1
|
Bergemalm D, Baban B, Ljungqvist O, Halfvarson J. Insulin sensitivity in moderately severe to acute severe ulcerative colitis. Scand J Gastroenterol 2025; 60:243-247. [PMID: 39882844 DOI: 10.1080/00365521.2025.2459870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Patients hospitalized with moderately severe or acute severe ulcerative colitis (UC) may experience metabolic disturbances, including alterations in insulin resistance due to inflammation and the administration of glucocorticoids (GCs). This pilot study aimed to evaluate insulin sensitivity in patients hospitalized for moderately severe to severe UC. METHOD Patients hospitalized for moderately-severely active UC at Örebro University Hospital, Sweden, were eligible for inclusion. Quantification of insulin sensitivity was performed using the hyperinsulinemic euglycemic clamp (HEC) methodology. Assessment of insulin sensitivity was performed during both the index flare and while patients were in steroid-free clinical, biochemical and endoscopic remission during follow-up. Additionally, healthy controls were evaluated using HEC for comparison. RESULTS Five patients with moderately-severely active UC, treated with intravenous GCs for ≥2 days, were included and underwent HEC assessment. During the index flare, four patients received second-line treatment with infliximab due to non-response to GC, and one patient was subsequently referred for acute subtotal colectomy. At inclusion, all five patients exhibited significantly reduced insulin sensitivity, and levels appeared similar regardless of the outcome of the index flare. At remission during follow-up, the insulin sensitivity was restored to levels comparable to healthy controls (n = 5). CONCLUSION The study demonstrates that patients with moderately severe to severe UC experience significant insulin resistance, irrespective of the outcome of the flare. The reduced insulin sensitivity is likely driven by a combination of active inflammation and GC treatment, as insulin sensitivity returned to normal levels when patients achieved remission during follow-up.
Collapse
Affiliation(s)
- Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bayar Baban
- Department of Surgery, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Olle Ljungqvist
- Department of Surgery, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Carrasquilla GD, García-Ureña M, Romero-Lado MJ, Kilpeläinen TO. Estimating causality between smoking and abdominal obesity by Mendelian randomization. Addiction 2024; 119:1024-1034. [PMID: 38509034 DOI: 10.1111/add.16454] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/12/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND AND AIMS Smokers tend to have a lower body weight than non-smokers, but also more abdominal fat. It remains unclear whether or not the relationship between smoking and abdominal obesity is causal. Previous Mendelian randomization (MR) studies have investigated this relationship by relying upon a single genetic variant for smoking heaviness. This approach is sensitive to pleiotropic effects and may produce imprecise causal estimates. We aimed to estimate causality between smoking and abdominal obesity using multiple genetic instruments. DESIGN MR study using causal analysis using summary effect estimates (CAUSE) and latent heritable confounder MR (LHC-MR) methods that instrument smoking using genome-wide data, and also two-sample MR (2SMR) methods. SETTING Genome-wide association studies (GWAS) summary statistics from participants of European ancestry, obtained from the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN), Genetic Investigation of Anthropometric Traits (GIANT) Consortium and the UK Biobank. PARTICIPANTS We used GWAS results for smoking initiation (n = 1 232 091), life-time smoking (n = 462 690) and smoking heaviness (n = 337 334) as exposure traits, and waist-hip ratio (WHR) and waist and hip circumferences (WC and HC) (n up to 697 734), with and without adjustment for body mass index (adjBMI), as outcome traits. MEASUREMENTS Smoking initiation, life-time smoking, smoking heaviness, WHR, WC, HC, WHRadjBMI, WCadjBMI and HCadjBMI. FINDINGS Both CAUSE and LHC-MR indicated a positive causal effect of smoking initiation on WHR (0.13 [95% confidence interval (CI) = 0.10, 0.16 and 0.49 (0.41, 0.57), respectively] and WHRadjBMI (0.07 (0.03, 0.10) and 0.31 (0.26, 0.37). Similarly, they indicated a positive causal effect of life-time smoking on WHR [0.35 (0.29, 0.41) and 0.44 (0.38, 0.51)] and WHRadjBMI [0.18 (0.13, 0.24) and 0.26 (0.20, 0.31)]. In follow-up analyses, smoking particularly increased visceral fat. There was no evidence of a mediating role by cortisol or sex hormones. CONCLUSIONS Smoking initiation and higher life-time smoking may lead to increased abdominal fat distribution. The increase in abdominal fat due to smoking is characterized by an increase in visceral fat. Thus, efforts to prevent and cease smoking can have the added benefit of reducing abdominal fat.
Collapse
Affiliation(s)
- Germán D Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario García-Ureña
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - María J Romero-Lado
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Alufer L, Tsaban G, Rinott E, Kaplan A, Meir AY, Zelicha H, Ceglarek U, Isermann B, Blüher M, Stumvoll M, Stampfer MJ, Shai I. Long-term green-Mediterranean diet may favor fasting morning cortisol stress hormone; the DIRECT-PLUS clinical trial. Front Endocrinol (Lausanne) 2023; 14:1243910. [PMID: 38034010 PMCID: PMC10682947 DOI: 10.3389/fendo.2023.1243910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background Fasting morning cortisol (FMC) stress hormone levels, are suggested to reflect increased cardiometabolic risk. Acute response to weight loss diet could elevate FMC. Richer Polyphenols and lower carbohydrates diets could favor FMC levels. We aimed to explore the effect of long-term high polyphenol Mediterranean diet (green-MED) on FMC and its relation to metabolic health. Methods We randomized 294 participants into one of three dietary interventions for 18-months: healthy dietary guidelines (HDG), Mediterranean (MED) diet, and Green-MED diet. Both MED diets were similarly hypocaloric and lower in carbohydrates and included walnuts (28 g/day). The high-polyphenols/low-meat Green-MED group further included green tea (3-4 cups/day) and a Wolffia-globosa Mankai plant 1-cup green shakeFMC was obtained between 07:00-07:30AM at baseline, six, and eighteen-months. Results Participants (age=51.1years, 88% men) had a mean BMI of 31.3kg/m2, FMC=304.07nmol\L, and glycated-hemoglobin-A1c (HbA1c)=5.5%; 11% had type 2 diabetes and 38% were prediabetes. Baseline FMC was higher among men (308.6 ± 90.05nmol\L) than women (269.6± 83.9nmol\L;p=0.02). Higher baseline FMC was directly associated with age, dysglycemia, MRI-assessed visceral adiposity, fasting plasma glucose (FPG), high-sensitivity C-reactive-protein (hsCRP), testosterone, Progesterone and TSH levels (p ≤ 0.05 for all). The 18-month retention was 89%. After 6 months, there were no significant changes in FMC among all intervention groups. However, after 18-months, both MED groups significantly reduced FMC (MED=-1.6%[-21.45 nmol/L]; Green-MED=-1.8%[-26.67 nmol/L]; p<0.05 vs. baseline), as opposed to HDG dieters (+4%[-12 nmol/L], p=0.28 vs. baseline), whereas Green-MED diet FMC change was significant as compared to HDG diet group (p=0.048 multivariable models). Overall, 18-month decrease in FMC levels was associated with favorable changes in FPG, HbA1c, hsCRP, TSH, testosterone and MRI-assessed hepatosteatosis, and with unfavorable changes of HDLc (p<0.05 for all, weight loss adjusted, multivariable models). Conclusion Long-term adherence to MED diets, and mainly green-MED/high polyphenols diet, may lower FMC, stress hormone, levels,. Lifestyle-induced FMC decrease may have potential benefits related to cardiometabolic health, irrespective of weight loss. Clinical trial registration ClinicalTrials.gov, identifier NCT03020186.
Collapse
Affiliation(s)
- Liav Alufer
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ehud Rinott
- Department of Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Meir J. Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
4
|
Minchenko DO, Khita OO, Viletska YM, Sliusar MY, Rudnytska OV, Kozynkevych HE, Bezrodnyi BH, Khikhlo YP, Minchenko OH. Cortisol controls endoplasmic reticulum stress and hypoxia dependent regulation of insulin receptor and related genes expression in HEK293 cells. Endocr Regul 2023; 58:1-10. [PMID: 38345493 DOI: 10.2478/enr-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Objective. Glucocorticoids are important stress-responsive regulators of insulin-dependent metabolic processes realized through specific changes in genome function. The aim of this study was to investigate the impact of cortisol on insulin receptor and related genes expression in HEK293 cells upon induction the endoplasmic reticulum (ER) stress by tunicamycin and hypoxia. Methods. The human embryonic kidney cell line HEK293 was used. Cells were exposed to cortisol (10 µM) as well as inducers of hypoxia (dimethyloxalylglycine, DMOG; 0.5 mM) and ER stress (tunicamycin; 0.2 µg/ml) for 4 h. The RNA from these cells was extracted and reverse transcribed. The expression level of INSR, IRS2, and INSIG2 and some ER stress responsive genes encoding XBP1n, non-spliced variant, XBP1s, alternatively spliced variant of XBP1, and DNAJB9 proteins, was measured by quantitative polymerase chain reaction and normalized to ACTB. Results. We showed that exposure of HEK293 cells to cortisol elicited up-regulation in the expression of INSR and DNAJB9 genes and down-regulation of XBP1s, XBP1n, IRS2, and INSIG2 mRNA levels. At the same time, induction of hypoxia by DMOG led to an up-regulation of the expression level of most studied mRNAs: XBP1s and XBP1n, IRS2 and INSIG2, but did not change significantly INSR and DNAJB9 gene expression. We also showed that combined impact of cortisol and hypoxia introduced the up-regulation of INSR and suppressed XBP1n mRNA expression levels. Furthermore, the exposure of HEK293 cells to tunicamycin affected the expression of IRS2 gene and increased the level of XBP1n mRNA. At the same time, the combined treatment of these cells with cortisol and inductor of ER stress had much stronger impact on the expression of all the tested genes: strongly increased the mRNA level of ER stress dependent factors XBP1s and DNAJB9 as well as INSR and INSIG2, but down-regulated IRS2 and XBP1n. Conclusion. Taken together, the present study indicates that cortisol may interact with ER stress and hypoxia in the regulation of ER stress dependent XBP1 and DNAJB9 mRNA expression as well as INSR and its signaling and that this corticosteroid hormone modified the impact of hypoxia and especially tunicamycin on the expression of most studied genes in HEK293 cells. These data demonstrate molecular mechanisms of glucocorticoids interaction with ER stress and insulin signaling at the cellular level.
