1
|
Liu S, Qiu F, Gu R, Xu E. Functional Involvement of Signal Transducers and Activators of Transcription in the Pathogenesis of Influenza A Virus. Int J Mol Sci 2024; 25:13589. [PMID: 39769350 PMCID: PMC11677356 DOI: 10.3390/ijms252413589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Signal transducers and activators of transcription (STATs) function both as signal transducers and transcription regulators. STAT proteins are involved in the signaling pathways of cytokines and growth factors; thus, they participate in various life activities and play especially critical roles in antiviral immunity. Convincing evidence suggests that STATs can establish innate immune status through multiple mechanisms, efficiently eliminating pathogens. STAT1 and STAT2 can activate the antiviral status by regulating the interferon (IFN) signal. In turn, suppressor of cytokine signaling-1 (SOCS1) and SOCS3 can modulate the activation of STATs and suppress the excessive antiviral immune response. STAT3 not only regulates the IFN signal, but also transduces Interleukin-6 (IL-6) to stimulate the host antiviral response. The function of STAT4 and STAT5 is related to CD4+ T helper (Th) cells, and the specific mechanism of STAT5 remains to be studied. STAT6 mainly exerts antiviral effects by mediating IL-4 and IL-13 signaling. Here, we reviewed the recent findings regarding the critical roles of STATs in the interactions between the host and viral infection, especially influenza A virus (IAV) infection. We also discuss the molecular mechanisms underlying their functions in antiviral responses.
Collapse
Affiliation(s)
- Shasha Liu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Qiu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongrong Gu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Erying Xu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint Laboratory of Animal Pathogen Prevention and Control of Fujian-Nepal, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Huang Z, Mai Z, Kong C, You J, Lin S, Gao C, Zhang W, Chen X, Xie Q, Wang H, Tang S, Zhou P, Gong L, Zhang G. African swine fever virus pB475L evades host antiviral innate immunity via targeting STAT2 to inhibit IFN-I signaling. J Biol Chem 2024; 300:107472. [PMID: 38879005 PMCID: PMC11328877 DOI: 10.1016/j.jbc.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Chenyang Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - WenBo Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China.
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
3
|
Yuan F, Yang L, Hsiao SH, Herndon NL, Gaulke CA, Fang Y. A neonatal piglet model reveals interactions between nasal microbiota and influenza A virus pathogenesis. Virology 2024; 592:109996. [PMID: 38301448 DOI: 10.1016/j.virol.2024.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
While vaccination and therapeutics for prevention/treatment of influenza are available, new strategies are needed to combat influenza disease in susceptible populations, particularly young children and newborns. Host associated microbiota play an important role in modulating the virulence of numerous pathogens, including the influenza A virus. In this study, we examined microbiome-influenza interactions in a neonatal piglet model system. The nasal microbiome of newborn piglets was longitudinally sampled before and after intranasal infection with recombinant viruses expressing hemagglutinins (HAs) derived from distinct zoonotic H1 subtypes. We found that viruses expressing different parental HAs manifested unique patterns of pathogenicity, and varied impacts on microbial community diversity. Despite these virus specific differences, a consistent microbial signature of viral infection was detected. Our results indicate that influenza A virus infection associates with the restructuring of nasal microbiome and such shifts in microbial diversity may contribute to outcomes of viral infection in neonatal piglets.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Lufan Yang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Nicole L Herndon
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Christopher A Gaulke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Personalized Nutrition Initiative, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Cancer Center at Illinois, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA.
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
4
|
Ahmed OB, Bahwerth FS, Alsafi R, Elsebaei EA, Ebid GT, Theyab A, Assaggaf H. The Prevalence and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus Before and After the COVID-19 Pandemic in a Tertiary Saudi Hospital. Cureus 2024; 16:e54809. [PMID: 38529437 PMCID: PMC10962010 DOI: 10.7759/cureus.54809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem all over the world. After the 2019 coronavirus illness (COVID-19), the pandemic may have influenced research priorities and resource allocation, potentially affecting the ability to monitor MRSA trends. AIMS The study aimed to evaluate the prevalence of S. aureus, including MRSA infections, and their antimicrobial susceptibilities over the years 2019 and 2020 in a tertiary hospital in Makkah City, KSA. METHODOLOGY A total of 2128 and 1515 laboratory (lab) samples were collected during the years 2019 and 2020, respectively. From these samples, the prevalence of S. aureus, including MRSA, and their antibiotic susceptibility were identified using standard, automated, and molecular microbiological methods. RESULTS The present study shows that the lab prevalence of all S. aureus during 2019 was found to be 35.5%, of which MRSA was 44.8%. During 2020, the frequency of S. aureus strains was 16%, of which MRSA was 41.2%. The most common MRSA isolated during both years were colonizing pus swabs and urine samples. The results showed that MRSA susceptibility against antimicrobial agents in 2019 was as follows: vancomycin (100%), linezolid (100%), trimethoprim-sulfamethoxazole (88%), and doxycycline (34.2%). The MRSA strains isolated during 2020 were as follows: vancomycin (100%), linezolid (96%), trimethoprim-sulfamethoxazole (100%), and doxycycline (24.3%). There was no significant difference in the incidence and antimicrobial resistance rates of MRSA over the two years. CONCLUSION It was concluded that the prevalence rates of MRSA have not increased in 2020 when compared to 2019. Vancomycin, linezolid, trimethoprim-sulfamethoxazole, and doxycycline remain susceptible to the positive collected MRSA strains. There was no significant difference between the prevalence and antimicrobial resistance rates of MRSA between 2019 and 2020. Continued research efforts are needed to address this persistent public health threat. Strategies to control the spread of MRSA should include early detection of MRSA and surveillance, even during pandemics.
