1
|
Narang G, Hawadak J, Jakhan J, Yadav K, Singh V. Longitudinal population analysis of Plasmodium falciparum apical membrane antigen-1 in Indian field isolates. Acta Trop 2025; 266:107630. [PMID: 40286894 DOI: 10.1016/j.actatropica.2025.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
High genetic diversity is a major impediment to developing a universal malaria vaccine based on Plasmodium falciparum apical membrane antigen-1 (Pfama-1). Vaccine effectiveness against heterologous forms of the antigen requires information about existing genetic diversity of gene in circulation. Genotyping of Pfama-1 was performed on 147 archival samples from 14 different Indian states collected from 1993 to 2021. Genetic diversity and natural selection were assessed to explore the longitudinal variation in Pfama-1 in Indian P. falciparum field isolates. A total of 52 polymorphic sites were observed giving rise to 70 different haplotypes. Two novel amino acid substitutions S498C/G and F505Y, were observed in our samples. Highest genetic polymorphism was observed in Domain I (π = 0.025), while Domain II (π = 0.006) appeared to be most conserved across all states over the time. Non-significant positive Tajima D value (Taj D = 0.945, p > 0.10) was observed indicating that Indian Pfama-1 is under balancing natural selection. Although haplotype network was complex, structure analysis has shown no evidence of distinct genetic pattern state wise or change in Pfama-1 structure in time. Genetic structure of Pfama-1 in Indian field isolates is complex, exhibiting a high degree of genetic polymorphism. Since allele specific immunity is observed in the gene, Domain II which shows relative conservation across all states and between old and recent field isolates could have implications in vaccine design.
Collapse
Affiliation(s)
- Geetika Narang
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joseph Hawadak
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India
| | - Jahnvi Jakhan
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karmveer Yadav
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Dwarka, Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Patel PN, Diouf A, Dickey TH, Tang WK, Hopp CS, Traore B, Long CA, Miura K, Crompton PD, Tolia NH. A strain-transcending anti-AMA1 human monoclonal antibody neutralizes malaria parasites independent of direct RON2L receptor blockade. Cell Rep Med 2025; 6:101985. [PMID: 40020675 PMCID: PMC11970402 DOI: 10.1016/j.xcrm.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Plasmodium falciparum apical membrane antigen 1 (AMA1) binds a loop in rhoptry neck protein 2 (RON2L) during red cell invasion and is a target for vaccines and therapeutic antibodies against malaria. Here, we report a panel of AMA1-specific naturally acquired human monoclonal antibodies (hmAbs) derived from individuals living in malaria-endemic regions. Two neutralizing hmAbs engage AMA1 independent of the RON2L-binding site. The hmAb 75B10 demonstrates potent strain-transcending neutralization that is independent of RON2L blockade, emphasizing that epitopes outside the RON2L-binding site elicit broad protection against variant parasite strains. The combination of these hmAbs synergistically enhances parasite neutralization. Vaccination with a structure-based design (SBD1) that mimics the AMA1-RON2L complex elicited antibodies similar to the two neutralizing hmAbs connecting vaccination to naturally acquired immunity in humans. The structural definition of a strain-transcending epitope on AMA1 targeted by naturally acquired hmAb establishes paradigms for developing AMA1-based vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine S Hopp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Boubacar Traore
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Point G, Bamako 1805, Mali
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Windle ST, Neal ML, Mast FD, Kappe SHI, Aitchison JD. A Conditional Cas9 System for Stage-Specific Gene Editing in P. falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642268. [PMID: 40161752 PMCID: PMC11952345 DOI: 10.1101/2025.03.09.642268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The malaria parasite has a complex lifecycle involving various host cell environments in both human and mosquito hosts. The parasite must tightly regulate gene expression at each stage in order to adapt to its current environment while continuing development. However, it is challenging to study gene function and regulation of essential genes across the parasite's multi-host lifecycle. Thus, we adapted a recently developed a single-plasmid dimerizable Cre recombinase system for rapamycin-controllable expression of Cas9, allowing for conditional introduction of mutations. We explored rates of gene deletion using varying repair template lengths, showing functionality of donor templates under 250bp for homology-directed repair. As a proof of concept, we conditionally disrupted two uncharacterized genes in blood and gametocyte stages, identifying new stage-specific phenotypes. Importance As progress towards eliminating malaria has stalled, there is a pressing need for new antimalarials and vaccines. Genes essential to multiple stages of development represent ideal candidates for both antimalarials and vaccines. However, much of the parasite genome remains uncharacterized. Conditional gene perturbation approaches are needed in order to study gene function across the lifecycle. Currently available tools are limited in their ability to perturb genes at the scale required for large screens. We describe a tool that allows for conditional introduction of desired mutations by controlling Cas9 with the DiCre-loxP system. We demonstrate the accessibility of this approach by designing gRNA-donor pairs that can be commercially synthesized. This toolkit provides a scalable system for identifying new drug and vaccine candidates targeting multiple stages of the parasite lifecycle.
Collapse
Affiliation(s)
- Sean T. Windle
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stefan H. I. Kappe
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - John D. Aitchison
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Li M, Liu T, Wang Y, Zhang L, Lu F, Xia J, Zheng M, Zhang M, Wang B, Xu Y. Immunogenic and diagnostic potential of recombinant apical membrane antigen-1 from Plasmodium malariae. Diagn Microbiol Infect Dis 2024; 110:116480. [PMID: 39163788 DOI: 10.1016/j.diagmicrobio.2024.116480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
The apical membrane antigen-1 (AMA-1) is a crucial target for malaria management and prevention strategies. While the immunogenicity of AMA-1 has been extensively studied for Plasmodium falciparum and Plasmodium vivax, there is a notable scarcity of information for Plasmodium malariae. In this study, recombinant PmAMA-1 was expressed in Escherichia coli, and its integrity was confirmed via western blotting and indirect immunofluorescence assays. Immunization of BALB/c mice with rPmAMA-1 emulsified in Freund's adjuvant resulted in significantly elevated specific IgG antibodies, predominantly IgG1. The immune response exhibited Th1, Th2, and Th17 phenotypes, with a notable Th1 bias. Antisera from immunized mice effectively recognized native PmAMA-1 on P. malariae. These results suggest that PmAMA-1 is a promising target for both vaccine development and diagnostic applications for P. malariae infections, offering dual preventive and diagnostic benefits in malaria control.
Collapse
Affiliation(s)
- Moyan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Tingting Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yuerong Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China; Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Luwen Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Fanbo Lu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China; Department of Clinical laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxing Xia
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Min Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
5
|
Bansal A, Sharma M, Choudhury H. Generation of a new DiCre expressing parasite strain for functional characterization of Plasmodium falciparum genes in blood stages. Sci Rep 2024; 14:24076. [PMID: 39402380 PMCID: PMC11473785 DOI: 10.1038/s41598-024-75657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Conditional regulation is a highly beneficial system for studying the function of essential genes in Plasmodium falciparum and dimerizable Cre recombinase (DiCre) is a recently adapted conditional regulation system suitable for this purpose. In the DiCre system, two inactive fragments of Cre are reconstituted to form a functionally active enzyme in the presence of rapamycin. Different loci have been targeted to generate parasite lines that express the DiCre enzyme. Here, we have used marker-free CRISPR-Cas9 gene editing to integrate the DiCre cassette in a redundant cg6 locus. We have shown the utility of the newly generated ∆cg6DC4 parasites in mediating robust, rapid, and highly specific excision of exogenously encoded gfp sequence. The ∆cg6DC4 parasites are also capable of conditional excision of an endogenous parasite gene, PF3D7_1246000. Conditional deletion of PF3D7_1246000 did not cause any inhibition in the asexual proliferation of the parasites. Furthermore, the health and morphology of the mutant parasites were comparable to that of the control parasites in Giemsa smears. The availability of another stable DiCre parasite strain competent for conditional excision of target genes will expedite functional characterization and validation of novel drug and vaccine targets against malaria.
