1
|
Jiang Y, Zhu H, Gong F. Why does GLP-1 agonist combined with GIP and/or GCG agonist have greater weight loss effect than GLP-1 agonist alone in obese adults without type 2 diabetes? Diabetes Obes Metab 2025; 27:1079-1095. [PMID: 39592891 DOI: 10.1111/dom.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Obesity is a chronic condition demanding effective treatment strategies, among which pharmacotherapy plays a critical role. As glucagon-like peptide-1 (GLP-1) agonist approved by the Food and Drug Administration (FDA) for long-term weight management in adults with obesity, liraglutide and semaglutide have great weight loss effect through reducing food intake and delaying gastric emptying. The emergence of unimolecular polypharmacology, which utilizes single molecules to simultaneously target multiple receptors or pathways, marked a revolutionary improvement in GLP-1-based obesity pharmacotherapy. The dual agonist tirzepatide activates both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptors and has shown enhanced potency for weight loss compared to conventional GLP-1 mono agonist. Furthermore, emerging data suggests that unimolecular GLP-1/glucagon (GCG) dual agonist, as well as GLP-1/GIP/GCG triple agonist, may offer superior weight loss efficacy over GLP-1 agonist. This review summarizes the comprehensive mechanisms underlying the pronounced advantages of GLP-1/GIP dual agonist, GLP-1/GCG dual agonist and GLP-1/GIP/GCG triple agonist over GLP-1 mono agonist in weight reduction in obese adults without type 2 diabetes. A deeper understanding of these unimolecular multitargeting GLP-1-based agonists will provide insights for their clinical application and guide the development of new drugs for obesity treatment.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Jensen MH, Sanni SJ, Riber D, Holst JJ, Rosenkilde MM, Sparre-Ulrich AH. AT-7687, a novel GIPR peptide antagonist, combined with a GLP-1 agonist, leads to enhanced weight loss and metabolic improvements in cynomolgus monkeys. Mol Metab 2024; 88:102006. [PMID: 39128651 PMCID: PMC11382121 DOI: 10.1016/j.molmet.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVES Obesity represents a global health crisis with significant patient burdens and healthcare costs. Despite the advances with glucagon-like peptide-1 (GLP-1) receptor agonists in treating obesity, unmet needs remain. This study characterizes a novel glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide antagonist, AT-7687, evaluating its potential to enhance obesity treatment. METHODS We assessed the in vitro potency and pharmacokinetics of AT-7687, alongside its therapeutic effects when administered subcutaneously (SC) alone and in combination with liraglutide to high-fat-diet-fed obese non-human primates (NHP). The study spanned a 42-day treatment period and a 15-day washout period. RESULTS AT-7687 demonstrated a subnanomolar cAMP antagonistic potency (pKB of 9.5) in HEK-293 cells and a 27.4 h half-life in NHPs. It effectively maintained weight stability in obese monkeys, whereas placebo recipients had an 8.6% weight increase by day 42 (P = 0.01). Monotherapy with liraglutide resulted in a 12.4% weight reduction compared to placebo (P = 0.03) and combining AT-7687 with liraglutide led to a 16.3% weight reduction (P = 0.0002). The combination therapy significantly improved metabolic markers, reducing insulin levels by 52% (P = 0.008), glucose by 30% (P = 0.02), triglycerides by 39% (P = 0.05), total cholesterol by 29% (P = 0.03), and LDL cholesterol by 48% (P = 0.003) compared to placebo. AT-7687 treatment was well tolerated and not associated with any side effects. CONCLUSIONS This study underscores the potential of AT-7687 as a promising addition to current obesity treatments.
Collapse
Affiliation(s)
- Mette H Jensen
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Samra J Sanni
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Ditte Riber
- Antag Therapeutics Aps, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
4
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
McGlone ER, Hope DCD, Davies I, Dore M, Goldin R, Jones B, Liu Z, Li JV, Vorkas PA, Khoo B, Carling D, Minnion J, Bloom SR, Tan TMM. Chronic treatment with glucagon-like peptide-1 and glucagon receptor co-agonist causes weight loss-independent improvements in hepatic steatosis in mice with diet-induced obesity. Biomed Pharmacother 2024; 176:116888. [PMID: 38861859 DOI: 10.1016/j.biopha.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C D Hope
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marian Dore
- Genomics facility, MRC Laboratory of Medical Sciences (LMS), Imperial College London, London, UK
| | - Rob Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Panagiotis A Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (INAB|CERTH), Thessaloniki 57001, Greece; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - David Carling
- Cellular Stress group, MRC LMS, Imperial College London, London, UK
| | - James Minnion
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
6
|
McGlone ER, Tan TMM. Glucagon-based therapy for people with diabetes and obesity: What is the sweet spot? Peptides 2024; 176:171219. [PMID: 38615717 DOI: 10.1016/j.peptides.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
7
|
Kim SQ, Kim J, Choi M, Kim Y, Kim S, Kim KH. Effect of combined administration of Acyl-CoA: Cholesterol acyltransferase 1 inhibitor and glucagon-like peptide 1 receptor agonist on a rodent model of diet-induced obesity. Biochem Biophys Res Commun 2023; 688:149164. [PMID: 37951155 DOI: 10.1016/j.bbrc.2023.149164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023]
Abstract
A glucagon-like peptide 1 receptor agonist (GLP-1 RA) semaglutide was approved for the treatment of obesity by the Food and Drug Administration. However, it can cause gastrointestinal events at high doses, limiting its broader use. Combining drugs with multiple mechanisms of action could enhance the weight-reducing effects while minimizing side effects. To this end, we investigated the combined effects of semaglutide and avasimibe, an acyl-CoA:cholesterol acyltransferase 1 (ACAT1) inhibitor, on weight reduction in diet-induced obesity mice. Two cohorts of mice were used: In cohort 1, mice were fed a high-fat (HF) diet for 12 weeks and then randomly assigned to the vehicle, avasimibe [10 mg/kg body weight (BW)], semaglutide (0.4 mg/kg BW), or combination groups. The drugs were administered via subcutaneous (sc) injections on a daily basis. In cohort 2, mice were fed an HF diet for 8 weeks and randomly assigned to the same four groups, but avasimibe was administered at a dose of 20 mg/kg BW, and the drugs were administered every 3 days. In cohort 1, semaglutide initially reduced food intake initially, but this effect was diminished with prolonged administration. Avasimibe, on the other hand, did not affect food intake but prevented weight gain to a lesser extent than semaglutide. Importantly, the combination treatment resulted in the greatest percentage of body weight reduction, along with lower plasma glucose and leptin levels compared to the semaglutide single-treatment group. Cohort 2 confirmed that the superior weight loss in the combination group compared to the other three groups was largely due to a significant reduction in fat mass. Histological analysis of inguinal adipose tissue showed smaller adipocyte size across all treatment groups compared to the vehicle group, with no significant differences among the treatment groups. Collectively, these findings suggest combining semaglutide and avasimibe could be an effective approach to weight management.
