in genome editing.
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Cardiff CF14 4XN, Wales, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Cardiff CF14 4XN, Wales, UK.
| |
Collapse
|
38
|
Holland CJ, MacLachlan BJ, Bianchi V, Hesketh SJ, Morgan R, Vickery O, Bulek AM, Fuller A, Godkin A, Sewell AK, Rizkallah PJ, Wells S, Cole DK. In Silico and Structural Analyses Demonstrate That Intrinsic Protein Motions Guide T Cell Receptor Complementarity Determining Region Loop Flexibility. Front Immunol 2018; 9:674. [PMID: 29696015 PMCID: PMC5904202 DOI: 10.3389/fimmu.2018.00674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
T-cell immunity is controlled by T cell receptor (TCR) binding to peptide major histocompatibility complexes (pMHCs). The nature of the interaction between these two proteins has been the subject of many investigations because of its central role in immunity against pathogens, cancer, in autoimmunity, and during organ transplant rejection. Crystal structures comparing unbound and pMHC-bound TCRs have revealed flexibility at the interaction interface, particularly from the perspective of the TCR. However, crystal structures represent only a snapshot of protein conformation that could be influenced through biologically irrelevant crystal lattice contacts and other factors. Here, we solved the structures of three unbound TCRs from multiple crystals. Superposition of identical TCR structures from different crystals revealed some conformation differences of up to 5 Å in individual complementarity determining region (CDR) loops that are similar to those that have previously been attributed to antigen engagement. We then used a combination of rigidity analysis and simulations of protein motion to reveal the theoretical potential of TCR CDR loop flexibility in unbound state. These simulations of protein motion support the notion that crystal structures may only offer an artifactual indication of TCR flexibility, influenced by crystallization conditions and crystal packing that is inconsistent with the theoretical potential of intrinsic TCR motions.
Collapse
Affiliation(s)
- Christopher J Holland
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom.,Immunocore, Abingdon, United Kingdom
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Valentina Bianchi
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom.,Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sophie J Hesketh
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Richard Morgan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Owen Vickery
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna M Bulek
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew Godkin
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Pierre J Rizkallah
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephen Wells
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom.,Immunocore, Abingdon, United Kingdom
| |
Collapse
|
39
|
Shi L, Zhang Y, Feng L, Wang L, Rong W, Wu F, Wu J, Zhang K, Cheng S. Multi-omics study revealing the complexity and spatial heterogeneity of tumor-infiltrating lymphocytes in primary liver carcinoma. Oncotarget 2018; 8:34844-34857. [PMID: 28422742 PMCID: PMC5471016 DOI: 10.18632/oncotarget.16758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/17/2017] [Indexed: 11/26/2022] Open
Abstract
Intratumoral heterogeneity has been revealed in primary liver carcinoma (PLC). However, spatial heterogeneity of tumor-infiltrating lymphocytes (TILs), which reflects one dimension of a tumor's spatial heterogeneity, and the relationship between TIL diversity, local immune response and mutation burden remain unexplored in PLC. Therefore, we performed immune repertoire sequencing, gene expression profiling analysis and whole-exome sequencing in parallel on five regions of each tumor and on matched adjacent normal tissues and peripheral blood from five PLC patients. A significantly higher cumulative frequency of the top 250 most abundant TIL clones was observed in tumors than in peripheral blood. Besides, overlap rates of T cell receptor (TCR) repertoire for intratumor comparisons, significant higher than those for tumor-adjacent normal tissue comparisons and tumor-blood comparisons, which provide evidence for antigen-driven clonal expansion in PLC. Analysis of the percentage of ubiquitous TCR sequences, regional frequencies of each clone and TIL diversity suggested TIL clones varying between distinct regions of the same tumor, which indicated weak TCR repertoire similarity within a single tumor. Furthermore, correlation analysis revealed that TIL diversity significantly correlated with the expression of immune response genes rather than the mutation load. We conclude that intratumoural T-cell clones are spatially heterogeneous, which can lead to underestimate the immune profile of PLC from a single biopsy sample and may present challenge to adoptive cell therapy using autologous TILs. TIL diversity provides a reasonable explanation for the degree of immune response, implied TIL diversity can serve as a surrogate marker to monitor the effect of immunotherapy.
