1
|
van der Velden WJC, Mukhaleva E, Vaidehi N. Allosteric communication mechanism in the glucagon receptor. J Biol Chem 2025; 301:108530. [PMID: 40280422 DOI: 10.1016/j.jbc.2025.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Recent drug development suggests agonists may be more promising against glucagon receptor dysregulation in metabolic disorders. Allosteric modulation may pave an alternative way to initiate responses that are required to target these metabolic disorders. Here, we investigated the allosteric communication mechanisms within the glucagon receptor using molecular dynamics simulations on five receptor states. Results highlighted that the extracellular domain is dynamic in the absence of an orthosteric agonist. In the presence of a partial agonist, we observed increased flexibility in the N terminus of the receptor compared with the full agonist-bound receptor. Class B1 G protein-coupled receptor (GPCR) microswitches showed repacking going from the inactive state to the active state, allowing for G protein coupling. In the full agonist- and G protein-bound state, Gαs showed both translational and rotational movement in the N terminus, core, and α5-helix, thereby forming key interactions between the core of the G protein and the receptor. Finally, the allosteric communication from the extracellular region to the G protein coupling region of the receptor was the strongest in the intracellular negative allosteric modulator-bound state, the full agonist and G protein-bound state, and the full agonist-bound G protein-free state. The residue positions predicted to play a significant role in the allosteric communication mechanism showed overlap with disease-associated mutations. Overall, our study provides insights into the allosteric communication mechanism in a class B1 GPCR, which sets the foundation for future design of allosteric modulators targeting the glucagon receptor.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| |
Collapse
|
2
|
Madsbad S, Holst JJ. The promise of glucagon-like peptide 1 receptor agonists (GLP-1RA) for the treatment of obesity: a look at phase 2 and 3 pipelines. Expert Opin Investig Drugs 2025; 34:197-215. [PMID: 40022548 DOI: 10.1080/13543784.2025.2472408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION GLP-1-based therapies have changed the treatment of overweight/obesity. Liraglutide 3.0 mg daily, the first GLP-1 RA approved for treatment of overweight, induced a weight loss of 6-8%, Semaglutide 2.4 mg once weekly improved weight loss to about 12-15%, while the dual GIP/GLP-1 receptor agonist tirzepatide once weekly has induced a weight loss of about 20% in obese people without diabetes. AREAS COVERED This review describes results obtained with GLP-1 mono-agonists, GLP-1/GIP dual agonists, GLP-1/glucagon co-agonists, and the triple agonist retatrutide (GIP/GLP-1/glucagon), which have shown beneficial effect both on body weight and steatotic liver disease. A combination of semaglutide (a GLP-1 agonist) and cagrilintide (a long-acting amylin analogue) for weekly administration is currently in phase III development, and so is oral semaglutide and several non-peptide small molecule GLP-1 agonists for oral administration. The adverse events with the GLP-1-based therapies are primarily gastrointestinal and include nausea, vomiting, obstipation, or diarrhea, which often can be mitigated by slow up titration. EXPERT OPINION The GLP-1-based therapies will change the treatment of obesity and its comorbidities including steatotic liver disease in the future. Outstanding question is maintenance of the weight loss, possibly pharmacological treatment needs to be life-long.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- The NovoNordisk Foundation Centre for Basic Metabolic Research and the Department of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Zhou Q, Li G, Hang K, Li J, Yang D, Wang MW. Weight Loss Blockbuster Development: A Role for Unimolecular Polypharmacology. Annu Rev Pharmacol Toxicol 2025; 65:191-213. [PMID: 39259982 DOI: 10.1146/annurev-pharmtox-061324-011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Kaini Hang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zarei M, Sahebi Vaighan N, Farjoo MH, Talebi S, Zarei M. Incretin-based therapy: a new horizon in diabetes management. J Diabetes Metab Disord 2024; 23:1665-1686. [PMID: 39610543 PMCID: PMC11599551 DOI: 10.1007/s40200-024-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/22/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus, a metabolic syndrome characterized by hyperglycemia and insulin dysfunction, often leads to serious complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Incretins, gut peptide hormones released post-nutrient intake, have shown promising therapeutic effects on these complications due to their wide-ranging biological impacts on various body systems. This review focuses on the role of incretin-based therapies, particularly Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, in managing diabetes and its complications. We also discuss the potential of novel agents like semaglutide, a recently approved oral compound, and dual/triple agonists targeting GLP-1/GIP, GLP-1/glucagon, and GLP-1/GIP/glucagon receptors, which are currently under investigation. The review aims to provide a comprehensive understanding of the beneficial impacts of natural incretins and the therapeutic potential of incretin-based therapies in diabetes management.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soosan Talebi
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- John B. Little Center for Radiation Sciences, Harvard T.H Chan School of Public Health, Boston, MA USA
| |
Collapse
|
5
|
Ye J, Yin J. Type 2 diabetes: a sacrifice program handling energy surplus. LIFE METABOLISM 2024; 3:loae033. [PMID: 39873003 PMCID: PMC11748514 DOI: 10.1093/lifemeta/loae033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/30/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss. The body employs three adaptive strategies in response to energy surplus: the first one is adipose tissue expansion to store the energy for weight gain under normal weight conditions; the second one is insulin resistance to slow down adipose tissue expansion and weight gain under overweight conditions; and the third one is the onset of T2DM following β cell failure to reverse the weight gain in obese conditions. The primary signaling molecules driving the compensatory responses are adenosine derivatives, such as adenosine triphosphate (ATP), acetyl coenzyme A (acetyl-CoA), and reduced nicotinamide adenine dinucleotide (NADH). These molecules exert their effects through allosteric, post-translational, and transcriptional regulation of metabolic pathways. The insights suggest that insulin resistance and T2DM are protective mechanisms in the defense against excessive adiposity to avert severe obesity. The perspective provides a unified framework explaining the interactions between the two diseases and opens new avenues in the study of T2DM.