Collapse
Affiliation(s)
- Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Olena O Khita
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Yuliia M Viletska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Myroslava Y Sliusar
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Olha V Rudnytska
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Halyna E Kozynkevych
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Borys H Bezrodnyi
- Departments of Pediatrics No.1 and Surgery, National Bohomolets Medical University, Kyiv, Ukraine
| | - Yevgen P Khikhlo
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| | - Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev 01030, Ukraine
| |
Collapse
|
5
|
Oh HY, Yoo JE. The Association between Duration of Noise Exposure in the Workplace and Glucose Metabolism Status: Evidence from the Korea National Health and Nutrition Examination Survey. Korean J Fam Med 2022; 43:396-402. [PMID: 36444125 PMCID: PMC9708854 DOI: 10.4082/kjfm.21.0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the association between the duration of workplace noise exposure and glucose metabolism status in a nationally representative Korean sample. METHODS This cross-sectional study included 3,534 participants aged ≥40 years without tinnitus or hearing loss from the Korea National Health and Nutrition Examination Survey (2018). The primary exposure was noise in the workplace and its duration. We divided the noise exposure group into four groups according to the duration of noise exposure (<3 years, 3-10 years, 10-20 years, and ≥20 years). The primary outcomes were fasting blood sugar (FBS), hemoglobin A1c (HbA1c), and pre-diabetes and diabetes diagnosed using FBS. Logistic and linear regression analyses were used to test the association between noise exposure and glycemic status. RESULTS After adjustment, HbA1c levels were significantly higher in the noise exposure than in the non-noise exposure group. HbA1c levels were significantly higher in those exposed to occupational noise for more than 20 years than in others. In the subgroup analysis among those who had been exposed to noise for >20 years, the non-aerobic physical activity group had significantly higher HbA1c levels than the physical activity group. Furthermore, among those who had been exposed to noise for >20 years, the without hearing protection group had significantly higher HbA1c levels than those using hearing protection. CONCLUSION The association between noise exposure and the prevalence of diabetes is unclear. However, our study clearly suggests that there is a relationship between elevated HbA1c levels and workplace noise exposure and that a long period of workplace noise exposure, no physical activity, and not wearing a hearing protection device could increase the risk of diabetes.
Collapse
Affiliation(s)
- Hye Yeong Oh
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Eun Yoo
- Department of Family Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| |
Collapse
|
6
|
Tidblad A, Gustafsson J, Marcus C, Ritzén M, Ekström K. Metabolic Effects of Growth Hormone Treatment in Short Prepubertal Children: A Double-Blinded Randomized Clinical Trial. Horm Res Paediatr 2022; 93:519-528. [PMID: 33684919 DOI: 10.1159/000513518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Growth hormone (GH) is a central hormone for regulating linear growth during childhood and also highly involved in the metabolism of lipids, carbohydrates, and protein. However, few studies report on how treatment with GH during childhood influences metabolic parameters. Our aim was to investigate metabolic effects of different doses of GH in short children with GH peak levels in the low to normal range. DESIGN Thirty-five prepubertal short children (<-2.5 SDS), aged 7-10 years, with peak levels of GH between 7 and 14 μg/L during an arginine-insulin tolerance test, were randomized to 3 different doses (11/33/100 μg/kg/day) of GH treatment for 2 years. Auxological and metabolic investigations were performed. These included metabolites in blood and interstitial microdialysis fluid, dual-energy X-ray absorptiometry, frequently sampled intravenous glucose tolerance test (FSIVGTT), and stable isotope examinations of rates of glucose production and lipolysis. RESULTS At 24 months, the high-dose group (HD) had higher fasting insulin compared with the standard-dose (SD) and low-dose (LD) groups (HD: 111.7 vs. SD: 61.2 and LD: 46.0 pmol/L [p < 0.001]) and showed signs of insulin resistance (HOMA-IR, HD: 4.20 vs. SD: 2.17 and LD: 1.71 (LD) [p < 0.001]). The FSIVGTT also demonstrated higher acute insulin response (p < 0.05). Few other metabolic differences were found at 24 months, but a decreased insulin sensitivity index (Si) could already be seen at 12 months for both SD and HD compared with the LD group (p < 0.05). CONCLUSION Treatment with GH resulted in a dose-dependent decrease in insulin sensitivity, demonstrated by higher levels of fasting insulin and signs of insulin resistance in both HOMA indices and FSIVGTT examinations.
Collapse
Affiliation(s)
- Anders Tidblad
- Department of Women's and Children's Health, Division of Pediatric Endocrinology, Karolinska Institutet, Stockholm, Sweden,
| | - Jan Gustafsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Claude Marcus
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Martin Ritzén
- Department of Women's and Children's Health, Division of Pediatric Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Klas Ekström
- Department of Women's and Children's Health, Division of Pediatric Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Herman-Bonert VS, Melmed S. Growth Hormone. THE PITUITARY 2022:91-129. [DOI: 10.1016/b978-0-323-99899-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Sammy MJ, Connelly AW, Brown JA, Holleman C, Habegger KM, Ballinger SW. Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. Am J Physiol Endocrinol Metab 2021; 321:E521-E529. [PMID: 34370595 PMCID: PMC8560378 DOI: 10.1152/ajpendo.00069.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.
Collapse
Affiliation(s)
- Melissa J Sammy
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley W Connelly
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamelle A Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cassie Holleman
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Mak D, Ryan KA, Han JC. Review of Insulin Resistance in Dilated Cardiomyopathy and Implications for the Pediatric Patient Short Title: Insulin Resistance DCM and Pediatrics. Front Pediatr 2021; 9:756593. [PMID: 34778146 PMCID: PMC8581153 DOI: 10.3389/fped.2021.756593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Energy metabolism in the heart is affected during states of dysfunction. Understanding how the heart utilizes substrates in cardiomyopathy may be key to the development of alternative treatment modalities. Myocardial insulin resistance has been proposed as a possible barrier to effective glucose metabolism in the heart. Extensive literature on the topic in adult individuals exists; however, review in the pediatric population is sparse. The pathophysiology of disease in children and adolescents is unique. The aim of this paper is to review the current knowledge on insulin resistance in dilated cardiomyopathy while also filling the gap when considering care in the pediatric population.
Collapse
Affiliation(s)
- Daniel Mak
- Division of Pediatric Endocrinology, Department of Pediatrics, The University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kaitlin A Ryan
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Joan C Han
- Division of Pediatric Endocrinology, Department of Pediatrics, The University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
10
|
The pharmaceutical prednisone affects sheepshead minnow (Cyprinodon variegatus) metabolism and swimming performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110851. [PMID: 33238196 DOI: 10.1016/j.cbpa.2020.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
High usage of the synthetic glucocorticoids (GCs) has led to significant presence of this pharmaceutical group in surface waters where it can affect non-target organisms such as fish. Assessment of a fish's metabolism and swimming performance provide reliable sub-lethal measures of effects of GCs on oxygen-requiring processes and ability to swim. In this study, we determined time-dependent (7, 14 and 21 days) effects of the synthetic GC prednisone (1 μg L-1) on sheepshead minnow (SHM) (Cyprinodon variegatus). Standard (SMR), routine (RMR) and maximum (MMR) metabolic rate, metabolic scope (MS), excess post-exercise oxygen consumption (EPOC), cost of transport (COT) and critical swimming speed (Ucrit) were determined. Twenty-one days exposure to prednisone resulted in significantly higher SMR, RMR, MMR, MS, EPOC and COT compared with 7d and 14d prednisone fish. However, Ucrit was not significantly different between prednisone and solvent control exposed fish (within 7d, 14d, 21d groups). SMR, RMR and MMR were lower in the 7d and 14d prednisone exposed fish compared with their solvent control groups. In contrast, SMR, RMR and MMR were all significantly higher in the 21d prednisone exposed fish compared with solvent control. EPOC was significantly higher in 14d prednisone exposed fish and trending higher in 21d and 7d prednisone exposed fish compared with their solvent controls. EPOC was significantly higher in 21d compared with 7d prednisone exposed fish. A significantly higher COT was seen in the 21d compared with 7d and 14d prednisone fish. Collectively, this study showed time-dependent effects of prednisone on SHM metabolism and swimming performance.