Collapse
Affiliation(s)
- Lijun Shi
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
40
|
Awad W, Le Nours J, Kjer-Nielsen L, McCluskey J, Rossjohn J. Mucosal-associated invariant T cell receptor recognition of small molecules presented by MR1. Immunol Cell Biol 2018; 96:588-597. [PMID: 29393543 DOI: 10.1111/imcb.12017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) class-I related molecule MR1 is a monomorphic and evolutionary conserved antigen (Ag)-presenting molecule that shares the overall architecture of MHC-I and CD1 proteins. However, in contrast to MHC-I and the CD1 family that present peptides and lipids, respectively, MR1 specifically presents small organic molecules. During microbial infection of mammalian cells, MR1 captures and presents vitamin B precursors, derived from the microbial biosynthesis of riboflavin, on the surface of antigen-presenting cells. These MR1-Ag complexes are recognized by the mucosal-associated invariant T cell receptor (MAIT TCR), which subsequently leads to MAIT cell activation. Recently, MR1 was shown to trap chemical scaffolds including drug and drug-like molecules. Here, we review this metabolite Ag-presenting molecule and further define the key molecular interactions underlying the recognition and reactivity of MAIT TCRs to MR1 in an Ag-dependent manner.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.,Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
41
|
Kugyelka R, Kohl Z, Olasz K, Prenek L, Berki T, Balogh P, Boldizsár F. Correction of T cell deficiency in ZAP-70 knock-out mice by simple intraperitoneal adoptive transfer of thymocytes. Clin Exp Immunol 2018; 192:302-314. [PMID: 29431868 DOI: 10.1111/cei.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/01/2022] Open
Abstract
The tyrosine kinase zeta chain-associated protein of 70 kDa (ZAP-70) plays a key role in T cell development and signalling. In the absence of ZAP-70, T cell development is arrested in the CD4+ CD8+ double-positive stage, thus ZAP-70 homozygous knockout (ZAP-70-/- ) mice have no mature T cells in their peripheral lymphoid organs and blood, causing severe immunodeficiency. We investigated the early kinetics and long-term effects of wild-type thymocyte transfer on T cell repopulation in ZAP-70-/- mice. We used a single intraperitoneal (i.p.) injection to deliver donor thymocytes to the recipients. Here, we show that after i.p. injection donor thymocytes leave the peritoneum through milky spots in the omentum and home to the thymus, where donor-originated CD4- CD8- double-negative thymocytes most probably restore T cell development and the disrupted thymic architecture. Subsequently, newly developed, donor-originated, single-positive αβ T cells appear in peripheral lymphoid organs, where they form organized T cell zones. The established chimerism was found to be stable, as donor-originated cells were present in transferred ZAP-70-/- mice as late as 8 months after i.p. injection. We demonstrate that a simple i.p. injection of ZAP-70+/+ thymocytes is a feasible method for the long-term reconstitution of T cell development in ZAP-70-deficient mice.
Collapse
Affiliation(s)
- R Kugyelka
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Z Kohl
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - K Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - L Prenek
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - T Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - P Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - F Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
42
|
Sharpe ME. T-cell Immunotherapies and the Role of Nonclinical Assessment: The Balance between Efficacy and Pathology. Toxicol Pathol 2018; 46:131-146. [PMID: 29471776 PMCID: PMC5843031 DOI: 10.1177/0192623317752101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene-engineered T-cell therapies have the potential to revolutionize the treatment of cancer. These therapies have shown exceptional clinical efficacy specifically in the field of B-cell malignancies and the first products (Kymriah™ and Yescarta™) have recently been approved in the United States for specific indications. The power of these treatments is also linked with a distinct set of toxicities both predicted and unpredicted, including off-tumor activity, cytokine release syndromes, and neurotoxicity, occasionally with fatal consequences. As these therapies begin to reach more patients, it is critical to develop the nonclinical tools to adequately determine the mechanisms driving these toxicities, to assess the safety risks of candidate products, and to develop strategies for safety management.
