1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Derogar R, Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks in ovarian cancer: from bench to bedside. EXCLI JOURNAL 2025; 24:86-112. [PMID: 39967908 PMCID: PMC11830916 DOI: 10.17179/excli2024-7827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Epithelial ovarian cancer is responsible for the majority of ovarian malignancies, and its highly invasive nature and chemoresistant development have been major obstacles to treating patients with mainstream treatments. In recent decades, the significance of microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs) has been highlighted in ovarian cancer development. This hidden language between these RNAs has led to the discovery of enormous regulatory networks in ovarian cancer cells that substantially affect gene expression. Aside from providing ample opportunities for targeted therapies, circRNA- and lncRNA-mediated ceRNA network components provide invaluable biomarkers. The current study provides a comprehensive and up-to-date review of the recent findings on the significance of these ceRNA networks in the hallmarks of ovarian cancer oncogenesis, treatment, diagnosis, and prognosis. Also, it provides the authorship with future perspectives in the era of single-cell RNA sequencing and personalized medicine.
Collapse
Affiliation(s)
- Roghaiyeh Derogar
- Fellowship in Gynecologic Oncology, Department of Gynecology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Li B, Tan S, Yu X, Wang Y. Bufalin: A promising therapeutic drug against the cisplatin-resistance of ovarian cancer by targeting the USP36/c-Myc axis. Biochem Biophys Res Commun 2024; 733:150440. [PMID: 39067250 DOI: 10.1016/j.bbrc.2024.150440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cisplatin (DPP) resistance is a severe obstacle to ovarian cancer (OC) treatment. Our research aims to uncover the therapeutic effect and the underlying mechanism of Bufalin against DDP resistance. The cell viability, proliferation capacity, γH2AX expression, and apoptosis ratio were quantified via CCK8 assay, colony formation assay, immunofluorescence, and flow cytometry analysis respectively. Xenografting experiment was performed to detect the tumor growth. Molecular docking was applied to mimic the combination of Bufalin and USP36 protein, and Western blotting was conducted to measure the Bax, Bcl-2, γH2AX, USP36, and c-Myc expression. The c-Myc ubiquitination and half-life were detected via ubiquitination assay and cycloheximide chasing assay. Bufalin treatment notably suppressed the cell viability and colony numbers, and increased the apoptosis ratio and γH2AX level in the DDP treatment group. Bufalin therapy also notably inhibited tumor growth, Bax, Bcl-2, and γH2AX expression in vivo. Moreover, the Bufalin application remarkedly reduced the c-Myc expression and half-life and increased the c-Myc ubiquitination via interaction and subsequent down-regulation of USP36. Knockdown of USP36 reversed the antiproliferative effect and proapoptotic capacity of Bufalin therapy in the DDP treatment group. In conclusion, Bufalin can overcome the DDP resistance in vitro and in vivo via the USP36/c-Myc axis, which innovatively suggests the therapeutic potential of Bufalin against DDP resistance ovarian cancer.
Collapse
Affiliation(s)
- Bing Li
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Shu Tan
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Yu
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Wang
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
4
|
Wilczyński M, Wilczyński J, Nowak M. MiRNAs as Regulators of Immune Cells in the Tumor Microenvironment of Ovarian Cancer. Cells 2024; 13:1343. [PMID: 39195233 PMCID: PMC11352322 DOI: 10.3390/cells13161343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is one of the leading causes of cancer deaths among women. There is an ongoing need to develop new biomarkers and targeted therapies to improve patient outcomes. One of the most critical research areas in ovarian cancer is identifying tumor microenvironment (TME) functions. TME consists of tumor-infiltrating immune cells, matrix, endothelial cells, pericytes, fibroblasts, and other stromal cells. Tumor invasion and growth depend on the multifactorial crosstalk between tumor cells and immune cells belonging to the TME. MiRNAs, which belong to non-coding RNAs that post-transcriptionally control the expression of target genes, regulate immune responses within the TME, shaping the landscape of the intrinsic environment of tumor cells. Aberrant expression of miRNAs may lead to the pathological dysfunction of signaling pathways or cancer cell-regulatory factors. Cell-to-cell communication between infiltrating immune cells and the tumor may depend on exosomes containing multiple miRNAs. MiRNAs may exert both immunosuppressive and immunoreactive responses, which may cause cancer cell elimination or survival. In this review, we highlighted recent advances in the field of miRNAs shaping the landscape of immune cells in the TME.
Collapse
Affiliation(s)
- Miłosz Wilczyński
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother’s Health Center-Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland
| | - Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland;
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother’s Health Center-Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
| |
Collapse
|
5
|
Williams I, DeHart H, O'Malley M, Walker B, Ulhaskumar V, Ray H, Delaney JR, Nephew KP, Carpenter RL. MYC and HSF1 Cooperate to Drive PLK1 inhibitor Sensitivity in High Grade Serous Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598486. [PMID: 38915574 PMCID: PMC11195273 DOI: 10.1101/2024.06.11.598486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ovarian cancer is a deadly female cancer with high rates of recurrence. The primary treatment strategy for patients is platinum-based therapy regimens that almost universally develop resistance. Consequently, new therapeutic avenues are needed to overcome the plateau that current therapies have on patient outcomes. We describe a gene amplification involving both HSF1 and MYC, wherein these two genes on chromosome 8q are co-amplified in over 7% of human tumors that is enriched to over 30% of patients with ovarian cancer. We further found that HSF1 and MYC transcriptional activity is correlated in human tumors and ovarian cancer cell lines, suggesting they may cooperate in ovarian cancer cells. CUT&RUN for HSF1 and MYC in co-amplified ovarian cancer cells revealed that HSF1 and MYC have overlapping binding at a substantial number of locations throughout the genome where their binding peaks are near identical. Consistent with these data, a protein-protein interaction between HSF1 and MYC was detected in ovarian cancer cells, implying these two transcription factors have a molecular cooperation. Further supporting their cooperation, growth of HSF1-MYC co-amplified ovarian cancer cells were found to be dependent on both HSF1 and MYC. In an attempt to identify a therapeutic target that could take advantage of this dependency on both HSF1 and MYC, PLK1 was identified as being correlated with HSF1 and MYC in primary human tumor specimens, consistent with a previously established effect of PLK1 on HSF1 and MYC protein levels. Targeting PLK1 with the compound volasertib (BI-6727) revealed a greater than 200-fold increased potency of volasertib in HSF1-MYC co-amplified ovarian cancer cells compared to ovarian cancer cells wild-type HSF1 and MYC copy number, which extended to several growth assays, including spheroid growth. Volasertib, and other PLK1 inhibitors, have not shown great success in clinical trials and this study suggests that targeting PLK1 may be viable in a precision medicine approach using HSF1-MYC co-amplification as a biomarker for response.