Collapse
|
11
|
Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Vuolteenaho K, Moilanen E. Widespread regulation of gene expression by glucocorticoids in chondrocytes from patients with osteoarthritis as determined by RNA-Seq. Arthritis Res Ther 2020; 22:271. [PMID: 33203447 PMCID: PMC7670667 DOI: 10.1186/s13075-020-02289-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Intra-articular glucocorticoid (GC) injections are widely used as a symptomatic treatment for osteoarthritis (OA). However, there are also concerns about their potentially harmful effects, and their detailed effects on chondrocyte phenotype remain poorly understood. Methods We studied the effects of dexamethasone on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were isolated from the cartilage from OA patients undergoing knee replacement surgery and cultured with or without dexamethasone for 24 h. Total RNA was isolated and sequenced, and functional analysis was performed against the Gene Ontology (GO) database. Results for selected genes were confirmed with RT-PCR. We also investigated genes linked to OA in recent genome-wide expression analysis (GWEA) studies. Results Dexamethasone increased the expression of 480 and reduced that of 755 genes with a fold change (FC) 2.0 or greater. Several genes associated with inflammation and cartilage anabolism/catabolism as well as lipid and carbohydrate metabolism were among the most strongly affected genes. In the GO analysis, genes involved in the extracellular matrix organization, cell proliferation and adhesion, inflammation, and collagen synthesis were enriched among the significantly affected genes. In network analysis, NGF, PI3KR1, and VCAM1 were identified as central genes among those most strongly affected by dexamethasone. Conclusions This is the first study investigating the genome-wide effects of GCs on the gene expression in OA chondrocytes. In addition to clear anti-inflammatory and anticatabolic effects, GCs affect lipid and glucose metabolism in chondrocytes, an observation that might be particularly important in the metabolic phenotype of OA.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
12
|
Sun X, Xie YZ, Jiang YY, Wang GY, Wang YJ, Mei Y, Gao RH, Li YH, Xiao W, Wang WF, Li DS. FGF21 Enhances Therapeutic Efficacy and Reduces Side Effects of Dexamethasone in Treatment of Rheumatoid Arthritis. Inflammation 2020; 44:249-260. [PMID: 33098521 DOI: 10.1007/s10753-020-01327-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022]
Abstract
In order to investigate efficacy of FGF21 combine dexamethasone (Dex) on rheumatoid arthritis (RA) meanwhile reduce side effects of dexamethasone. We used combination therapy (Dex 15 mg/kg + FGF21 0.25 mg/kg, Dex 15 mg/kg + FGF21 0.5 mg/kg or Dex 15 mg/kg + FGF21 1 mg/kg) and monotherapy (Dex 15 mg/kg or FGF21 1 mg/kg) to treat CIA mice induced by chicken type II collagen, respectively. The effects of treatment were determined by arthritis severity score, histological damage, and cytokine production. The levels of oxidative stress parameters, liver functions, and other blood biochemical indexes were detected to determine FGF21 efficiency to side effects of dexamethasone. Oil red O was performed to detect the effects of FGF21 and dexamethasone on fat accumulation in HepG2 cells. The mechanism of FGF21 improves the side effects of dexamethasone which was analyzed by Western blotting. This combination proved to be therapeutically more effective than dexamethasone or FGF21 used singly. FGF21 regulates oxidative stress and lipid metabolism by upregulating dexamethasone-inhibited SIRT-1 and then activating downstream Nrf-2/HO-1and PGC-1. FGF21 and dexamethasone are highly effective in the treatment of arthritis; meanwhile, FGF21 may overcome the limited therapeutic response and Cushing syndrome associated with dexamethasone.
Collapse
Affiliation(s)
- Xu Sun
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yin-Zhuo Xie
- School of Life Science, Northeast Agricultural University, Harbin, China
| | | | - Guan-Ying Wang
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yu-Jia Wang
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yu Mei
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Rong-Hui Gao
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan-Hua Li
- School of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Xiao
- Jiangsu kangyuan pharmaceutical co. Ltd, Lianyungang, China.
| | - Wen-Fei Wang
- School of Life Science, Northeast Agricultural University, Harbin, China.
- Harbin Veterinary Research Institute, Harbin, China.
| | - De-Shan Li
- School of Life Science, Northeast Agricultural University, Harbin, China.
- Jiangsu kangyuan pharmaceutical co. Ltd, Lianyungang, China.
| |
Collapse
|
13
|
Leicht CA, James LJ, Briscoe JHB, Hoekstra SP. Hot water immersion acutely increases postprandial glucose concentrations. Physiol Rep 2020; 7:e14223. [PMID: 31642205 PMCID: PMC6805849 DOI: 10.14814/phy2.14223] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hot water immersion (HWI) confers health benefits, including a reduction in fasting blood glucose concentration. Here we investigate acute glycemic control immediately after HWI. Ten participants (age: 25 ± 6 years, body mass: 84 ± 14 kg, height 1.85 ± 0.09 m) were immersed in water (39°C) to the neck (HWI) or sat at room temperature (CON) for 60 min. One hour afterward they underwent an oral glucose tolerance test (OGTT), with blood collected before and after HWI/CON and during the 2 h OGTT. Glucose incremental area under the curve (iAUC) during the OGTT was higher for HWI (HWI 233 ± 88, CON 156 ± 79 mmol·L-1 ·2 h, P = 0.02). Insulin iAUC did not differ between conditions (HWI 4309 ± 3660, CON 3893 ± 3031 mU·L-1 ·2 h, P = 0.32). Core temperature increased to 38.6 ± 0.2°C during HWI, but was similar between trials during the OGTT (HWI 37.0 ± 0.2, CON 36.9 ± 0.4°C, P = 0.34). Directly following HWI, plasma average adrenaline and growth hormone concentrations increased 2.7 and 10.7-fold, respectively (P < 0.001). Plasma glucagon-like peptide-1, peptide YY, and acylated ghrelin concentrations were not different between trials during the OGTT (P > 0.11). In conclusion, HWI increased postprandial glucose concentration to an OGTT, which was accompanied by acute elevations of stress hormones following HWI. The altered glycemic control appears to be unrelated to changes in gut hormones during the OGTT.
Collapse
Affiliation(s)
- Christof A Leicht
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jane H B Briscoe
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Sven P Hoekstra
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.,The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
14
|
Ngim CF, Lai NM, Hong JY, Tan SL, Ramadas A, Muthukumarasamy P, Thong MK. Growth hormone therapy for people with thalassaemia. Cochrane Database Syst Rev 2020; 5:CD012284. [PMID: 32463488 PMCID: PMC7387677 DOI: 10.1002/14651858.cd012284.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency. This review on the role of growth hormone was originally published in September 2017 and updated in April 2020. OBJECTIVES To assess the benefits and safety of growth hormone therapy in people with thalassaemia. SEARCH METHODS We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. Date of latest search: 14 November 2019. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Date of latest search: 06 January 2020. SELECTION CRITERIA Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity. DATA COLLECTION AND ANALYSIS Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The certainty of the evidence was assessed using GRADE criteria. MAIN RESULTS We included one parallel trial conducted in Turkey. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The certainty of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate-certainty evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate-certainty evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period. AUTHORS' CONCLUSIONS A small single trial contributed evidence of moderate certainty that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.
Collapse
Affiliation(s)
- Chin Fang Ngim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor's University, Subang Jaya, Malaysia
| | - Janet Yh Hong
- Department of Paediatrics, Putrajaya Hospital, Putrajaya, Malaysia
| | - Shir Ley Tan
- HPS Pharmacies, Calvary North Adelaide Hospital, Adelaide, Australia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru, Malaysia
| | | | - Meow-Keong Thong
- Department of Paediatrics, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Bagby SP, Martin D, Chung ST, Rajapakse N. From the Outside In: Biological Mechanisms Linking Social and Environmental Exposures to Chronic Disease and to Health Disparities. Am J Public Health 2020; 109:S56-S63. [PMID: 30699032 DOI: 10.2105/ajph.2018.304864] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ongoing epidemic of chronic diseases involves a spectrum of clinical entities now understood to represent late manifestations of progressive metabolic dysfunction initiated in early life. These diseases disproportionately affect disadvantaged populations, exacerbating health disparities that persist despite public health efforts. Excessive exposure to stressful psychosocial and environmental forces is 1 factor known to contribute to population-level disparities in at-risk settings. Yet increasing evidence reveals that even a single adverse environmental exposure-especially during very early developmental years-can become literally biologically embedded, inducing long-lasting disease-promoting pathways that amplify responses (e.g., cortisol, immune, inflammatory) to all future adverse stressors, thus enhancing their disease-promoting impacts. The same pathways may also interact with ancestrally linked genetic variants to modify chronic disease risk. We address how, in at-risk populations, environmentally activated disease-promoting pathways can contribute to a biologically based disease-susceptible phenotype; this is likely to be uniquely damaging in populations with multiple adverse exposures and is capable of cross-generational transmission. Intended to complement existing models, this biological perspective highlights key research opportunities and life-stage priorities with potential to enhance the reduction of health disparities.