Collapse
Affiliation(s)
- Michaela E. Sharpe
- Cell and Gene Therapy Catapult, Guy’s Hospital, Great Maze Pond, London, United Kingdom
| |
Collapse
|
43
|
Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 2018; 131:311-322. [PMID: 29122757 PMCID: PMC5774207 DOI: 10.1182/blood-2017-05-787598] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/04/2017] [Indexed: 12/20/2022] Open
Abstract
Adoptive transfer of T cells genetically modified to express a cancer-specific T-cell receptor (TCR) has shown significant therapeutic potential for both hematological and solid tumors. However, a major issue of transducing T cells with a transgenic TCR is the preexisting expression of TCRs in the recipient cells. These endogenous TCRs compete with the transgenic TCR for surface expression and allow mixed dimer formation. Mixed dimers, formed by mispairing between the endogenous and transgenic TCRs, may harbor autoreactive specificities. To circumvent these problems, we designed a system where the endogenous TCR-β is knocked out from the recipient cells using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) technology, simultaneously with transduction with a cancer-reactive receptor of choice. This TCR replacement strategy resulted in markedly increased surface expression of transgenic αβ and γδ TCRs, which in turn translated to a stronger, and more polyfunctional, response of engineered T cells to their target cancer cell lines. Additionally, the TCR-plus-CRISPR-modified T cells were up to a thousandfold more sensitive to antigen than standard TCR-transduced T cells or conventional model proxy systems used for studying TCR activity. Finally, transduction with a pan-cancer-reactive γδ TCR used in conjunction with CRISPR/Cas9 knockout of the endogenous αβ TCR resulted in more efficient redirection of CD4+ and CD8+ T cells against a panel of established blood cancers and primary, patient-derived B-cell acute lymphoblastic leukemia blasts compared with standard TCR transfer. Our results suggest that TCR transfer combined with genome editing could lead to new, improved generations of cancer immunotherapies.
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity, School of Medicine
- Systems Immunity Research Institute, and
| | - Garry Dolton
- Division of Infection and Immunity, School of Medicine
- Systems Immunity Research Institute, and
| | - Afsar Ali Mian
- Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Oliver G Ottmann
- Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine
- Systems Immunity Research Institute, and
| |
Collapse
|
44
|
Candéias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci 2017; 74:4339-4351. [PMID: 28667356 PMCID: PMC11107572 DOI: 10.1007/s00018-017-2581-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.
Collapse
Affiliation(s)
- Serge M Candéias
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute, Laboratory of Chemistry and Biology of Metals, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, CNRS, UMR5249, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, UMR5249, University of Grenoble-Alpes, 38054, Grenoble, France.
| | - Justyna Mika
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Joanna Polanska
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK.