Collapse
Affiliation(s)
- Sora Q Kim
- Department of Nutrition Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeonghoon Kim
- EFIL BioScience Inc., Bando Ivyvalley, Cheonggyesan-ro, Soojeong-gu, Seongnam-si, Gyeonggi-do, 13105, Republic of Korea
| | - Mulim Choi
- EFIL BioScience Inc., Bando Ivyvalley, Cheonggyesan-ro, Soojeong-gu, Seongnam-si, Gyeonggi-do, 13105, Republic of Korea
| | - Young Kim
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Shin Kim
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Wang C, Gong B, Zhu Q, Han J, Sun L. Novel GLP-1(28-36) amide-derived hybrid peptide A3 with weight loss and hypoglycemic activities. Eur J Pharmacol 2023; 961:176200. [PMID: 37979828 DOI: 10.1016/j.ejphar.2023.176200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) has gained much attention in the last decade for the treatment of type 2 diabetes. Accumulating evidence indicates that some metabolites of GLP-1 have biological activities that might contribute to the pleiotropic effects of GLP-1 independent of the GLP-1 receptor. The hypoglycemic and weight-reducing effects of the reported metabolites and modifications still need to be confirmed. In this study, we started from the C-terminal nonapeptide GLP-1(28-36) amide and developed a series of GLP-1(28-36) amide-derived hybrid peptides. Our findings of biological activity evaluation in INS-1 cells, streptozotocin-induced diabetic and diet-induced obesity mice confirmed a novel hybrid peptide, A3, and provided a new perspective in the development of new drugs from peptide metabolites.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Binbin Gong
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, PR China
| | - Qianqian Zhu
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Jing Han
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Lidan Sun
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| |
Collapse
|
9
|
Kim J, Chang N, Kim Y, Lee J, Oh D, Choi J, Kim O, Kim S, Choi M, Lee J, Lee J, Kim J, Cho M, Kim M, Lee K, Hwang D, Sa JK, Park S, Baek S, Im D. The Novel Tetra-Specific Drug C-192, Conjugated Using UniStac, Alleviates Non-Alcoholic Steatohepatitis in an MCD Diet-Induced Mouse Model. Pharmaceuticals (Basel) 2023; 16:1601. [PMID: 38004466 PMCID: PMC10674394 DOI: 10.3390/ph16111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a complex disease resulting from chronic liver injury associated with obesity, type 2 diabetes, and inflammation. Recently, the importance of developing multi-target drugs as a strategy to address complex diseases such as NASH has been growing; however, their manufacturing processes remain time- and cost-intensive and inefficient. To overcome these limitations, we developed UniStac, a novel enzyme-mediated conjugation platform for multi-specific drug development. UniStac demonstrated high conjugation yields, optimal thermal stabilities, and robust biological activities. We designed a tetra-specific compound, C-192, targeting glucagon-like peptide 1 (GLP-1), glucagon (GCG), fibroblast growth factor 21 (FGF21), and interleukin-1 receptor antagonist (IL-1RA) simultaneously for the treatment of NASH using UniStac. The biological activity and treatment efficacy of C-192 were confirmed both in vitro and in vivo using a methionine-choline-deficient (MCD) diet-induced mouse model. C-192 exhibited profound therapeutic efficacies compared to conventional drugs, including liraglutide and dulaglutide. C-192 significantly improved alanine transaminase levels, triglyceride accumulation, and the non-alcoholic fatty liver disease activity score. In this study, we demonstrated the feasibility of UniStac in creating multi-specific drugs and confirmed the therapeutic potential of C-192, a drug that integrates multiple mechanisms into a single molecule for the treatment of NASH.