Collapse
|
6
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Chen Z, Yao MW, Ao X, Gong QJ, Yang Y, Liu JX, Lian QZ, Xu X, Zuo LJ. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol 2024; 27:1-10. [PMID: 38065706 PMCID: PMC10859298 DOI: 10.1016/j.cjtee.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of Orthopedics, 953 Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, Tibet Autonomous Region, China
| | - Qing-Jia Gong
- College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Xia Liu
- Department of Obstetrics and Gynecology, Chongqing People's Hospital, Chongqing, 401121, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Ling-Jing Zuo
- Department of Nuclear Medicine, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650034, China.
| |
Collapse
|
8
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
9
|
Fu C, Liu Z, An T, Li H, Hu X, Li X, Liu X, Wu D, Zhang R, Li K, Qiu Y, Wang H. Poliovirus receptor (PVR) mediates carboplatin-induced PD-L1 expression in non-small-cell lung cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130439. [PMID: 37516256 DOI: 10.1016/j.bbagen.2023.130439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.
Collapse
Affiliation(s)
- Chen Fu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Zongcai Liu
- The Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixia Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinyao Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Danjuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kui Li
- Guangzhou Huayinkang Medical Laboratory Center Co., Ltd., Guangzhou 510515, China.
| | - Yurong Qiu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangzhou Huayinkang Medical Laboratory Center Co., Ltd., Guangzhou 510515, China.
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Wang D, Tang X, Ruan J, Zhu Z, Wang R, Weng Y, Zhang Y, Wang T, Huang Y, Wang H, Su Z, Wu X, Tao G, Wang Y. HSP90AB1 as the Druggable Target of Maggot Extract Reverses Cisplatin Resistance in Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9335440. [PMID: 37180757 PMCID: PMC10169247 DOI: 10.1155/2023/9335440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
Cisplatin resistance is a crucial factor affecting ovarian cancer patient's survival rate, but the primary mechanism underlying cisplatin resistance in ovarian cancer remains unclear, and this prevents the optimal use of cisplatin therapy. Maggot extract (ME) is used in traditional Chinese medicine for patients with comas and patients with gastric cancer when combined with other drug treatments. In this study, we investigated whether ME enhances the sensitivity of ovarian cancer cells to cisplatin. Two ovarian cancer cells-A2780/CDDP and SKOV3/CDDP-were treated with cisplatin and ME in vitro. SKOV3/CDDP cells that stably expressed luciferase were subcutaneously or intraperitoneally injected into BALB/c nude mice to establish a xenograft model, and this was followed by ME/cisplatin treatment. In the presence of cisplatin, ME treatment effectively suppressed the growth and metastasis of cisplatin-resistant ovarian cancer in vivo and in vitro. RNA-sequencing data showed that HSP90AB1 and IGF1R were markedly increased in A2780/CDDP cells. ME treatment markedly decreased the expression of HSP90AB1 and IGF1R, thereby increasing the expression of the proapoptotic proteins p-p53, BAX, and p-H2AX, while the opposite effects were observed for the antiapoptotic protein BCL2. Inhibition of HSP90 ATPase was more beneficial against ovarian cancer in the presence of ME treatment. In turn, HSP90AB1 overexpression effectively inhibited the effect of ME in promoting the increased expression of apoptotic proteins and DNA damage response proteins in SKOV3/CDDP cells. Inhibition of cisplatin-induced apoptosis and DNA damage by HSP90AB1 overexpression confers chemoresistance in ovarian cancer. ME can enhance the sensitivity of ovarian cancer cells to cisplatin toxicity by inhibiting HSP90AB1/IGF1R interactions, and this might represent a novel target for overcoming cisplatin resistance in ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Daojuan Wang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xun Tang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Jianguo Ruan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Zhengquan Zhu
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Rong Wang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yajing Weng
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yaling Zhang
- School of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Tingyu Wang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ying Huang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hongwei Wang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zhenzi Su
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Gaojian Tao
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yong Wang
- The Affiliated Nanjing Drum Tower Hospital; State Key Laboratory of Analytical Chemistry for Life Science; and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
12
|
Guo L, Tang X, Wong SW, Guo A, Lin Y, Kwok HF. Regulation of IFN-γ-mediated PD-L1 expression by MYC in colorectal cancer with wild-type KRAS and TP53 and its clinical implications. Front Pharmacol 2022; 13:1022129. [PMID: 36582540 PMCID: PMC9792609 DOI: 10.3389/fphar.2022.1022129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction: In the tumor microenvironment, interferon gamma (IFN-γ) secreted by tumor infiltrating lymphocytes can upregulate programmed cell death 1 ligand 1 (PD-L1) expression in many cancers. The present study evaluated the expression of PD-L1 in selected colorectal cancer cell lines with IFN-γ treatment and explored the correlation between programmed cell death 1 ligand 1 expression and KRAS/TP53 mutation status. Methods: The selected colorectal cancer cell lines had known KRAS mutations or TP53 mutations. TCGA data analysis were used to investigate the correlation between overall survival of patient with anti-PD-1/PD-L1 immunotherapy and KRAS/TP53 mutation status. Besides, the correlation between PD-L1 expression and KRAS/TP53 mutation status were also investigated by using TCGA data analysis. In vitro experiments were used to explore the mechanism underlying KRAS- and TP53-related PD-L1 expression. Results: Firstly, TCGA data analysis for gene expression and overall survival and an in vitro study revealed that the wild-type KRAS/TP53 cell lines exhibited hyperresponsiveness to interferon gamma exposure and correlated with better survival in patients receiving anti-PD-1/PD-L1 treatment. Secondly, experimental data revealed that interferon gamma induced the upregulation of programmed cell death 1 ligand 1 mainly through regulating MYC in wild-type KRAS and TP53 colorectal cancers. Discussion: Our findings revealed that the response to anti-PD-1/PD-L1 cancer immunotherapy frequently happened in wild-type KRAS and TP53 colorectal cancers, which were also found to show higher programmed cell death 1 ligand 1 expression. Our results indicate that the wild-type KRAS/TP53 colorectal cancer cell lines may respond better to interferon gamma treatment, which causes increased programmed cell death 1 ligand 1 expression and may be a mechanism underlying the better responses to anti-PD-1/PD-L1 therapies in wild-type KRAS and wild-type TP53 colorectal cancer. Furthermore, the experimental results suggest that interferon gamma regulated programmed cell death 1 ligand 1 expression through the regulation of MYC, which may further affect the response to PD-1/PD-L1 cancer immunotherapy. These results suggest a novel potential treatment strategy for enhancing the efficacy of PD-1/PD-L1 blockade immunotherapy in most colorectal cancer patients.