Collapse
Affiliation(s)
- Susan P Bagby
- Susan P. Bagby is with the Bob and Charlee Moore Institute for Nutrition and Wellness and the Department of Medicine, Oregon Health & Science University, Portland. Damali Martin is with the National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD. Stephanie T. Chung is with the National Institute of Diabetes and Digestive and Kidney Diseases, NIH. Nishadi Rajapakse is with the National Institute on Minority Health and Health Disparities, NIH
| | - Damali Martin
- Susan P. Bagby is with the Bob and Charlee Moore Institute for Nutrition and Wellness and the Department of Medicine, Oregon Health & Science University, Portland. Damali Martin is with the National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD. Stephanie T. Chung is with the National Institute of Diabetes and Digestive and Kidney Diseases, NIH. Nishadi Rajapakse is with the National Institute on Minority Health and Health Disparities, NIH
| | - Stephanie T Chung
- Susan P. Bagby is with the Bob and Charlee Moore Institute for Nutrition and Wellness and the Department of Medicine, Oregon Health & Science University, Portland. Damali Martin is with the National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD. Stephanie T. Chung is with the National Institute of Diabetes and Digestive and Kidney Diseases, NIH. Nishadi Rajapakse is with the National Institute on Minority Health and Health Disparities, NIH
| | - Nishadi Rajapakse
- Susan P. Bagby is with the Bob and Charlee Moore Institute for Nutrition and Wellness and the Department of Medicine, Oregon Health & Science University, Portland. Damali Martin is with the National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD. Stephanie T. Chung is with the National Institute of Diabetes and Digestive and Kidney Diseases, NIH. Nishadi Rajapakse is with the National Institute on Minority Health and Health Disparities, NIH
| |
Collapse
|
16
|
Adverse effects of noise stress on glucose homeostasis and insulin resistance in Sprague-Dawley rats. Heliyon 2019; 5:e03004. [PMID: 31890958 PMCID: PMC6926183 DOI: 10.1016/j.heliyon.2019.e03004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 12/05/2019] [Indexed: 12/03/2022] Open
Abstract
Noise pollution remains a pervasive health hazard that people encounter especially in large commercial metropolis and has been implicated in many adverse non-auditory health conditions such as hypertension, atherosclerosis, vascular (endothelial) dysfunction and metabolic disorders. There is a growing body of evidence showing that chronic noise exposure is associated with an increased risk of hypercholesterol, adiposity and development of type 2 diabetes. The present study investigated the effect of noise stress on parameters of glucose homeostasis in male rats and possible recovery after noise cessation. Twenty-four (24) adult male Sprague-Dawley rats were designated into four groups (n = 6 per group). All rats except the control group were exposed to 95dB noise using a noise generator for 28 consecutive days. A group of rats was investigated immediately after 28 days of noise exposure (NE28), while others were left to recover from noise stress for 7 days (NER7) or 14 days (NER14). OGTT and ITT were performed using standard methods. Plasma levels of triglyceride (TRIG), total cholesterol (CHOL), low density lipoprotein (LDL) and high-density lipoprotein (HDL) were determined. Serum level of insulin, corticosterone (CORT) and corticosterone-releasing-factor (CRF) were determined using ELISA. Homeostasis model assessment-insulin resistance (HOMA-IR) and glycogen content in liver as well as gastrocnemius muscle were also determined. Although glucose tolerance remained unchanged in the noise-exposed groups, insulin sensitivity was however significantly reduced compared with control. There was significant increase (P < 0.05) in the level of CHOL, LDL and HDL. Noise also increased (P < 0.05) both insulin and CORT levels; and elicited a higher HOMA-IR index in NE28 rats. Hepatic and myocytic glycogen content were lower (P < 0.05) in NE28 rats relative to control. The reported changes above were reversed following a 14-day noise withdrawal period. Noise-induced insulin resistance may result from dysregulation of the stress axis and appears to be reversible with noise cessation.
Collapse
|
17
|
Cheng TS, Leung GM, Hui LL, Leung JYY, Kwok MK, Au Yeung SL, Schooling CM. Associations of growth from birth to puberty with glycemic indicators at ~17.5 years: Evidence from Hong Kong's "Children of 1997" birth cohort. Pediatr Diabetes 2019; 20:380-388. [PMID: 30805996 DOI: 10.1111/pedi.12838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND From an evolutionary biology perspective, where growth and reproduction trade-off against longevity, we assessed the associations of growth from birth to puberty by phase with later glycemic indicators and any differences by sex. METHODS In the population-representative Hong Kong Chinese "Children of 1997" birth cohort (n = 8327), the relation of initial size (weight-for-age z score (WAZ) at birth, length/height-for-age z score (LAZ) at 3 months or body-mass-index-for-age z score (BAZ) at 3 months based on the World Health Organization growth standards/references) and growth at different phases (WAZ gains from 0 to 2 and 2 to 8 years, LAZ or BAZ gains from 3 months to 3 years, 3 to 8 years and 8 to 14 years) with fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) at ~17.5 years, was assessed using adjusted partial least squares regression. Additional analyses further considered growth in late and early infancy. RESULTS This study included 3276 of the cohort participants. Higher WAZ gain from 2 to 8 years, LAZ and BAZ gains from 3 to 8 years were consistently associated with higher FPG, adjusted for maternal and infant characteristics, family history of diabetes and household income. Also, higher BAZ gain from 3 to 8 years was associated with higher HbA1c. These associations did not differ by sex. CONCLUSIONS Our findings suggest different mechanisms could underlie the pathogenesis of glucose intolerance. Factors that drive specific growth at different phases need to be evaluated to better inform child growth management for long-term health outcomes.
Collapse
Affiliation(s)
- Tuck Seng Cheng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Gabriel M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lai Ling Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - June Yue Yan Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China.,Environmental, Occupational, and Geospatial Health Sciences, City University of New York, School of Public Health, New York, New York
| |
Collapse
|
18
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
19
|
Ha MS, Son WM. Combined exercise is a modality for improving insulin resistance and aging-related hormone biomarkers in elderly Korean women. Exp Gerontol 2018; 114:13-18. [PMID: 30359693 DOI: 10.1016/j.exger.2018.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND The functional decline of the endocrine and immune systems with aging causes changes in the regulation of the body's metabolism and defense functions. Although it is impossible to stop aging artificially, regular exercises reportedly delay aging and have positive effects on senile diseases. The improvements in insulin resistance values and aging-related hormones in elderly women after combined exercises have not been effectively elucidated. OBJECTIVE In this study, we aimed to examine the impact of combined exercise on insulin resistance and aging-related hormones in elderly women. METHODS Twenty elderly Korean women were randomly assigned to a "non-exercise" (n = 10) or combined exercise group (n = 10). The exercise group performed both anaerobic and aerobic exercises for 12 weeks, three times per week. Exercise intensity was increased gradually, from 40% to 70% of the heart rate reserve (HRR) every 3 weeks. Insulin resistance, growth hormone, IGF-1, DHEA-S, and estrogen were measured before and after the 12-week intervention. RESULTS The main effect was found in the glucose level for a time, which significantly decreased in the exercise group. The insulin level and HOMA-IR showed significant interaction effects and increased significantly in the control group. The GH level showed significant interaction effects and increased significantly in the exercise group. The IGF-1 level showed significant interaction effects, but not significantly within and between groups. The DHEA-S level revealed interaction effects and the main effect for a time and significantly increased in the exercise group. The estrogen level exhibited an interaction effect and increased significantly in the exercise group. After the 12-week combined exercise intervention, no significant difference was observed between groups. DISCUSSION This study has shown that 12-week combined exercise is useful for improving insulin resistance and GH, IGF-1, and DHEA-S levels in elderly women. Thus, this study provides evidence that combined exercise is a useful therapeutic method to decrease insulin resistance and stimulate the secretion of aging-related hormones in elderly women.
Collapse
Affiliation(s)
- Min-Seong Ha
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan.
| | - Won-Mok Son
- Department of Physical Education, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
20
|
Della Guardia L, Thomas MA, Cena H. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load. Nutrients 2018; 10:E618. [PMID: 29762478 PMCID: PMC5986498 DOI: 10.3390/nu10050618] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 01/04/2023] Open
Abstract
Recent epidemiological findings suggest that high levels of dietary acid load can affect insulin sensitivity and glucose metabolism. Consumption of high protein diets results in the over-production of metabolic acids which has been associated with the development of chronic metabolic disturbances. Mild metabolic acidosis has been shown to impair peripheral insulin action and several epidemiological findings suggest that metabolic acid load markers are associated with insulin resistance and impaired glycemic control through an interference intracellular insulin signaling pathways and translocation. In addition, higher incidence of diabetes, insulin resistance, or impaired glucose control have been found in subjects with elevated metabolic acid load markers. Hence, lowering dietary acid load may be relevant for improving glucose homeostasis and prevention of type 2 diabetes development on a long-term basis. However, limitations related to patient acid load estimation, nutritional determinants, and metabolic status considerably flaws available findings, and the lack of solid data on the background physiopathology contributes to the questionability of results. Furthermore, evidence from interventional studies is very limited and the trials carried out report no beneficial results following alkali supplementation. Available literature suggests that poor acid load control may contribute to impaired insulin sensitivity and glucose homeostasis, but it is not sufficiently supportive to fully elucidate the issue and additional well-designed studies are clearly needed.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Laboratory of Dietetics and Clinical Nutrition Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Michael Alex Thomas
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA.