Collapse
Affiliation(s)
- Omar B Ahmed
- Environmental and Health Research, Umm Al-Qura University, Makkah, SAU
| | | | - Radi Alsafi
- Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, SAU
| | - Eman A Elsebaei
- Medical Microbiology, Egypt Healthcare Authority, Cairo, EGY
| | - Gamal T Ebid
- Laboratory Medicine, Security Forces Hospital, Makkah, Makkah, SAU
- National Cancer Institute, Cairo University, Cairo, EGY
| | - Abdulrhaman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Mecca, Makkah, SAU
- Collage of Medicine, Al-Faisal University, Riyadh, SAU
| | - Hamza Assaggaf
- Laboratory Medicine/Public Health, Umm Al-Qura University, Makkah, SAU
| |
Collapse
|
5
|
Goncheva MI, Gibson RM, Shouldice AC, Dikeakos JD, Heinrichs DE. The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. iScience 2023; 26:105975. [PMID: 36687318 PMCID: PMC9838083 DOI: 10.1016/j.isci.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (CoV-2) pandemic has affected millions globally. A significant complication of CoV-2 infection is secondary bacterial co-infection, as seen in approximately 25% of severe cases. The most common organism isolated during co-infection is Staphylococcus aureus. Here, we describe the development of an in vitro co-infection model where both viral and bacterial replication kinetics may be examined. We demonstrate CoV-2 infection does not alter bacterial interactions with host epithelial cells. In contrast, S. aureus enhances CoV-2 replication by 10- to 15-fold. We identify this pro-viral activity is due to the S. aureus iron-regulated surface determinant A (IsdA) protein and demonstrate IsdA modifies host transcription. We find that IsdA alters Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling, by affecting JAK2-STAT3 levels, ultimately leading to increased viral replication. These findings provide key insight into the molecular interactions between host cells, CoV-2 and S. aureus during co-infection.
Collapse
Affiliation(s)
- Mariya I. Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| | - Richard M. Gibson
- ImPaKT Laboratory, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ainslie C. Shouldice
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| |
Collapse
|
6
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Duodu P, Sosa G, Canar J, Chhugani O, Gamero AM. Exposing the Two Contrasting Faces of STAT2 in Inflammation. J Interferon Cytokine Res 2022; 42:467-481. [PMID: 35877097 PMCID: PMC9527059 DOI: 10.1089/jir.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation is a natural immune defense mechanism of the body's response to injury, infection, and other damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in multiple biological processes, including powering the immune system as a means of controlling infection that must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2 when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects in human disease. This review aims to provide a comprehensive summary of the findings based on literature regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated inflammation and the mechanisms responsible for triggering severe responses.
Collapse
Affiliation(s)
- Philip Duodu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Geohaira Sosa
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jorge Canar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Olivia Chhugani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Front Immunol 2022; 13:894534. [PMID: 35634338 PMCID: PMC9134015 DOI: 10.3389/fimmu.2022.894534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infection during SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.28.482305. [PMID: 35262077 PMCID: PMC8902874 DOI: 10.1101/2022.02.28.482305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate SARS-CoV-2 infection increased the risk of pneumococcal coinfection in a time-dependent, but sexindependent, manner in the transgenic K18-hACE mouse model of COVID-19. Bacterial coinfection was not established at 3 d post-virus, but increased lethality was observed when the bacteria was initiated at 5 or 7 d post-virus infection (pvi). Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
11
|
Wilden JJ, Jacob JC, Ehrhardt C, Ludwig S, Boergeling Y. Altered Signal Transduction in the Immune Response to Influenza Virus and S. pneumoniae or S. aureus Co-Infections. Int J Mol Sci 2021; 22:5486. [PMID: 34067487 PMCID: PMC8196994 DOI: 10.3390/ijms22115486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus is a well-known respiratory pathogen, which still leads to many severe pulmonary infections in the human population every year. Morbidity and mortality rates are further increased if virus infection coincides with co-infections or superinfections caused by bacteria such as Streptococcus pneumoniae (S. pneumoniae) and Staphylococcus aureus (S. aureus). This enhanced pathogenicity is due to complex interactions between the different pathogens and the host and its immune system and is mainly governed by altered intracellular signaling processes. In this review, we summarize the recent findings regarding the innate and adaptive immune responses during co-infection with influenza virus and S. pneumoniae or S. aureus, describing the signaling pathways involved and how these interactions influence disease outcomes.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| | - Jasmin C. Jacob
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- CiM-IMPRS, The Joined Graduate School of the Cells in Motion Interfaculty Centre, University of Muenster and the International Max Planck Research School—Molecular Biomedicine, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Center for Molecular Biomedicine (CMB), Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany;
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
- “Cells in Motion Interfaculty Center (CIMIC)”, WWU Muenster, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (J.C.J.); (S.L.)
| |
Collapse
|
12
|
Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O'Brien‐Simpson NM, Hill AF, Stinear TP, Kaparakis‐Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021; 10:e12080. [PMID: 33815695 PMCID: PMC8015888 DOI: 10.1002/jev2.12080] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Gram-positive bacteria ubiquitously produce membrane vesicles (MVs), and although they contribute to biological functions, our knowledge regarding their composition and immunogenicity remains limited. Here we examine the morphology, contents and immunostimulatory functions of MVs produced by three Staphylococcus aureus strains; a methicillin resistant clinical isolate, a methicillin sensitive clinical isolate and a laboratory-adapted strain. We observed differences in the number and morphology of MVs produced by each strain and showed that they contain microbe-associated molecular patterns (MAMPs) including protein, nucleic acids and peptidoglycan. Analysis of MV-derived RNA indicated the presence of small RNA (sRNA). Furthermore, we detected variability in the amount and composition of protein, nucleic acid and peptidoglycan cargo carried by MVs from each S. aureus strain. S. aureus MVs activated Toll-like receptor (TLR) 2, 7, 8, 9 and nucleotide-binding oligomerization domain containing protein 2 (NOD2) signalling and promoted cytokine and chemokine release by epithelial cells, thus identifying that MV-associated MAMPs including DNA, RNA and peptidoglycan are detected by pattern recognition receptors (PRRs). Moreover, S. aureus MVs induced the formation of and colocalized with autophagosomes in epithelial cells, while inhibition of lysosomal acidification using bafilomycin A1 resulted in accumulation of autophagosomal puncta that colocalized with MVs, revealing the ability of the host to degrade MVs via autophagy. This study reveals the ability of DNA, RNA and peptidoglycan associated with MVs to activate PRRs in host epithelial cells, and their intracellular degradation via autophagy. These findings advance our understanding of the immunostimulatory roles of Gram-positive bacterial MVs in mediating pathogenesis, and their intracellular fate within the host.