| |
Collapse
|
45
|
Bethune MT, Gee MH, Bunse M, Lee MS, Gschweng EH, Pagadala MS, Zhou J, Cheng D, Heath JR, Kohn DB, Kuhns MS, Uckert W, Baltimore D. Domain-swapped T cell receptors improve the safety of TCR gene therapy. eLife 2016; 5. [PMID: 27823582 PMCID: PMC5101000 DOI: 10.7554/elife.19095] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
T cells engineered to express a tumor-specific αβ T cell receptor (TCR) mediate anti-tumor immunity. However, mispairing of the therapeutic αβ chains with endogenous αβ chains reduces therapeutic TCR surface expression and generates self-reactive TCRs. We report a general strategy to prevent TCR mispairing: swapping constant domains between the α and β chains of a therapeutic TCR. When paired, domain-swapped (ds)TCRs assemble with CD3, express on the cell surface, and mediate antigen-specific T cell responses. By contrast, dsTCR chains mispaired with endogenous chains cannot properly assemble with CD3 or signal, preventing autoimmunity. We validate this approach in cell-based assays and in a mouse model of TCR gene transfer-induced graft-versus-host disease. We also validate a related approach whereby replacement of αβ TCR domains with corresponding γδ TCR domains yields a functional TCR that does not mispair. This work enables the design of safer TCR gene therapies for cancer immunotherapy. DOI:http://dx.doi.org/10.7554/eLife.19095.001 T cells enable the immune system to recognize invading microbes and diseased cells while ignoring healthy cells. The ability of a T cell to recognize a specific microbe or diseased cell is determined by two proteins that pair to form its “T cell receptor.” The paired receptors are exported to the surface of the T cell, where they bind to infected or cancerous cells. Those T cells that produce receptors that bind healthy cells are eliminated during development. T cells can generally distinguish between the body’s own cells and the cells of invading bacteria or other microbes. However, cancer cells are more difficult to identify because they are similar to healthy cells. Efforts to develop therapies that enhance the immune system’s ability to recognize cancer cells have had only limited success. One successful approach – known as T cell receptor gene therapy – modifies T cells to destroy cancer cells by arming them with a cancer-specific T cell receptor. This technique produces T cells possessing two T cell receptors – the cancer-specific receptor and the one it had originally – so it is possible for proteins from the two receptors to mispair. This impedes the correct pairing of the cancer-specific T cell receptor, reducing the effectiveness of the therapy. More importantly, mispaired T cell receptors may cause the immune cells to attack healthy cells in the body, leading to autoimmune disease. To make T cell receptor gene therapy safe, the cancer-specific receptor must not mispair with the resident receptor. Here, Bethune et al. describe a new strategy to prevent T cell receptors from mispairing. The researchers altered the arrangement of particular regions in a cancer-specific T cell receptor to make a new receptor called a domain-swapped T cell receptor (dsTCR). Like normal T cell receptors, the dsTCRs were exported to the T cell surface and were able to interact with other proteins involved in immune responses. Furthermore, T cells armed with dsTCRs were able to kill cancer cells and prevent tumor growth in mice. Unlike other cancer-specific receptors, dsTCRs did not mispair with the resident T cell receptors in mouse or human cells, and did not cause autoimmune disease in mice. The findings of Bethune et al. show that the structure of the T cell receptor is unexpectedly robust, in that it still works even if it is modified. The next step is to study dsTCRs in more detail with the aim of optimizing them so that they might be used in human clinical trials in the future. DOI:http://dx.doi.org/10.7554/eLife.19095.002
Collapse
Affiliation(s)
- Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Marvin H Gee
- Program in Immunology, Stanford University School of Medicine, Stanford, United States
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mark S Lee
- Department of Immunobiology, University of Arizona, Tucson, United States.,The BIO5 Institute, University of Arizona, Tucson, United States
| | - Eric H Gschweng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Meghana S Pagadala
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jing Zhou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael S Kuhns
- Department of Immunobiology, University of Arizona, Tucson, United States.,The BIO5 Institute, University of Arizona, Tucson, United States
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
46
|
Laugel B, Lloyd A, Meermeier EW, Crowther MD, Connor TR, Dolton G, Miles JJ, Burrows SR, Gold MC, Lewinsohn DM, Sewell AK. Engineering of Isogenic Cells Deficient for MR1 with a CRISPR/Cas9 Lentiviral System: Tools To Study Microbial Antigen Processing and Presentation to Human MR1-Restricted T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:971-82. [PMID: 27307560 PMCID: PMC4947828 DOI: 10.4049/jimmunol.1501402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/18/2016] [Indexed: 01/11/2023]
Abstract
The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells.