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Abstract
Anabolic-androgenic steroids (AAS) and other hormones such as growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have been shown to increase muscle mass in patients suffering from various diseases related to muscle atrophy. Despite known side-effects associated with supraphysiologic doses of such drugs, their anabolic effects have led to their widespread use and abuse by bodybuilders and athletes such as strength athletes seeking to improve performance and muscle mass. On the other hand, resistance training (RT) has also been shown to induce significant endogenous hormonal (testosterone (T), GH, IGF-1) elevations. Therefore, some bodybuilders employ RT protocols designed to elevate hormonal levels in order to maximize anabolic responses. In this article, we reviewed current RT protocol outcomes with and without performance enhancing drug usage. Acute RT-induced hormonal elevations seem not to be directly correlated with muscle growth. On the other hand, supplementation with AAS and other hormones might lead to supraphysiological muscle hypertrophy, especially when different compounds are combined.
Collapse
Affiliation(s)
- Julius Fink
- a Graduate School of Medicine, Department of Metabolism and Endocrinology , Juntendo University , Tokyo , Japan
| | | | - Koichi Nakazato
- c Graduate Schools of Health and Sport Science , Nippon Sport Science University , Tokyo , Japan
| |
Collapse
|
22
|
Graziadio C, Hasenmajer V, Venneri MA, Gianfrilli D, Isidori AM, Sbardella E. Glycometabolic Alterations in Secondary Adrenal Insufficiency: Does Replacement Therapy Play a Role? Front Endocrinol (Lausanne) 2018; 9:434. [PMID: 30123187 PMCID: PMC6085438 DOI: 10.3389/fendo.2018.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
Secondary adrenal insufficiency (SAI) is a potentially life-threatening endocrine disorder due to an impairment of corticotropin (ACTH) secretion from any process affecting the hypothalamus or pituitary gland. ACTH deficit can be isolated or associated with other pituitary failures (hypopituitarism). An increased mortality due to cardiovascular, metabolic, and infectious diseases has been described in both primary and secondary adrenal insufficiency. However, few studies have provided compelling evidences on the underlying mechanism in SAI, because of the heterogeneity of the condition. Recently, some studies suggested that inappropriate glucocorticoid (GCs) replacement therapy, as for dose and/or timing of administration, may play a role. Hypertension, insulin resistance, weight gain, visceral obesity, increased body mass index, metabolic syndrome, impaired glucose tolerance, diabetes mellitus, dyslipidemia have all been associated with GC excess. These conditions are particularly significant when SAI coexists with other pituitary alterations, such as growth hormone deficiency, hypogonadism, and residual tumor. Novel regimen schemes and GC preparations have been introduced to improve compliance and better mimick endogenous cortisol rhythm. The controlled trials on the improved replacement therapies, albeit in the short-term, show some beneficial effects on cardiovascular risk, glucose metabolism, and quality of life. This review examines the current evidence from the available clinical trials investigating the association between different glucocorticoid replacement therapies (type, dose, frequency, and timing of treatment) and glycometabolic alterations in SAI.
Collapse
|
23
|
Wang L, Niu YM, Wu SS, Zhang C, Zhou L, Zuo HX, Wang P. A Study on the Association Between Polymorphisms in the Cytochrome P450 Family 17 Subfamily A Member 1 Gene Region and Type 2 Diabetes Mellitus in Han Chinese. Front Endocrinol (Lausanne) 2018; 9:323. [PMID: 29942286 PMCID: PMC6004380 DOI: 10.3389/fendo.2018.00323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cytochrome P450 family 17 subfamily A member 1 (CYP17A1) gene encodes a key enzyme in the synthesis and metabolism of steroid hormones and has been associated with various factors, such as hypertension, insulin resistance, and polycystic ovary syndrome. However, whether the gene was associated with type 2 diabetes mellitus (T2DM) has not been reported yet. Therefore, we sought to investigate whether CYP17A1 was associated with T2DM and related traits among Han Chinese. METHODS Three tagging single nucleotide polymorphisms (rs1004467, rs17115149, and rs12413409), in the CYP17A1 gene region were selected and genotyped in a case-control study that included 440 diabetes and 1,320 control subjects. Effects of genetic loci were studied using univariate unconditional logistic regression and multivariate logistic regression analysis adjusted for age, sex, family history, body mass index, smoking, and drinking. Bioinformatics analysis was also conducted using the GEO DataSets and PROMO database to gain hints of possible mechanism. RESULTS Rs17115149 and rs12413409 polymorphisms were significantly associated with the risk of T2DM, even after adjusting for age, sex, family history, body mass index, smoking, and drinking. In stratified analyses, rs1004467 and rs12413409 showed significant association with T2DM in the older age group (≥65 years) and, in the case of rs12413409, the risk of T2DM was significant in men but not in women. Rs17115149 had significant association with T2DM in the hypertension subgroup, and rs12413409 in the non-hypertension subgroup. Moreover, rs12413409 showed significant association with plasma glucose levels in the recessive model (P = 0.020) among subjects not taking hypoglycemic measures. Bioinformatics analysis revealed significantly higher CYP17A1 gene expression in T2DM patients compared to healthy controls. Finally, the mutant T allele of the rs17115149 polymorphism allowed binding to the RBP-Jkappa transcription factor. CONCLUSION This is the first report to identify that variants rs1004467, rs17115149, and rs12413409 of CYP17A1, are related to plasma glucose levels and T2DM among Han Chinese. Our results suggest that CYP17A1 might constitute a risk gene for progression to T2DM.
Collapse
Affiliation(s)
- Long Wang
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Ming Niu
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Yu-Ming Niu, ; Shi-Shi Wu,
| | - Shi-Shi Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Yu-Ming Niu, ; Shi-Shi Wu,
| | - Chao Zhang
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Zhou
- Research Center for Medicine and Social Development, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hong-Xia Zuo
- Department of Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Wang
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
24
|
Plano SA, Casiraghi LP, García Moro P, Paladino N, Golombek DA, Chiesa JJ. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health. Front Neurol 2017; 8:558. [PMID: 29097992 PMCID: PMC5653694 DOI: 10.3389/fneur.2017.00558] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.
Collapse
Affiliation(s)
- Santiago A Plano
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED - CONICET), School of Medical Sciences, Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Leandro P Casiraghi
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Paula García Moro
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
25
|
Ngim CF, Lai NM, Hong JYH, Tan SL, Ramadas A, Muthukumarasamy P, Thong M. Growth hormone therapy for people with thalassaemia. Cochrane Database Syst Rev 2017; 9:CD012284. [PMID: 28921500 PMCID: PMC6353149 DOI: 10.1002/14651858.cd012284.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency. OBJECTIVES To assess the benefits and safety of growth hormone therapy in people with thalassaemia. SEARCH METHODS We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Our database and trial registry searches are current to 10 August 2017 and 08 August 2017, respectively. SELECTION CRITERIA Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity. DATA COLLECTION AND ANALYSIS Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The quality of the evidence was assessed using GRADE criteria. MAIN RESULTS One parallel trial conducted in Turkey was included. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The quality of the evidence for all major outcomes was moderate, the main concern was imprecision of the estimates due to the small sample size leading to wide confidence intervals. Final height (cm) (the review's pre-specified primary outcome) and change in height were not assessed in the included trial. The trial reported no clear difference between groups in height standard deviation (SD) score after one year, mean difference (MD) -0.09 (95% confidence interval (CI) -0.33 to 0.15 (moderate quality evidence). However, modest improvements appeared to be observed in the following key outcomes in children receiving growth hormone therapy compared to control (moderate quality evidence): change between baseline and final visit in height SD score, MD 0.26 (95% CI 0.13 to 0.39); height velocity, MD 2.28 cm/year (95% CI 1.76 to 2.80); height velocity SD score, MD 3.31 (95% CI 2.43 to 4.19); and change in height velocity SD score between baseline and final visit, MD 3.41 (95% CI 2.45 to 4.37). No adverse effects of treatment were reported in either group; however, while there was no clear difference between groups in the oral glucose tolerance test at one year, fasting blood glucose was significantly higher in the growth hormone therapy group compared to control, although both results were still within the normal range, MD 6.67 mg/dL (95% CI 2.66 to 10.68). There were no data beyond the one-year trial period. AUTHORS' CONCLUSIONS A small single trial contributed evidence of moderate quality that the use of growth hormone for a year may improve height velocity of children with thalassaemia although height SD score in the treatment group was similar to the control group. There are no randomised controlled trials in adults or trials that address the use of growth hormone therapy over a longer period and assess its effect on final height and quality of life. The optimal dosage of growth hormone and the ideal time to start this therapy remain uncertain. Large well-designed randomised controlled trials over a longer period with sufficient duration of follow up are needed.