Collapse
Affiliation(s)
- Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
6
|
Huang Y, Li J, Pei S, You H, Liu H, Guo Y, Xu R, Li N, Feng Y, Xiao L. Optimization of a DiCre recombinase system with reduced leakage for conditional genome editing of Cryptosporidium. Parasit Vectors 2024; 17:352. [PMID: 39169430 PMCID: PMC11337648 DOI: 10.1186/s13071-024-06431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The dimerizable Cre recombinase system (DiCre) exhibits increased leaky activity in Cryptosporidium, leading to unintended gene editing in the absence of induction. Therefore, optimization of the current DiCre technique is necessary for functional studies of essential Cryptosporidium genes. METHODS Based on the results of transcriptomic analysis of Cryptosporidium parvum stages, seven promoters with different transcriptional capabilities were screened to drive the expression of Cre fragments (FKBP-Cre59 and FRB-Cre60). Transient transfection was performed to assess the effect of promoter strength on leakage activity. In vitro and in vivo experiments were performed to evaluate the leaky activity and cleavage efficiency of the optimized DiCre system by polymerase chain reaction (PCR), nanoluciferase, and fluorescence analyses. RESULTS The use of promoters with lower transcriptional activity, such as pcgd6_4110 and pcgd3_260, as opposed to strong promoters such as pActin, pα-Tubulin, and pEnolase, reduced the leakage rate of the system from 35-75% to nearly undetectable levels, as verified by transient transfection. Subsequent in vitro and in vivo experiments using stable lines further demonstrated that the optimized DiCre system had no detectable leaky activity. The system achieved 71% cleavage efficiency in vitro. In mice, a single dose of the inducer resulted in a 10% conditional gene knockout and fluorescent protein expression in oocysts. These fluorescently tagged transgenic oocysts could be enriched by flow sorting for further infection studies. CONCLUSIONS A DiCre conditional gene knockout system for Cryptosporidium with good cleavage efficiency and reduced leaky activity has been successfully established.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Jinli Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Shifeng Pei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Heng You
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Huimin Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
8
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
9
|
Rawat RS, Gupta A, Antil N, Bhatnagar S, Singh M, Rawat A, Prasad TSK, Sharma P. Protein kinase PfPK2 mediated signalling is critical for host erythrocyte invasion by malaria parasite. PLoS Pathog 2023; 19:e1011770. [PMID: 37988347 PMCID: PMC10662742 DOI: 10.1371/journal.ppat.1011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Signalling pathways in malaria parasite remain poorly defined and major reason for this is the lack of understanding of the function of majority of parasite protein kinases and phosphatases in parasite signalling and its biology. In the present study, we have elucidated the function of Protein Kinase 2 (PfPK2), which is known to be indispensable for the survival of human malaria parasite Plasmodium falciparum. We demonstrate that it is involved in the invasion of host erythrocytes, which is critical for establishing infection. In addition, PfPK2 may also be involved in the maturation of the parasite post-invasion. PfPK2 regulates the release of microneme proteins like Apical Membrane Antigen 1 (AMA1), which facilitates the formation of Tight Junction between the merozoite and host erythrocyte- a key step in the process of invasion. Comparative phosphoproteomics studies revealed that PfPK2 may be involved in regulation of several key proteins involved in invasion and signalling. Furthermore, PfPK2 regulates the generation of cGMP and the release of calcium in the parasite, which are key second messengers for the process of invasion. These and other studies have shed light on a novel signalling pathway in which PfPK2 acts as an upstream regulator of important cGMP-calcium signalling, which plays an important role in parasite invasion.
Collapse
Affiliation(s)
- Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankit Gupta
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Neelam Antil
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sonika Bhatnagar
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Monika Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Akanksha Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
10
|
Yanik S, Venkatesh V, Parker ML, Ramaswamy R, Diouf A, Sarkar D, Miura K, Long CA, Boulanger MJ, Srinivasan P. Structure guided mimicry of an essential P. falciparum receptor-ligand complex enhances cross neutralizing antibodies. Nat Commun 2023; 14:5879. [PMID: 37735574 PMCID: PMC10514071 DOI: 10.1038/s41467-023-41636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Invasion of human erythrocytes by Plasmodium falciparum (Pf) merozoites relies on the interaction between two parasite proteins: apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2). While antibodies to AMA1 provide limited protection against Pf in non-human primate malaria models, clinical trials using recombinant AMA1 alone (apoAMA1) yielded no protection due to insufficient functional antibodies. Immunization with AMA1 bound to RON2L, a 49-amino acid peptide from its ligand RON2, has shown superior protection by increasing the proportion of neutralizing antibodies. However, this approach relies on the formation of a complex in solution between the two vaccine components. To advance vaccine development, here we engineered chimeric antigens by replacing the AMA1 DII loop, displaced upon ligand binding, with RON2L. Structural analysis confirmed that the fusion chimera (Fusion-FD12) closely mimics the binary AMA1-RON2L complex. Immunization studies in female rats demonstrated that Fusion-FD12 immune sera, but not purified IgG, neutralized vaccine-type parasites more efficiently compared to apoAMA1, despite lower overall anti-AMA1 titers. Interestingly, Fusion-FD12 immunization enhanced antibodies targeting conserved epitopes on AMA1, leading to increased neutralization of non-vaccine type parasites. Identifying these cross-neutralizing antibody epitopes holds promise for developing an effective, strain-transcending malaria vaccine.
Collapse
Affiliation(s)
- Sean Yanik
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Varsha Venkatesh
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Michelle L Parker
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Deepti Sarkar
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Patel PN, Dickey TH, Diouf A, Salinas ND, McAleese H, Ouahes T, Long CA, Miura K, Lambert LE, Tolia NH. Structure-based design of a strain transcending AMA1-RON2L malaria vaccine. Nat Commun 2023; 14:5345. [PMID: 37660103 PMCID: PMC10475129 DOI: 10.1038/s41467-023-40878-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Apical membrane antigen 1 (AMA1) is a key malaria vaccine candidate and target of neutralizing antibodies. AMA1 binds to a loop in rhoptry neck protein 2 (RON2L) to form the moving junction during parasite invasion of host cells, and this complex is conserved among apicomplexan parasites. AMA1-RON2L complex immunization achieves higher growth inhibitory activity than AMA1 alone and protects mice against Plasmodium yoelii challenge. Here, three single-component AMA1-RON2L immunogens were designed that retain the structure of the two-component AMA1-RON2L complex: one structure-based design (SBD1) and two insertion fusions. All immunogens elicited high antibody titers with potent growth inhibitory activity, yet these antibodies did not block RON2L binding to AMA1. The SBD1 immunogen induced significantly more potent strain-transcending neutralizing antibody responses against diverse strains of Plasmodium falciparum than AMA1 or AMA1-RON2L complex vaccination. This indicates that SBD1 directs neutralizing antibody responses to strain-transcending epitopes in AMA1 that are independent of RON2L binding. This work underscores the importance of neutralization mechanisms that are distinct from RON2 blockade. The stable single-component SBD1 immunogen elicits potent strain-transcending protection that may drive the development of next-generation vaccines for improved malaria and apicomplexan parasite control.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lynn E Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Srinivasan P, Yanik S, Venkatesh V, Parker M, Diouf A, Sarkar D, Miura K, Long C, Boulanger M. Structure guided mimicry of an essential P. falciparum receptor-ligand complex enhances cross neutralizing antibodies. RESEARCH SQUARE 2023:rs.3.rs-2733434. [PMID: 37131813 PMCID: PMC10153359 DOI: 10.21203/rs.3.rs-2733434/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Invasion of human red blood cells (RBCs) by Plasmodium falciparum (Pf) merozoites relies on the interaction between two parasite proteins, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) 1,2 . Antibodies to AMA1 confer limited protection against P. falciparum in non-human primate malaria models 3,4 . However, clinical trials with recombinant AMA1 alone (apoAMA1) saw no protection, likely due to inadequate levels of functional antibodies 5-8 . Notably, immunization with AMA1 in its ligand bound conformation using RON2L, a 49 amino acid peptide from RON2, confers superior protection against P. falciparum malaria by enhancing the proportion of neutralizing antibodies 9,10 . A limitation of this approach, however, is that it requires the two vaccine components to form a complex in solution. To facilitate vaccine development, we engineered chimeric antigens by strategically replacing the AMA1 DII loop that is displaced upon ligand binding with RON2L. Structural characterization of the fusion chimera, Fusion-F D12 to 1.55 Å resolution showed that it closely mimics the binary receptor-ligand complex. Immunization studies showed that Fusion-F D12 immune sera neutralized parasites more efficiently than apoAMA1 immune sera despite having an overall lower anti-AMA1 titer, suggesting improvement in antibody quality. Furthermore, immunization with Fusion-F D12 enhanced antibodies targeting conserved epitopes on AMA1 resulting in greater neutralization of non-vaccine type parasites. Identifying epitopes of such cross-neutralizing antibodies will help in the development of an effective, strain-transcending malaria vaccine. Our fusion protein design is a robust vaccine platform that can be enhanced by incorporating polymorphisms in AMA1 to effectively neutralize all P. falciparum parasites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carole Long
- Laboratory of Malaria and Vector Resarch, NIAID/NIH
| | | |
Collapse
|
13
|
Elsworth B, Keroack C, Rezvani Y, Paul A, Barazorda K, Tennessen J, Sack S, Moreira C, Gubbels MJ, Meyers M, Zarringhalam K, Duraisingh M. Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. RESEARCH SQUARE 2023:rs.3.rs-2553721. [PMID: 36909484 PMCID: PMC10002801 DOI: 10.21203/rs.3.rs-2553721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Apicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in Babesia spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by Babesia divergens. We developed reverse genetics to perform a knockdown screen of putative mediators of egress, identifying kinases and proteases involved in distinct steps of egress (ASP3, PKG and CDPK4) and invasion (ASP2, ASP3 and PKG). Inhibition of egress leads to continued intracellular replication, indicating exit from the replication cycle is uncoupled from egress. Chemical genetics validated PKG, ASP2 and ASP3 as druggable targets in Babesia spp. All taken together, egress in B. divergens more closely resembles T. gondii than the more evolutionarily-related Plasmodium spp. We have established a molecular framework for biological and translational studies of B. divergens egress.