Collapse
Affiliation(s)
- Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China,Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sin Wa Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China
| | - Anyuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China,Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Yao Lin, ; Hang Fai Kwok,
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China,*Correspondence: Yao Lin, ; Hang Fai Kwok,
| |
Collapse
|
13
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
14
|
[MiR-4772 modulates tumor immune microenvironment by regulating immune- related genes in ovarian cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1638-1645. [PMID: 36504056 PMCID: PMC9742773 DOI: 10.12122/j.issn.1673-4254.2022.11.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore the regulatory role of miR-4772 in the formation of tumor immune microenvironment in ovarian cancer. METHODS The optimal cutoff level of PD-L1 expression was calculated based on data from 294 ovarian cancer patients in the TCGA database. The differentially expressed genes (DEGs) between high and low PD-L1 expression groups were screened, and the important DEGs were identified by correlation analysis. WGCNA analysis was performed to select the weighted genes and PD-L1-related miRNAs, from which the hub genes were obtained by intersection analysis. ssGSEA analysis was used to evaluate the effect of PD-L1 and miR-4772 expressions on the tumor immune microenvironment in ovarian cancer. KEGG analysis was used to identify the involved signal pathways, and the interactions between the hub genes were mapped by protein-protein interaction (PPI) analysis. Survival analysis was carried out to identify the survival-related hub genes, and the results were validated using the data of 399 patients with ovarian cancer from GEO database and the sequencing results of SKOV3 cells transfected with miR-4772 mimics or inhibitor. RESULTS According the optimal cutoff level of PD-L1 expression of 1.31582 (90th quantile), the patients were divided into high- and low-PD-L1 expression groups. A total of 840 DEGs were identified, including 549 significantly up-regulated genes and 291 down-regulated genes. Among them, 20 important DEGs were found to closely correlate with miR-4772 expression, and WGCNA analysis identified 48 weighted genes significantly correlated with miR-4772. Twelve genes were identified as both key DEGs and weighted genes and were treated as the hub genes. ssGSEA analysis showed that both the patients with high PD-L1 expressions and those with high miR-4772 expressions showed more active immune infiltration and functional activity. The 12 hub genes were involved mainly in immune-related signaling pathways, and PPI analysis suggested significant interactions among the hub genes. The two hub genes CD96 and TBX21 showed close correlation with the survival of ovarian cancer patients. The sequencing results of SKOV3 cells transfected with miR-4772 mimics or inhibitor showed that the changes in miR-4772 expression level caused obvious changes in the expressions of the 12 hub genes and PD-L1. CONCLUSION MiR-4772 plays a regulatory role in the formation of tumor immune microenvironment in ovarian cancer by regulating 12 hub genes.
Collapse
|
15
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Poornajaf Y, Taheri M, Sharifi G. Interplay between programmed death-ligand 1 and non-coding RNAs. Front Immunol 2022; 13:982902. [PMID: 36405753 PMCID: PMC9667550 DOI: 10.3389/fimmu.2022.982902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a transmembrane protein with essential roles in the suppression of adaptive immune responses. As an immune checkpoint molecule, PD-L1 can be exploited by cancer cells to evade the anti-tumor attacks initiated by the immune system. Thus, blockade of the PD1/PD-L1 axis can eliminate the suppressive signals and release the antitumor immune responses. Identification of the underlying mechanisms of modulation of the activity of the PD1/PD-L1 axis would facilitate the design of more efficacious therapeutic options and better assignment of patients for each option. Recent studies have confirmed the interactions between miRNAs/lncRNAs/circ-RNAs and the PD1/PD-L1 axis. In the current review, we give a summary of interactions between these transcripts and PD-L1 in the context of cancer. We also overview the consequences of these interactions in the determination of the response of patients to anti-cancer drugs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan, Iraq
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
16
|
Zhou Z, Liu Y, Jiang X, Zheng C, Luo W, Xiang X, Qi X, Shen J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int J Biol Macromol 2022; 224:797-809. [DOI: 10.1016/j.ijbiomac.2022.10.167] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
17
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Padmanabhan S, Gaire B, Zou Y, Uddin MM, Vancurova I. IFNγ-induced PD-L1 expression in ovarian cancer cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell Signal 2022; 97:110400. [PMID: 35820543 PMCID: PMC9357219 DOI: 10.1016/j.cellsig.2022.110400] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Expression of the immune checkpoint programmed death ligand-1 (PD-L1) is increased in ovarian cancer (OC) and correlates with poor prognosis. Interferon-γ (IFNγ) induces PD-L1 expression in OC cells, resulting in their increased proliferation and tumor growth, but the mechanisms that regulate the PD-L1 expression in OC remain unclear. Here, we show that the IFNγ-induced PD-L1 expression in OC cells is associated with increased levels of STAT1, Tyr-701 pSTAT1 and Ser-727 pSTAT1. Suppression of JAK1 and STAT1 significantly decreases the IFNγ-induced PD-L1 expression in OC cells, and STAT1 overexpression increases the IFNγ-induced PD-L1 expression. In addition, IFNγ induces expression of the transcription factor interferon regulatory factor 1 (IRF1) and IRF1 suppression attenuates the IFNγ-induced gene and protein levels of PD-L1. Chromatin immunoprecipitation results show that IFNγ induces PD-L1 promoter acetylation and recruitment of STAT1, Ser-727 pSTAT1 and IRF1 in OC cells. Together, these findings demonstrate that the IFNγ-induced PD-L1 expression in OC cells is regulated by JAK1, STAT1, and IRF1 signaling, and suggest that targeting the JAK1/ STAT1/IRF1 pathway may provide a leverage to regulate the PD-L1 levels in ovarian cancer.
Collapse
Affiliation(s)
- Sveta Padmanabhan
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Bijaya Gaire
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Mohammad M Uddin
- Department of Biological Sciences, St. John's University, New York 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York 11439, USA.