Collapse
Affiliation(s)
- Jihye Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Nakho Chang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Yunki Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaehyun Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Daeseok Oh
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaeyoung Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Onyou Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Sujin Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Myongho Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junyeob Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junghwa Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jungyul Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minji Cho
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minsu Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Kwanghwan Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Dukhyun Hwang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungjin Park
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Seungjae Baek
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daeseong Im
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| |
Collapse
|
10
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Kayed A, Melander SA, Khan S, Andreassen KV, Karsdal MA, Henriksen K. The Effects of Dual GLP-1/Glucagon Receptor Agonists with Different Receptor Selectivity in Mouse Models of Obesity and Nonalcoholic Steatohepatitis. J Pharmacol Exp Ther 2023; 384:406-416. [PMID: 36418115 DOI: 10.1124/jpet.122.001440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
There is an unmet need for nonalcoholic steatohepatitis (NASH) therapeutics, considering the increase in global obesity. Dual GLP-1/glucagon (GCG) receptor agonists have shown beneficial effects in circumventing the pathophysiology linked to NASH. However, dual GLP-1/GCG receptor agonists as a treatment of metabolic diseases need delicate optimization to maximize metabolism effects. The impacts of increased relative GLP-1/GCG receptor activity in NASH settings must be addressed to unleash the full potential. In this study, we investigated the potential of OXM-104 and OXM-101, two dual GLP-1/GCG receptor agonists with different receptor selectivity in the setting of NASH, to establish the relative receptor activities leading to the best metabolic outcome efficacies to reduce the gap between surgery and pharmacological interventions. We developed dual GLP-1/GCG receptor agonists with selective agonism. Despite the improved metabolic effects of OXM-101, we explored a hyperglycemic risk attached to increased relative GCG receptor agonism. Thirty-eight days of treatment with a dual GLP-1/GCG receptor agonist, OXM-104, with increased GLP-1 receptor agonism in obese NASH mice was found to ameliorate the development of NASH by lowering body weight, improving liver and lipid profiles, reducing the levels of the fibrosis marker PRO-C4, and improving glucose control. Similarly, dual GLP-1/GCG receptor agonist OXM-101 with increased relative GCG receptor agonism ameliorated NASH by eliciting dramatic body weight reductions to OXM-104, reflected in the improvement of liver and lipid enzymes and reduced PRO-C4 levels. Optimizing dual GLP-1/GCG agonists with increased relative GCG receptor agonism can provide the setting for future agonists to treat obesity, type 2 diabetes, and NASH without having a hyperglycemic risk. SIGNIFICANT STATEMENT: There is an unmet need for nonalcoholic steatohepatitis (NASH) therapeutics, considering the increase in global obesity. Dual GLP-1/glucagon (GCG) receptor agonists have shown beneficial effects in circumventing the pathophysiology linked to NASH. Therefore, this study has examined OXM-104 and OXM-101, two dual GLP-1/GCG receptor agonists in the setting of NASH, to establish the relative receptor activities leading to the best metabolic outcome efficacies to reduce the gap between surgery and pharmacological interventions.
Collapse
Affiliation(s)
- Ashref Kayed
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Simone Anna Melander
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Suheb Khan
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Vietz Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
12
|
Kosmalski M, Deska K, Bąk B, Różycka-Kosmalska M, Pietras T. Pharmacological Support for the Treatment of Obesity-Present and Future. Healthcare (Basel) 2023; 11:433. [PMID: 36767008 PMCID: PMC9914730 DOI: 10.3390/healthcare11030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Obesity is a growing civilization problem, associated with a number of negative health consequences affecting almost all tissues and organs. Currently, obesity treatment includes lifestyle modifications (including diet and exercise), pharmacologic therapies, and in some clinical situations, bariatric surgery. These treatments seem to be the most effective method supporting the treatment of obesity. However, they are many limitations to the options, both for the practitioners and patients. Often the comorbidities, cost, age of the patient, and even geographic locations may influence the choices. The pharmacotherapy of obesity is a fast-growing market. Currently, we have at our disposal drugs with various mechanisms of action (directly reducing the absorption of calories-orlistat, acting centrally-bupropion with naltrexone, phentermine with topiramate, or multidirectional-liraglutide, dulaglutide, semaglutide). The drugs whose weight-reducing effect is used in the course of the pharmacotherapy of other diseases (e.g., glucose-sodium cotransporter inhibitors, exenatide) are also worth mentioning. The obesity pharmacotherapy is focusing on novel therapeutic agents with improved safety and efficacy profiles. These trends also include an assessment of the usefulness of the weight-reducing properties of the drugs previously used for other diseases. The presented paper is an overview of the studies related to both drugs currently used in the pharmacotherapy of obesity and those undergoing clinical trials, taking into account the individual approach to the patient.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
| | - Kacper Deska
- Students’ Scientific Association Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
| | - Bartłomiej Bąk
- 2nd Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warszawa, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Łódź, Poland
- 2nd Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, 02-957 Warszawa, Poland
| |
Collapse
|
13
|
GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24021703. [PMID: 36675217 PMCID: PMC9865319 DOI: 10.3390/ijms24021703] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
To date, non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease, affecting up to 70% of patients with diabetes. Currently, there are no specific drugs available for its treatment. Beyond their anti-hyperglycemic effect and the surprising role of cardio- and nephroprotection, GLP-1 receptor agonists (GLP-1 RAs) have shown a significant impact on body weight and clinical, biochemical and histological markers of fatty liver and fibrosis in patients with NAFLD. Therefore, GLP-1 RAs could be a weapon for the treatment of both diabetes mellitus and NAFLD. The aim of this review is to summarize the evidence currently available on the role of GLP-1 RAs in the treatment of NAFLD and to hypothesize potential future scenarios.