Collapse
|
14
|
Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell Mol Life Sci 2023; 80:74. [PMID: 36847896 PMCID: PMC9969379 DOI: 10.1007/s00018-023-04712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Collapse
|
15
|
Ng YL, Lee WC, Lau YL, Fong MY. The Impact of Geographical Variation in Plasmodium knowlesi Apical Membrane Protein 1 (PkAMA-1) on Invasion Dynamics of P. knowlesi. Trop Med Infect Dis 2023; 8:tropicalmed8010056. [PMID: 36668963 PMCID: PMC9863575 DOI: 10.3390/tropicalmed8010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Plasmodium knowlesi has emerged as an important zoonotic parasite that causes persistent symptomatic malaria in humans. The signs and symptoms of malaria are attributed to the blood stages of the parasites, which start from the invasion of erythrocytes by the blood stage merozoites. The apical membrane protein 1 (AMA-1) plays an important role in the invasion. In this study, we constructed and expressed recombinant PkAMA-1 domain II (PkAMA-1-DII) representing the predominant haplotypes from Peninsular Malaysia and Malaysian Borneo and raised specific antibodies against the recombinant proteins in rabbits. Despite the minor amino acid sequence variation, antibodies raised against haplotypes from Peninsular Malaysia and Malaysian Borneo demonstrated different invasion inhibition (46.81% and 39.45%, respectively) to P. knowlesi A1-H.1, a reference strain derived from Peninsular Malaysia. Here, we demonstrated how a minor variation in a conserved parasite protein could cast a significant impact on parasite invasion biology, suggesting a complex host-switching of P. knowlesi from different locations. This may challenge the implementation of a standardized One Health approach against the transmission of knowlesi malaria.
Collapse
Affiliation(s)
- Yee Ling Ng
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
16
|
Ullah I, Afridi SG, Israr M, Khan H, Shams S, Zaib K, Le HG, Kang JM, Na BK, Khan A. Population genetic analyses inferred a limited genetic diversity across the pvama-1 DI domain among Plasmodium vivax isolates from Khyber Pakhtunkhwa regions of Pakistan. BMC Infect Dis 2022; 22:807. [PMID: 36310166 PMCID: PMC9620592 DOI: 10.1186/s12879-022-07798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax apical membrane antigen-1 (pvama-1) is an important vaccine candidate against Malaria. The genetic composition assessment of pvama-1 from wide-range geography is vital to plan the antigen based vaccine designing against Malaria. Methods The blood samples were collected from 84 P. vivax positive malaria patients from different districts of Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain-I (DI) region of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 and Network.5 resources. Results The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H-14 and H-5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinctions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P-value = 0.0001), while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of Fu and Li’s D* and F* tests indicate the evidence of population expansion and directional positive selection signature. The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of reference pvama-1 sequence, the KP samples were identified to have 09 novel non-synonymous single nucleotide polymorphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped within the B-cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism. Conclusion Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strategies based on antigenic features of pvama-1. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07798-1.
Collapse
|
17
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Apinda N, Koonyosying P, Srisawat W, Chomjit P, Sangkakam K, Punyapornwithaya V, Tiwananthagorn S, Yokoyama N, Sthitmatee N. Immunization of Cattle With Recombinant Structural Ectodomains I and II of Babesia bovis Apical Membrane Antigen 1 [BbAMA-1(I/II)] Induces Strong Th1 Immune Response. Front Vet Sci 2022; 9:917389. [PMID: 35812841 PMCID: PMC9260583 DOI: 10.3389/fvets.2022.917389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Both strong innate and adaptive immune responses are an important component of protection against intraerythrocytic protozoan parasites. Resistance to bovine babesiosis is associated with interferon (IFN)-γ mediated responses. CD4+ T cells and macrophages have been identified as major effector cells mediating the clearance of pathogens. Previously, the apical membrane antigen 1 (AMA-1) was found to significantly induce the immune response inhibiting B. bovis merozoite growth and invasion. However, a detailed characterization of both humoral and cellular immune responses against the structure of B. bovis AMA-1 (BbAMA-1) has not yet been established. Herein, the present study aimed to express the recombinant BbAMA-1 domain I+II protein [rBbAMA-1(I/II)], which is the most predominant immune response region, and to characterize its immune response. As a result, cattle vaccinated with BbAMA-1(I/II) significantly developed high titters of total immunoglobulin (Ig) G antibodies and a high ratio of IgG2/IgG1 when compared to control groups. Interestingly, the BbAMA-1(I/II)-based formulations produced in our study could elicit CD4+ T cells and CD8+ T cells producing IFN-γ and tumor necrosis factor (TNF)-α. Collectively, the results indicate that immunization of cattle with BbAMA-1(I/II) could induce strong Th1 cell responses. In support of this, we observed the up-regulation of Th1 cytokine mRNA transcripts, including IFN-γ, TNF-α, Interleukin (IL)-2 and IL-12, in contrast to down regulation of IL-4, IL-6 and IL-10, which would be indicative of a Th2 cytokine response. Moreover, the up-regulation of inducible nitric oxide synthase (iNOS) was observed. In conclusion, this is the first report on the in-depth immunological characterization of the response to BbAMA-1. According to our results, BbAMA-1 is recognized as a potential candidate vaccine against B. bovis infection. As evidenced by the Th1 cell response, it could potentially provide protective immunity. However, further challenge-exposure with virulent B. bovis strain in immunized cattle would be needed to determine its protective efficacy.
Collapse
Affiliation(s)
- Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwisa Srisawat
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Paweena Chomjit
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Nattawooti Sthitmatee ;
| |
Collapse
|
18
|
Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13:3004. [PMID: 35637187 PMCID: PMC9151791 DOI: 10.1038/s41467-022-30605-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Genetically identical cells are known to exhibit differential phenotypes in the same environmental conditions. These phenotypic variants are linked to transcriptional stochasticity and have been shown to contribute towards adaptive flexibility of a wide range of unicellular organisms. Here, we investigate transcriptional heterogeneity and stochastic gene expression in Plasmodium falciparum by performing the quasilinear multiple annealing and looping based amplification cycles (MALBAC) based amplification and single cell RNA sequencing of blood stage schizonts. Our data reveals significant transcriptional variations in the schizont stage with a distinct group of highly variable invasion gene transcripts being identified. Moreover, the data reflects several diversification processes including putative developmental “checkpoint”; transcriptomically distinct parasite sub-populations and transcriptional switches in variable gene families (var, rifin, phist). Most of these features of transcriptional variability are preserved in isogenic parasite cell populations (albeit with a lesser amplitude) suggesting a role of epigenetic factors in cell-to-cell transcriptional variations in human malaria parasites. Lastly, we apply quantitative RT-PCR and RNA-FISH approach and confirm stochastic expression of key invasion genes, such as, msp1, msp3, msp7, eba181 and ama1 which represent prime candidates for invasion-blocking vaccines. Genetically identical cells can be phenotypically diverse to allow adaptive flexibility in a given environment. This phenotypic diversity is driven by epigenetic and transcriptional variability. Here, Tripathi et al. perform scRNA-seq of isogenic and non-isogenic Plasmodium falciparum schizont populations to explore transcriptional heterogeneity and stochastic gene expression during the course of development.
Collapse
|
19
|
Basis for drug selectivity of plasmepsin IX and X inhibition in Plasmodium falciparum and vivax. Structure 2022; 30:947-961.e6. [PMID: 35460613 DOI: 10.1016/j.str.2022.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
Abstract
Plasmepsins IX (PMIX) and X (PMX) are essential aspartyl proteases for Plasmodium spp. egress, invasion, and development. WM4 and WM382 inhibit PMIX and PMX in Plasmodium falciparum and P. vivax. WM4 inhibits PMX, while WM382 is a dual inhibitor of PMIX and PMX. To understand their function, we identified protein substrates. Enzyme kinetic and structural analyses identified interactions responsible for drug specificity. PMIX and PMX have similar substrate specificity; however, there are distinct differences for peptide and protein substrates. Differences in WM4 and WM382 binding for PMIX and PMX map to variations in the S' region and engagement of the active site S3 pocket. Structures of PMX reveal interactions and mechanistic detail of drug binding important for development of clinical candidates against these targets.
Collapse
|
20
|
Molina-Franky J, Patarroyo ME, Kalkum M, Patarroyo MA. The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2022; 12:816574. [PMID: 35433504 PMCID: PMC9008539 DOI: 10.3389/fcimb.2022.816574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle’s blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite’s biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- PhD Programme in Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| |
Collapse
|
21
|
Genetic Polymorphism and Natural Selection of Apical Membrane Antigen-1 in Plasmodium falciparum Isolates from Vietnam. Genes (Basel) 2021; 12:genes12121903. [PMID: 34946853 PMCID: PMC8701107 DOI: 10.3390/genes12121903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Apical membrane antigen-1 of Plasmodium falciparum (PfAMA-1) is a leading malaria vaccine candidate antigen. However, the genetic diversity of pfama-1 and associated antigenic variation in global P. falciparum field isolates are major hurdles to the design of an efficacious vaccine formulated with this antigen. Here, we analyzed the genetic structure and the natural selection of pfama-1 in the P. falciparum population of Vietnam. A total of 37 distinct haplotypes were found in 131 P. falciparum Vietnamese isolates. Most amino acid changes detected in Vietnamese pfama-1 were localized in the ectodomain, domains I, II, and III. Overall patterns of major amino acid changes in Vietnamese pfama-1 were similar to those of global pfama-1, but the frequencies of the amino acid changes slightly differed by country. Novel amino acid changes were also identified in Vietnamese pfama-1. Vietnamese pfama-1 revealed relatively lower genetic diversity than currently analyzed pfama-1 in other geographical regions, and suggested a distinct genetic differentiation pattern. Evidence for natural selection was detected in Vietnamese pfama-1, but it showed purifying selection unlike the global pfama-1 analyzed so far. Recombination events were also found in Vietnamese pfama-1. Major amino acid changes that were commonly identified in global pfama-1 were mainly localized to predicted B-cell epitopes, RBC-binding sites, and IUR regions. These results provide important information for understanding the genetic nature of the Vietnamese pfama-1 population, and have significant implications for the design of a vaccine based on PfAMA-1.