Collapse
Affiliation(s)
- Bruno Laugel
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom;
| | - Angharad Lloyd
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Erin W Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239
| | - Michael D Crowther
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Thomas R Connor
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom; and
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - John J Miles
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Marielle C Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239
| | - David M Lewinsohn
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom; and
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom;
| |
Collapse
|
47
|
Peakman M, Sewell AK. Reversed-polarity T(reg) cell TCRs provide a shock. Nat Immunol 2016; 16:1105-7. [PMID: 26482968 DOI: 10.1038/ni.3289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
48
|
T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones. J Immunol Methods 2016; 430:43-50. [PMID: 26826277 PMCID: PMC4783706 DOI: 10.1016/j.jim.2016.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/29/2022]
Abstract
Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer.
Collapse
|
49
|
Olexiouk V, Menschaert G. Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 926:49-64. [PMID: 27686805 DOI: 10.1007/978-3-319-42316-6_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of small proteins and peptides has consistently proven to be challenging. However, technological advances as well as multi-omics endeavors facilitate the identification of novel small coding sequences, leading to new insights. Specifically, the application of next generation sequencing technologies (NGS), providing accurate and sample specific transcriptome / translatome information, into the proteomics field led to more comprehensive results and new discoveries. This book chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known as ribosome profiling, an RNA-Seq based technique sequencing the +/- 30 bp long fragments captured by translating ribosomes. We emphasize the identification of micropeptides and neo-antigens, two distinct classes of small translation products, triggering our current understanding of biology. RNA-Seq is capable of capturing sample specific genomic variations, enabling focused neo-antigen identification. RIBO-Seq can identify translation events in small open reading frames which are considered to be non-coding, leading to the discovery of micropeptides. The identification of small translation products requires the integration of multi-omics data, stressing the importance of proteogenomics in this novel research area.
Collapse
Affiliation(s)
- Volodimir Olexiouk
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium.
| | - Gerben Menschaert
- Lab of Bioinformatics and Computational Genomics (BioBix), Faculty of Bioscience Engineering, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Building A, Ghent, 9000, Belgium
| |
Collapse
|
50
|
Dolton G, Tungatt K, Lloyd A, Bianchi V, Theaker SM, Trimby A, Holland CJ, Donia M, Godkin AJ, Cole DK, Straten PT, Peakman M, Svane IM, Sewell AK. More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 2015; 146:11-22. [PMID: 26076649 PMCID: PMC4552497 DOI: 10.1111/imm.12499] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
Analysis of antigen-specific T-cell populations by flow cytometry with peptide-MHC (pMHC) multimers is now commonplace. These reagents allow the tracking and phenotyping of T cells during infection, autoimmunity and cancer, and can be particularly revealing when used for monitoring therapeutic interventions. In 2009, we reviewed a number of 'tricks' that could be used to improve this powerful technology. More recent advances have demonstrated the potential benefits of using higher order multimers and of 'boosting' staining by inclusion of an antibody against the pMHC multimer. These developments now allow staining of T cells where the interaction between the pMHC and the T-cell receptor is over 20-fold weaker (K(D) > 1 mm) than could previously be achieved. Such improvements are particularly relevant when using pMHC multimers to stain anti-cancer or autoimmune T-cell populations, which tend to bear lower affinity T-cell receptors. Here, we update our previous work to include discussion of newer tricks that can produce substantially brighter staining even when using log-fold lower concentrations of pMHC multimer. We further provide a practical guide to using pMHC multimers that includes a description of several common pitfalls and how to circumvent them.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Katie Tungatt
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Angharad Lloyd
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Valentina Bianchi
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Sarah M Theaker
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew Trimby
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Marco Donia
- Centre for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Per Thor Straten
- Centre for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital, London, UK
| | - Inge Marie Svane
- Centre for Cancer Immune Therapy, Herlev University Hospital, Herlev, Denmark
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|