Collapse
|
14
|
Wang Y, Wu Y, Wang A, Wang A, Alkhalidy H, Helm R, Zhang S, Ma H, Zhang Y, Gilbert E, Xu B, Liu D. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front Nutr 2022; 9:1051452. [PMID: 36386896 PMCID: PMC9664001 DOI: 10.3389/fnut.2022.1051452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yajun Wu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aihua Wang
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Helm
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Gilbert
- School of Animal Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Drug Discovery Center, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients 2022; 14:nu14183775. [PMID: 36145148 PMCID: PMC9503433 DOI: 10.3390/nu14183775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The increasing prevalence of obesity and type 2 diabetes (T2DM) is provoking an important socioeconomic burden mainly in the form of cardiovascular disease (CVD). One successful strategy is the so-called metabolic surgery whose beneficial effects are beyond dietary restrictions and weight loss. One key underlying mechanism behind this surgery is the cooperative improved action of the preproglucagon-derived hormones, glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) which exert their functions through G protein-coupled receptors (GPCR). Great success has been reached with therapies based on the GLP-1 receptor monoagonism; therefore, a logical and rational approach is the use of the dual and triagonism of GCPC to achieve complete metabolic homeostasis. The present review describes novel findings regarding the complex biology of the preproglucagon-derived hormones, their signaling, and the drug development of their analogues, especially those acting as dual and triagonists. Moreover, the main investigations into animal models and ongoing clinical trials using these unimolecular dual and triagonists are included which have demonstrated their safety, efficacy, and beneficial effects on the CV system. These therapeutic strategies could greatly impact the treatment of CVD with unprecedented benefits which will be revealed in the next years.
Collapse
|
16
|
Araki E, Sakaguchi M, Fukuda K, Kondo T. Potential of a glucagon-like peptide-1 receptor/glucose-dependent insulinotropic polypeptide receptor/glucagon receptor triagonist for the treatment of obesity and type 2 diabetes. J Diabetes Investig 2022; 13:1958-1960. [PMID: 36039895 DOI: 10.1111/jdi.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Triagonists of GLP-1R/ GIPR /GCGR, including SAR441255, bind to each receptor and induce specific effects through each receptor signaling pathway, thus result in weight loss and glycemic control in obese T2D animal models.
Collapse
Affiliation(s)
- Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Fukuda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Nestor JJ, Parkes D, Feigh M, Suschak JJ, Harris MS. Effects of ALT-801, a GLP-1 and glucagon receptor dual agonist, in a translational mouse model of non-alcoholic steatohepatitis. Sci Rep 2022; 12:6666. [PMID: 35461369 PMCID: PMC9035150 DOI: 10.1038/s41598-022-10577-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
Body weight loss of ≥ 10% improves the metabolic derangements and liver disease in the majority of non-alcoholic steatohepatitis (NASH) patients, suggesting metabolic modulators may be effective in controlling disease. The pharmacodynamics of ALT-801, a GLP-1/glucagon receptor dual agonist optimized for NASH and weight loss, were compared to semaglutide (GLP-1 receptor agonist) and elafibranor (peroxisome proliferator-activated receptor, PPAR-α/δ, agonist) in a biopsy-confirmed, diet-induced obese (DIO) mouse model of NASH (DIO-NASH). Male C57BL/6J mice were fed Amylin Liver NASH (AMLN) diet for 32 weeks. Animals with biopsy-confirmed steatosis and fibrosis received ALT-801, semaglutide, elafibranor, or vehicle daily for 12 weeks while maintained on the AMLN diet. Study endpoints included body and liver weight, liver and plasma total cholesterol and triglycerides, plasma aminotransferases, histological analysis of liver steatosis, inflammation (galectin-3) and fibrosis (collagen type 1 alpha 1), and evaluation of individual animal changes in composite Non-alcoholic Fatty Liver Disease Activity Score (NAS), and fibrosis stage. ALT-801 demonstrated significant reductions in body weight (approx. 25%), plasma aminotransferases, plasma total cholesterol and liver triglycerides/total cholesterol in conjunction with improved liver steatosis, with greater reductions (p < 0.05) compared to semaglutide and elafibranor. ALT-801 significantly reduced the inflammation marker galectin-3 and the fibrosis marker collagen type 1 alpha 1 vs. vehicle (p < 0.05), with ALT-801 producing greater reductions in galectin-3 vs. elafibranor (p < 0.05). Importantly, all animals treated with ALT-801 significantly improved composite NAS compared to the active controls. This study provides evidence for a potential role for ALT-801 in the therapeutic treatment of NASH.
Collapse
Affiliation(s)
- John J Nestor
- Altimmune Inc, 910 Clopper Road, Suite 201S, Gaithersburg, MD, 20878, USA
| | - David Parkes
- DGP Scientific Inc., 156 Melanie Way, Del Mar, CA, 92014, USA
| | - Michael Feigh
- Gubra Aps, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - John J Suschak
- Altimmune Inc, 910 Clopper Road, Suite 201S, Gaithersburg, MD, 20878, USA
| | - M Scott Harris
- Altimmune Inc, 910 Clopper Road, Suite 201S, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
18
|
Del Prato S, Gallwitz B, Holst JJ, Meier JJ. The incretin/glucagon system as a target for pharmacotherapy of obesity. Obes Rev 2022; 23:e13372. [PMID: 34713962 PMCID: PMC9286339 DOI: 10.1111/obr.13372] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a chronic, multifactorial, relapsing disease. Despite multicomponent lifestyle interventions, including pharmacotherapy, maintaining bodyweight loss is challenging for many people. The pathophysiology of obesity is complex, and currently approved pharmacotherapies only target a few of the many pathways involved; thus, single-targeting agents have limited efficacy. Proglucagon-derived peptides, glucagon, and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), represent attractive targets for managing obesity and metabolic disorders because they may have direct roles in multiple mechanisms including satiety, energy homeostasis, and lipolytic activity. Unimolecular dual and triple agonists targeting glucagon and incretin hormone receptors have been shown to promote bodyweight loss, lower glucose levels, and reduce food intake in animal models of obesity. Multiple dual receptor agonists are in clinical development for the treatment of obesity, including GLP-1/GIP and GLP-1/glucagon receptor agonists. The extent to which glucagon contributes to treatment effects remains to be understood, but it may promote bodyweight loss by reducing food intake, while concomitant GLP-1 receptor agonism ensures normal glucose control. Further research is required to fully understand the molecular mechanisms of action and metabolic effects of both dual and triple receptor agonists.