Collapse
Affiliation(s)
- Natalie J. Bitto
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Lesley Cheng
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ella L. Johnston
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Rishi Pathirana
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| | - Thanh Kha Phan
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Ivan K. H. Poon
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Neil M. O'Brien‐Simpson
- Centre for Oral Health ResearchMelbourne Dental SchoolBio21 InstituteThe University of MelbourneParkvilleVictoria3010Australia
| | - Andrew F. Hill
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty InstituteUniversity of MelbourneParkvilleVictoria3010Australia
| | - Maria Kaparakis‐Liaskos
- Department of PhysiologyAnatomy and MicrobiologyLa Trobe UniversityMelbourneVictoria3086Australia
- Research Centre for Extracellular VesiclesSchool of Molecular SciencesLa Trobe UniversityMelbourneVictoria3086Australia
| |
Collapse
|
13
|
Wilden JJ, Hrincius ER, Niemann S, Boergeling Y, Löffler B, Ludwig S, Ehrhardt C. Impact of Staphylococcus aureus Small Colony Variants on Human Lung Epithelial Cells with Subsequent Influenza Virus Infection. Microorganisms 2020; 8:E1998. [PMID: 33333815 PMCID: PMC7765246 DOI: 10.3390/microorganisms8121998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/29/2022] Open
Abstract
Human beings are exposed to microorganisms every day. Among those, diverse commensals and potential pathogens including Staphylococcus aureus (S. aureus) compose a significant part of the respiratory tract microbiota. Remarkably, bacterial colonization is supposed to affect the outcome of viral respiratory tract infections, including those caused by influenza viruses (IV). Since 30% of the world's population is already colonized with S. aureus that can develop metabolically inactive dormant phenotypes and seasonal IV circulate every year, super-infections are likely to occur. Although IV and S. aureus super-infections are widely described in the literature, the interactions of these pathogens with each other and the host cell are only scarcely understood. Especially, the effect of quasi-dormant bacterial subpopulations on IV infections is barely investigated. In the present study, we aimed to investigate the impact of S. aureus small colony variants on the cell intrinsic immune response during a subsequent IV infection in vitro. In fact, we observed a significant impact on the regulation of pro-inflammatory factors, contributing to a synergistic effect on cell intrinsic innate immune response and induction of harmful cell death. Interestingly, the cytopathic effect, which was observed in presence of both pathogens, was not due to an increased pathogen load.
Collapse
Affiliation(s)
- Janine J. Wilden
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Eike R. Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Silke Niemann
- Institute of Medical Microbiology, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany;
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
- Cluster of Excellence EXC 2051 “Balance of the Microverse”, FSU Jena, 07743 Jena, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany; (J.J.W.); (E.R.H.); (Y.B.); (S.L.)
- Cluster of Excellence EXC 1003 “Cells in Motion”, WWU Muenster, 48149 Muenster, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, 07745 Jena, Germany
| |
Collapse
|
14
|
Bioinformatics analyses of significant genes, related pathways, and candidate diagnostic biomarkers and molecular targets in SARS-CoV-2/COVID-19. GENE REPORTS 2020; 21:100956. [PMID: 33553808 PMCID: PMC7854084 DOI: 10.1016/j.genrep.2020.100956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.
Collapse
Key Words
- Bioinformatics
- CBL, Cbl proto-oncogene
- DEGs, differentially expressed genes
- Diagnosis
- GO, Gene ontology
- ISG15, ISG15 ubiquitin like modifier
- Key genes
- NEDD4, NEDD4 E3 ubiquitin protein ligase
- PML, promyelocyticleukemia
- PPI, protein-protein interaction
- Pathways
- REL, REL proto-oncogene, NF-kB subunit
- ROC, receiver operating characteristic
- SARS-CoV-2 infection
- SARS-CoV-2, Severe acute respiratory syndrome corona virus 2
Collapse
|
15
|
Zinnah MA, Marey MA, Akhtar I, Elesh IF, Matsuno Y, Elweza AE, Ma D, Fiorenza M, Sasaki M, Shimada M, Imakawa K, Miyamoto A. Peptidoglycan disrupts early embryo-maternal crosstalk via suppression of ISGs expression induced by interferon-tau in the bovine endometrium. Biochem Biophys Res Commun 2020; 532:101-107. [PMID: 32828539 DOI: 10.1016/j.bbrc.2020.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023]
Abstract
Uterine infection with bacteria and the release of peptidoglycan (PGN), antigenic cell wall components of both Gram-negative and Gram-positive bacteria, can cause early pregnancy losses in ruminants, but the associated mechanisms remain unsolved. Day 7 blastocyst starts to secrete a minute amount of interferon-tau (IFNT) in the uterine horn which is required for early stage of maternal recognition of pregnancy (MRP) in ruminants, and it induces interferon stimulated genes (ISGs) for driving uterine receptivity in cows. This study investigated if PGN disrupts IFNT response through modulation of endometrial ISGs expressions. Cultured bovine endometrial epithelial cells (BEECs) were treated with embryo culture medium (ECM) or IFNT (1 ng/ml) in the presence or absence of a low level of PGN (10 pg/ml) for 24 h. A real-time PCR analyses revealed that the presence of PGN suppressed IFNT-induced ISGs (OAS1 and ISG15) and STAT1 expressions in BEECs. To visualize the impact of PGN in an ex-vivo model that resembles the in vivo status, endometrial explants were treated by IFNT (1 ng/ml) with or without PGN (10 pg/ml) for 12 h. PGN suppressed IFNT-induced gene expressions of the above factors, but not for IFNA receptor type1 (IFNAR1) or type2 (IFNAR2) in explants. Immunofluorescence analysis illustrated that PGN completely suppressed the IFNT-triggered OAS1 protein expression in the luminal epithelium of explants. Of note, PGN did not stimulate pro-inflammatory cytokines (TNFA and IL1B) or TLR2 mRNA expression in both models. These findings indicate that the presence of low levels of PGN suppresses ISGs expression induced by IFNT secreted from early embryo, at the luminal epithelium of the bovine endometrium. This could severely interfere with early stage of MRP processes in cows, leading to pregnancy failure.