Collapse
Affiliation(s)
- Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Key Laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| |
Collapse
|
6
|
Enyew Belay K, Jemal RH, Tuyizere A. Innovative Glucagon-based Therapies for Obesity. J Endocr Soc 2024; 8:bvae197. [PMID: 39574787 PMCID: PMC11579655 DOI: 10.1210/jendso/bvae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/24/2024] Open
Abstract
Obesity poses a significant global health challenge, with an alarming rise in prevalence rates. Traditional interventions, including lifestyle modifications, often fall short of achieving sustainable weight loss, ultimately leading to surgical interventions, which carry a significant burden and side effects. This necessitates the exploration of effective and relatively tolerable pharmacological alternatives. Among emerging therapeutic avenues, glucagon-based treatments have garnered attention for their potential to modulate metabolic pathways and regulate appetite. This paper discusses current research on the physiological mechanisms underlying obesity and the role of glucagon in energy homeostasis. Glucagon, traditionally recognized for its glycemic control functions, has emerged as a promising target for obesity management due to its multifaceted effects on metabolism, appetite regulation, and energy expenditure. This review focuses on the pharmacological landscape, encompassing single and dual agonist therapies targeting glucagon receptors (GcgRs), glucagon-like peptide-1 receptors (GLP-1Rs), glucose-dependent insulinotropic polypeptide receptors (GIPRs), amylin, triiodothyronine, fibroblast growth factor 21, and peptide tyrosine tyrosine. Moreover, novel triple-agonist therapies that simultaneously target GLP-1R, GIPR, and GcgR show promise in augmenting further metabolic benefits. This review paper tries to summarize key findings from preclinical and clinical studies, elucidating the mechanisms of action, safety profiles, and therapeutic potential of glucagon-based therapies in combating obesity and its comorbidities. Additionally, it explores ongoing research endeavors, including phase III trials, aimed at further validating the efficacy and safety of these innovative treatment modalities.
Collapse
Affiliation(s)
- Kibret Enyew Belay
- Department of Internal Medicine, Endocrinology and Metabolism Unit, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Rebil Heiru Jemal
- Department of Internal Medicine, Adama Hospital Medical College, Adama 1000, Ethiopia
| | - Aloys Tuyizere
- Department of Internal Medicine, Endocrinology, Diabetes and Metabolism Unit, University of Rwanda, Kigali 00200, Rwanda
| |
Collapse
|
7
|
Kukova L, Munir KM, Sayeed A, Davis SN. Assessing the therapeutic and toxicological profile of novel GLP-1 receptor agonists for type 2 diabetes. Expert Opin Drug Metab Toxicol 2024; 20:939-952. [PMID: 39268978 DOI: 10.1080/17425255.2024.2401589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION GLP-1 receptor agonists provide multiple benefits for patients with type 2 diabetes. Nonetheless, there are also several significant adverse effects associated with these agents. A thorough understanding of both therapeutic and toxicological profiles of GLP-1 receptor agonists is crucial for appropriate utilization of this medication class. A literature search of PubMed and ClinicalTrials.gov was carried out to inform discussion on the topic. AREAS COVERED This review article discusses the key advantages and disadvantages derived from the use of GLP-1 receptor agonists in the treatment of type 2 diabetes. Landmark trials which helped characterize the cardiovascular and renal benefits of GLP-1 receptor agonists are highlighted. We also discuss key studies still in progress and new formulations under investigation. EXPERT OPINION GLP-1 receptor agonists provide glycemic and complication-risk reduction benefits for individuals with type 2 diabetes. Current data suggests there is a lot of potential for further applications, even outside of type 2 diabetes management. It would be of particular interest to see the range of benefits conferred from GLP-1 receptor agonists in individuals without type 2 diabetes. Broader application of these medications could be expected given the ongoing development of new oral formulations and combination agents.