Collapse
Affiliation(s)
- Stefano Del Prato
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Baptist Gallwitz
- Department of Internal Medicine IVEberhard Karls UniversityTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center MunichUniversity of TübingenTübingenGermany
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juris J. Meier
- Division of Diabetology, Katholisches Klinikum Bochum, St. Josef HospitalRuhr UniversityBochumGermany
| |
Collapse
|
19
|
Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, Kloeckener T, Lorenz K, Moessinger C, Eriksson O, Velikyan I, Pierrou S, Johansson L, Dietert G, Dietz-Baum Y, Kissner T, Nowotny I, Einig C, Jan C, Rharbaoui F, Gassenhuber J, Prochnow HP, Agueusop I, Porksen N, Smith WB, Nitsche A, Konkar A. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab 2022; 34:59-74.e10. [PMID: 34932984 DOI: 10.1016/j.cmet.2021.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
Collapse
Affiliation(s)
- Martin Bossart
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany.
| | - Michael Wagner
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Andreas Evers
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | | | - Katrin Lorenz
- Synthetic Medicinal Modalities, Integrated Drug Discovery Germany, Sanofi, Frankfurt, Germany
| | | | - Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden; Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | - Irene Nowotny
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | - Christelle Jan
- Clinical Sciences & Operations, Sanofi, Chilly-Mazarin, France
| | - Faiza Rharbaoui
- Translational Medicine & Early Development, Sanofi, Frankfurt, Germany
| | | | | | | | | | - William B Smith
- NOCCR Alliance for Multispecialty Research (AMR), Knoxville, TN, USA
| | | | | |
Collapse
|
20
|
Recombinant human GLP-1 beinaglutide regulates lipid metabolism of adipose tissues in diet-induced obese mice. iScience 2021; 24:103382. [PMID: 34841227 PMCID: PMC8605346 DOI: 10.1016/j.isci.2021.103382] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
GLP-1 analogs are a class of glucose-lowering agents with multiple benefits in diabetes, but its role in adipose tissues remains to be elucidated. The aim of this study was to determine the action of recombinant human GLP-1 (rhGLP-1) Beinaglutide (BN) in the insulin sensitivity and lipid metabolism of adipose tissues. We have shown that, after BN injection, obese mice displayed lower body weight, fat mass, and plasma lipid levels. In addition, BN promoted the insulin sensitivity in the white adipose tissues. Furthermore, we have found that the BN treatment caused significant changes in content and composition of different lipid classes, including glycerolipids, glycerophospholipids, and sphingolipids, as well as expression of genes in lipid metabolic pathways in the adipose tissues. Taken together, our data demonstrate that BN could resist HFD-induced obesity by targeting the composition of major lipid classes and the expression of genes in lipid metabolism of adipose tissues. Recombinant human GLP-1 Beinaglutide (BN) reduces high-fat-diet-induced obesity BN increases insulin sensitivity of adipocytes in vivo and in vitro BN alters lipidomic and transcriptomic profiles in adipose tissues of obese mice BN promotes thermogenic gene expression in adipose tissues
Collapse
|
21
|
Petrov MS. Post-pancreatitis diabetes mellitus: investigational drugs in preclinical and clinical development and therapeutic implications. Expert Opin Investig Drugs 2021; 30:737-747. [PMID: 33993813 DOI: 10.1080/13543784.2021.1931118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Post-pancreatitis diabetes mellitus is one of the most common types of secondary diabetes. The pharmaceutical armamentarium in the field of diabetology can be broadened if the design of novel drugs is informed by pathogenetic insights from studies on post-pancreatitis diabetes mellitus.Areas covered: The article provides an overview of preclinical and clinical studies of compounds selectively antagonizing the gastric inhibitory peptide receptor, simultaneously stimulating both the glucagon-like peptide-1 and glucagon receptors, and activating ketogenesis.Expert opinion: The current pharmacotherapy for post-pancreatitis diabetes mellitus is relatively ineffective. This type of diabetes represents a unique platform for rigorous, efficient, and practical search for glucose-lowering therapeutic candidates. Various methods of gastric inhibitory peptide receptor (expressed in the pancreas) antagonism have undergone extensive preclinical testing in diabetes, with promising compounds being trialed in man. Molecular mimicry with oxyntomodulin ─ an extra-pancreatic hormone homologous with pancreatic hormone glucagon and involved in the regulation of exocrine pancreatic function ─ could be harnessed. The emerging findings of a salutary effect of ketosis mimetics in people with prediabetes set the stage for a novel approach to preventing diabetes.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Eriksson O, Velikyan I, Haack T, Bossart M, Laitinen I, Larsen PJ, Berglund JE, Antoni G, Johansson L, Pierrou S, Tillner J, Wagner M. Imaging of the Glucagon Receptor in Subjects with Type 2 Diabetes. J Nucl Med 2020; 62:833-838. [PMID: 33097629 DOI: 10.2967/jnumed.118.213306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Despite the importance of the glucagon receptor (GCGR) in disease and in pharmaceutical drug development, there is a lack of specific and sensitive biomarkers of its activation in humans. The PET radioligand 68Ga-DO3A-VS-Tuna-2 (68Ga-Tuna-2) was developed to yield a noninvasive imaging marker for GCGR target distribution and drug target engagement in humans. Methods: The biodistribution and dosimetry of 68Ga-Tuna-2 was assessed by PET/CT in 13 individuals with type 2 diabetes as part of a clinical study assessing the occupancy of the dual GCGR/glucagon like peptide-1 receptor agonist SAR425899. Binding of 68Ga-Tuna-2 in liver and reference tissues was evaluated and correlated to biometrics (e.g., weight or body mass index) or other biomarkers (e.g., plasma glucagon levels). Results: 68Ga-Tuna-2 binding was seen primarily in the liver, which is in line with the strong expression of GCGR on hepatocytes. The kidneys demonstrated high excretion-related retention, whereas all other tissue demonstrated rapid washout. The SUV55 min (SUV during the last 10-min time frame, 50-60 min after administration) uptake endpoint was sensitive to endogenous levels of glucagon. 68Ga-Tuna-2 exhibited a safe dosimetry profile and no adverse events after intravenous administration. Conclusion: 68Ga-Tuna-2 can be used for safe and accurate assessment of the GCGR in human. It may serve as an important tool in understanding the in vivo pharmacology of novel drugs engaging the GCGR.