Collapse
Affiliation(s)
- Mohammad A Zinnah
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohamed A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Behera, Egypt.
| | - Ihshan Akhtar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Ibrahim F Elesh
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Damanhour University, Behera, Egypt
| | - Yuta Matsuno
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Ahmed E Elweza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Sadat City University, Menofia, 32897, Egypt
| | - Dongxue Ma
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Mariani Fiorenza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Motoki Sasaki
- Department of Veterinary Anatomy, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agricultural and Veterinary Medicine, Obihiro, 080-8555, Japan
| |
Collapse
|
16
|
Novak T, Hall MW, McDonald DR, Newhams MM, Mistry AJ, Panoskaltsis-Mortari A, Mourani PM, Loftis LL, Weiss SL, Tarquinio KM, Markovitz B, Hartman ME, Schwarz A, Junger WG, Randolph AG. RIG-I and TLR4 responses and adverse outcomes in pediatric influenza-related critical illness. J Allergy Clin Immunol 2020; 145:1673-1680.e11. [PMID: 32035159 PMCID: PMC7323584 DOI: 10.1016/j.jaci.2020.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Decreased TNF-α production in whole blood after ex vivo LPS stimulation indicates suppression of the Toll-like receptor (TLR)4 pathway. This is associated with increased mortality in pediatric influenza critical illness. Whether antiviral immune signaling pathways are also suppressed in these patients is unclear. OBJECTIVES We sought to evaluate suppression of the TLR4 and the antiviral retinoic acid-inducible gene-I (RIG-I) pathways with clinical outcomes in children with severe influenza infection. METHODS In this 24-center, prospective, observational cohort study of children with confirmed influenza infection, blood was collected within 72 hours of intensive care unit admission. Ex vivo whole blood stimulations were performed with matched controls using the viral ligand polyinosinic-polycytidylic acid-low-molecular-weight/LyoVec and LPS to evaluate IFN-α and TNF-α production capacities (RIG-I and TLR4 pathways, respectively). RESULTS Suppression of either IFN-α or TNF-α production capacity was associated with longer duration of mechanical ventilation and hospitalization, and increased organ dysfunction. Children with suppression of both RIG-I and TLR4 pathways (n = 33 of 103 [32%]) were more likely to have prolonged (≥7 days) multiple-organ dysfunction syndrome (30.3% vs 8.6%; P = .004) or prolonged hypoxemic respiratory failure (39.4% vs 11.4%; P = .001) compared with those with single- or no pathway suppression. CONCLUSIONS Suppression of both RIG-I and TLR4 signaling pathways, essential for respective antiviral and antibacterial responses, is common in previously immunocompetent children with influenza-related critical illness and is associated with bacterial coinfection and adverse outcomes. Prospective testing of both pathways may aid in risk-stratification and in immune monitoring.
Collapse
Affiliation(s)
- Tanya Novak
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston
| | - Mark W Hall
- Nationwide Children's Hospital, Division of Critical Care Medicine, Department of Pediatrics, Columbus, Ohio
| | - Douglas R McDonald
- Boston Children's Hospital, Division of Immunology and Harvard Medical School Department of Pediatrics, Boston, Mass
| | - Margaret M Newhams
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass
| | - Anushay J Mistry
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass
| | | | - Peter M Mourani
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colo
| | - Laura L Loftis
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, Tex
| | - Scott L Weiss
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Keiko M Tarquinio
- Division of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta at Egleston, Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Barry Markovitz
- Department of Anesthesiology Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Mary E Hartman
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Mo
| | - Adam Schwarz
- Department of Pediatrics, Children's Hospital of Orange County, Orange, Calif
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Adrienne G Randolph
- Boston Children's Hospital, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Mass; Department of Anesthesia, Harvard Medical School, Boston.
| |
Collapse
|
17
|
The influenza replication blocking inhibitor LASAG does not sensitize human epithelial cells for bacterial infections. PLoS One 2020; 15:e0233052. [PMID: 32413095 PMCID: PMC7228112 DOI: 10.1371/journal.pone.0233052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Severe influenza virus (IV) infections still represent a major challenge to public health. To combat IV infections, vaccines and antiviral compounds are available. However, vaccine efficacies vary with very limited to no protection against newly emerging zoonotic IV introductions. In addition, the development of resistant virus variants against currently available antivirals can be rapidly detected, in consequence demanding the design of novel antiviral strategies. Virus supportive cellular signaling cascades, such as the NF-κB pathway, have been identified to be promising antiviral targets against IV in in vitro and in vivo studies and clinical trials. While administration of NF-κB pathway inhibiting agents, such as LASAG results in decreased IV replication, it remained unclear whether blocking of NF-κB might sensitize cells to secondary bacterial infections, which often come along with viral infections. Thus, we examined IV and Staphylococcus aureus growth during LASAG treatment. Interestingly, our data reveal that the presence of LASAG during superinfection still leads to reduced IV titers. Furthermore, the inhibition of the NF-κB pathway resulted in decreased intracellular Staphylococcus aureus loads within epithelial cells, indicating a dependency on the pathway for bacterial uptake. Unfortunately, so far it is not entirely clear if this phenomenon might be a drawback in bacterial clearance during infection.