| |
Collapse
|
19
|
Toraih EA, Fawzy MS, Ning B, Zerfaoui M, Errami Y, Ruiz EM, Hussein MH, Haidari M, Bratton M, Tortelote GG, Hilliard S, Nilubol N, Russell JO, Shama MA, El-Dahr SS, Moroz K, Hu T, Kandil E. A miRNA-Based Prognostic Model to Trace Thyroid Cancer Recurrence. Cancers (Basel) 2022; 14:cancers14174128. [PMID: 36077665 PMCID: PMC9454675 DOI: 10.3390/cancers14174128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Some thyroid tumors elected for surveillance remain indolent, while others progress. The mechanism responsible for this difference is poorly understood, making it challenging to devise patient surveillance plans. Early prediction is important for tailoring treatment and follow-up in high-risk patients. The aim of our study was to identify predictive markers for progression. We leveraged a highly sensitive test that accurately predicts which thyroid nodules are more likely to develop lymph node metastasis, thereby improving care and outcomes for cancer patients. Abstract Papillary thyroid carcinomas (PTCs) account for most endocrine tumors; however, screening and diagnosing the recurrence of PTC remains a clinical challenge. Using microRNA sequencing (miR-seq) to explore miRNA expression profiles in PTC tissues and adjacent normal tissues, we aimed to determine which miRNAs may be associated with PTC recurrence and metastasis. Public databases such as TCGA and GEO were utilized for data sourcing and external validation, respectively, and miR-seq results were validated using quantitative real-time PCR (qRT-PCR). We found miR-145 to be significantly downregulated in tumor tissues and blood. Deregulation was significantly related to clinicopathological features of PTC patients including tumor size, lymph node metastasis, TNM stage, and recurrence. In silico data analysis showed that miR-145 can negatively regulate multiple genes in the TC signaling pathway and was associated with cell apoptosis, proliferation, stem cell differentiation, angiogenesis, and metastasis. Taken together, the current study suggests that miR-145 may be a biomarker for PTC recurrence. Further mechanistic studies are required to uncover its cellular roles in this regard.
Collapse
Affiliation(s)
- Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +1-346-907-4237
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Bo Ning
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mourad Zerfaoui
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Youssef Errami
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Muhib Haidari
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Melyssa Bratton
- Biospecimen Core Laboratory, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Giovane G. Tortelote
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sylvia Hilliard
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20814, USA
| | - Jonathon O. Russell
- Division of Head and Neck Endocrine Surgery, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins, Baltimore, MD 21287, USA
| | - Mohamed A. Shama
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tony Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
21
|
Liu Z, Yu X, Xu L, Li Y, Zeng C. Current insight into the regulation of PD-L1 in cancer. Exp Hematol Oncol 2022; 11:44. [PMID: 35907881 PMCID: PMC9338491 DOI: 10.1186/s40164-022-00297-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2023] Open
Abstract
The molecular mechanisms underlying cancer immune escape are a core topic in cancer immunology research. Cancer cells can escape T cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, CD274) immune checkpoint. Studying the PD-L1 regulatory pattern of tumor cells will help elucidate the molecular mechanisms of tumor immune evasion and improve cancer treatment. Recent studies have found that tumor cells regulate PD-L1 at the transcriptional, post-transcriptional, and post-translational levels and influence the anti-tumor immune response by regulating PD-L1. In this review, we focus on the regulation of PD-L1 in cancer cells and summarize the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuandi Liu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Xibao Yu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Ling Xu
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China
| | - Yangqiu Li
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| | - Chengwu Zeng
- The First Affiliated Hospital, Institute of Hematology, School of Medicine, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangzhou, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632, Guangdong, China.
| |
Collapse
|
22
|
Sudhanva MS, Hariharasudhan G, Jun S, Seo G, Kamalakannan R, Kim HH, Lee JH. MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:1509. [DOI: https:/doi.org/10.3390/cells11091509 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
Affiliation(s)
- Muddenahalli Srinivasa Sudhanva
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Semo Jun
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Gwanwoo Seo
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Radhakrishnan Kamalakannan
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Hyun Hee Kim
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
23
|
MicroRNA-145 Impairs Classical Non-Homologous End-Joining in Response to Ionizing Radiation-Induced DNA Double-Strand Breaks via Targeting DNA-PKcs. Cells 2022; 11:cells11091509. [PMID: 35563814 PMCID: PMC9102532 DOI: 10.3390/cells11091509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical factor in this pathway; however, regulation of DNA-PKcs expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PKcs by binding to the 3′-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR). Of note, miR-145-mediated suppression of DNA damage repair and enhanced IR sensitivity were both reversed by either inhibiting miR-145 or overexpressing DNA-PKcs. In addition, we show that the levels of Akt1 phosphorylation in cancer cells are correlated with miR-145 suppression and DNA-PKcs upregulation. Furthermore, the overexpression of miR-145 in Akt1-suppressed cells inhibited c-NHEJ by downregulating DNA-PKcs. These results reveal a novel miRNA-mediated regulation of DNA repair and identify miR-145 as an important regulator of c-NHEJ.
Collapse
|
24
|
Tameishi M, Ishikawa H, Tanaka C, Kobori T, Urashima Y, Ito T, Obata T. Ezrin Contributes to the Plasma Membrane Expression of PD-L1 in A2780 Cells. J Clin Med 2022; 11:jcm11092457. [PMID: 35566582 PMCID: PMC9100183 DOI: 10.3390/jcm11092457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/30/2023] Open
Abstract
Programmed death ligand–1 (PD–L1) is one of the immune checkpoint molecule localized on the plasma membrane of numerous cancer cells that negatively regulates T-cell-mediated immunosurveillance. Despite the remarkable efficacy and safety profile of immune checkpoint inhibitors (ICIs), such as anti-PD–L1 antibodies, restricted poor therapeutic responses to ICIs are often observed in patients with ovarian cancer. Because higher expression of PD–L1 in advanced ovarian cancer is associated with a decreased survival rate, identifying the potential molecules to regulate the plasma membrane expression of PD–L1 may provide a novel therapeutic strategy to improve the efficacy of ICIs against ovarian cancers. Here, we reveal the involvement of the ezrin/radixin/moesin (ERM) family, which crosslinks transmembrane proteins with the actin cytoskeleton by serving as a scaffold protein, in the plasma membrane expression of PD–L1 in the human epithelial ovarian cancer cell line A2780. Our results demonstrate that PD–L1 and all three ERMs were expressed at the mRNA and protein levels in A2780 cells, and that PD–L1 was highly colocalized with ezrin and moesin, but moderately with radixin, in the plasma membrane. Interestingly, RNA interference-mediated gene silencing of ezrin, but not of radixin or moesin, substantially reduced the plasma membrane expression of PD–L1 without altering its mRNA expression. In conclusion, our results indicate that ezrin may be responsible for the plasma membrane expression of PD–L1, possibly by serving as a scaffold protein in A2780 cells. Ezrin is a potential therapeutic target for improving the efficacy of ICIs against ovarian cancers.
Collapse
Affiliation(s)
- Mayuka Tameishi
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan; (M.T.); (H.I.); (C.T.); (T.K.); (Y.U.)
| | - Honami Ishikawa
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan; (M.T.); (H.I.); (C.T.); (T.K.); (Y.U.)
| | - Chihiro Tanaka
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan; (M.T.); (H.I.); (C.T.); (T.K.); (Y.U.)
| | - Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan; (M.T.); (H.I.); (C.T.); (T.K.); (Y.U.)
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan; (M.T.); (H.I.); (C.T.); (T.K.); (Y.U.)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan;
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan; (M.T.); (H.I.); (C.T.); (T.K.); (Y.U.)