Collapse
Affiliation(s)
- Chin Fang Ngim
- Monash University MalaysiaJeffrey Cheah School of Medicine and Health SciencesJohor BahruMalaysia
| | - Nai Ming Lai
- Taylor's UniversitySchool of MedicineSubang JayaMalaysia
| | - Janet YH Hong
- Putrajaya HospitalDepartment of PaediatricsPrecinct 7PutrajayaMalaysia62250
| | - Shir Ley Tan
- Taylor's UniversitySchool of PharmacyNo 1, Jalan Taylor'sSubang JayaMalaysia47500
| | - Amutha Ramadas
- Monash University MalaysiaJeffrey Cheah School of Medicine and Health SciencesJohor BahruMalaysia
| | - Premala Muthukumarasamy
- University of Malaya Medical CenterDepartment of PaediatricsJalan UniversitiKuala LumpurMalaysia519000
| | - Meow‐Keong Thong
- University of Malaya Medical CenterDepartment of PaediatricsJalan UniversitiKuala LumpurMalaysia519000
| |
Collapse
|
26
|
Tamboli RA, Antoun J, Sidani RM, Clements BA, Eckert EA, Marks-Shulman P, Gaylinn BD, Williams DB, Clements RH, Albaugh VL, Abumrad NN. Metabolic responses to exogenous ghrelin in obesity and early after Roux-en-Y gastric bypass in humans. Diabetes Obes Metab 2017; 19:1267-1275. [PMID: 28345790 PMCID: PMC5568950 DOI: 10.1111/dom.12952] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
AIMS Ghrelin is a gastric-derived hormone that stimulates growth hormone (GH) secretion and has a multi-faceted role in the regulation of energy homeostasis, including glucose metabolism. Circulating ghrelin concentrations are modulated in response to nutritional status, but responses to ghrelin in altered metabolic states are poorly understood. We investigated the metabolic effects of ghrelin in obesity and early after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS We assessed central and peripheral metabolic responses to acyl ghrelin infusion (1 pmol kg-1 min-1 ) in healthy, lean subjects (n = 9) and non-diabetic, obese subjects (n = 9) before and 2 weeks after RYGB. Central responses were assessed by GH and pancreatic polypeptide (surrogate for vagal activity) secretion. Peripheral responses were assessed by hepatic and skeletal muscle insulin sensitivity during a hyperinsulinaemic-euglycaemic clamp. RESULTS Ghrelin-stimulated GH secretion was attenuated in obese subjects, but was restored by RYGB to a response similar to that of lean subjects. The heightened pancreatic polypeptide response to ghrelin infusion in the obese was attenuated after RYGB. Hepatic glucose production and hepatic insulin sensitivity were not altered by ghrelin infusion in RYGB subjects. Skeletal muscle insulin sensitivity was impaired to a similar degree in lean, obese and post-RYGB individuals in response to ghrelin infusion. CONCLUSIONS These data suggest that obesity is characterized by abnormal central, but not peripheral, responsiveness to ghrelin that can be restored early after RYGB before significant weight loss. Further work is necessary to fully elucidate the role of ghrelin in the metabolic changes that occur in obesity and following RYGB.
Collapse
Affiliation(s)
- Robyn A. Tamboli
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Antoun
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Reem M. Sidani
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - B. Austin Clements
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Emily A. Eckert
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Pam Marks-Shulman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Bruce D. Gaylinn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA
| | | | - Ronald H. Clements
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Vance L. Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
27
|
Teich T, Pivovarov JA, Porras DP, Dunford EC, Riddell MC. Curcumin limits weight gain, adipose tissue growth, and glucose intolerance following the cessation of exercise and caloric restriction in rats. J Appl Physiol (1985) 2017; 123:1625-1634. [PMID: 28839007 DOI: 10.1152/japplphysiol.01115.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Weight regain, adipose tissue growth, and insulin resistance can occur within days after the cessation of regular dieting and exercise. This phenomenon has been attributed, in part, to the actions of stress hormones as well as local and systemic inflammation. We investigated the effect of curcumin, a naturally occurring polyphenol known for its anti-inflammatory properties and inhibitory action on 11β-HSD1 activity, on preserving metabolic health and limiting adipose tissue growth following the cessation of daily exercise and caloric restriction (CR). Sprague-Dawley rats (6-7 wk old) underwent a "training" protocol of 24-h voluntary running wheel access and CR (15-20 g/day; ~50-65% of ad libitum intake) for 3 wk ("All Trained") or were sedentary and fed ad libitum ("Sed"). After 3 wk, All Trained were randomly divided into one group which was terminated immediately ("Trained"), and two detrained groups which had their wheels locked and were reintroduced to ad libitum feeding for 1 wk. The wheel locked groups received either a daily gavage of a placebo ("Detrained + Placebo") or curcumin (200 mg/kg) ("Detrained + Curcumin"). Cessation of daily CR and exercise caused an increase in body mass, as well as a 9- to 14-fold increase in epididymal, perirenal, and inguinal adipose tissue mass, all of which were attenuated by curcumin ( P < 0.05). Insulin area under the curve (AUC) during an oral glucose tolerance test, HOMA-IR, and C-reactive protein (CRP) were elevated 6-, 9-, and 2-fold, respectively, in the Detrained + Placebo group vs. the Trained group (all P < 0.05). Curcumin reduced insulin AUC, HOMA-IR, and CRP vs. the placebo group (all P < 0.05). Our results indicate that curcumin has a protective effect against weight regain and impaired metabolic control following a successful period of weight loss through diet and exercise, perhaps via inhibition of glucocorticoid action and inflammation. NEW & NOTEWORTHY Weight regain after dieting and exercise is a common phenomenon plaguing many individuals. The biological mechanisms underlying weight regain are incompletely understood and are likely multifactorial. In this paper, we examined the metabolic implications of curcumin, a compound known for its anti-inflammatory properties and inhibitory action on the enzyme 11β-HSD1, in a rodent model of adiposity rebound after the cessation of diet and exercise.
Collapse
Affiliation(s)
- Trevor Teich
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Jacklyn A Pivovarov
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Deanna P Porras
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Emily C Dunford
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| | - Michael C Riddell
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University , Toronto, Ontario , Canada
| |
Collapse
|
28
|
Yates W, McCluskey P, Wakefield D. Long-term immunosuppressive therapy for inflammatory eye disease – the link between systemic treatment, cardiovascular risk and disease? EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1349610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William Yates
- Department of Ophthalmology, Sydney Eye Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Australia
| | - Peter McCluskey
- Department of Ophthalmology, Sydney Eye Hospital, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - Denis Wakefield
- School of Medical Sciences, University of New South Wales, Kensington, Australia
| |
Collapse
|
29
|
Scaroni C, Zilio M, Foti M, Boscaro M. Glucose Metabolism Abnormalities in Cushing Syndrome: From Molecular Basis to Clinical Management. Endocr Rev 2017; 38:189-219. [PMID: 28368467 DOI: 10.1210/er.2016-1105] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
An impaired glucose metabolism, which often leads to the onset of diabetes mellitus (DM), is a common complication of chronic exposure to exogenous and endogenous glucocorticoid (GC) excess and plays an important part in contributing to morbidity and mortality in patients with Cushing syndrome (CS). This article reviews the pathogenesis, epidemiology, diagnosis, and management of changes in glucose metabolism associated with hypercortisolism, addressing both the pathophysiological aspects and the clinical and therapeutic implications. Chronic hypercortisolism may have pleiotropic effects on all major peripheral tissues governing glucose homeostasis. Adding further complexity, both genomic and nongenomic mechanisms are directly induced by GCs in a context-specific and cell-/organ-dependent manner. In this paper, the discussion focuses on established and potential pathologic molecular mechanisms that are induced by chronically excessive circulating levels of GCs and affect glucose homeostasis in various tissues. The management of patients with CS and DM includes treating their hyperglycemia and correcting their GC excess. The effects on glycemic control of various medical therapies for CS are reviewed in this paper. The association between DM and subclinical CS and the role of screening for CS in diabetic patients are also discussed.
Collapse
Affiliation(s)
- Carla Scaroni
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Marialuisa Zilio
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Genèva, Switzerland
| | - Marco Boscaro
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| |
Collapse
|
30
|
Guo L, Liu Y, Han J, Zhu H, Wang X. Effects of Biotite V supplementation on growth performance and the immunological responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge. Livest Sci 2017. [DOI: 10.1016/j.livsci.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Dunford EC, Riddell MC. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites 2016; 6:metabo6040044. [PMID: 27929385 PMCID: PMC5192450 DOI: 10.3390/metabo6040044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA) axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD). Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.