Collapse
Affiliation(s)
- Lidiya Kukova
- Internal Medicine Resident, Department of Internal Medicine, University of Maryland Medical Center, Baltimore, MD, USA
| | - Kashif M Munir
- Professor of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland Medical Center, Baltimore, MD, USA
| | - Ahmed Sayeed
- Medical Student, American University of Antigua College of Medicine, Coolidge, Anitgua and Barbuda
| | - Stephen N Davis
- Chair, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Qin W, Yang J, Ni Y, Deng C, Ruan Q, Ruan J, Zhou P, Duan K. Efficacy and safety of once-weekly tirzepatide for weight management compared to placebo: An updated systematic review and meta-analysis including the latest SURMOUNT-2 trial. Endocrine 2024; 86:70-84. [PMID: 38850440 PMCID: PMC11445313 DOI: 10.1007/s12020-024-03896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
AIM Tirzepatide, a newly developed dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, has received approval for treating type 2 diabetes (T2D) and is currently being studied for its potential in long-term weight control. We aim to explore the safety and efficacy of once-weekly subcutaneous tirzepatide for weight loss in T2D or obese patients. METHODS A comprehensive search was performed on various databases including PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov from inception up to April 29, 2024, to identify randomized controlled trials (RCTs) that assessed the efficacy of once-weekly tirzepatide compared to a placebo in adults with or without T2D. The mean difference (MD) and risk ratio (RR) were calculated for continuous and dichotomous outcomes, respectively. The risk of bias was evaluated using the RoB-2 tool (Cochrane), while the statistical analysis was conducted utilizing RevMan 5.4.1 software. RESULTS Seven RCTs comprising 4795 individuals ranging from 12 to 72 weeks were identified. Compared to the placebo group, tirzepatide at doses of 5, 10, and 15 mg demonstrated significant dose-dependent weight loss. The mean difference (MD) in the percentage change in body weight (BW) was -8.07% (95% CI -11.01, -5.13; p < 0.00001), -10.79% (95% CI -13.86, -7.71; p < 0.00001), and -11.83% (95% CI -14.52, -9.14; p < 0.00001), respectively. Additionally, the MD in the absolute change in BW was -7.5 kg (95% CI -10.9, -4.1; p < 0.0001), -11.0 kg (95% CI -16.9, -5.2; p = 0.0002), and -11.5 kg (95% CI -16.2, -6.7; p < 0.00001), for the 5, 10, and 15 mg doses, respectively. All three doses of tirzepatide also significantly reduced body mass index and waist circumference. Furthermore, it led to a greater percentage of patients experiencing weight loss exceeding 5, 10, 15, 20, and 25%. Moreover, tirzepatide showed great success in reducing blood pressure, blood sugar levels, and lipid profiles. In terms of safety, gastrointestinal side effects were the most frequently reported adverse events in all three doses of tirzepatide groups, which were generally mild-to-moderate and transient. CONCLUSION Tirzepatide treatment could lead to remarkable and sustained weight loss that is well-tolerated and safe, representing a novel and valuable therapeutic strategy for long-term weight management.
Collapse
Affiliation(s)
- Wenhui Qin
- Department of Endocrinology and Metabolism, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Jun Yang
- Department of Endocrinology and Metabolism, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Ying Ni
- Department of Endocrinology and Metabolism, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Chao Deng
- Department of Pharmacy, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Qinjuan Ruan
- Department of Pharmacy, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Jun Ruan
- Department of Propaganda, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Peng Zhou
- Department of Vascular Surgery, Wuhan Union Hospital, Huazhong university of science and technology, Wuhan, China.
| | - Kai Duan
- Department of Nephrology, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China.
| |
Collapse
|
9
|
Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity. Diabetes Obes Metab 2024; 26:3501-3512. [PMID: 38853300 DOI: 10.1111/dom.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.
Collapse
Affiliation(s)
- Jonathan Brix Winther
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Wang M, Fu X, Du L, Shi F, Huang Z, Yang L. The Inferential Binding Sites of GCGR for Small Molecules Using Protein Dynamic Conformations and Crystal Structures. Int J Mol Sci 2024; 25:8389. [PMID: 39125959 PMCID: PMC11313378 DOI: 10.3390/ijms25158389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon receptor (GCGR) is a class B1 G-protein-coupled receptor that plays a crucial role in maintaining human blood glucose homeostasis and is a significant target for the treatment of type 2 diabetes mellitus (T2DM). Currently, six small molecules (Bay 27-9955, MK-0893, MK-3577, LY2409021, PF-06291874, and LGD-6972) have been tested or are undergoing clinical trials, but only the binding site of MK-0893 has been resolved. To predict binding sites for other small molecules, we utilized both the crystal structure of the GCGR and MK-0893 complex and dynamic conformations. We docked five small molecules and selected the best conformation based on binding mode, docking score, and binding free energy. We performed MD simulations to verify the binding mode of the selected small molecules. Moreover, when selecting conformations, results of competitive binding were referred to. MD simulation indicated that Bay 27-9955 exhibits moderate binding stability in Pocket 3. MK-3577, LY2409021, and PF-06291874 exhibited highly stable binding to Pocket 2, consistent with experimental results. However, LY2409021 may also bind to Pocket 5. Additionally, LGD-6972 exhibited relatively stable binding in Pocket 5. We also conducted structural modifications of LGD-6972 based on the results of MD simulations and predicted its analogues' bioavailability, providing a reference for the study of GCGR small molecules.