Collapse
|
18
|
Deinhardt-Emmer S, Rennert K, Schicke E, Cseresnyés Z, Windolph M, Nietzsche S, Heller R, Siwczak F, Haupt KF, Carlstedt S, Schacke M, Figge MT, Ehrhardt C, Löffler B, Mosig AS. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 2020; 12:025012. [PMID: 31994489 DOI: 10.1088/1758-5090/ab7073] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pneumonia is one of the most common infectious diseases worldwide. The influenza virus can cause severe epidemics, which results in significant morbidity and mortality. Beyond the virulence of the virus itself, epidemiological data suggest that bacterial co-infections are the major cause of increased mortality. In this context, Staphylococcus aureus represents a frequent causative bacterial pathogen. Currently available models have several limitations in the analysis of the pathogenesis of infections, e.g. some bacterial toxins strongly act in a species-specific manner. Human 2D mono-cell culture models often fail to maintain the differentiation of alveolus-specific functions. A detailed investigation of the underlying pathogenesis mechanisms requires a physiological interaction of alveolus-specific cell types. The aim of the present work was to establish a human in vitro alveolus model system composed of vascular and epithelial cell structures with cocultured macrophages resembling the human alveolus architecture and functions. We demonstrate that high barrier integrity maintained for up to 14 d in our model containing functional tissue-resident macrophages. We show that flow conditions and the presence of macrophages increased the barrier function. The infection of epithelial cells induced a high inflammatory response that spread to the endothelium. Although the integrity of the epithelium was not compromised by a single infection or co-infection, we demonstrated significant endothelial cell damage associated with loss of barrier function. We established a novel immune-responsive model that reflects the complex crosstalk between pathogens and host. The in vitro model allows for the monitoring of spatiotemporal spreading of the pathogens and the characterization of morphological and functional alterations attributed to infection. The alveolus-on-a-chip represents a promising platform for mechanistic studies of host-pathogen interactions and the identification of molecular and cellular targets of novel treatment strategies in pneumonia.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany. Center for Sepsis Control and Care, Jena University Hospital, D-07747 Jena, Germany. Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Klausberger M, Leneva IA, Egorov A, Strobl F, Ghorbanpour SM, Falynskova IN, Poddubikov AV, Makhmudova NR, Krokhin A, Svitich OA, Grabherr R. Off-target effects of an insect cell-expressed influenza HA-pseudotyped Gag-VLP preparation in limiting postinfluenza Staphylococcus aureus infections. Vaccine 2020; 38:859-867. [PMID: 31718898 DOI: 10.1016/j.vaccine.2019.10.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/06/2023]
Abstract
Clinical and historical data underscore the ability of influenza viruses to ally with Staphylococcus aureus and predispose the host for secondary bacterial pneumonia, which is a leading cause of influenza-associated mortality. This is fundamental because no vaccine for S. aureus is available and the number of antibiotic-resistant strains is alarmingly rising. Hence, this leaves influenza vaccination the only strategy to prevent postinfluenza staphylococcal infections. In the present work, we assessed the off-target effects of a Tnms42 insect cell-expressed BEI-treated Gag-VLP preparation expressing the HA of A/Puerto Rico/8/1934 (H1N1) in preventing S. aureus superinfection in mice pre-infected with a homologous or heterologous H1N1 viral challenge strain. Our results demonstrate that matched anti-hemagglutinin immunity elicited by a VLP preparation may suffice to prevent morbidity and mortality caused by lethal secondary bacterial infection. This effect was observed even when employing a single low antigen dose of 50 ng HA per animal. However, induction of anti-hemagglutinin immunity alone was not helpful in inhibiting heterologous viral replication and subsequent bacterial infection. Our results indicate the potential of the VLP vaccine approach in terms of immunogenicity but suggest that anti-HA immunity should not be considered as the sole preventive method for combatting influenza and postinfluenza bacterial infections.
Collapse
Affiliation(s)
- Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Irina A Leneva
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Andrey Egorov
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia; Smorodintsev Research Institute of Influenza, Saint-Petersburg, Russia
| | - Florian Strobl
- Austrian Centre of Industrial Biotechnology (ACIB), Vienna, Austria
| | | | - Irina N Falynskova
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Alexander V Poddubikov
- Department of Microbiology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Nailya R Makhmudova
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Artem Krokhin
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Oxana A Svitich
- Department of Virology, I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
20
|
Welte T, Kantecki M, Stone GG, Hammond J. Ceftaroline fosamil as a potential treatment option for Staphylococcus aureus community-acquired pneumonia in adults. Int J Antimicrob Agents 2019; 54:410-422. [PMID: 31404620 DOI: 10.1016/j.ijantimicag.2019.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus), including methicillin-resistant S. aureus (MRSA), is an important aetiological cause of community-acquired pneumonia (CAP) and associated with significant morbidity and mortality. Empiric therapy for CAP frequently consists of β-lactam monotherapy or β-lactam/macrolide combination therapy. However, such agents are often ineffective against S. aureus and do not reflect the emergence and increasing prevalence of MRSA in the community setting. Ceftaroline fosamil is a fifth-generation parenteral cephalosporin with broad-spectrum activity against Gram-positive pathogens - such as S. aureus (including MRSA), Streptococcus pneumoniae and Streptococcus pyogenes - and typical Gram-negative pathogens, including Haemophilus influenzae and Moraxella catarrhalis. The approval of ceftaroline fosamil in the United States and Europe for the treatment of adults with moderate-to-severe CAP was based on two phase 3 trials (FOCUS 1 and 2), which demonstrated that ceftaroline fosamil was non-inferior to ceftriaxone, a standard empiric treatment for CAP, while exhibiting a comparable safety profile. Although head-to-head trials of ceftaroline fosamil versus comparators against MRSA CAP are lacking, the effectiveness of ceftaroline fosamil in subpopulations of patients not covered by phase 3 trials (e.g. those with MRSA CAP or severe renal impairment) has been demonstrated in the Clinical Assessment Program and Teflaro Utilization Registry (CAPTURE) study. As ineffective empiric therapy is associated with adverse outcomes, including mortality and increased costs, ceftaroline fosamil, with its extended spectrum of activity, is an attractive alternative to standard antibiotic CAP regimens.
Collapse
Affiliation(s)
- Tobias Welte
- University of Hannover, School of Medicine, Carl-Neuberg-Straße, 30625 Hannover, Germany.
| | | | | | | |
Collapse
|
21
|
Abstract
Viruses are a main cause of disease worldwide and many are without effective therapeutics or vaccines. A lack of understanding about how host responses work to control viral spread is one factor limiting effective management. How different immune components regulate infection dynamics is beginning to be better understood with the help of mathematical models. These models have been key in discriminating between hypotheses and in identifying rates of virus growth and clearance, dynamical control by different host factors and antivirals, and synergistic interactions during multi-pathogen infections. A recent focus in evaluating model predictions in the laboratory and clinic has illuminate the accuracy of models for a variety of viruses and highlighted the critical nature of theoretical approaches in virology. Here, I discuss recent model-driven exploration of host-pathogen interactions that have illustrated the importance of model validation in establishing the model's predictive capability and in defining new biology.