Collapse
Affiliation(s)
- Olof Eriksson
- Antaros Medical AB, Uppsala, Sweden.,Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,Akademiska Sjukhuset, Uppsala, Sweden
| | - Torsten Haack
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| | - Martin Bossart
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| | | | - Philip J Larsen
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| | | | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,Akademiska Sjukhuset, Uppsala, Sweden
| | | | | | | | - Michael Wagner
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| |
Collapse
|
23
|
Receptor occupancy of dual glucagon-like peptide 1/glucagon receptor agonist SAR425899 in individuals with type 2 diabetes. Sci Rep 2020; 10:16758. [PMID: 33028880 PMCID: PMC7542159 DOI: 10.1038/s41598-020-73815-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Unimolecular dual agonists for the glucagon-like peptide 1 receptor (GLP1R) and glucagon receptor (GCGR) are emerging as a potential new class of important therapeutics in type 2 diabetes (T2D). Reliable and quantitative assessments of in vivo occupancy on each receptor would improve the understanding of the efficacy of this class of drugs. In this study we investigated the target occupancy of the dual agonist SAR425899 at the GLP1R in pancreas and GCGR in liver by Positron Emission Tomography/Computed Tomography (PET/CT). Patients with T2D were examined by [68Ga]Ga-DO3A-Tuna-2 and [68Ga]Ga-DO3A-Exendin4 by PET, to assess the GCGR in liver and GLP1R in pancreas, respectively. Follow up PET examinations were performed after 17 (GCGR) and 20 (GLP-1R) days of treatment with SAR425899, to assess the occupancy at each receptor. Six out of 13 included patients prematurely discontinued the study due to adverse events. SAR425899 at a dose of 0.2 mg daily demonstrated an average GCGR occupancy of 11.2 ± 14.4% (SD) in N = 5 patients and a GLP1R occupancy of 49.9 ± 13.3%. Fasting Plasma Glucose levels (- 3.30 ± 1.14 mmol/L) and body weight (- 3.87 ± 0.87%) were lowered under treatment with SAR425899. In conclusion, SAR425899 demonstrated strong interactions at the GLP1R, but no clear occupancy at the GCGR. The study demonstrates that quantitative target engagement of dual agonists can be assessed by PET.
Collapse
|
24
|
Kalinovich A, Dehvari N, Åslund A, van Beek S, Halleskog C, Olsen J, Forsberg E, Zacharewicz E, Schaart G, Rinde M, Sandström A, Berlin R, Östenson CG, Hoeks J, Bengtsson T. Treatment with a β-2-adrenoceptor agonist stimulates glucose uptake in skeletal muscle and improves glucose homeostasis, insulin resistance and hepatic steatosis in mice with diet-induced obesity. Diabetologia 2020; 63:1603-1615. [PMID: 32472192 PMCID: PMC7351816 DOI: 10.1007/s00125-020-05171-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Chronic stimulation of β2-adrenoceptors, opposite to acute treatment, was reported to reduce blood glucose levels, as well as to improve glucose and insulin tolerance in rodent models of diabetes by essentially unknown mechanisms. We recently described a novel pathway that mediates glucose uptake in skeletal muscle cells via stimulation of β2-adrenoceptors. In the current study we further explored the potential therapeutic relevance of β2-adrenoceptor stimulation to improve glucose homeostasis and the mechanisms responsible for the effect. METHODS C57Bl/6N mice with diet-induced obesity were treated both acutely and for up to 42 days with a wide range of clenbuterol dosages and treatment durations. Glucose homeostasis was assessed by glucose tolerance test. We also measured in vivo glucose uptake in skeletal muscle, insulin sensitivity by insulin tolerance test, plasma insulin levels, hepatic lipids and glycogen. RESULTS Consistent with previous findings, acute clenbuterol administration increased blood glucose and insulin levels. However, already after 4 days of treatment, beneficial effects of clenbuterol were manifested in glucose homeostasis (32% improvement of glucose tolerance after 4 days of treatment, p < 0.01) and these effects persisted up to 42 days of treatment. These favourable metabolic effects could be achieved with doses as low as 0.025 mg kg-1 day-1 (40 times lower than previously studied). Mechanistically, these effects were not due to increased insulin levels, but clenbuterol enhanced glucose uptake in skeletal muscle in vivo both acutely in lean mice (by 64%, p < 0.001) as well as during chronic treatment in diet-induced obese mice (by 74%, p < 0.001). Notably, prolonged treatment with low-dose clenbuterol improved whole-body insulin sensitivity (glucose disposal rate after insulin injection increased up to 1.38 ± 0.31%/min in comparison with 0.15 ± 0.36%/min in control mice, p < 0.05) and drastically reduced hepatic steatosis (by 40%, p < 0.01) and glycogen (by 23%, p < 0.05). CONCLUSIONS/INTERPRETATION Clenbuterol improved glucose tolerance after 4 days of treatment and these effects were maintained for up to 42 days. Effects were achieved with doses in a clinically relevant microgram range. Mechanistically, prolonged treatment with a low dose of clenbuterol improved glucose homeostasis in insulin resistant mice, most likely by stimulating glucose uptake in skeletal muscle and improving whole-body insulin sensitivity as well as by reducing hepatic lipids and glycogen. We conclude that selective β2-adrenergic agonists might be an attractive potential treatment for type 2 diabetes. This remains to be confirmed in humans. Graphical abstract.