Collapse
Affiliation(s)
- Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (X.F.); (L.D.); (F.S.)
| | - Xulei Fu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (X.F.); (L.D.); (F.S.)
| | - Limin Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (X.F.); (L.D.); (F.S.)
| | - Fan Shi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (X.F.); (L.D.); (F.S.)
| | - Zichong Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China;
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (X.F.); (L.D.); (F.S.)
| |
Collapse
|
11
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Horie I, Abiru N. Advances in clinical research on glucagon. Diabetol Int 2024; 15:353-361. [PMID: 39101175 PMCID: PMC11291794 DOI: 10.1007/s13340-024-00705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
We are now celebrating the 100th anniversary of the discovery of an important pancreatic hormone, glucagon. Glucagon is historically described as a diabetogenic hormone elevating glucose levels via increases in insulin resistance and hepatic gluconeogenesis. The more recently identified actions of glucagon include not only its pathophysiologic effects on glucose metabolism but also its significant roles in amino-acid metabolism in the liver. The possibility that abnormalities in α-cells' secretion of glucagon in metabolic disorders are a compensatory adaptation for the maintenance of metabolic homeostasis is another current issue. However, the clinical research concerning glucagon has been considerably behind the advances in basic research due to the lack of suitable methodology for obtaining precise measurements of plasma glucagon levels in humans. The precise physiology of glucagon secretory dynamics in individuals with metabolic dysfunction (including diabetes) has been clarified since the development in 2014 of a quantitative measurement technique for glucagon. In this review, we summarize the advances in the clinical research concerning glucagon, including those of our studies and the relevant literature.
Collapse
Affiliation(s)
- Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Medical Health Examination Center, Midori Clinic, 32-20 Joei-Machi, Nagasaki, 852-8034 Japan
| |
Collapse
|
13
|
McGlone ER, Tan TMM. Glucagon-based therapy for people with diabetes and obesity: What is the sweet spot? Peptides 2024; 176:171219. [PMID: 38615717 DOI: 10.1016/j.peptides.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
14
|
Thomas L, Martel E, Rist W, Uphues I, Hamprecht D, Neubauer H, Augustin R. The dual GCGR/GLP-1R agonist survodutide: Biomarkers and pharmacological profiling for clinical candidate selection. Diabetes Obes Metab 2024; 26:2368-2378. [PMID: 38560764 DOI: 10.1111/dom.15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
AIM To describe the biomarker strategy that was applied to select survodutide (BI 456906), BI 456908 and BI 456897 from 19 dual glucagon receptor (GCGR)/ glucagon-like peptide-1 receptor (GLP-1R) agonists for in-depth pharmacological profiling, which led to the qualification of survodutide as the clinical development candidate. MATERIALS AND METHODS Potencies to increase cyclic adenosine monophosphate (cAMP) were determined in Chinese hamster ovary (CHO)-K1 cells stably expressing human GCGR and GLP-1R. Agonism for endogenously expressed receptors was investigated in insulinoma cells (MIN6) for mouse GLP-1R, and in rat primary hepatocytes for the GCGR. In vivo potencies to engage the GLP-1R or GCGR were determined, measuring improvement in oral glucose tolerance (30 nmol/kg) and increase in plasma fibroblast growth factor-21 (FGF21) and liver nicotinamide N-methyltransferase (NNMT) mRNA expression (100 nmol/kg), respectively. Body weight- and glucose-lowering efficacies were investigated in diet-induced obese (DIO) mice and diabetic db/db mice, respectively. RESULTS Upon acute dosing in lean mice, target engagement biomarkers for the GCGR and GLP-1R demonstrated a significant correlation (Spearman correlation coefficient with p < 0.05) to the in vitro GCGR and GLP-1R potencies for the 19 dual agonists investigated. Survodutide, BI 456908 and BI 456897 were selected for in-depth pharmacological profiling based on the significant improvement in acute oral glucose tolerance achieved (area under the curve [AUC] of 54%, 57% and 60% vs. vehicle) that was comparable to semaglutide (AUC of 45% vs. vehicle), while showing different degrees of in vivo GCGR engagement, as determined by hepatic NNMT mRNA expression (increased by 15- to 17-fold vs. vehicle) and plasma FGF21 concentrations (increased by up to sevenfold vs. vehicle). In DIO mice, survodutide (30 nmol/kg/once daily), BI 456908 (30 nmol/kg/once daily) and BI 456897 (10 nmol/kg/once daily) achieved a body weight-lowering efficacy from baseline of 25%, 27% and 26%, respectively. In db/db mice, survodutide and BI 456908 (10 and 20 nmol/kg/once daily) significantly lowered glycated haemoglobin (0.4%-0.6%); no significant effect was observed for BI 456897 (3 and 7 nmol/kg/once daily). CONCLUSIONS Survodutide was selected as the clinical candidate based on its balanced dual GCGR/GLP-1R pharmacology, engaging the GCGR for robust body weight-lowering efficacy exceeding that of selective GLP-1R agonists, while achieving antidiabetic efficacy that was comparable to selective GLP-1R agonism. Survodutide is currently being investigated in Phase 3 clinical trials in people living with obesity.