- Correspondence: ; Tel.: +81-721-24-9371
| |
Collapse
|
25
|
Najafzadeh B, Motafakkerazad R, Najafi S, Amini M, Alemohammad H, Vasefifar P, Baradaran B. Nanog suppression enhanced the chemosensitivity of Human Non-Small-Cell Lung Cancer cells to Cisplatin and inhibited cell migration. Pathol Res Pract 2022; 233:153869. [DOI: 10.1016/j.prp.2022.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
|
26
|
Chen Q, Zhuang S, Hong Y, Yang L, Guo P, Mo P, Peng K, Li W, Xiao N, Yu C. Demethylase JMJD2D induces PD-L1 expression to promote colorectal cancer immune escape by enhancing IFNGR1-STAT3-IRF1 signaling. Oncogene 2022; 41:1421-1433. [PMID: 35027670 DOI: 10.1038/s41388-021-02173-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
Programmed death-ligand 1 (PD-L1) is an important immunosuppressive molecule highly expressed on the surface of cancer cells. IFNγ triggered cancer cell immunosuppression against CD8+ T cell surveillance via up-regulation of PD-L1. Histone demethylase JMJD2D promotes colorectal cancer (CRC) progression; however, the role of JMJD2D in cancer immune escape is unknown. Here, we report that both PD-L1 and JMJD2D are frequently overexpressed in human CRC specimens with a significant positive correlation. Genetic ablation of JMJD2D in CRC cells attenuated the expression of PD-L1 and stalled tumor growth in mice, accompanied by the elevated number and effector function of tumor infiltrating CD8+ T cells. Mechanistically, JMJD2D coactivated SP-1 to promote the expression of IFNGR1, which elevated STAT3-IRF1 signaling and promoted PD-L1 expression. Again, JMJD2D is a major coactivator for STAT3-IRF1 axis to enhance PD-L1 transcription in a demethylation activity dependent manner. Furthermore, pharmacological inhibition of JMJD2D conduced to improve the anti-tumor efficacy of PD-L1 antibody as demonstrated by slower tumor growth and higher infiltration and function of CD8+ T cells in the combination of JMJD2D inhibitor 5-c-8HQ and PD-L1 antibody group compared with monotherapy with either agent. These results demonstrate that JMJD2D promotes CRC immune escape by enhancing PD-L1 expression to inhibit the activation and tumor infiltration of CD8+ T cells; targeting JMJD2D has the potential role in promoting the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuqing Zhuang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lingtao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kesong Peng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wengang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen University Research Center of Retroperitoneal Tumor Committee of Oncology Society of Chinese Medical Association, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Fan Z, Wu C, Chen M, Jiang Y, Wu Y, Mao R, Fan Y. The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation. Acta Pharm Sin B 2022; 12:1041-1053. [PMID: 35530130 PMCID: PMC9069407 DOI: 10.1016/j.apsb.2021.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- ADAM17, a disintegrin and metalloprotease 17
- APCs, antigen-presenting cells
- AREs, adenylate and uridylate (AU)-rich elements
- ATF3, activating transcription factor 3
- CD273/274, cluster of differentiation 273/274
- CDK4, cyclin-dependent kinase 4
- CMTM6, CKLF like MARVEL transmembrane domain containing 6
- CSN5, COP9 signalosome subunit 5
- CTLs, cytotoxic T lymphocytes
- EMT, epithelial to mesenchymal transition
- EpCAM, epithelial cell adhesion molecule
- Exosome
- FACS, fluorescence-activated cell sorting
- GSDMC, Gasdermin C
- GSK3β, glycogen synthase kinase 3 beta
- HSF1, heat shock transcription factor 1
- Hi-C, high throughput chromosome conformation capture
- ICB, immune checkpoint blockade
- IFN, interferon
- IL-6, interleukin 6
- IRF1, interferon regulatory factor 1
- Immune checkpoint blockade
- JAK, Janus kinase 1
- NFκB, nuclear factor kappa B
- NSCLC, non-small cell lung cancer
- OTUB1, OTU deubiquitinase, ubiquitin aldehyde binding 1
- PARP1, poly(ADP-ribose) polymerase 1
- PD-1, programmed cell death-1
- PD-L1
- PD-L1, programmed death-ligand 1
- PD-L2
- PD-L2, programmed death ligand 2
- Post-transcriptional regulation
- Post-translational regulation
- SP1, specificity protein 1
- SPOP, speckle-type POZ protein
- STAG2, stromal antigen 2
- STAT3, signal transducer and activator of transcription 3
- T2D, type 2 diabetes
- TADs, topologically associating domains
- TFEB, transcription factor EB
- TFs, transcription factors
- TNFα, tumor necrosis factor-alpha
- TTP, tristetraprolin
- Topologically associating domain
- Transcription
- UCHL1, ubiquitin carboxy-terminal hydrolase L1
- USP22, ubiquitin specific peptidase 22
- dMMR, deficient DNA mismatch repair
- irAEs, immune related adverse events
Collapse
Affiliation(s)
- Zhiwei Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Changyue Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yuanyuan Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
28
|
Overexpression of CAPG Is Associated with Poor Prognosis and Immunosuppressive Cell Infiltration in Ovarian Cancer. DISEASE MARKERS 2022; 2022:9719671. [PMID: 35186171 PMCID: PMC8849939 DOI: 10.1155/2022/9719671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
Historically, immunotherapies have only resulted in a partial response from patients with advanced ovarian cancer, resulting in poor clinical efficacy. A full understanding of immune-related gene expression and immunocyte infiltration in ovarian cancer would be instrumental for the improved implementation of immunotherapy. The Capping Actin Protein, Gelsolin-Like (CAPG) gene encodes an actin-regulatory protein, which plays important roles in tumor progression and immune regulation. This study is aimed at identifying the potential therapeutic and prognostic roles of CAPG in ovarian cancer. CAPG expression and clinical information were investigated in the data collected from TCGA, Oncomine, GEPIA, UALCAN, and Kaplan-Meier plotter. CAPG coexpression networks were evaluated by LinkedOmics, GeneMANIA, and NetworkAnalyst. The correlation of CAPG with immune infiltrates was analyzed via TIMER, ImmuCellAI, and GEPIA. Our result showed that patients with high tumoral CAPG expression had significantly shorter 5-year overall survival. Functional enrichment analysis indicated that CAPG-related phenotypes were largely involved in inflammatory response, chemokine and cytokine signaling, cell adhesion, and Toll-like receptor signaling pathways. CAPG expression was positively correlated with infiltrating levels of regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and exhausted T cells (Texs) while being negatively correlated with infiltrating levels of natural killer T cells (NKTs) and neutrophils in ovarian cancer. Moreover, the expression of FOXP3, CD25, CD127, CCR8, and TGFβ in respect to Tregs; CCL2 and CD68 in respect to TAM; CD163, VSIG4, and MS4A4A in respect to M2 macrophages; CD33 and CD11b in respect to myeloid-derived suppressor cells (MDSCs); and PD1, CTLA4, LAG3, TIM3, GZMB, 2B4, and TIGIT in respect to Texs was significantly correlated with CAPG expression in ovarian cancer. These findings suggest that CAPG may contribute to the immunosuppressive tumor microenvironment in ovarian cancer, leading to an exhausted T cell phenotype and tumor progression. Therefore, CAPG can be used as a potential biomarker for determining prognosis and immunotherapy effectiveness in ovarian cancer.