Collapse
|
22
|
Kaaya RD, Kajeguka DC, Matowo JJ, Ndaro AJ, Mosha FW, Chilongola JO, Kavishe RA. Predictive markers of transmission in areas with different malaria endemicity in north-eastern Tanzania based on seroprevalence of antibodies against Plasmodium falciparum. BMC Res Notes 2021; 14:404. [PMID: 34717734 PMCID: PMC8557592 DOI: 10.1186/s13104-021-05818-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE A community-based cross-sectional study was done to assess Plasmodium falciparum exposure in areas with different malaria endemicity in north-eastern Tanzania using serological markers; PfAMA-1 and PfMSP-119. RESULTS Bondo had a higher seroprevalence 36.6% (188) for PfAMA-1 as compared to Hai 13.8% (33), χ2 = 34.66, p < 0.01. Likewise, Bondo had a higher seroprevalence 201(36.6%) for PfMSP-1 as compared to Hai 41 (17.2%), χ2 = 29.62, p < 0.01. Anti-PfAMA-1 titters were higher in malaria positive individuals (n = 47) than in malaria negative individuals (n = 741) (p = 0.07). Anti-PfMSP-1 antibody concentrations were significantly higher in malaria-positive individuals (n = 47) than in malaria-negative individuals (n = 741) (p = 0.003). Antibody response against PfAMA-1 was significantly different between the three age groups; < 5 years, 5 to 15 years and > 15 years in both sites of Bondo and Hai. Likewise, antibody response against PfMSP-119 was significantly different between the three age groups in the two sites (p < 0.001). We also found significant differences in the anti-PfAMA-1and anti-PfMSP-119 antibody concentrations among the three age groups in the two sites (p = 0.004 and 0.005) respectively. Immunological indicators of P. falciparum exposure have proven to be useful in explaining long-term changes in the transmission dynamics, especially in low transmission settings.
Collapse
Affiliation(s)
- Robert D Kaaya
- Departmentof Parasitology and Entomology, Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania. .,Pan-African Malaria Vector Research Consortium, Moshi, Tanzania.
| | - Debora C Kajeguka
- Department of Microbiology, Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Johnson J Matowo
- Departmentof Parasitology and Entomology, Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Arnold J Ndaro
- Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Franklin W Mosha
- Departmentof Parasitology and Entomology, Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Jaffu O Chilongola
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Reginald A Kavishe
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
23
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Punyapornwithaya V, Tiwananthagorn S, Chung YT, Tuvshintulga B, Sivakumar T, Yokoyama N, Sthitmatee N. Structural and immunological characterization of an epitope within the PAN motif of ectodomain I in Babesia bovis apical membrane antigen 1 for vaccine development. PeerJ 2021; 9:e11765. [PMID: 34316404 PMCID: PMC8288113 DOI: 10.7717/peerj.11765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Bovine babesiosis caused by Babesia bovis (B. bovis) has had a significant effect on the mobility and mortality rates of the cattle industry worldwide. Live-attenuated vaccines are currently being used in many endemic countries, but their wide use has been limited for a number of reasons. Although recombinant vaccines have been proposed as an alternative to live vaccines, such vaccines are not commercially available to date. Apical membrane antigen-1 (AMA-1) is one of the leading candidates in the development of a vaccine against diseases caused by apicomplexan parasite species. In Plasmodium falciparum (P. falciparum) AMA-1 (PfAMA-1), several antibodies against epitopes in the plasminogen, apple, and nematode (PAN) motif of PfAMA-1 domain I significantly inhibited parasite growth. Therefore, the purpose of this study was to predict an epitope from the PAN motif of domain I in the B. bovis AMA-1 (BbAMA-1) using a combination of linear and conformational B-cell epitope prediction software. The selected epitope was then bioinformatically analyzed, synthesized as a peptide (sBbAMA-1), and then used to immunize a rabbit. Subsequently, in vitro growth- and the invasion-inhibitory effects of the rabbit antiserum were immunologically characterized. Results Our results demonstrated that the predicted BbAMA-1 epitope was located on the surface-exposed α-helix of the PAN motif in domain I at the apex area between residues 181 and 230 with six polymorphic sites. Subsequently, sBbAMA-1 elicited antibodies capable of recognizing the native BbAMA-1 in immunoassays. Furthermore, anti-serum against sBbAMA-1 was immunologically evaluated for its growth- and invasion-inhibitory effects on B. bovis merozoites in vitro. Our results demonstrated that the rabbit anti-sBbAMA-1 serum at a dilution of 1:5 significantly inhibited (p < 0.05) the growth of B. bovis merozoites by approximately 50–70% on days 3 and 4 of cultivation, along with the invasion of merozoites by approximately 60% within 4 h of incubation when compared to the control groups. Conclusion Our results indicate that the epitope predicted from the PAN motif of BbAMA-1 domain I is neutralization-sensitive and may serve as a target antigen for vaccine development against bovine babesiosis caused by B. bovis.
Collapse
Affiliation(s)
| | - Boondarika Nambooppha
- Graduate School of Veterinary Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Graduate School of Veterinary Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Yang-Tsung Chung
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taichung, Taiwan
| | - Bumduuren Tuvshintulga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
24
|
Shakya B, Patel SD, Tani Y, Egan ES. Erythrocyte CD55 mediates the internalization of Plasmodium falciparum parasites. eLife 2021; 10:61516. [PMID: 34028351 PMCID: PMC8184214 DOI: 10.7554/elife.61516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum is a multi-step process. Previously, a forward genetic screen for P. falciparum host factors identified erythrocyte CD55 as essential for invasion, but its specific role and how it interfaces with the other factors that mediate this complex process are unknown. Using CRISPR-Cas9 editing, antibody-based inhibition, and live cell imaging, here we show that CD55 is specifically required for parasite internalization. Pre-invasion kinetics, erythrocyte deformability, and echinocytosis were not influenced by CD55, but entry was inhibited when CD55 was blocked or absent. Visualization of parasites attached to CD55-null erythrocytes points to a role for CD55 in stability and/or progression of the moving junction. Our findings demonstrate that CD55 acts after discharge of the parasite’s rhoptry organelles, and plays a unique role relative to all other invasion receptors. As the requirement for CD55 is strain-transcendent, these results suggest that CD55 or its interacting partners may hold potential as therapeutic targets for malaria.
Collapse
Affiliation(s)
- Bikash Shakya
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| | - Saurabh D Patel
- Zuckerman Institute, Columbia University, New York City, United States
| | | | - Elizabeth S Egan
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
25
|
Abstract
Malaria, caused by infection with Plasmodium parasites, remains a significant global health concern. For decades, genetic intractability and limited tools hindered our ability to study essential proteins and pathways in Plasmodium falciparum, the parasite associated with the most severe malaria cases. However, recent years have seen major leaps forward in the ability to genetically manipulate P. falciparum parasites and conditionally control protein expression/function. The conditional knockdown systems used in P. falciparum target all 3 components of the central dogma, allowing researchers to conditionally control gene expression, translation, and protein function. Here, we review some of the common knockdown systems that have been adapted or developed for use in P. falciparum. Much of the work done using conditional knockdown approaches has been performed in asexual, blood-stage parasites, but we also highlight their uses in other parts of the life cycle and discuss new ways of applying these systems outside of the intraerythrocytic stages. With the use of these tools, the field’s understanding of parasite biology is ever increasing, and promising new pathways for antimalarial drug development are being discovered.
Collapse
|
26
|
Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci 2021; 22:ijms22020714. [PMID: 33450807 PMCID: PMC7828228 DOI: 10.3390/ijms22020714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Apical membrane antigen 1 is a microneme protein which plays an indispensable role during Apicomplexa parasite invasion. The detailed mechanism of AMA-1 molecular interaction with its receptor on bovine erythrocytes has not been completely defined in Babesia bovis. This study was focused on identifying the minimum B. bovis AMA-1-derived regions governing specific and high-affinity binding to its target cells. Different approaches were used for detecting ama-1 locus genetic variability and natural selection signatures. The binding properties of twelve highly conserved 20-residue-long peptides were evaluated using a sensitive and specific binding assay based on radio-iodination. B. bovis AMA-1 ectodomain structure was modelled and refined using molecular modelling software. NetMHCIIpan software was used for calculating B- and T-cell epitopes. The B. bovis ama-1 gene had regions under functional constraint, having the highest negative selective pressure intensity in the Domain I encoding region. Interestingly, B. bovis AMA-1-DI (100YMQKFDIPRNHGSGIYVDLG119 and 120GYESVGSKSYRMPVGKCPVV139) and DII (302CPMHPVRDAIFGKWSGGSCV321)-derived peptides had high specificity interaction with erythrocytes and bound to a chymotrypsin and neuraminidase-treatment sensitive receptor. DI-derived peptides appear to be exposed on the protein’s surface and contain predicted B- and T-cell epitopes. These findings provide data (for the first-time) concerning B. bovis AMA-1 functional subunits which are important for establishing receptor-ligand interactions which could be used in synthetic vaccine development.