Collapse
Affiliation(s)
- Leo Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Eric Martel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | | | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| |
Collapse
|
15
|
Andreozzi F, Mancuso E, Rubino M, Salvatori B, Morettini M, Monea G, Göbl C, Mannino GC, Tura A. Glucagon kinetics assessed by mathematical modelling during oral glucose administration in people spanning from normal glucose tolerance to type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1376530. [PMID: 38681771 PMCID: PMC11045965 DOI: 10.3389/fendo.2024.1376530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Background/Objectives Glucagon is important in the maintenance of glucose homeostasis, with also effects on lipids. In this study, we aimed to apply a recently developed model of glucagon kinetics to determine the sensitivity of glucagon variations (especially, glucagon inhibition) to insulin levels ("alpha-cell insulin sensitivity"), during oral glucose administration. Subjects/Methods We studied 50 participants (spanning from normal glucose tolerance to type 2 diabetes) undergoing frequently sampled 5-hr oral glucose tolerance test (OGTT). The alpha-cell insulin sensitivity and the glucagon kinetics were assessed by a mathematical model that we developed previously. Results The alpha-cell insulin sensitivity parameter (named SGLUCA; "GLUCA": "glucagon") was remarkably variable among participants (CV=221%). SGLUCA was found inversely correlated with the mean glycemic values, as well as with 2-hr glycemia of the OGTT. When stratifying participants into two groups (normal glucose tolerance, NGT, N=28, and impaired glucose regulation/type 2 diabetes, IGR_T2D, N=22), we found that SGLUCA was lower in the latter (1.50 ± 0.50·10-2 vs. 0.26 ± 0.14·10-2 ng·L-1 GLUCA/pmol·L-1 INS, in NGT and IGR_T2D, respectively, p=0.009; "INS": "insulin"). Conclusions The alpha-cell insulin sensitivity is highly variable among subjects, and it is different in groups at different glucose tolerance. This may be relevant for defining personalized treatment schemes, in terms of dietary prescriptions but also for treatments with glucagon-related agents.
Collapse
Affiliation(s)
- Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Mariangela Rubino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Monea
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Christian Göbl
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
16
|
Hope DCD, Ansari S, Choudhury S, Alexiadou K, Tabbakh Y, Ilesanmi I, Lazarus K, Davies I, Jimenez-Pacheco L, Yang W, Ball LJ, Malviya R, Reglinska B, Khoo B, Minnion J, Bloom SR, Tan TMM. Adaptive infusion of a glucagon-like peptide-1/glucagon receptor co-agonist G3215, in adults with overweight or obesity: Results from a phase 1 randomized clinical trial. Diabetes Obes Metab 2024; 26:1479-1491. [PMID: 38229453 DOI: 10.1111/dom.15448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
AIMS To determine whether a continuous infusion of a glucagon-like peptide receptor (GLP-1R)/glucagon receptor (GCGR) co-agonist, G3215 is safe and well tolerated in adults with overweight or obesity. METHODS A phase 1 randomized, double blind, placebo-controlled trial of G3215 in overweight or obese participants, with or without type 2 diabetes. RESULTS Twenty-six participants were recruited and randomized with 23 completing a 14-day subcutaneous infusion of G3215 or placebo. The most common adverse events were nausea or vomiting, which were mild in most cases and mitigated by real-time adjustment of drug infusion. There were no cardiovascular concerns with G3215 infusion. The pharmacokinetic characteristics were in keeping with a continuous infusion over 14 days. A least-squares mean body weight loss of 2.39 kg was achieved with a 14-day infusion of G3215, compared with 0.84 kg with placebo infusion (p < .05). A reduction in food consumption was also observed in participants receiving G3215 and there was no deterioration in glycaemia. An improved lipid profile was seen in G3215-treated participants and consistent with GCGR activation, a broad reduction in circulating amino acids was seen during the infusion period. CONCLUSION An adaptive continuous infusion of the GLP-1/GCGR co-agonist, G3215, is safe and well tolerated offering a unique strategy to control drug exposure. By allowing rapid, response-directed titration, this strategy may allow for mitigation of adverse effects and afford significant weight loss within shorter time horizons than is presently possible with weekly GLP-1R and multi-agonists. These results support ongoing development of G3215 for the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sirazum Choudhury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yasmin Tabbakh
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ibiyemi Ilesanmi
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Katharine Lazarus