Collapse
|
22
|
Gopal R, Lee B, McHugh KJ, Rich HE, Ramanan K, Mandalapu S, Clay ME, Seger PJ, Enelow RI, Manni ML, Robinson KM, Rangel-Moreno J, Alcorn JF. STAT2 Signaling Regulates Macrophage Phenotype During Influenza and Bacterial Super-Infection. Front Immunol 2018; 9:2151. [PMID: 30337919 PMCID: PMC6178135 DOI: 10.3389/fimmu.2018.02151] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/31/2018] [Indexed: 01/14/2023] Open
Abstract
Influenza is a common respiratory virus that infects between 5 and 20% of the US population and results in 30,000 deaths annually. A primary cause of influenza-associated death is secondary bacterial pneumonia. We have previously shown that influenza induces type I interferon (IFN)-mediated inhibition of Type 17 immune responses, resulting in exacerbation of bacterial burden during influenza and Staphylococcus aureus super-infection. In this study, we investigated the role of STAT2 signaling during influenza and influenza-bacterial super-infection in mice. Influenza-infected STAT2−/− mice had increased morbidity, viral burden, and inflammation when compared to wild-type mice. Despite an exaggerated inflammatory response to influenza infection, we found increased bacterial control and survival in STAT2 deficient mice during influenza-MRSA super-infection compared to controls. Further, we found that increased bacterial clearance during influenza-MRSA super-infection is not due to rescue of Type 17 immunity. Absence of STAT2 was associated with increased accumulation of M1, M2 and M1/M2 co-expressing macrophages during influenza-bacterial super-infection. Neutralization of IFNγ (M1) and/or Arginase 1 (M2) impaired bacterial clearance in Stat2−/− mice during super-infection, demonstrating that pulmonary macrophages expressing a mixed M1/M2 phenotype promote bacterial control during influenza-bacterial super-infection. Together, these results suggest that the STAT2 signaling is involved in suppressing macrophage activation and bacterial control during influenza-bacterial super-infection. Further, these studies reveal novel mechanistic insight into the roles of macrophage subpopulations in pulmonary host defense.
Collapse
Affiliation(s)
- Radha Gopal
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Benjamin Lee
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT, United States
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Helen E Rich
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Krishnaveni Ramanan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Michelle E Clay
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Philip J Seger
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Richard I Enelow
- Department of Medicine, Dartmouth Medical School, Lebanon, PA, United States
| | - Michelle L Manni
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Keven M Robinson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Abstract
Influenza virus infections are a leading cause of morbidity and mortality worldwide. This is due in part to the continual emergence of new viral variants and to synergistic interactions with other viruses and bacteria. There is a lack of understanding about how host responses work to control the infection and how other pathogens capitalize on the altered immune state. The complexity of multi-pathogen infections makes dissecting contributing mechanisms, which may be non-linear and occur on different time scales, challenging. Fortunately, mathematical models have been able to uncover infection control mechanisms, establish regulatory feedbacks, connect mechanisms across time scales, and determine the processes that dictate different disease outcomes. These models have tested existing hypotheses and generated new hypotheses, some of which have been subsequently tested and validated in the laboratory. They have been particularly a key in studying influenza-bacteria coinfections and will be undoubtedly be useful in examining the interplay between influenza virus and other viruses. Here, I review recent advances in modeling influenza-related infections, the novel biological insight that has been gained through modeling, the importance of model-driven experimental design, and future directions of the field.
Collapse
Affiliation(s)
- Amber M Smith
- University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
24
|
In Vitro Models to Study Influenza Virus and Staphylococcus aureus Super-Infection on a Molecular Level. Methods Mol Biol 2018. [PMID: 30151583 DOI: 10.1007/978-1-4939-8678-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Investigation of pathogen-host interactions on a molecular level requires sophisticated in vitro infection procedures, especially in the presence of different pathogens.Super-infections of influenza viruses (IV) and bacteria, with increasing incidence of Staphylococcus aureus (S. aureus) cases, are a long-known phenomenon and represent a major complication in IV-infected patients. Although several in vivo studies have improved our knowledge about pathogenesis and immune responses of super-infections that result in increased morbidity and mortality, the consequences of the direct interplay of viruses and bacteria on a molecular level in affected cells that may contribute to the deadly synergism of these pathogens are so far poorly characterized. Here we describe different infection schemes to study IV and S. aureus coinfections of distinct cell populations in vitro. Depending on the focus of interest, regulation of cell responses such as signalling mechanisms or pro- and anti-inflammatory cytokine expression, or consequences for the viral or bacterial life cycle, can be analyzed. The described infection procedures could be used as guidelines and adapted to super-infection settings of other viral and bacterial pathogens.
Collapse
|
25
|
Smith AP, Moquin DJ, Bernhauerova V, Smith AM. Influenza Virus Infection Model With Density Dependence Supports Biphasic Viral Decay. Front Microbiol 2018; 9:1554. [PMID: 30042759 PMCID: PMC6048257 DOI: 10.3389/fmicb.2018.01554] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023] Open
Abstract
Mathematical models that describe infection kinetics help elucidate the time scales, effectiveness, and mechanisms underlying viral growth and infection resolution. For influenza A virus (IAV) infections, the standard viral kinetic model has been used to investigate the effect of different IAV proteins, immune mechanisms, antiviral actions, and bacterial coinfection, among others. We sought to further define the kinetics of IAV infections by infecting mice with influenza A/PR8 and measuring viral loads with high frequency and precision over the course of infection. The data highlighted dynamics that were not previously noted, including viral titers that remain elevated for several days during mid-infection and a sharp 4–5 log10 decline in virus within 1 day as the infection resolves. The standard viral kinetic model, which has been widely used within the field, could not capture these dynamics. Thus, we developed a new model that could simultaneously quantify the different phases of viral growth and decay with high accuracy. The model suggests that the slow and fast phases of virus decay are due to the infected cell clearance rate changing as the density of infected cells changes. To characterize this model, we fit the model to the viral load data, examined the parameter behavior, and connected the results and parameters to linear regression estimates. The resulting parameters and model dynamics revealed that the rate of viral clearance during resolution occurs 25 times faster than the clearance during mid-infection and that small decreases to this rate can significantly prolong the infection. This likely reflects the high efficiency of the adaptive immune response. The new model provides a well-characterized representation of IAV infection dynamics, is useful for analyzing and interpreting viral load dynamics in the absence of immunological data, and gives further insight into the regulation of viral control.