Collapse
|
29
|
Garrido MP, Fredes AN, Lobos-González L, Valenzuela-Valderrama M, Vera DB, Romero C. Current Treatments and New Possible Complementary Therapies for Epithelial Ovarian Cancer. Biomedicines 2021; 10:77. [PMID: 35052757 PMCID: PMC8772950 DOI: 10.3390/biomedicines10010077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies. The late diagnosis is frequent due to the absence of specific symptomatology and the molecular complexity of the disease, which includes a high angiogenesis potential. The first-line treatment is based on optimal debulking surgery following chemotherapy with platinum/gemcitabine and taxane compounds. During the last years, anti-angiogenic therapy and poly adenosine diphosphate-ribose polymerases (PARP)-inhibitors were introduced in therapeutic schemes. Several studies have shown that these drugs increase the progression-free survival and overall survival of patients with ovarian cancer, but the identification of patients who have the greatest benefits is still under investigation. In the present review, we discuss about the molecular characteristics of the disease, the recent evidence of approved treatments and the new possible complementary approaches, focusing on drug repurposing, non-coding RNAs, and nanomedicine as a new method for drug delivery.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Allison N. Fredes
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Daniela B. Vera
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (A.N.F.); (D.B.V.)
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
30
|
Vera DB, Fredes AN, Garrido MP, Romero C. Role of Mitochondria in Interplay between NGF/TRKA, miR-145 and Possible Therapeutic Strategies for Epithelial Ovarian Cancer. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010008. [PMID: 35054401 PMCID: PMC8779980 DOI: 10.3390/life12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the most lethal gynecological neoplasm, and epithelial ovarian cancer (EOC) accounts for 90% of ovarian malignancies. The 5-year survival is less than 45%, and, unlike other types of cancer, the proportion of women who die from this disease has not improved in recent decades. Nerve growth factor (NGF) and tropomyosin kinase A (TRKA), its high-affinity receptor, play a crucial role in pathogenesis through cell proliferation, angiogenesis, invasion, and migration. NGF/TRKA increase their expression during the progression of EOC by upregulation of oncogenic proteins as vascular endothelial growth factor (VEGF) and c-Myc. Otherwise, the expression of most oncoproteins is regulated by microRNAs (miRs). Our laboratory group reported that the tumoral effect of NGF/TRKA depends on the regulation of miR-145 levels in EOC. Currently, mitochondria have been proposed as new therapeutic targets to activate the apoptotic pathway in the cancer cell. The mitochondria are involved in a myriad of functions as energy production, redox control, homeostasis of Ca+2, and cell death. We demonstrated that NGF stimulation produces an augment in the Bcl-2/BAX ratio, which supports the anti-apoptotic effects of NGF in EOC cells. The review aimed to discuss the role of mitochondria in the interplay between NGF/TRKA and miR-145 and possible therapeutic strategies that may decrease mortality due to EOC.
Collapse
Affiliation(s)
- Daniela B. Vera
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Allison N. Fredes
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
| | - Maritza P. Garrido
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital University of Chile, Santiago 8380456, Chile; (D.B.V.); (A.N.F.)
- Obstetrics and Gynecology Departament, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: (M.P.G.); (C.R.)
| |
Collapse
|
31
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Kumar S, Sarthi P, Mani I, Ashraf MU, Kang MH, Kumar V, Bae YS. Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells 2021; 10:2250. [PMID: 34571899 PMCID: PMC8466810 DOI: 10.3390/cells10092250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular immunotherapy has recently emerged as a fourth pillar in cancer treatment co-joining surgery, chemotherapy and radiotherapy. Where, the discovery of immune checkpoint blockage or inhibition (ICB/ICI), anti-PD-1/PD-L1 and anti-CTLA4-based, therapy has revolutionized the class of cancer treatment at a different level. However, some cancer patients escape this immune surveillance mechanism and become resistant to ICB-therapy. Therefore, a more advanced or an alternative treatment is required urgently. Despite the functional importance of epitranscriptomics in diverse clinico-biological practices, its role in improving the efficacy of ICB therapeutics has been limited. Consequently, our study encapsulates the evidence, as a possible strategy, to improve the efficacy of ICB-therapy by co-targeting molecular checkpoints especially N6A-modification machineries which can be reformed into RNA modifying drugs (RMD). Here, we have explained the mechanism of individual RNA-modifiers (editor/writer, eraser/remover, and effector/reader) in overcoming the issues associated with high-dose antibody toxicities and drug-resistance. Moreover, we have shed light on the importance of suppressor of cytokine signaling (SOCS/CISH) and microRNAs in improving the efficacy of ICB-therapy, with brief insight on the current monoclonal antibodies undergoing clinical trials or already approved against several solid tumor and metastatic cancers. We anticipate our investigation will encourage researchers and clinicians to further strengthen the efficacy of ICB-therapeutics by considering the importance of epitranscriptomics as a personalized medicine.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Parth Sarthi
- University Department of Botany, M.Sc. Biotechnology, Ranchi University, Ranchi 834008, India;
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India;
| | - Muhammad Umer Ashraf
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| | - Vishal Kumar
- Department of Pharmaceutical Science, Dayananda Sagar University, Bengaluru 560078, India;
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (M.U.A.); (M.-H.K.)