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lara Jimenez-Pacheco
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wei Yang
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Laura-Jayne Ball
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Reshma Malviya
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beata Reglinska
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - James Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
17
|
Qin W, Yang J, Deng C, Ruan Q, Duan K. Efficacy and safety of semaglutide 2.4 mg for weight loss in overweight or obese adults without diabetes: An updated systematic review and meta-analysis including the 2-year STEP 5 trial. Diabetes Obes Metab 2024; 26:911-923. [PMID: 38016699 DOI: 10.1111/dom.15386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
AIM To explore the safety and efficacy of subcutaneous semaglutide 2.4 mg, administered once a week in non-diabetic overweight or obese individuals. METHODS A thorough search was performed of various databases including PubMed, Embase, the Cochrane Library, Web of Science, clinicaltrials.gov, CNKI and Wanfang from their inception up to April 11, 2023. Our aim was to identify randomized controlled trials (RCTs) that compared the efficacy of semaglutide administered once weekly with placebo in overweight or obese adults. Through a review of the literature, data were extracted from relevant studies and assessed for quality, and a meta-analysis was conducted using RevMan 5.4.1 software. RESULTS Six RCTs comprising 3962 overweight or obese individuals were identified. The findings indicated that, in comparison to the placebo group, semaglutide caused a significant and sustainable reduction in the percentage of body weight (BW; mean difference [MD]: -11.80% [95% confidence interval {CI} -12.93, -10.68]; P < 0.00001) as well as a decrease in absolute BW (MD: -12.2 kg [95% CI -13.3, -11.1]; P < 0.00001), body mass index (MD: -4.5 kg/m2 [95% CI -4.9, -4.1]; P < 0.00001) and waist circumference (MD:-9.4 cm [95% CI -10.1, -8.8]; P < 0.00001). Moreover, it achieved a higher proportion of patients who experienced weight loss exceeding 5%, 10%, 15% and 20%. Furthermore, semaglutide showed significant efficacy in controlling blood pressure, blood sugar levels, C-reactive protein levels, and lipid profiles. In terms of safety, the most common adverse effects following semaglutide treatment were gastrointestinal adverse reactions (risk ratio: 1.49 [95% CI 1.38, 1.60]; P < 0.00001), which were generally mild to moderate in severity and temporary. CONCLUSION In overweight or obese non-diabetic individuals, semaglutide had a remarkable and sustained weight loss effect that was well tolerated and safe.
Collapse
Affiliation(s)
- Wenhui Qin
- Department of Endocrinology and Metabolism, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingmen, China
| | - Jun Yang
- Department of Endocrinology and Metabolism, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingmen, China
| | - Chao Deng
- Department of Pharmacy, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingmen, China
| | - Qinjuan Ruan
- Department of Pharmacy, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingmen, China
| | - Kai Duan
- Department of Nephrology, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingmen, China
| |
Collapse
|
18
|
Papamargaritis D, le Roux CW, Holst JJ, Davies MJ. New therapies for obesity. Cardiovasc Res 2024; 119:2825-2842. [PMID: 36448672 PMCID: PMC10874276 DOI: 10.1093/cvr/cvac176] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 02/17/2024] Open
Abstract
Obesity is a chronic disease associated with serious complications and increased mortality. Weight loss (WL) through lifestyle changes results in modest WL long-term possibly due to compensatory biological adaptations (increased appetite and reduced energy expenditure) promoting weight gain. Bariatric surgery was until recently the only intervention that consistently resulted in ≥ 15% WL and maintenance. Our better understanding of the endocrine regulation of appetite has led to the development of new medications over the last decade for the treatment of obesity with main target the reduction of appetite. The efficacy of semaglutide 2.4 mg/week-the latest glucagon-like peptide-1 (GLP-1) receptor analogue-on WL for people with obesity suggests that we are entering a new era in obesity pharmacotherapy where ≥15% WL is feasible. Moreover, the WL achieved with the dual agonist tirzepatide (GLP-1/glucose-dependent insulinotropic polypeptide) for people with type 2 diabetes and most recently also obesity, indicate that combining the GLP-1 with other gut hormones may lead to additional WL compared with GLP-1 receptor analogues alone and in the future, multi-agonist molecules may offer the potential to bridge further the efficacy gap between bariatric surgery and the currently available pharmacotherapies.