Collapse
Affiliation(s)
- Anastasia Kalinovich
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
- Atrogi AB, Stockholm, Sweden
| | - Nodi Dehvari
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
- Atrogi AB, Stockholm, Sweden
| | - Alice Åslund
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
| | - Sten van Beek
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
| | - Carina Halleskog
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
- Atrogi AB, Stockholm, Sweden
| | - Jessica Olsen
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
- Atrogi AB, Stockholm, Sweden
| | | | - Evelyn Zacharewicz
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
| | - Mia Rinde
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
| | - Anna Sandström
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden
- Atrogi AB, Stockholm, Sweden
| | | | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Endocrine and Diabetes Unit, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
| | - Tore Bengtsson
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20B, Arrhenius laboratories F3, 10691, Stockholm, Sweden.
| |
Collapse
|
25
|
Kannt A, Madsen AN, Kammermeier C, Elvert R, Klöckener T, Bossart M, Haack T, Evers A, Lorenz K, Hennerici W, Rocher C, Böcskei Z, Guillemot JC, Mikol V, Pattou F, Staels B, Wagner M. Incretin combination therapy for the treatment of non-alcoholic steatohepatitis. Diabetes Obes Metab 2020; 22:1328-1338. [PMID: 32196896 DOI: 10.1111/dom.14035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
AIMS To test specific mono-agonists to the glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic peptide receptor (GIPR), individually and in combination, in a mouse model of diet-induced non-alcoholic steatohepatitis (NASH) and fibrosis in order to decipher the contribution of their activities and potential additive effects to improving systemic and hepatic metabolism. MATERIALS AND METHODS We induced NASH by pre-feeding C57BL/6J mice a diet rich in fat, fructose and cholesterol for 36 weeks. This was followed by 8 weeks of treatment with the receptor-specific agonists 1-GCG (20 μg/kg twice daily), 2-GLP1 (3 μg/kg twice daily) or 3-GIP (30 μg/kg twice daily), or the dual (1 + 2) or triple (1 + 2 + 3) combinations thereof. A dual GLP-1R/GCGR agonistic peptide, 4-dual-GLP1/GCGR (30 μg/kg twice daily), and liraglutide (100 μg/kg twice daily) were included as references. RESULTS Whereas low-dose 1-GCG or 3-GIP alone did not influence body weight, liver lipids and histology, their combination with 2-GLP1 provided additional weight loss, reduction in liver triglycerides and improvement in histological disease activity score. Notably, 4-dual-GLP-1R/GCGR and the triple combination of selective mono-agonists led to a significantly stronger reduction in the histological non-alcoholic fatty liver disease activity score compared to high-dose liraglutide, at the same extent of body weight loss. CONCLUSIONS GCGR and GIPR agonism provide additional, body weight-independent improvements on top of GLP-1R agonism in a murine model of manifest NASH with fibrosis.
Collapse
Affiliation(s)
- Aimo Kannt
- Sanofi Research and Development, Frankfurt, Germany
- Experimental Pharmacology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Frankfurt, Germany
| | | | | | - Ralf Elvert
- Sanofi Research and Development, Frankfurt, Germany
| | | | | | | | | | | | | | - Corinne Rocher
- Sanofi Research and Development, Chilly-Mazarin Cedex, France
| | - Zsolt Böcskei
- Sanofi Research and Development, Chilly-Mazarin Cedex, France
| | | | - Vincent Mikol
- Sanofi Research and Development, Chilly-Mazarin Cedex, France
| | - Francois Pattou
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, Lille, France
| | - Bart Staels
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR1011-EGID, Lille, France
| | | |
Collapse
|
26
|
Evers A, Pfeiffer‐Marek S, Bossart M, Elvert R, Lorenz K, Heubel C, Garea AV, Schroeter K, Riedel J, Stock U, Konkar A, Wagner M. Multiparameter Peptide Optimization toward Stable Triple Agonists for the Treatment of Diabetes and Obesity. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andreas Evers
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Stefania Pfeiffer‐Marek
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Martin Bossart
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Ralf Elvert
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Katrin Lorenz
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Christoph Heubel
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Ana Villar Garea
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Katrin Schroeter
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Jens Riedel
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Ursula Stock
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Anish Konkar
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| | - Michael Wagner
- R&D, Sanofi‐Aventis Deutschland GmbH, Industriepark Höchst Frankfurt am Main D‐65926 Germany
| |
Collapse
|
27
|
Glotfelty EJ, Olson L, Karlsson TE, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson's disease. Expert Opin Investig Drugs 2020; 29:595-602. [PMID: 32412796 PMCID: PMC10477949 DOI: 10.1080/13543784.2020.1764534] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Accumulating evidence supports the evaluation of glucagon-like peptide-1 (GLP-1) receptor (R) agonists for the treatment of the underlying pathology causing Parkinson's Disease (PD). Not only are these effects evident in models of PD and other neurodegenerative disorders but recently in a randomized, double-blind, placebo-controlled clinical trial, a GLP-1R agonist has provided improved cognition motor functions in humans with moderate PD. AREAS COVERED In this mini-review, we describe the development of GLP-1R agonists and their potential therapeutic value in treating PD. Many GLP-1R agonists are FDA approved for the treatment of metabolic disorders, and hence can be rapidly repositioned for PD. Furthermore, we present preclinical data offering insights into the use of monomeric dual- and tri-agonist incretin-based mimetics for neurodegenerative disorders. These drugs combine active regions of GLP-1 with those of glucose-dependent insulinotropic peptide (GIP) and/or glucagon (Gcg). EXPERT OPINION GLP-1Ragonists offer a complementary and enhanced therapeutic value to other drugs used to treat PD. Moreover, the use of the dual- or tri-agonist GLP-1-based mimetics may provide combinatory effects that are even more powerful than GLP-1R agonism alone. We advocate for further investigations into the repurposing of GLP-1R agonists and the development of classes of multi-agonists for PD treatment.