- Science Research Center (SRC) for Immune Research on Non-lymphoid Organ (CIRNO), Sungkyunkwan University, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea
| |
Collapse
|
33
|
Miliotis C, Slack FJ. miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett 2021; 518:115-126. [PMID: 34098061 DOI: 10.1016/j.canlet.2021.05.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapies targeting the interaction between Programmed death 1 (PD-1) and Programmed death ligand 1 (PD-L1) have recently been approved for the treatment of multiple cancer types, including gastric cancer. However, not all patients respond to these therapies, while some eventually acquire resistance. A partial predictive biomarker for positive response to PD-1/PD-L1 therapy is PD-L1 expression, which has been shown to be under strict post-transcriptional control in cancer. By fractionating the PD-L1 3' untranslated region (3'UTR) into multiple overlapping fragments, we identified a small 100-nucleotide-long cis-acting region as being necessary and sufficient for post-transcriptional repression of PD-L1 expression in gastric cancer. In parallel, we performed a correlation analysis between PD-L1 expression and all host miRNAs in stomach cancer patient samples. A single miRNA, miR-105-5p, was predicted to bind to the identified cis-acting 3'UTR region and to negatively correlate with PD-L1 expression. Overexpression of miR-105-5p in gastric cancer cell lines resulted in decreased expression of PD-L1, both at the total protein and surface expression levels, and induced CD8+ T cell activation in co-culture assays. Finally, we show that expression of miR-105-5p in gastric cancer is partly controlled by DNA methylation of a cancer- and germline-specific promoter of its host gene, GABRA3. Dysregulation of miR-105-5p is observed in many cancer types and this study shows the importance of this miRNA in controlling the immunogenicity of cancer cells, thus highlighting it as a potential biomarker for PD-1/PD-L1 therapy and target for combinatorial immunotherapy.
Collapse
Affiliation(s)
- Christos Miliotis
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
35
|
Niu YN, Zeng Y, Zhong FF, Long SL, Ren DW, Qin X, Liu WJ. Salidroside overcomes dexamethasone resistance in T-acute lymphoblastic leukemia cells. Exp Ther Med 2021; 21:636. [PMID: 33968167 PMCID: PMC8097222 DOI: 10.3892/etm.2021.10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to analyze whether the use of salidroside (SAL) could overcome dexamethasone (DEX) resistance in T-acute lymphocytic leukemia cells. The human T-ALL DEX-resistant cell line, CEM-C1 and the DEX-sensitive cell line, CEM-C7 were used in the current study. The proliferation inhibition rates in these cells, treated with SAL and DEX alone, and in combination were detected using a Cell Counting Kit-8 assay, while the morphological changes of the cells were observed using an inverted microscope. Reverse transcription-quantitative PCR was used to detect the mRNA expression levels of the c-Myc and LC3 genes, while flow cytometry was used to detect the cell cycle distribution and the rate of apoptosis. In addition, western blot analysis was used to detect the protein expression levels of c-Myc, BCL-2, Bax, cleaved PARP and LC3. and acridine orange staining was used to detect the changes in acidic autophagy vesicles. It was found that SAL could effectively inhibit cell proliferation and induce apoptosis in the CEM-C1 and CEM-C7 cells. In addition, SAL promoted the induction of autophagy. The protein expression levels of c-Myc in the CEM-C1 cells were significantly higher compared with that in the CEM-C7 cells. SAL downregulated the mRNA expression levels of the c-Myc gene and protein in a dose-dependent manner. This suggested that SAL could inhibit the proliferation of the CEM-C1 and CEM-C7 cells, induce apoptosis and autophagy and overcome DEX resistance in the CEM-C1 cells. The mechanism may be associated with the downregulation of c-Myc.
Collapse
Affiliation(s)
- Ya-Na Niu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Yan Zeng
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Fang-Fang Zhong
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Si-Li Long
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Dan-Wei Ren
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Xiang Qin
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Jun Liu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
36
|
Zou X, Zhao Y, Liang X, Wang H, Zhu Y, Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front Immunol 2021; 12:641937. [PMID: 33868274 PMCID: PMC8047328 DOI: 10.3389/fimmu.2021.641937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.
Collapse
Affiliation(s)
- Xueqin Zou
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiuting Liang
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanling Zhu
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
37
|
Reyes-González JM, Vivas-Mejía PE. c-MYC and Epithelial Ovarian Cancer. Front Oncol 2021; 11:601512. [PMID: 33718147 PMCID: PMC7952744 DOI: 10.3389/fonc.2021.601512] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the deadliest of gynecological malignancies with approximately 49% of women surviving 5 years after initial diagnosis. The standard of care for ovarian cancer consists of cytoreductive surgery followed by platinum-based combination chemotherapy. Unfortunately, despite initial response, platinum resistance remains a major clinical challenge. Therefore, the identification of effective biomarkers and therapeutic targets is crucial to guide therapy regimen, maximize clinical benefit, and improve patient outcome. Given the pivotal role of c-MYC deregulation in most tumor types, including ovarian cancer, assessment of c-MYC biological and clinical relevance is essential. Here, we briefly describe the frequency of c-MYC deregulation in ovarian cancer and the consequences of its targeting.
Collapse
Affiliation(s)
- Jeyshka M Reyes-González
- Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.,Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
38
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
39
|
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14:10. [PMID: 33413496 PMCID: PMC7792099 DOI: 10.1186/s13045-020-01027-5] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 therapies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, we discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
40
|
Kushlinskii NE, Loginov VI, Utkin DO, Filippova EA, Burdennyy AM, Korotkova EA, Pronina IV, Lukina SS, Smirnova AV, Gershtein ES, Braga EA. Novel miRNAs as Potential Regulators of PD-1/PD-L1 Immune Checkpoint, and Prognostic Value of MIR9-1 and MIR124-2 Methylation in Ovarian Cancer. Mol Biol 2021. [DOI: 10.1134/s0026893320060072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Zhang Y, Dong Y, Fu H, Huang H, Wu Z, Zhao M, Yang X, Guo Q, Duan Y, Sun Y. Multifunctional tumor-targeted PLGA nanoparticles delivering Pt(IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance. Biomaterials 2020; 269:120478. [PMID: 33213862 DOI: 10.1016/j.biomaterials.2020.120478] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (Pt(II)) resistance is an important factor in the high mortality rates of ovarian cancer. Herein, we synthesized multifunctional tumor-targeted poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs-cRGD) for monitoring therapeutic effects by dual-mode imaging and overcoming cisplatin resistance. Uniformly sized NPs-cRGD demonstrated controlled and sustained release of drugs and genes, excellent gene loading and gene protection capacity, good storage stability and no serum-induced aggregation in vitro. NPs-cRGD demonstrated clear, targeting and prolonged ultrasound imaging and magnetic resonance imaging (MRI) in vivo. The targeting of NPs-cRGD combined with ultrasound facilitated nanoparticle penetrattion into cells; entry was time-dependent. NPs-cRGD escaped from lysosomes, thereby preventing siBIRC5 degradation, which enabled siBIRC5 