Collapse
Affiliation(s)
- Dimitris Papamargaritis
- Diabetes Research Centre, Leicester General Hospital, University of Leicester College of Medicine Biological Sciences and Psychology, Leicester LE5 4PW, UK
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin 4, Ireland
- Diabetes Research Centre, Ulster University, Coleraine BT52 1SA, UK
| | - Jens J Holst
- Department of Biomedical Sciences and the NNF Center for Basic Metabolic Research, University of Copenhagen Panum Institute, Copenhagen 2200, Denmark
| | - Melanie J Davies
- Diabetes Research Centre, Leicester General Hospital, University of Leicester College of Medicine Biological Sciences and Psychology, Leicester LE5 4PW, UK
| |
Collapse
|
19
|
Ji L, Jiang H, Cheng Z, Qiu W, Liao L, Zhang Y, Li X, Pang S, Zhang L, Chen L, Yang T, Li Y, Qu S, Wen J, Gu J, Deng H, Wang Y, Li L, Han-Zhang H, Ma Q, Qian L. A phase 2 randomised controlled trial of mazdutide in Chinese overweight adults or adults with obesity. Nat Commun 2023; 14:8289. [PMID: 38092790 PMCID: PMC10719339 DOI: 10.1038/s41467-023-44067-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Mazdutide is a once-weekly glucagon-like peptide-1 (GLP-1) and glucagon receptor dual agonist. We evaluated the efficacy and safety of 24-week treatment of mazdutide up to 6 mg in Chinese overweight adults or adults with obesity, as an interim analysis of a randomised, two-part (low doses up to 6 mg and high dose of 9 mg), double-blind, placebo-controlled phase 2 trial (ClinicalTrials.gov, NCT04904913). Overweight adults (body-mass index [BMI] ≥24 kg/m2) accompanied by hyperphagia and/or at least one obesity-related comorbidity or adults with obesity (BMI ≥ 28 kg/m2) were randomly assigned (3:1:3:1:3:1) to once-weekly mazdutide 3 mg, 4.5 mg, 6 mg or matching placebo at 20 hospitals in China. The primary endpoint was the percentage change from baseline to week 24 in body weight. A total of 248 participants were randomised to mazdutide 3 mg (n = 62), 4.5 mg (n = 63), 6 mg (n = 61) or placebo (n = 62). The mean percentage changes from baseline to week 24 in body weight were -6.7% (SE 0.7) with mazdutide 3 mg, -10.4% (0.7) with 4.5 mg, -11.3% (0.7) with 6 mg and 1.0% (0.7) with placebo, with treatment difference versus placebo ranging from -7.7% to -12.3% (all p < 0.0001). All mazdutide doses were well tolerated and the most common adverse events included diarrhoea, nausea and upper respiratory tract infection. In summary, in Chinese overweight adults or adults with obesity, 24-week treatment with mazdutide up to 6 mg was safe and led to robust and clinically meaningful body weight reduction.
Collapse
Affiliation(s)
- Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
| | - Hongwei Jiang
- The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, China
| | - Zhifeng Cheng
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Qiu
- Department of Endocrinology, Huzhou Central Hospital, Huzhou, China
| | - Lin Liao
- Department of Endocrinology, Shandong Province Qianfoshan Hospital, Jinan, China
| | - Yawei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang, China
| | - Xiaoli Li
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Jinan, China
| | - Lihui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Tao Yang
- Department of Endocrinology, Jiangsu Province Hospital, Nanjing, China
| | - Yan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shen Qu
- Department of Endocrinology, Shanghai Tenth People's Hospital of Tong Ji University, Shanghai, China
| | - Jie Wen
- Innovent Biologics, Inc., Suzhou, China
| | - Jieyu Gu
- Innovent Biologics, Inc., Suzhou, China
| | - Huan Deng
- Innovent Biologics, Inc., Suzhou, China
| | | | - Li Li
- Innovent Biologics, Inc., Suzhou, China
| | | | | | - Lei Qian
- Innovent Biologics, Inc., Suzhou, China.
| |
Collapse
|
20
|
Friedrichsen MH, Endahl L, Kreiner FF, Goldwater R, Kankam M, Toubro S, Nygård SB. Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity. Mol Metab 2023; 78:101801. [PMID: 37690519 PMCID: PMC10568562 DOI: 10.1016/j.molmet.2023.101801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Glucagon/glucagon-like peptide-1 (GLP-1) receptor co-agonists may provide greater weight loss than agonists targeting the GLP-1 receptor alone. We report results from three phase 1 trials investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of the glucagon/GLP-1 receptor co-agonist NNC9204-1177 (NN1177) for once-weekly subcutaneous use in adults with overweight or obesity. METHODS Our focus was a 12-week, multiple ascending dose (MAD), placebo-controlled, double-blind trial in which adults (N = 99) received NN1177 (on an escalating dose regimen of 200, 600, 1300, 1900, 2800, 4200 and 6000 μg) or placebo. Two other trials also contributed to the findings reported in this article: a first human dose (FHD)/single ascending dose (SAD), placebo-controlled, double-blind trial in which adults (N = 49) received NN1177 (treatment doses of 10, 40, 120, 350, 700 and 1100 μg) or placebo, and a drug-drug interaction, open-label, single-sequence trial in which adults (N = 45) received a 4200-μg dose of NN1177, following administration of a Cooperstown 5 + 1 index cocktail. Safety, tolerability, pharmacokinetic and pharmacodynamic endpoints were assessed. RESULTS For the FHD/SAD and MAD trials, baseline characteristics were generally balanced across treatment cohorts. The geometric mean half-life of NN1177 at steady state was estimated at between 77 and 111 h, and clinically relevant weight loss was achieved (up to 12.6% at week 12; 4200 μg in the MAD trial). Although NN1177 appeared tolerable across trials, several unexpected treatment-related safety signals were observed; increased heart rate, decreased reticulocyte count, increased markers of inflammation (fibrinogen and C-reactive protein), increased aspartate and alanine aminotransferase, impaired glucose tolerance and reduced blood levels of some amino acids. CONCLUSION Although treatment with NN1177 was associated with dose-dependent and clinically relevant weight loss, the observed safety signals precluded further clinical development.