Collapse
Affiliation(s)
- Emily C Dunford
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Michael C Riddell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Center and Physical Activity and Chronic Disease Unit, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
32
|
Quist JS, Sjödin A, Chaput JP, Hjorth MF. Sleep and cardiometabolic risk in children and adolescents. Sleep Med Rev 2016; 29:76-100. [DOI: 10.1016/j.smrv.2015.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
|
33
|
Liu L, Wang F, Lu H, Cao S, Du Z, Wang Y, Feng X, Gao Y, Zha M, Guo M, Sun Z, Wang J. Effects of Noise Exposure on Systemic and Tissue-Level Markers of Glucose Homeostasis and Insulin Resistance in Male Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1390-1398. [PMID: 27128844 PMCID: PMC5010391 DOI: 10.1289/ehp162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/24/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Epidemiological studies have indicated that noise exposure is associated with an increased risk of type 2 diabetes mellitus (T2DM). However, the nature of the connection between noise exposure and T2DM remains to be explored. OBJECTIVES We explored whether and how noise exposure affects glucose homeostasis in mice as the initial step toward T2DM development. METHODS Male ICR mice were randomly assigned to one of four groups: the control group and three noise groups (N20D, N10D, and N1D), in which the animals were exposed to white noise at 95 decibel sound pressure level (dB SPL) for 4 hr per day for 20 successive days, 10 successive days, or 1 day, respectively. Glucose tolerance and insulin sensitivity were evaluated 1 day, 1 week, and 1 month after the final noise exposure (1DPN, 1WPN, and 1MPN). Standard immunoblots, immunohistochemical methods, and enzyme-linked immunosorbent assays (ELISA) were performed to assess insulin signaling in skeletal muscle, the morphology of β cells, and plasma corticosterone levels. RESULTS Noise exposure for 1 day caused transient glucose intolerance and insulin resistance, whereas noise exposure for 10 and 20 days had no effect on glucose tolerance but did cause prolonged insulin resistance and an increased insulin response to glucose challenge. Akt phosphorylation and GLUT4 translocation in response to exogenous insulin were decreased in the skeletal muscle of noise-exposed animals. CONCLUSIONS Noise exposure at 95 dB SPL caused insulin resistance in male ICR mice, which was prolonged with longer noise exposure and was likely related to the observed blunted insulin signaling in skeletal muscle. CITATION Liu L, Wang F, Lu H, Cao S, Du Z, Wang Y, Feng X, Gao Y, Zha M, Guo M, Sun Z, Wang J. 2016. Effects of noise exposure on systemic and tissue-level markers of glucose homeostasis and insulin resistance in male mice. Environ Health Perspect 124:1390-1398; http://dx.doi.org/10.1289/EHP162.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing, China
| | - Fanfan Wang
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Haiying Lu
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Shuangfeng Cao
- Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ziwei Du
- Medical College, Southeast University, Nanjing, China
| | - Yongfang Wang
- Medical College, Southeast University, Nanjing, China
| | - Xian Feng
- Medical College, Southeast University, Nanjing, China
| | - Ye Gao
- Medical College, Southeast University, Nanjing, China
| | - Mingming Zha
- Medical College, Southeast University, Nanjing, China
| | - Min Guo
- Medical College, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, Medical College, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Jian Wang
- Department of Physiology, Medical College, Southeast University, Nanjing, China
- School of Human Communication Disorders, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Repaske DR. Medication-induced diabetes mellitus. Pediatr Diabetes 2016; 17:392-7. [PMID: 27492964 DOI: 10.1111/pedi.12406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies and case reports have demonstrated an increased rate of development of diabetes mellitus consequent to taking diverse types of medication. This review explores this evidence linking these medications and development of diabetes and presents postulated mechanisms by which the medications might cause diabetes. Some medications are associated with a reduction in insulin production, some with reduction in insulin sensitivity, and some appear to be associated with both reduction in insulin production and insulin sensitivity.
Collapse
Affiliation(s)
- David R Repaske
- Department of Pediatrics, University of Virginia, Charlottesville
| |
Collapse
|
35
|
Klil-Drori AJ, Azoulay L, Pollak MN. Cancer, obesity, diabetes, and antidiabetic drugs: is the fog clearing? Nat Rev Clin Oncol 2016; 14:85-99. [DOI: 10.1038/nrclinonc.2016.120] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Han B, Yu L, Geng Y, Shen L, Wang H, Wang Y, Wang J, Wang M. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice. J Alzheimers Dis 2016; 53:1539-52. [PMID: 27392857 DOI: 10.3233/jad-160189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jinhua Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
37
|
|
38
|
Taban E, Mortazavi SB, Vosoughi S, Khavanin A, Asilian Mahabadi H. Noise Exposure Effects on Blood Glucose, Cortisol and Weight Changes in the Male Mice. HEALTH SCOPE 2016. [DOI: 10.17795/jhealthscope-36108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 2016; 311:E157-74. [PMID: 27189933 PMCID: PMC4967146 DOI: 10.1152/ajpendo.00059.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.
Collapse
Affiliation(s)
- Bradley S Gordon
- Institute of Exercise Physiology and Wellness, The University of Central Florida, Orlando, Florida;
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
40
|
Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids 2016; 51:905-12. [PMID: 27289530 DOI: 10.1007/s11745-016-4168-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction.
Collapse
|
41
|
Williamson DL, Dungan CM, Mahmoud AM, Mey JT, Blackburn BK, Haus JM. Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R855-63. [PMID: 26269521 PMCID: PMC4666944 DOI: 10.1152/ajpregu.00285.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
Abstract
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
42
|
Fung EB, Gildengorin G, Talwar S, Hagar L, Lal A. Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients 2015; 7:4296-307. [PMID: 26043030 PMCID: PMC4488784 DOI: 10.3390/nu7064296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
Up to 20% of adult patients with Thalassemia major (Thal) live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years) with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05) and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048). Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL), showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL) and insulin to glucose ratios at 120 min post glucose dose (p = 0.05). Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient.
Collapse
Affiliation(s)
- Ellen B Fung
- Department of Hematology/Oncology at the UCSF Benioff Children's Hospital, 747 52nd Street Oakland, CA 94609, USA.
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| | - Ginny Gildengorin
- The Pediatric Clinical Research Center, 747 52nd Street Oakland, CA 94609, USA.
| | - Siddhant Talwar
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| | - Leah Hagar
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA.
| | - Ashutosh Lal
- Department of Hematology/Oncology at the UCSF Benioff Children's Hospital, 747 52nd Street Oakland, CA 94609, USA.
| |
Collapse
|
43
|
Miller SC. Diabetic Ketoacidosis and Acute Mountain Sickness: Case Report and Review of Treatment Options in Type 1 Diabetes Mellitus. Wilderness Environ Med 2015; 26:185-8. [DOI: 10.1016/j.wem.2014.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 01/27/2023]
|
44
|
Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H. Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 2015; 64:2194-206. [PMID: 25552599 DOI: 10.2337/db14-1192] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/20/2014] [Indexed: 11/13/2022]
Abstract
Long-term use of glucocorticoids (GCs) causes numerous adverse effects, including glucose/lipid abnormalities, osteoporosis, and muscle wasting. The pathogenic mechanism, however, is not completely understood. In this study, we used plasminogen activator inhibitor-1 (PAI-1)-deficient mice to explore the role of PAI-1 in GC-induced glucose/lipid abnormalities, osteoporosis, and muscle wasting. Corticosterone markedly increased the levels of circulating PAI-1 and the PAI-1 mRNA level in the white adipose tissue of wild-type mice. PAI-1 deficiency significantly reduced insulin resistance and glucose intolerance but not hyperlipidemia induced by GC. An in vitro experiment revealed that active PAI-1 treatment inhibits insulin-induced phosphorylation of Akt and glucose uptake in HepG2 hepatocytes. However, this was not observed in 3T3-L1 adipocytes and C2C12 myotubes, indicating that PAI-1 suppressed insulin signaling in hepatocytes. PAI-1 deficiency attenuated the GC-induced bone loss presumably via inhibition of apoptosis of osteoblasts. Moreover, the PAI-1 deficiency also protected from GC-induced muscle loss. In conclusion, the current study indicated that PAI-1 is involved in GC-induced glucose metabolism abnormality, osteopenia, and muscle wasting in mice. PAI-1 may be a novel therapeutic target to mitigate the adverse effects of GC.
Collapse
Affiliation(s)
- Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osakasayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kinki University Hospital, Osakasayama, Japan
| | - Osamu Matsuo
- Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
45
|
Turner D, Gray BJ, Luzio S, Dunseath G, Bain SC, Hanley S, Richards A, Rhydderch DC, Ayles M, Kilduff LP, Campbell MD, West DJ, Bracken RM. Similar magnitude of post-exercise hyperglycemia despite manipulating resistance exercise intensity in type 1 diabetes individuals. Scand J Med Sci Sports 2015; 26:404-12. [PMID: 25919405 DOI: 10.1111/sms.12472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 12/20/2022]
Abstract
The aim of this study was to compare the glycemic and glucoregulatory hormone responses to low- and moderate-intensity morning resistance exercise (RE) sessions in type 1 diabetes (T1DM). Following maximal strength assessments (1RM), eight T1DM (HbA1C :72 ± 12 mmol/mol, age:34 ± 7 years, body mass index:25.7 ± 1.6 kg/m(2) ) participants attended the research facility on two separate occasions, having fasted and taken their usual basal insulin but omitting rapid-acting insulin. Participants performed six exercises for two sets of 20 repetitions at 30%1RM during one session [low-intensity RE session (LOW)] and two sets of 10 repetitions at 60%1RM during another session [moderate-intensity RE session (MOD)], followed by 65-min recovery. Sessions were matched for total mass lifted (kg). Venous blood samples were taken before and after exercise. Data (mean ± SEM) were analyzed using analysis of variance (P ≤ 0.05). There were no hypoglycemic occurrences throughout the study. Blood glucose rose similarly between sessions during exercise (P = 0.382), remaining comparable between sessions throughout recovery (P > 0.05). There was no effect of RE intensity on metabolic acidosis (P > 0.05) or peak growth hormone responses (P = 0.644), but a tendency for greater catecholamine responses under LOW (individualized peak concentrations: adrenaline MOD 0.55 ± 0.13 vs LOW 1.04 ± 0.37 nmol/L, P = 0.155; noradrenaline MOD 4.59 ± 0.86 vs LOW 7.11 ± 1.82 nmol/L, P = 0.082). The magnitude of post-exercise hyperglycemia does not differ between equal volume low and moderate intensity RE sessions performed in the morning.