Collapse
|
27
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
28
|
Quadt KA, Smyrnakou X, Frischknecht F, Böse G, Ganter M. Plasmodium falciparum parasites exit the infected erythrocyte after haemolysis with saponin and streptolysin O. Parasitol Res 2020; 119:4297-4302. [PMID: 33089360 DOI: 10.1007/s00436-020-06932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Malaria is caused by unicellular parasites of the genus Plasmodium, which reside in erythrocytes during the clinically relevant stage of infection. To separate parasite from host cell material, haemolytic agents such as saponin are widely used. Previous electron microscopy studies on saponin-treated parasites reported both, parasites enclosed by the erythrocyte membrane and liberated from the host cell. These ambiguous reports prompted us to investigate haemolysis by live-cell time-lapse microscopy. Using either saponin or streptolysin O to lyse Plasmodium falciparum-infected erythrocytes, we found that ring-stage parasites efficiently exit the erythrocyte upon haemolysis. For late-stage parasites, we found that only approximately half were freed, supporting the previous electron microscopy studies. Immunofluorescence imaging indicated that freed parasites were surrounded by the parasitophorous vacuolar membrane. These results may be of interest for future work using haemolytic agents to enrich for parasite material.
Collapse
Affiliation(s)
- Katharina A Quadt
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany.,Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Xanthoula Smyrnakou
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany.,Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Centre for Infection Research, Heidelberg Division, Heidelberg, Germany
| | - Guido Böse
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany.
| | - Markus Ganter
- Zendia GmbH, Rummler 5, 48324, Sendenhorst, Germany. .,Parasitology, Centre for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Fernandes P, Briquet S, Patarot D, Loubens M, Hoareau-Coudert B, Silvie O. The dimerisable Cre recombinase allows conditional genome editing in the mosquito stages of Plasmodium berghei. PLoS One 2020; 15:e0236616. [PMID: 33044964 PMCID: PMC7549836 DOI: 10.1371/journal.pone.0236616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 01/18/2023] Open
Abstract
Asexual blood stages of the malaria parasite are readily amenable to genetic modification via homologous recombination, allowing functional studies of parasite genes that are not essential in this part of the life cycle. However, conventional reverse genetics cannot be applied for the functional analysis of genes that are essential during asexual blood-stage replication. Various strategies have been developed for conditional mutagenesis of Plasmodium, including recombinase-based gene deletion, regulatable promoters, and mRNA or protein destabilization systems. Among these, the dimerisable Cre (DiCre) recombinase system has emerged as a powerful approach for conditional gene deletion in P. falciparum. In this system, the bacteriophage Cre is expressed in the form of two separate, enzymatically inactive polypeptides, each fused to a different rapamycin-binding protein. Rapamycin-induced heterodimerization of the two components restores recombinase activity. We have implemented the DiCre system in the rodent malaria parasite P. berghei, and show that rapamycin-induced excision of floxed DNA sequences can be achieved with very high efficiency in both mammalian and mosquito parasite stages. This tool can be used to investigate the function of essential genes not only in asexual blood stages, but also in other parts of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Sylvie Briquet
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Delphine Patarot
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Manon Loubens
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
| | - Bénédicte Hoareau-Coudert
- UMS PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière (CyPS), Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d’Immunologie et des Maladies Infectieuses, INSERM, CNRS, CIMI-Paris, Sorbonne Université, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Perrin AJ, Patel A, Flueck C, Blackman MJ, Baker DA. cAMP signalling and its role in host cell invasion by malaria parasites. Curr Opin Microbiol 2020; 58:69-74. [PMID: 33032143 DOI: 10.1016/j.mib.2020.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important signalling molecule across evolution, but until recently there was little information on its role in malaria parasites. Advances in gene editing - in particular conditional genetic approaches and mass spectrometry have paved the way for characterisation of the key components of the cAMP signalling pathway in malaria parasites. This has revealed that cAMP signalling plays a critical role in invasion of host red blood cells by Plasmodium falciparum merozoites through regulating the phosphorylation of key parasite proteins by the cAMP-dependent protein kinase (PKA). These insights will help us to investigate parasite cAMP signalling as a target for novel antimalarial drugs.
Collapse
Affiliation(s)
- Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| |
Collapse
|
31
|
Blake TCA, Haase S, Baum J. Actomyosin forces and the energetics of red blood cell invasion by the malaria parasite Plasmodium falciparum. PLoS Pathog 2020; 16:e1009007. [PMID: 33104759 PMCID: PMC7644091 DOI: 10.1371/journal.ppat.1009007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Abstract
All symptoms of malaria disease are associated with the asexual blood stages of development, involving cycles of red blood cell (RBC) invasion and egress by the Plasmodium spp. merozoite. Merozoite invasion is rapid and is actively powered by a parasite actomyosin motor. The current accepted model for actomyosin force generation envisages arrays of parasite myosins, pushing against short actin filaments connected to the external milieu that drive the merozoite forwards into the RBC. In Plasmodium falciparum, the most virulent human malaria species, Myosin A (PfMyoA) is critical for parasite replication. However, the precise function of PfMyoA in invasion, its regulation, the role of other myosins and overall energetics of invasion remain unclear. Here, we developed a conditional mutagenesis strategy combined with live video microscopy to probe PfMyoA function and that of the auxiliary motor PfMyoB in invasion. By imaging conditional mutants with increasing defects in force production, based on disruption to a key PfMyoA phospho-regulation site, the absence of the PfMyoA essential light chain, or complete motor absence, we define three distinct stages of incomplete RBC invasion. These three defects reveal three energetic barriers to successful entry: RBC deformation (pre-entry), mid-invasion initiation, and completion of internalisation, each requiring an active parasite motor. In defining distinct energetic barriers to invasion, these data illuminate the mechanical challenges faced in this remarkable process of protozoan parasitism, highlighting distinct myosin functions and identifying potential targets for preventing malaria pathogenesis.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
32
|
Gandhi S, Baker RP, Cho S, Stanchev S, Strisovsky K, Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell Chem Biol 2020; 27:1410-1424.e6. [PMID: 32888502 DOI: 10.1016/j.chembiol.2020.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022]
Abstract
Rhomboid intramembrane proteases regulate pathophysiological processes, but their targeting in a disease context has never been achieved. We decoded the atypical substrate specificity of malaria rhomboid PfROM4, but found, unexpectedly, that it results from "steric exclusion": PfROM4 and canonical rhomboid proteases cannot cleave each other's substrates due to reciprocal juxtamembrane steric clashes. Instead, we engineered an optimal sequence that enhanced proteolysis >10-fold, and solved high-resolution structures to discover that boronates enhance inhibition >100-fold. A peptide boronate modeled on our "super-substrate" carrying one "steric-excluding" residue inhibited PfROM4 but not human rhomboid proteolysis. We further screened a library to discover an orthogonal alpha-ketoamide that potently inhibited PfROM4 but not human rhomboid proteolysis. Despite the membrane-immersed target and rapid invasion, ultrastructural analysis revealed that single-dosing blood-stage malaria cultures blocked host-cell invasion and cleared parasitemia. These observations establish a strategy for designing parasite-selective rhomboid inhibitors and expose a druggable dependence on rhomboid proteolysis in non-motile parasites.
Collapse
Affiliation(s)
- Shiv Gandhi
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Rosanna P Baker
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sangwoo Cho
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 160 00, Czechia
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 160 00, Czechia
| | - Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Detection of the Rhoptry Neck Protein Complex in Plasmodium Sporozoites and Its Contribution to Sporozoite Invasion of Salivary Glands. mSphere 2020; 5:5/4/e00325-20. [PMID: 32817376 PMCID: PMC7440843 DOI: 10.1128/msphere.00325-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sporozoites are the motile infectious stage that mediates malaria parasite transmission from mosquitoes to the mammalian host. This study addresses the question whether the rhoptry neck protein complex forms and functions in sporozoites, in addition to its role in merozoites. By applying coimmunoprecipitation and sporozoite stage-specific gene knockdown assays, it was demonstrated that RON2, RON4, and RON5 form a complex and are involved in sporozoite invasion of salivary glands via their attachment ability. These findings shed light on the conserved invasion mechanisms among apicomplexan infective stages. In addition, the sporozoite stage-specific gene knockdown system has revealed for the first time in Plasmodium that the RON2 and RON4 interaction reciprocally affects their stability and trafficking to rhoptries. Our study raises the possibility that the RON complex functions during sporozoite maturation as well as migration toward and invasion of target cells. In the Plasmodium life cycle, two infectious stages of parasites, merozoites and sporozoites, share rhoptry and microneme apical structures. A crucial step during merozoite invasion of erythrocytes is the discharge to the host cell membrane of some rhoptry neck proteins as a complex, followed by the formation of a moving junction involving the parasite-secreted protein AMA1 on the parasite membrane. Components of the merozoite rhoptry neck protein complex are also expressed in sporozoites, namely, RON2, RON4, and RON5, suggesting that invasion mechanism elements might be conserved between these infective stages. Recently, we demonstrated that RON2 is required for sporozoite invasion of mosquito salivary gland cells and mammalian hepatocytes, using a sporozoite stage-specific gene knockdown strategy in the rodent malaria parasite model, Plasmodium berghei. Here, we use a coimmunoprecipitation assay and oocyst-derived sporozoite extracts to demonstrate that RON2, RON4, and RON5 also form a complex in sporozoites. The sporozoite stage-specific gene knockdown strategy revealed that both RON4 and RON5 have crucial roles during sporozoite invasion of salivary glands, including a significantly reduced attachment ability required for the onset of gliding. Further analyses indicated that RON2 and RON4 reciprocally affect trafficking to rhoptries in developing sporozoites, while RON5 is independently transported. These findings indicate that the interaction between RON2 and RON4 contributes to their stability and trafficking to rhoptries, in addition to involvement in sporozoite attachment. IMPORTANCE Sporozoites are the motile infectious stage that mediates malaria parasite transmission from mosquitoes to the mammalian host. This study addresses the question whether the rhoptry neck protein complex forms and functions in sporozoites, in addition to its role in merozoites. By applying coimmunoprecipitation and sporozoite stage-specific gene knockdown assays, it was demonstrated that RON2, RON4, and RON5 form a complex and are involved in sporozoite invasion of salivary glands via their attachment ability. These findings shed light on the conserved invasion mechanisms among apicomplexan infective stages. In addition, the sporozoite stage-specific gene knockdown system has revealed for the first time in Plasmodium that the RON2 and RON4 interaction reciprocally affects their stability and trafficking to rhoptries. Our study raises the possibility that the RON complex functions during sporozoite maturation as well as migration toward and invasion of target cells.