Collapse
Affiliation(s)
- Amanda P Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - David J Moquin
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | | | - Amber M Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
van Krüchten A, Wilden JJ, Niemann S, Peters G, Löffler B, Ludwig S, Ehrhardt C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death. FASEB J 2018; 32:2779-2793. [PMID: 29401589 DOI: 10.1096/fj.201701006r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Superinfections with Staphylococcus aureus are a major complication of influenza disease, causing excessive inflammation and tissue damage. This enhanced cell-damaging effect is also observed in superinfected tissue cultures, leading to a strong decrease in overall cell viability. In our analysis of the underlying molecular mechanisms, we observed that, despite enhanced cell damage in superinfection, S. aureus did not increase but rather inhibited influenza virus (IV)-induced apoptosis in cells on the level of procaspase-8 activation. This apparent contradiction was solved when we observed that S. aureus mediated a switch from apoptosis to necrotic cell death of IV-infected cells, a mechanism that was dependent on the bacterial accessory gene regulator ( agr) locus that promotes bacterial survival and spread. This so far unknown action may be a bacterial strategy to enhance dissemination of intracellular S. aureus and may thereby contribute to increased tissue damage and severity of disease.-Van Krüchten, A., Wilden, J. J., Niemann, S., Peters, G., Löffler, B., Ludwig, S., Ehrhardt, C. Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death.
Collapse
Affiliation(s)
- Andre van Krüchten
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Institute of Medical Microbiology, WWU Münster, Münster, Germany
| | - Janine J Wilden
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, WWU Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, WWU Münster, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| | - Christina Ehrhardt
- Institute of Virology (IVM), Westfaelische Wilhelms-University (WWU) Münster, Muenster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion Interfaculty Centre, WWU Münster, Muenster, Germany; and
| |
Collapse
|
27
|
Morgene MF, Botelho-Nevers E, Grattard F, Pillet S, Berthelot P, Pozzetto B, Verhoeven PO. Staphylococcus aureus colonization and non-influenza respiratory viruses: Interactions and synergism mechanisms. Virulence 2018; 9:1354-1363. [PMID: 30058450 PMCID: PMC6177244 DOI: 10.1080/21505594.2018.1504561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Viral infections of the respiratory tract can be complicated by bacterial superinfection, resulting in a significantly longer duration of illness and even a fatal outcome. In this review, we focused on interactions between S. aureus and non-influenza viruses. Clinical data evidenced that rhinovirus infection may increase the S. aureus carriage load in humans and its spread. In children, respiratory syncytial virus infection is associated with S. aureus carriage. The mechanisms by which some non-influenza respiratory viruses predispose host cells to S. aureus superinfection can be summarized in three categories: i) modifying expression levels of cellular patterns involved in S. aureus adhesion and/or internalization, ii) inducing S. aureus invasion of epithelial cells due to the disruption of tight junctions, and iii) decreasing S. aureus clearance by altering the immune response. The comprehension of pathways involved in S. aureus-respiratory virus interactions may help developing new strategies of preventive and curative therapy.
Collapse
Affiliation(s)
- M. Fedy Morgene
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Florence Grattard
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Sylvie Pillet
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Bruno Pozzetto
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O. Verhoeven
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
28
|
Yang Y, Zhou Y, Hou J, Bai C, Li Z, Fan J, Ng IOL, Zhou W, Sun H, Dong Q, Lee JMF, Lo CM, Man K, Yang Y, Li N, Ding G, Yu Y, Cao X. Hepatic IFIT3 predicts interferon-α therapeutic response in patients of hepatocellular carcinoma. Hepatology 2017; 66:152-166. [PMID: 28295457 DOI: 10.1002/hep.29156] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022]
Abstract
UNLABELLED Adjuvant interferon-α (IFN-α) therapy is used to control certain types of cancer in clinics. For hepatocellular carcinoma (HCC), IFN-α therapy is effective in only a subgroup of patients; therefore, identifying biomarkers to predict the response to IFN-α therapy is of high significance and clinical utility. As the induced IFN-stimulated gene expression following IFN-α treatment plays pivotal roles in IFN-α effects, we screened IFN-stimulated gene expression in HCC tissues and found that several IFN-stimulated genes were significantly decreased in HCC. Interestingly, expression of IFN-induced protein with tetratricopeptide repeats (IFIT) family members, including IFIT1, IFIT2, IFIT3, and IFIT5, was decreased in HCC tissues. We further analyzed the expression of IFIT family members in HCC and their roles in patients' responses to IFN-α therapy in two independent randomized controlled IFN-α therapy clinical trials of HCC patients. We found that higher expression of IFIT3, but not other IFITs, in HCC tissues predicts better response to IFN-α therapy, suggesting that IFIT3 may be a useful predictor of the response to IFN-α therapy in HCC patients. Mechanistically, IFIT3 enhanced the antitumor effects of IFN-α by promoting IFN-α effector responses both in vitro and in vivo. IFIT3 could bind signal transducer and activator of transcription 1 (STAT1) and STAT2 to enhance STAT1-STAT2 heterodimerization and nuclear translocation upon IFN-α treatment, thus promoting IFN-α effector signaling. CONCLUSION Higher IFIT3 expression in HCC tissues predicts better response to IFN-α therapy in HCC patients; IFIT3 promotes IFN-α effector responses and therapeutic effects by strengthening IFN-α effector signaling in HCC. (Hepatology 2017;66:152-166).