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In this review, authors have selected from literature the most recent and suggestive studies on therapy of nonalcoholic fatty liver disease (NAFLD). The selected interventions regulate the action of gastrointestinal peptides, such as gastric inhibitory polypeptide (GIP), nesfatin, peptide YY, cholecystokinin, and glucagon-like peptide 1 (GLP-1). These hormones have been found frequently modified in obesity and/or type 2 diabetes mellitus, morbidities mostly associated with NAFLD. This disease has a very high prevalence worldwide and could evolve in a more severe form, that is, nonalcoholic steatohepatitis, characterized by inflammation and fibrosis. The findings shown by this article describe the metabolic effects of new drugs, mainly but not only, as well of some old substances. RECENT FINDINGS Recent approaches, in animal models or in humans, use synthetic GLP-1 receptor agonists, a centrally administered antibody neutralizing GIP receptor, curcumin, compound being active on nesfatin, resveratrol (antiinflammatory agent), and Ginseg, both of them acting on nesfatin, a cholecystokinin receptor analogue, and finally coffee functioning on YY peptide. SUMMARY The implications of the presented findings, if they are confirmed in larger clinical trials, likely open the door to future application in clinical practice. In fact, nowadays, patients have only diet and article (incl abstract and keywords) exercise as well accepted recommendations. Thus, there are unmet needs to find substances that could really improve the progression of nonalcoholic steatohepatitis toward liver cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples
| | - Clara Balsano
- Department of Clinical Medicine, Life, Health & Environmental Sciences-MESVA, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
29
|
Stern JH, Smith GI, Chen S, Unger RH, Klein S, Scherer PE. Obesity dysregulates fasting-induced changes in glucagon secretion. J Endocrinol 2019; 243:149-160. [PMID: 31454790 PMCID: PMC6994388 DOI: 10.1530/joe-19-0201] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023]
Abstract
Hyperglucagonemia, a hallmark in obesity and insulin resistance promotes hepatic glucose output, exacerbating hyperglycemia and thus predisposing to the development type 2 diabetes. As such, glucagon signaling is a key target for new therapeutics to manage insulin resistance. We evaluated glucagon homeostasis in lean and obese mice and people. In lean mice, fasting for 24 h caused a rise in glucagon. In contrast, a decrease in serum glucagon compared to baseline was observed in diet-induced obese mice between 8 and 24 h of fasting. Fasting decreased serum insulin in both lean and obese mice. Accordingly, the glucagon:insulin ratio was unaffected by fasting in obese mice but increased in lean mice. Re-feeding (2 h) restored hyperglucagonemia in obese mice. Pancreatic perfusion studies confirm that fasting (16 h) decreases pancreatic glucagon secretion in obese mice. Consistent with our findings in the mouse, a mixed meal increased serum glucagon and insulin concentrations in obese humans, both of which decreased with time after a meal. Consequently, fasting and re-feeding less robustly affected glucagon:insulin ratios in obese compared to lean participants. The glucoregulatory disturbance in obesity may be driven by inappropriate regulation of glucagon by fasting and a static glucagon:insulin ratio.
Collapse
Affiliation(s)
- Jennifer H. Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Gordon I. Smith
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO
| | - Shiuwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Roger H. Unger
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
- Correspondence: , Telephone: (214) 648-8715, Fax: (214) 648-8720
| |
Collapse
|
30
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
31
|
Elvert R, Herling AW, Bossart M, Weiss T, Zhang B, Wenski P, Wandschneider J, Kleutsch S, Butty U, Kannt A, Wagner M, Haack T, Evers A, Dudda A, Lorenz M, Keil S, Larsen PJ. Running on mixed fuel-dual agonistic approach of GLP-1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non-human primates. Diabetes Obes Metab 2018; 20:1836-1851. [PMID: 29938884 PMCID: PMC6055720 DOI: 10.1111/dom.13212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/11/2017] [Accepted: 12/25/2017] [Indexed: 12/17/2022]
Abstract
AIM We performed acute and chronic studies in healthy and diet-induced obese animals using mouse-specific or monkey-specific dual GLP-1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP-1R agonist liraglutide was used as comparator. METHODS The mouse-specific dual agonist and liraglutide were tested in lean wild type, GLP-1R knockout and diet-induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake. RESULTS The mouse-specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist-treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP-1R-/- mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey-specific dual agonist reduced total energy intake to 60%-70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed. CONCLUSIONS In DIO mice and non-human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP-1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Appetite Depressants/administration & dosage
- Appetite Depressants/adverse effects
- Appetite Depressants/therapeutic use
- Body Weight/drug effects
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Dose-Response Relationship, Drug
- Drug Therapy, Combination/adverse effects
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Female
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Insulin Secretion/drug effects
- Macaca fascicularis
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/blood
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Random Allocation
- Receptors, Glucagon/agonists
- Receptors, Glucagon/metabolism
Collapse
Affiliation(s)
- Ralf Elvert
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | | | - Tilo Weiss
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | | | | | | | - Uwe Butty
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | - Aimo Kannt
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | | | | | | | | | | | | | |
Collapse
|