Collapse
|
34
|
Repurposing bioenergetic modulators against protozoan parasites responsible for tropical diseases. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:17-27. [PMID: 32829099 PMCID: PMC7452664 DOI: 10.1016/j.ijpddr.2020.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022]
Abstract
Malaria, leishmaniasis and trypanosomiasis are arthropod-borne, parasitic diseases that constitute a major global health problem. They are generally found in developing countries, where lack of access to preventive tools and treatment hinders their management. Because these parasites share an increased demand on glucose consumption with most cancer cells, six compounds used in anti-tumoral research were selected to be tested as antiparasitic agents in in vitro models of Leishmania infantum, Trypanosoma brucei, T. cruzi, and Plasmodium falciparum: dichloroacetic acid (DCA), 3-bromopyruvic acid (3BP), 2-deoxy-D-glucose (2DG), lonidamine (LND), metformin (MET), and sirolimus (SIR). No parasite-killing activity was found in L. infantum promastigotes, whereas DCA and 3BP reduced the burden of intra-macrophagic amastigotes. For T. brucei all selected compounds, but 2DG, decreased parasite survival. DCA, 2DG, LND and MET showed parasite-killing activity in T. cruzi. Finally, anti-plasmodial activity was found for DCA, 2DG, LND, MET and SIR. These results reinforce the hypothesis that drugs with proven efficacy in the treatment of cancer by interfering with ATP production, proliferation, and survival cell strategies might be useful in treating threatening parasitic diseases and provide new opportunities for their repurposing. Parasitic diseases are prevalent among the poorest of the poor. Some parasitic protists degrade glucose into CO2 even aerobically making this a target. Degrading glucose into CO2 (Warburg effect) is also characteristic for cancer cells. Repurposing cancer glycolysis blockers may provide cost-effective treatments for the poorest.
Collapse
|
35
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
36
|
Dans MG, Weiss GE, Wilson DW, Sleebs BE, Crabb BS, de Koning-Ward TF, Gilson PR. Screening the Medicines for Malaria Venture Pathogen Box for invasion and egress inhibitors of the blood stage of Plasmodium falciparum reveals several inhibitory compounds. Int J Parasitol 2020; 50:235-252. [PMID: 32135179 DOI: 10.1016/j.ijpara.2020.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
With emerging resistance to frontline treatments, it is vital that new drugs are identified to target Plasmodium falciparum. One of the most critical processes during parasites asexual lifecycle is the invasion and subsequent egress of red blood cells (RBCs). Many unique parasite ligands, receptors and enzymes are employed during egress and invasion that are essential for parasite proliferation and survival, therefore making these processes druggable targets. To identify potential inhibitors of egress and invasion, we screened the Medicines for Malaria Venture Pathogen Box, a 400 compound library against neglected tropical diseases, including 125 with antimalarial activity. For this screen, we utilised transgenic parasites expressing a bioluminescent reporter, nanoluciferase (Nluc), to measure inhibition of parasite egress and invasion in the presence of the Pathogen Box compounds. At a concentration of 2 µM, we found 15 compounds that inhibited parasite egress by >40% and 24 invasion-specific compounds that inhibited invasion by >90%. We further characterised 11 of these inhibitors through cell-based assays and live cell microscopy, and found two compounds that inhibited merozoite maturation in schizonts, one compound that inhibited merozoite egress, one compound that directly inhibited parasite invasion and one compound that slowed down invasion and arrested ring formation. The remaining compounds were general growth inhibitors that acted during the egress and invasion phase of the cell cycle. We found the sulfonylpiperazine, MMV020291, to be the most invasion-specific inhibitor, blocking successful merozoite internalisation within human RBCs and having no substantial effect on other stages of the cell cycle. This has significant implications for the possible development of an invasion-specific inhibitor as an antimalarial in a combination based therapy, in addition to being a useful tool for studying the biology of the invading parasite.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, Victoria 3004, Australia; School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Greta E Weiss
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, South Australia 5005, Australia; Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
37
|
Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines 2020; 19:195-207. [PMID: 32077349 DOI: 10.1080/14760584.2020.1733421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Numerous challenges have hampered developing an anti-malarial vaccine against the most widespread malarial parasite worldwide: Plasmodium vivax. Despite the progress achieved in studying proteins in short-term in vitro culture or in experimental models, there is still no clear method for defining which antigens or their regions should be prioritized for including them in a vaccine.Areas covered: The methods used by research groups so far which have focused on the functional analysis of P. vivax blood stage antigens have been reviewed here. A logical strategy orientated toward resolving two of the most commonly occurring problems in designing vaccines against this species has thus been proposed (i.e. the search for candidates and evaluating/ascertaining their functional role in the invasion of such molecules).Expert commentary: Advances in knowledge regarding P. vivax biology have been extremely slow. Only two key receptor-ligand interactions concerning merozoite entry to reticulocytes have been reported during the last 20 years: PvDBP1-DARC and PvRBP2b-CD71. Despite increasing knowledge about the parasite's intimate preference for its host cells, it has yet to be determined which regions of the merozoite molecules characterized to date meet the requirement of inducing protective immune responses effectively blocking heterologous parasite entry to human cells.
Collapse
Affiliation(s)
- Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Gabriela Arévalo-Pinzón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas Y Ambientales (U.D.C.A), Bogotá DC, Colombia
| |
Collapse
|
38
|
Nessel T, Beck JM, Rayatpisheh S, Jami-Alahmadi Y, Wohlschlegel JA, Goldberg DE, Beck JR. EXP1 is required for organisation of EXP2 in the intraerythrocytic malaria parasite vacuole. Cell Microbiol 2020; 22:e13168. [PMID: 31990132 DOI: 10.1111/cmi.13168] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single-pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR-DOZI-aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S-transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore-forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.
Collapse
Affiliation(s)
- Timothy Nessel
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - John M Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Shima Rayatpisheh
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa.,Departments of Medicine and Molecular Microbiology, Washington University, St. Louis, Missouri
| |
Collapse
|
39
|
Abstract
Understanding the mechanisms behind host cell invasion by Plasmodium falciparum remains a major hurdle to developing antimalarial therapeutics that target the asexual cycle and the symptomatic stage of malaria. Host cell entry is enabled by a multitude of precisely timed and tightly regulated receptor-ligand interactions. Cyclic nucleotide signaling has been implicated in regulating parasite invasion, and an important downstream effector of the cAMP-signaling pathway is protein kinase A (PKA), a cAMP-dependent protein kinase. There is increasing evidence that P. falciparum PKA (PfPKA) is responsible for phosphorylation of the cytoplasmic domain of P. falciparum apical membrane antigen 1 (PfAMA1) at Ser610, a cAMP-dependent event that is crucial for successful parasite invasion. In the present study, CRISPR-Cas9 and conditional gene deletion (dimerizable cre) technologies were implemented to generate a P. falciparum parasite line in which expression of the catalytic subunit of PfPKA (PfPKAc) is under conditional control, demonstrating highly efficient dimerizable Cre recombinase (DiCre)-mediated gene excision and complete knockdown of protein expression. Parasites lacking PfPKAc show severely reduced growth after one intraerythrocytic growth cycle and are deficient in host cell invasion, as highlighted by live-imaging experiments. Furthermore, PfPKAc-deficient parasites are unable to phosphorylate PfAMA1 at Ser610. This work not only identifies an essential role for PfPKAc in the P. falciparum asexual life cycle but also confirms that PfPKAc is the kinase responsible for phosphorylating PfAMA1 Ser610.IMPORTANCE Malaria continues to present a major global health burden, particularly in low-resource countries. Plasmodium falciparum, the parasite responsible for the most severe form of malaria, causes disease through rapid and repeated rounds of invasion and replication within red blood cells. Invasion into red blood cells is essential for P. falciparum survival, and the molecular events mediating this process have gained much attention as potential therapeutic targets. With no effective vaccine available, and with the emergence of resistance to antimalarials, there is an urgent need for the development of new therapeutics. Our research has used genetic techniques to provide evidence of an essential protein kinase involved in P. falciparum invasion. Our work adds to the current understanding of parasite signaling processes required for invasion, highlighting PKA as a potential drug target to inhibit invasion for the treatment of malaria.