Collapse
Affiliation(s)
- Yingyun Yang
- Department of Oncology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Zhou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jin Hou
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Chunmei Bai
- Department of Oncology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenyang Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute and Zhongshan Hospital, Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Irene O L Ng
- Departments of Pathology and Surgery, State Key Laboratory for Liver Research, University of Hong Kong, Hong Kong, China
| | - Weiping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Huichuan Sun
- Liver Cancer Institute and Zhongshan Hospital, Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Liver Cancer Institute and Zhongshan Hospital, Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Joyce M F Lee
- Departments of Pathology and Surgery, State Key Laboratory for Liver Research, University of Hong Kong, Hong Kong, China
| | - Chung-Mau Lo
- Departments of Pathology and Surgery, State Key Laboratory for Liver Research, University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Departments of Pathology and Surgery, State Key Laboratory for Liver Research, University of Hong Kong, Hong Kong, China
| | - Yun Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Guoshan Ding
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Shanghai, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Klemm C, Bruchhagen C, van Krüchten A, Niemann S, Löffler B, Peters G, Ludwig S, Ehrhardt C. Mitogen-activated protein kinases (MAPKs) regulate IL-6 over-production during concomitant influenza virus and Staphylococcus aureus infection. Sci Rep 2017; 7:42473. [PMID: 28195157 PMCID: PMC5307969 DOI: 10.1038/srep42473] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial super-infections are a major complication of influenza virus (IV) infections and often lead to severe pneumonia. One hallmark of IV-associated Staphylococcus aureus (S. aureus) infection is rapid progression to a serious disease outcome. Changes in immune and inflammatory host responses increase morbidity and complicate efficient therapy. A key player during inflammation is the multifunctional cytokine IL-6. Although increased IL-6 levels have been observed after severe disease upon IV and/or bacterial super-infection, the underlying molecular mechanisms still remain to be elucidated. In the present study, we focused on cellular signalling pathways regulating IL-6 production upon IV/S. aureus super-infection. Additionally, infection with viable bacteria was mimicked by lipoteichoic acid stimulation in this model. Analyses of cellular signalling mechanisms revealed synergistically increased activation of the MAPK p38 as well as enhanced phosphorylation of the MAPKs ERK1/2 and JNK in the presence of super-infecting bacteria. Interestingly, inhibition of MAPK activity indicated a strong dependence of IL-6 expression on p38 and ERK1/2, while the MAPK JNK seems not to be involved. Thus, our results provide new molecular insights into the regulation of IL-6, a marker of severe disease, which might contribute to the lethal synergism of IV and S. aureus.
Collapse
Affiliation(s)
- Carolin Klemm
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Christin Bruchhagen
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Andre van Krüchten
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Muenster, Domagkstr, 10, D-48149 Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Domagkstr, 10, D-48149 Muenster, Germany.,Cluster of Excellence Cells in Motion (CIM), University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany.,Cluster of Excellence Cells in Motion (CIM), University of Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany.,Cluster of Excellence Cells in Motion (CIM), University of Muenster, Muenster, Germany
| |
Collapse
|
30
|
Li Z, Levast B, Madrenas J. Staphylococcus aureusDownregulates IP-10 Production and Prevents Th1 Cell Recruitment. THE JOURNAL OF IMMUNOLOGY 2017; 198:1865-1874. [DOI: 10.4049/jimmunol.1601336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
|
31
|
A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza. Sci Rep 2016; 6:38703. [PMID: 27974820 PMCID: PMC5156930 DOI: 10.1038/srep38703] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022] Open
Abstract
Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.
Collapse
|
32
|
Smith AM. Quantifying the therapeutic requirements and potential for combination therapy to prevent bacterial coinfection during influenza. J Pharmacokinet Pharmacodyn 2016; 44:81-93. [PMID: 27679506 PMCID: PMC5376398 DOI: 10.1007/s10928-016-9494-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/17/2016] [Indexed: 01/17/2023]
Abstract
Secondary bacterial infections (SBIs) exacerbate influenza-associated disease and mortality. Antimicrobial agents can reduce the severity of SBIs, but many have limited efficacy or cause adverse effects. Thus, new treatment strategies are needed. Kinetic models describing the infection process can help determine optimal therapeutic targets, the time scale on which a drug will be most effective, and how infection dynamics will change under therapy. To understand how different therapies perturb the dynamics of influenza infection and bacterial coinfection and to quantify the benefit of increasing a drug's efficacy or targeting a different infection process, I analyzed data from mice treated with an antiviral, an antibiotic, or an immune modulatory agent with kinetic models. The results suggest that antivirals targeting the viral life cycle are most efficacious in the first 2 days of infection, potentially because of an improved immune response, and that increasing the clearance of infected cells is important for treatment later in the infection. For a coinfection, immunotherapy could control low bacterial loads with as little as 20 % efficacy, but more effective drugs would be necessary for high bacterial loads. Antibiotics targeting bacterial replication and administered 10 h after infection would require 100 % efficacy, which could be reduced to 40 % with prophylaxis. Combining immunotherapy with antibiotics could substantially increase treatment success. Taken together, the results suggest when and why some therapies fail, determine the efficacy needed for successful treatment, identify potential immune effects, and show how the regulation of underlying mechanisms can be used to design new therapeutic strategies.
Collapse
Affiliation(s)
- Amber M Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
33
|
Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease. mBio 2016; 7:mBio.01235-16. [PMID: 27507829 PMCID: PMC4981728 DOI: 10.1128/mbio.01235-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is a ubiquitous opportunistic human pathogen and a major health concern worldwide, causing a wide variety of diseases from mild skin infections to systemic disease. S. aureus is a major source of severe secondary bacterial pneumonia after influenza A virus infection, which causes widespread morbidity and mortality. While the phenomenon of secondary bacterial pneumonia is well established, the mechanisms behind the transition from asymptomatic colonization to invasive staphylococcal disease following viral infection remains unknown. In this report, we have shown that S. aureus biofilms, grown on an upper respiratory epithelial substratum, disperse in response to host physiologic changes related to viral infection, such as febrile range temperatures, exogenous ATP, norepinephrine, and increased glucose. Mice that were colonized with S. aureus and subsequently exposed to these physiologic stimuli or influenza A virus coinfection developed pronounced pneumonia. This study provides novel insight into the transition from colonization to invasive disease, providing a better understanding of the events involved in the pathogenesis of secondary staphylococcal pneumonia. In this study, we have determined that host physiologic changes related to influenza A virus infection causes S. aureus to disperse from a biofilm state. Additionally, we report that these same host physiologic changes promote S. aureus dissemination from the nasal tissue to the lungs in an animal model. Furthermore, this study identifies important aspects involved in the transition of S. aureus from asymptomatic colonization to pneumonia.
Collapse
|
34
|
Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015; 27:85-101. [PMID: 25869307 PMCID: PMC7129383 DOI: 10.1016/j.smim.2015.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.
Collapse
Affiliation(s)
- Eliana M Coccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|