Collapse
Affiliation(s)
- D Turner
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, UK.,Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK
| | - B J Gray
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, UK.,Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK
| | - S Luzio
- Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK.,Abertawe Bro Morgannwg University Health Board, Singleton Hospital, Swansea, UK
| | - G Dunseath
- Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK
| | - S C Bain
- Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK.,Abertawe Bro Morgannwg University Health Board, Singleton Hospital, Swansea, UK
| | - S Hanley
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, UK
| | - A Richards
- Abertawe Bro Morgannwg University Health Board, Singleton Hospital, Swansea, UK
| | - D C Rhydderch
- Abertawe Bro Morgannwg University Health Board, Singleton Hospital, Swansea, UK
| | - M Ayles
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, UK
| | - L P Kilduff
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, UK
| | - M D Campbell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - D J West
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - R M Bracken
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, UK.,Diabetes Research Group, College of Medicine, Swansea University, Swansea, UK
| |
Collapse
|
46
|
Sadhu AR, Schwartz SS, Herman ME. THE RATIONALE FOR USE OF INCRETINS IN THE MANAGEMENT OF NEW ONSET DIABETES AFTER TRANSPLANTATION (NODAT). Endocr Pract 2015; 21:814-22. [PMID: 25786557 DOI: 10.4158/ep14569.ra] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Owing to advances in transplant science, increasing numbers of patients are receiving solid organ transplantation. New onset diabetes after transplantation (NODAT) frequently develops in transplant patients and requires acute and often ongoing management of hyperglycemia. The metabolic derangements of NODAT are similar to those of classic type 2 diabetes, and treatment has typically followed diabetes standards of care. Best practices for NODAT management remain to be developed. METHODS The mechanistic suitability of incretins to treat NODAT pathogenesis has been hitherto underappreciated. This review details the specific mechanistic value of incretins in patients with immunosuppression-associated hyperglycemia. RESULTS Corticosteroids have long been known to exert their effects on glucose metabolism by decreasing glucose utilization and enhancing hepatic gluconeogenesis. Corticosteroids also significantly and directly reduce insulin secretion, as do calcineurin inhibitors (CNIs), another commonly used group of immunosuppressive drugs that cause hyperglycemia and NODAT. The ability of incretins to counteract immunosuppressant-induced disruptions in insulin secretion suggest that the insulinotropic, glucagonostatic, and glucose-lowering actions of incretins are well suited to treat immunosuppressant-induced hyperglycemia in NODAT. Additional benefits of incretins include decreased glucagon levels and improved insulin resistance. In the case of glucagon-like peptide-1 (GLP-1) receptor agonists, weight loss is another benefit, countering the weight gain that is a common consequence of both hyperglycemia and transplantation. These benefits make incretins very attractive and deserving of more investigation. CONCLUSION Among diabetes treatment options, incretin therapies uniquely counteract immunosuppressant drugs' interference with insulin secretion. We propose an incretin-based treatment paradigm for NODAT management.
Collapse
|
47
|
Cheung CSF, Zhu Z, Lui JCK, Dimitrov D, Baron J. Human monoclonal antibody fragments targeting matrilin-3 in growth plate cartilage. Pharm Res 2015; 32:2439-49. [PMID: 25690340 DOI: 10.1007/s11095-015-1636-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Many genetic disorders, including chondrodysplasias, and acquired disorders impair growth plate function, resulting in short and sometimes malformed bones. There are multiple endocrine and paracrine factors that promote chondrogenesis at the growth plate, which could potentially be used to treat these disorders. Targeting these growth factors specifically to the growth plate might augment the therapeutic skeletal effect while diminishing undesirable effects on non-target tissues. METHODS Using yeast display technology, we selected single-chain variable antibody fragments that bound to human and mouse matrilin-3, an extracellular matrix protein specifically expressed in cartilage tissue. The ability of the selected antibody fragments to bind matrilin-3 and to bind cartilage tissue in vitro and in vivo was assessed by ELISA and immunohistochemistry. RESULTS We identified antibody fragments that bound matrilin-3 with high affinity and also bound with high tissue specificity to cartilage homogenates and to cartilage structures in mouse embryo sections. When injected intravenously in mice, the antibody fragments specifically homed to cartilage. CONCLUSIONS Yeast display successfully selected antibody fragments that are able to target cartilage tissue in vivo. Coupling these antibodies to chondrogenic endocrine and paracrine signaling molecules has the potential to open up new pharmacological approaches to treat childhood skeletal growth disorders.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Section on Growth and Development, National Institute of Child Health and Development, National Institutes of Health, Bldg. 10 CRC, Rm. 1-3330, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol 2014; 35:285-302. [PMID: 24631756 DOI: 10.1016/j.yfrne.2014.03.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/22/2014] [Accepted: 03/04/2014] [Indexed: 01/21/2023]
Abstract
Sex differences in the response to stress contribute to sex differences in somatic, neurological, and psychiatric diseases. Despite a growing literature on the mechanisms that mediate sex differences in the stress response, the ontogeny of these differences has not been comprehensively reviewed. This review focuses on the development of the hypothalamic-pituitary-adrenal (HPA) axis, a key component of the body's response to stress, and examines the critical points of divergence during development between males and females. Insight gained from animal models and clinical studies are presented to fully illustrate the current state of knowledge regarding sex differences in response to stress over development. An appreciation for the developmental timelines of the components of the HPA axis will provide a foundation for future areas of study by highlighting both what is known and calling attention to areas in which sex differences in the development of the HPA axis have been understudied.
Collapse
Affiliation(s)
| | - Gretchen N Neigh
- Emory University, Department of Physiology, United States; Emory University, Department of Psychiatry & Behavioral Sciences, United States.
| |
Collapse
|
49
|
Williamson DL, Li Z, Tuder RM, Feinstein E, Kimball SR, Dungan CM. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J Appl Physiol (1985) 2014; 117:246-56. [PMID: 24876363 DOI: 10.1152/japplphysiol.01350.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-type (WT) vs. knockout (KO) mice, under conditions of altered nutrient intake [fasted and fed or diet-induced obesity (10% vs. 60% fat diet)]. Despite higher (P < 0.05) S6K1 and 4E-BP1 phosphorylation, two models of obesity (ob/ob and diet-induced) displayed elevated (P < 0.05) skeletal muscle REDD1 expression compared with lean or low-fat-fed mouse muscle under fasted conditions. The ob/ob mice displayed elevated REDD1 expression (P < 0.05) that coincided with aberrant mTORC1 signaling (hyperactive S6K1, low raptor-mTOR binding, elevated Rheb GTP; P < 0.05) under fasted conditions, compared with the lean, which persisted in a dysregulated fashion under fed conditions. REDD1 KO mice gained limited body mass on a high-fat diet, although S6K1 and 4E-BP1 phosphorylation remained elevated (P < 0.05) in both the low-fat and high-fat-fed KO vs. WT mice. Similarly, the REDD1 KO mouse muscle displayed blunted mTORC1 signaling responses (S6K1 and 4E-BP1, raptor-mTOR binding) and circulating insulin under fed conditions vs. the robust responses (P < 0.05) in the WT fed mouse muscle. These studies suggest that REDD1 in skeletal muscle may serve to limit hyperactive mTORC1, which promotes aberrant mTORC1 signaling responses during altered nutrient states.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York;
| | - Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals, Ness Ziona, Israel; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
50
|
Turner D, Luzio S, Gray BJ, Dunseath G, Rees ED, Kilduff LP, Campbell MD, West DJ, Bain SC, Bracken RM. Impact of single and multiple sets of resistance exercise in type 1 diabetes. Scand J Med Sci Sports 2014; 25:e99-109. [DOI: 10.1111/sms.12202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2014] [Indexed: 01/25/2023]
Affiliation(s)
- D. Turner
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering; Swansea University; Swansea UK
- Diabetes Research Group; College of Medicine; Swansea University; Swansea UK
| | - S. Luzio
- Diabetes Research Group; College of Medicine; Swansea University; Swansea UK
- Abertawe Bro Morgannwg University Health Board; Singleton Hospital; Swansea UK
| | - B. J. Gray
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering; Swansea University; Swansea UK
- Diabetes Research Group; College of Medicine; Swansea University; Swansea UK
| | - G. Dunseath
- Diabetes Research Group; College of Medicine; Swansea University; Swansea UK
| | - E. D. Rees
- Abertawe Bro Morgannwg University Health Board; Singleton Hospital; Swansea UK
| | - L. P. Kilduff
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering; Swansea University; Swansea UK
| | - M. D. Campbell
- Department of Sport; Exercise and Rehabilitation; Faculty of Health and Life Sciences; Northumbria University; Newcastle-upon-Tyne UK
| | - D. J. West
- Department of Sport; Exercise and Rehabilitation; Faculty of Health and Life Sciences; Northumbria University; Newcastle-upon-Tyne UK
| | - S. C. Bain
- Diabetes Research Group; College of Medicine; Swansea University; Swansea UK
- Abertawe Bro Morgannwg University Health Board; Singleton Hospital; Swansea UK
| | - R. M. Bracken
- Applied Sports, Technology, Exercise and Medicine Research Centre, College of Engineering; Swansea University; Swansea UK
- Diabetes Research Group; College of Medicine; Swansea University; Swansea UK
| |
Collapse
|