to efficiently inhibit the antiapoptosis effects of BIRC5 in SKO3-DDP to overcome the antiapoptosis properties of resistant cells. Furthermore, Pt(IV) in NPs-cRGD exhausted glutathione (GSH), thereby increasing drug accumulation to effectively increase Pt(II) levels. The subsequent combination of Pt(II) with DNA prevented the expressions of genes and upregulated the expression of p53 to induce the mitochondria apoptosis pathway. The reduced GSH activity and the generation of Pt(II) further promoted high levels of reactive oxygen species (ROS) to induce cell apoptosis. Therefore, NPs-cRGD with ultrasound promoted the apoptosis of resistant ovarian cancer cells by multiple mechanisms, including increased cellular drug accumulation, reversed antiapoptotic effects by siBIRC5, and enhanced ROS levels. In a tumor-bearing nude mice model, NPs-cRGD with US demonstrated excellent tumor-targeting, high efficiency tumor inhibition and low systemic toxicity. Therefore, NPs-cRGD provides a means to monitor treatment processes and can be combined with ultrasound treatment to overcome ovarian cancer resistance in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hui Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
43
|
PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 2020; 256:117899. [DOI: 10.1016/j.lfs.2020.117899] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
44
|
Pei Y, Li K, Lou X, Wu Y, Dong X, Wang W, Li N, Zhang D, Cui W. miR‑1299/NOTCH3/TUG1 feedback loop contributes to the malignant proliferation of ovarian cancer. Oncol Rep 2020; 44:438-448. [PMID: 32468036 PMCID: PMC7336509 DOI: 10.3892/or.2020.7623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have revealed the oncogenic role of notch reporter 3 (NOTCH3) in ovarian cancer (OC). However, the possible regulators and mechanisms underlying notch receptor 3 (NOTCH3)‑mediated behaviors in OC remain to be completely investigated. In the present study, we aimed to identify regulators of NOTCH3 and their interactions underlying the pathogenesis of OC. Bioinformatics analysis and luciferase reporter assay were used to identify potential regulatory miRNAs and lncRNAs of NOTCH3 in OC. Several in vivo and in vitro assays were performed to evaluate their effects on the proliferative ability mediated by NOTCH3. We identified microRNA‑1299 (miR‑1299) as a novel negative regulator of NOTCH3. miR‑1299 was downregulated in OC and was found to be considerably correlated with tumor differentiation. Upregulation of miR‑1299 inhibited cell proliferation, colony formation, and 5‑ethynyl‑2'‑deoxyuridine (EdU) incorporation, as well as induced cell cycle arrest in the G0G1 phase in OC cells. Overexpression of miR‑1299 in xenograft mouse models suppressed tumor growth in vivo. The lncRNA taurine upregulated gene 1 (TUG1), acting as a sponge of miR‑1299, was found to upregulate NOTCH3 expression and promote cell proliferation in OC through the competing endogenous RNA mechanism. In addition, TUG1 was found to be a potential downstream target of NOTCH3, forming a miR‑1299/NOTCH3/TUG1 feedback loop in the development of OC. Collectively, our findings improve the understanding of NOTCH3‑mediated regulation in OC pathogenesis and facilitate the development of miRNA‑ and lncRNA‑directed diagnostics and therapeutics against this disease.
Collapse
Affiliation(s)
- Yuqing Pei
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xin Dong
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenpeng Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Research Science Center, Georgia State University, Atlanta, GA 30303, USA
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
- Correspondence to: Professor Wei Cui, State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli Road, Chaoyang, Beijing 100021, P.R. China, E-mail:
| |
Collapse
|
45
|
Zheng RP, Ma DK, Li Z, Zhang HF. MiR-145 Regulates the Chemoresistance of Hepatic Carcinoma Cells Against 5-Fluorouracil by Targeting Toll-Like Receptor 4. Cancer Manag Res 2020; 12:6165-6175. [PMID: 32801865 PMCID: PMC7398893 DOI: 10.2147/cmar.s257598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is a common drug for hepatic carcinoma (HCC), but the drug resistance of clinical chemotherapy restricts its use. Studies have demonstrated that miRNA molecules can act as a chemoresistance regulator in drug resistance of tumors, whereas the role of miR-145 in the 5-FU-resistant HCC remains unclear. OBJECTIVE To explore the prognostic value of miR-145 in HCC and its molecular mechanism in 5-FU-resistant HCC cells. METHODS A qRT-PCR assay was conducted to quantify miR-145 in HCC tissues and 5-FU-resistant HCC cells. The Cell Counting Kit-8 (CCK-8) and flow cytometry were adopted to analyze the proliferation and apoptosis of 5-FU-resistant HCC cells. The Western blot was adopted to quantify toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and apoptosis-related proteins. Moreover, an in vivo tumor xenotransplantation of nude mice was conducted to determine the effect of miR-145 on 5-FU-resistant HCC cells. RESULTS MiR-145 was expressed lowly in HCC tissues and cells, and linked to high TNM staging and lymph node metastasis of HCC patients. Down-regulation of miR-145 indicated a poorer prognosis and it promoted drug resistance of HCC cells and inhibited cell apoptosis. In contrast, miR-145 overexpression improved the sensitivity of HCC cells to 5-FU and enhanced the inhibition of 5-FU on tumor growth. The luciferase reporter gene assay showed that TLR4 was the direct target of miR-145, and the Western blot assay revealed that overexpression of TLR4 reversed the inhibitory effect of miR-145 overexpression on TLR4 and MyD88 protein and the effects of it on apoptosis-related proteins. CONCLUSION MiR-145 is an inhibiting factor in HCC and can target TLR4 to mediate the chemoresistance of HCC, which may provide novel ideas for treating HCC.
Collapse
Affiliation(s)
- Rui-Peng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province130021, People’s Republic of China
| | - Dong-Kai Ma
- Department of Gastroenterology and Hepatology, Qian Wei Hospital of Jilin Province, Changchun, Jilin Province130012, People’s Republic of China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin Province130021, People’s Republic of China
| | - Hai-Feng Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province130021, People’s Republic of China
| |
Collapse
|
46
|
Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W, Tang J. MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci 2020; 111:3122-3131. [PMID: 32506767 PMCID: PMC7469794 DOI: 10.1111/cas.14517] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
MircoRNA (miRNA) are a group of small, non–coding, regulatory RNA with an average length of approximately 22 nucleotides, which mostly modulate gene expression post–transcriptionally through complementary binding to the 3ʹ‐untranslated region (3ʹ‐UTR) of multiple target genes. Emerging evidence has shown that miRNA are frequently dysregulated in a variety of human malignancies. Among them, microRNA‐145 (miR‐145) has been increasingly identified as a critical suppressor of carcinogenesis and therapeutic resistance. Resistance to tumor therapy is a challenge in cancer treatment due to the daunting range of resistance mechanisms. We reviewed the status quo of recent advancements in the knowledge of the functional role of miR‐145 in therapeutic resistance and the tumor microenvironment. It may serve as an innovative biomarker for therapeutic response and cancer prognosis.
Collapse
Affiliation(s)
- Wenxiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Hua
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Fei Deng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dandan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- The Jiangsu Province Research Institute for Clinical Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- The Jiangsu Province Research Institute for Clinical Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|