Collapse
|
40
|
Wang YN, Lin M, Liang XY, Chen JT, Xie DD, Wang YL, Ehapo CS, Eyi UM, Huang HY, Wu JL, Xu DY, Chen ZM, Cao YL, Chen HB. Natural selection and genetic diversity of domain I of Plasmodium falciparum apical membrane antigen-1 on Bioko Island. Malar J 2019; 18:317. [PMID: 31533747 PMCID: PMC6751645 DOI: 10.1186/s12936-019-2948-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a promising candidate antigen for a blood-stage malaria vaccine. However, antigenic variation and diversity of PfAMA-1 are still major problems to design a universal malaria vaccine based on this antigen, especially against domain I (DI). Detail understanding of the PfAMA-1 gene polymorphism can provide useful information on this potential vaccine component. Here, general characteristics of genetic structure and the effect of natural selection of DIs among Bioko P. falciparum isolates were analysed. METHODS 214 blood samples were collected from Bioko Island patients with P. falciparum malaria between 2011 and 2017. A fragment spanning DI of PfAMA-1 was amplified by nested polymerase chain reaction and sequenced. Polymorphic characteristics and the effect of natural selection were analysed using MEGA 5.0, DnaSP 6.0 and Popart programs. Genetic diversity in 576 global PfAMA-1 DIs were also analysed. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 program. RESULTS 131 different haplotypes of PfAMA-1 were identified in 214 Bioko Island P. falciparum isolates. Most amino acid changes identified on Bioko Island were found in C1L. 32 amino acid changes identified in PfAMA-1 sequences from Bioko Island were found in predicted RBC-binding sites, B cell epitopes or IUR regions. Overall patterns of amino acid changes of Bioko PfAMA-1 DIs were similar to those in global PfAMA-1 isolates. Differential amino acid substitution frequencies were observed for samples from different geographical regions. Eight new amino acid changes of Bioko island isolates were also identified and their three-dimensional protein structural consequences were predicted. Evidence for natural selection and recombination event were observed in global isolates. CONCLUSIONS Patterns of nucleotide diversity and amino acid polymorphisms of Bioko Island isolates were similar to those of global PfAMA-1 DIs. Balancing natural selection across DIs might play a major role in generating genetic diversity in global isolates. Most amino acid changes in DIs occurred in predicted B-cell epitopes. Novel sites mapped on a three dimensional structure of PfAMA-1 showed that these regions were located at the corner. These results may provide significant value in the design of a malaria vaccine based on this antigen.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Xue-Yan Liang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Jiang-Tao Chen
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong, People's Republic of China
| | - Dong-De Xie
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Yu-Ling Wang
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Hui-Ying Huang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Jing-Li Wu
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Dan-Yan Xu
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Zhi-Mao Chen
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yi-Long Cao
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Tibúrcio M, Yang ASP, Yahata K, Suárez-Cortés P, Belda H, Baumgarten S, van de Vegte-Bolmer M, van Gemert GJ, van Waardenburg Y, Levashina EA, Sauerwein RW, Treeck M. A Novel Tool for the Generation of Conditional Knockouts To Study Gene Function across the Plasmodium falciparum Life Cycle. mBio 2019; 10:e01170-19. [PMID: 31530668 PMCID: PMC6751054 DOI: 10.1128/mbio.01170-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/21/2019] [Indexed: 01/07/2023] Open
Abstract
Plasmodium falciparum has a complex life cycle that involves interaction with multiple tissues inside the human and mosquito hosts. Identification of essential genes at all different stages of the P. falciparum life cycle is urgently required for clinical development of tools for malaria control and eradication. However, the study of P. falciparum is limited by the inability to genetically modify the parasite throughout its life cycle with the currently available genetic tools. Here, we describe the detailed characterization of a new marker-free P. falciparum parasite line that expresses rapamycin-inducible Cre recombinase across the full life cycle. Using this parasite line, we were able to conditionally delete the essential invasion ligand AMA1 in three different developmental stages for the first time. We further confirm efficient gene deletion by targeting the nonessential kinase FIKK7.1.IMPORTANCE One of the major limitations in studying P. falciparum is that so far only asexual stages are amenable to rapid conditional genetic modification. The most promising drug targets and vaccine candidates, however, have been refractory to genetic modification because they are essential during the blood stage or for transmission in the mosquito vector. This leaves a major gap in our understanding of parasite proteins in most life cycle stages and hinders genetic validation of drug and vaccine targets. Here, we describe a method that supports conditional gene deletion across the P. falciparum life cycle for the first time. We demonstrate its potential by deleting essential and nonessential genes at different parasite stages, which opens up completely new avenues for the study of malaria and drug development. It may also allow the realization of novel vaccination strategies using attenuated parasites.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Annie S P Yang
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Kazuhide Yahata
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Pablo Suárez-Cortés
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | | | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Youri van Waardenburg
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
42
|
Salinas ND, Tang WK, Tolia NH. Blood-Stage Malaria Parasite Antigens: Structure, Function, and Vaccine Potential. J Mol Biol 2019; 431:4259-4280. [PMID: 31103771 DOI: 10.1016/j.jmb.2019.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Plasmodium parasites are the causative agent of malaria, a disease that kills approximately 450,000 individuals annually, with the majority of deaths occurring in children under the age of 5 years and the development of a malaria vaccine is a global health priority. Plasmodium parasites undergo a complex life cycle requiring numerous diverse protein families. The blood stage of parasite development results in the clinical manifestation of disease. A vaccine that disrupts the blood stage is highly desired and will aid in the control of malaria. The blood stage comprises multiple steps: invasion of, asexual growth within, and egress from red blood cells. This review focuses on blood-stage antigens with emphasis on antigen structure, antigen function, neutralizing antibodies, and vaccine potential.
Collapse
Affiliation(s)
- Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Wai Kwan Tang
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD,, 20892, USA.
| |
Collapse
|
43
|
Drew DR, Sanders PR, Weiss G, Gilson PR, Crabb BS, Beeson JG. Functional Conservation of the AMA1 Host-Cell Invasion Ligand Between P. falciparum and P. vivax: A Novel Platform to Accelerate Vaccine and Drug Development. J Infect Dis 2019; 217:498-507. [PMID: 29165651 DOI: 10.1093/infdis/jix583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax and P. falciparum malaria species have diverged significantly in receptor-ligand interactions and host-cell invasion. One protein common to both is the merozoite invasion ligand AMA1. While the general structure of AMA1 is similar between species, their sequences are divergent. Surprisingly, it was possible to genetically replace PfAMA1 with PvAMA1 in P. falciparum parasites. PvAMA1 complemented PfAMA1 function and supported invasion of erythrocytes by P. falciparum. Genetically modified P. falciparum expressing PvAMA1 evaded the invasion inhibitory effects of antibodies to PfAMA1, demonstrating species specificity of functional antibodies. We generated antibodies to recombinant PvAMA1 that effectively inhibited invasion, confirming the function of PvAMA1 in genetically modified parasites. Results indicate significant molecular flexibility in AMA1 enabling conserved function despite substantial sequence divergence across species. This provides powerful new tools to quantify the inhibitory activities of antibodies or drugs targeting PvAMA1, opening new opportunities for vaccine and therapeutic development against P. vivax.
Collapse
Affiliation(s)
| | | | | | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.,Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
44
|
Ishino T, Murata E, Tokunaga N, Baba M, Tachibana M, Thongkukiatkul A, Tsuboi T, Torii M. Rhoptry neck protein 2 expressed in Plasmodium sporozoites plays a crucial role during invasion of mosquito salivary glands. Cell Microbiol 2018; 21:e12964. [PMID: 30307699 PMCID: PMC6587811 DOI: 10.1111/cmi.12964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/03/2023]
Abstract
Malaria parasite transmission to humans is initiated by the inoculation of Plasmodium sporozoites into the skin by mosquitoes. Sporozoites develop within mosquito midgut oocysts, first invade the salivary glands of mosquitoes, and finally infect hepatocytes in mammals. The apical structure of sporozoites is conserved with the infective forms of other apicomplexan parasites that have secretory organelles, such as rhoptries and micronemes. Because some rhoptry proteins are crucial for Plasmodium merozoite infection of erythrocytes, we examined the roles of rhoptry proteins in sporozoites. Here, we demonstrate that rhoptry neck protein 2 (RON2) is also localized to rhoptries in sporozoites. To elucidate RON2 function in sporozoites, we applied a promoter swapping strategy to restrict ron2 transcription to the intraerythrocytic stage in the rodent malaria parasite, Plasmodium berghei. Ron2 knockdown sporozoites were severely impaired in their ability to invade salivary glands, via decreasing the attachment capacity to the substrate. This is the first rhoptry protein demonstrated to be involved in salivary gland invasion. In addition, ron2 knockdown sporozoites showed less infectivity to hepatocytes, possibly due to decreased attachment/gliding ability, indicating that parts of the parasite invasion machinery are conserved, but their contribution might differ among infective forms. Our sporozoite stage‐specific knockdown system will help to facilitate understanding the comprehensive molecular mechanisms of parasite invasion of target cells.
Collapse
Affiliation(s)
- Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eri Murata
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan.,Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Naohito Tokunaga
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | | | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
45
|
Afridi SG, Irfan M, Ahmad H, Aslam M, Nawaz M, Ilyas M, Khan A. Population genetic structure of domain I of apical membrane antigen-1 in Plasmodium falciparum isolates from Hazara division of Pakistan. Malar J 2018; 17:389. [PMID: 30367656 PMCID: PMC6203999 DOI: 10.1186/s12936-018-2539-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium falciparum apical membrane antigen-1 (PfAMA1) is considered as an ideal vaccine candidate for malaria control due to its high level of immunogenicity and essential role in parasite survival. Among the three domains of PfAMA1 protein, hyper-variable region (HVR) of domain I is the most immunogenic. The present study was conducted to evaluate the extent of genetic diversity across HVR domain I of the pfama1 gene in P. falciparum isolates from Hazara division of Pakistan. Methods The HVR domain I of the pfama1 was amplified and sequenced from 20 P. falciparum positive cases from Hazara division of Pakistan. The sequences were analysed in context of global population data of P. falciparum from nine malaria endemic countries. The DNA sequence reads quality assessment, reads assembling, sequences alignment/phylogenetic and population genetic analyses were performed using Staden, Lasergene v. 7.1, MEGA7 and DnaSP v.5 software packages respectively. Results Total 14 mutations were found in Pakistani isolates with 12 parsimony informative sites. During comparison with global isolates, a novel non-synonymous mutation (Y240F) was found specifically in a single Pakistani sample with 5% frequency. The less number of mutations, haplotypes, recombination and low pairwise nucleotide differences revealed tightly linked uniform genetic structure with low genetic diversity at HVR domain I of pfama1 among P. falciparum isolates from Hazara region of Pakistan. This uniform genetic structure may be shaped across Pakistani P. falciparum isolates by bottleneck or natural selection events. Conclusion The Pakistani P. falciparum isolates were found to maintain a distinct genetic pattern at HVR pfama1 with some extent of genetic relationship with geographically close Myanmar and Indian samples. However, the exact pattern of gene flow and demographic events may infer from whole genome sequence data with large sample size of P. falciparum collected from broad area of Pakistan. Electronic supplementary material The online version of this article (10.1186/s12936-018-2539-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Muhammad Irfan
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan
| | - Habib Ahmad
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan.,Center for OMIC Studies, Islamia College University, Peshawar, 25000, Pakistan
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Mehwish Nawaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Muhammad Ilyas
- Center for Human Genetics, Hazara University, Mansehra, 21310, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
46
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
47
|
Lyth O, Vizcay-Barrena G, Wright KE, Haase S, Mohring F, Najer A, Henshall IG, Ashdown GW, Bannister LH, Drew DR, Beeson JG, Fleck RA, Moon RW, Wilson DW, Baum J. Cellular dissection of malaria parasite invasion of human erythrocytes using viable Plasmodium knowlesi merozoites. Sci Rep 2018; 8:10165. [PMID: 29976932 PMCID: PMC6033891 DOI: 10.1038/s41598-018-28457-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Plasmodium knowlesi, a zoonotic parasite causing severe-to-lethal malaria disease in humans, has only recently been adapted to continuous culture with human red blood cells (RBCs). In comparison with the most virulent human malaria, Plasmodium falciparum, there are, however, few cellular tools available to study its biology, in particular direct investigation of RBC invasion by blood-stage P. knowlesi merozoites. This leaves our current understanding of biological differences across pathogenic Plasmodium spp. incomplete. Here, we report a robust method for isolating viable and invasive P. knowlesi merozoites to high purity and yield. Using this approach, we present detailed comparative dissection of merozoite invasion (using a variety of microscopy platforms) and direct assessment of kinetic differences between knowlesi and falciparum merozoites. We go on to assess the inhibitory potential of molecules targeting discrete steps of invasion in either species via a quantitative invasion inhibition assay, identifying a class of polysulfonate polymer able to efficiently inhibit invasion in both, providing a foundation for pan-Plasmodium merozoite inhibitor development. Given the close evolutionary relationship between P. knowlesi and P. vivax, the second leading cause of malaria-related morbidity, this study paves the way for inter-specific dissection of invasion by all three major pathogenic malaria species.
Collapse
Affiliation(s)
- Oliver Lyth
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Katherine E Wright
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Silvia Haase
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Franziska Mohring
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Adrian Najer
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Isabelle G Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - George W Ashdown
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Lawrence H Bannister
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Damien R Drew
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Victoria, Australia
| | - James G Beeson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Victoria, Australia
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Robert W Moon
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, Australia. .,Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia.
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK.
| |
Collapse
|
48
|
Lehmann C, Tan MSY, de Vries LE, Russo I, Sanchez MI, Goldberg DE, Deu E. Plasmodium falciparum dipeptidyl aminopeptidase 3 activity is important for efficient erythrocyte invasion by the malaria parasite. PLoS Pathog 2018; 14:e1007031. [PMID: 29768491 PMCID: PMC5973627 DOI: 10.1371/journal.ppat.1007031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/29/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Parasite egress from infected erythrocytes and invasion of new red blood cells are essential processes for the exponential asexual replication of the malaria parasite. These two tightly coordinated events take place in less than a minute and are in part regulated and mediated by proteases. Dipeptidyl aminopeptidases (DPAPs) are papain-fold cysteine proteases that cleave dipeptides from the N-terminus of protein substrates. DPAP3 was previously suggested to play an essential role in parasite egress. However, little is known about its enzymatic activity, intracellular localization, or biological function. In this study, we recombinantly expressed DPAP3 and demonstrate that it has indeed dipeptidyl aminopeptidase activity, but contrary to previously studied DPAPs, removal of its internal prodomain is not required for activation. By combining super resolution microscopy, time-lapse fluorescence microscopy, and immunoelectron microscopy, we show that Plasmodium falciparum DPAP3 localizes to apical organelles that are closely associated with the neck of the rhoptries, and from which DPAP3 is secreted immediately before parasite egress. Using a conditional knockout approach coupled to complementation studies with wild type or mutant DPAP3, we show that DPAP3 activity is important for parasite proliferation and critical for efficient red blood cell invasion. We also demonstrate that DPAP3 does not play a role in parasite egress, and that the block in egress phenotype previously reported for DPAP3 inhibitors is due to off target or toxicity effects. Finally, using a flow cytometry assay to differentiate intracellular parasites from extracellular parasites attached to the erythrocyte surface, we show that DPAP3 is involved in the initial attachment of parasites to the red blood cell surface. Overall, this study establishes the presence of a DPAP3-dependent invasion pathway in malaria parasites.
Collapse
Affiliation(s)
- Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Laura E. de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilaria Russo
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Mateo I. Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Daniel E. Goldberg
- Departments of Molecular Microbiology and Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
49
|
Pino P, Caldelari R, Mukherjee B, Vahokoski J, Klages N, Maco B, Collins CR, Blackman MJ, Kursula I, Heussler V, Brochet M, Soldati-Favre D. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science 2018; 358:522-528. [PMID: 29074775 DOI: 10.1126/science.aaf8675] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Regulated exocytosis by secretory organelles is important for malaria parasite invasion and egress. Many parasite effector proteins, including perforins, adhesins, and proteases, are extensively proteolytically processed both pre- and postexocytosis. Here we report the multistage antiplasmodial activity of the aspartic protease inhibitor hydroxyl-ethyl-amine-based scaffold compound 49c. This scaffold inhibits the preexocytosis processing of several secreted rhoptry and microneme proteins by targeting the corresponding maturases plasmepsins IX (PMIX) and X (PMX), respectively. Conditional excision of PMIX revealed its crucial role in invasion, and recombinantly active PMIX and PMX cleave egress and invasion factors in a 49c-sensitive manner.
Collapse
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| |
Collapse
|
50
|
Bermúdez M, Arévalo-Pinzón G, Rubio L, Chaloin O, Muller S, Curtidor H, Patarroyo MA. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol 2018; 20:e12835. [PMID: 29488316 DOI: 10.1111/cmi.12835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 11/28/2022]
Abstract
Elucidating receptor-ligand and protein-protein interactions represents an attractive alternative for designing effective Plasmodium vivax control methods. This article describes the ability of P. vivax rhoptry neck proteins 2 and 4 (RON2 and RON4) to bind to human reticulocytes. Biochemical and cellular studies have shown that two PvRON2- and PvRON4-derived conserved regions specifically interact with protein receptors on reticulocytes marked by the CD71 surface transferrin receptor. Mapping each protein fragment's binding region led to defining the specific participation of two 20 amino acid-long regions selectively competing for PvRON2 and PvRON4 binding to reticulocytes. Binary interactions between PvRON2 (ligand) and other parasite proteins, such as PvRON4, PvRON5, and apical membrane antigen 1 (AMA1), were evaluated and characterised by surface plasmon resonance. The results revealed that both PvRON2 cysteine-rich regions strongly interact with PvAMA1 Domains II and III (equilibrium constants in the nanomolar range) and at a lower extent with the complete PvAMA1 ectodomain and Domains I and II. These results strongly support that these proteins participate in P. vivax's complex invasion process, thus providing new pertinent targets for blocking P. vivax merozoites' specific entry to their target cells.
Collapse
Affiliation(s)
- Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Rubio
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Olivier Chaloin
- CNRS, Immunopathology and therapeutic chemistry, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France
| | - Sylviane Muller
- CNRS, Immunopathology and therapeutic chemistry, Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France.,CNRS, Biotechnology and cell signaling, University of Strasbourg, France / Laboratory of Excellence Medalis, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|