Collapse
Affiliation(s)
| | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas, Overland Park, KS, USA
| | | | | |
Collapse
|
21
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
22
|
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TMM, Knop FK, Müller TD. 100 years of glucagon and 100 more. Diabetologia 2023; 66:1378-1394. [PMID: 37367959 DOI: 10.1007/s00125-023-05947-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
23
|
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023; 165:171003. [PMID: 36997003 PMCID: PMC10265134 DOI: 10.1016/j.peptides.2023.171003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
24
|
Nogueiras R, Nauck MA, Tschöp MH. Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nat Metab 2023:10.1038/s42255-023-00812-z. [PMID: 37308724 DOI: 10.1038/s42255-023-00812-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
The discovery and development of so-called gut hormone co-agonists as a new class of drugs for the treatment of diabetes and obesity is considered a transformative breakthrough in the field. Combining action profiles of multiple gastrointestinal hormones within a single molecule, these novel therapeutics achieve synergistic metabolic benefits. The first such compound, reported in 2009, was based on balanced co-agonism at glucagon and glucagon-like peptide-1 (GLP-1) receptors. Today, several classes of gut hormone co-agonists are in development and advancing through clinical trials, including dual GLP-1-glucose-dependent insulinotropic polypeptide (GIP) co-agonists (first described in 2013), and triple GIP-GLP-1-glucagon co-agonists (initially designed in 2015). The GLP-1-GIP co-agonist tirzepatide was approved in 2022 by the US Food and Drug Administration for the treatment of type 2 diabetes, providing superior HbA1c reductions compared to basal insulin or selective GLP-1 receptor agonists. Tirzepatide also achieved unprecedented weight loss of up to 22.5%-similar to results achieved with some types of bariatric surgery-in non-diabetic individuals with obesity. In this Perspective, we summarize the discovery, development, mechanisms of action and clinical efficacy of the different types of gut hormone co-agonists, and discuss potential challenges, limitations and future developments.
Collapse
Affiliation(s)
- Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galicia Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, St. Josef-Hospital, Katholisches Klinikum Bochum, Ruhr University of Bochum, Bochum, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany.
| |
Collapse
|
25
|
Davies I, Tan TMM. Design of novel therapeutics targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. Expert Opin Drug Discov 2023; 18:659-669. [PMID: 37154171 DOI: 10.1080/17460441.2023.2203911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION With obesity rates growing globally, there is a paramount need for new obesity pharmacotherapies to tackle this pandemic. AREAS COVERED This review focuses on the design of therapeutics that target the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. The authors highlight the paradoxical observation that both GIPR agonism and antagonism appear to provide metabolic benefits when combined with glucagon-like peptide-1 receptor (GLP-1 R) agonism. The therapeutic potential of compounds that target the GIPR alongside the GLP-1 R and the glucagon receptor are discussed, and the impressive clinical findings of such compounds are reviewed. EXPERT OPINION In this area, the translation of pre-clinical findings to clinical studies appears to be particularly difficult. Well-designed physiological studies in man are required to answer the paradox highlighted above, and to support the safe future development of a combination of GLP-1 R/GIPR targeting therapies.
Collapse
Affiliation(s)
- Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
26
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
27
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
28
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Zhang X, Cai Y, Yao Z, Chi H, Li Y, Shi J, Zhou Z, Sun L. Discovery of novel OXM-based glucagon-like peptide 1 (GLP-1)/glucagon receptor dual agonists. Peptides 2023; 161:170948. [PMID: 36646385 DOI: 10.1016/j.peptides.2023.170948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Novel glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) dual agonists are reported to have improved efficacy over GLP-1R mono-agonists in treating type 2 diabetes (T2DM) and obesity. Here, we describe the discovery of a novel oxyntomodulin (OXM) based GLP-1R/GCGR dual agonist with potent and balanced potency toward GLP-1R and GCGR. The lead peptide OXM-7 was obtained via stepwise rational design and long-acting modification. In ICR and db/db mice, OXM-7 exhibited prominent acute and long-acting hypoglycemic effects. In diet-induced obesity (DIO) mice, twice-daily administration of OXM-7 produced significant weight loss, normalized lipid metabolism, and improved glucose control. In DIO-nonalcoholic steatohepatitis (NASH) mice, OXM-7 treatment significantly reversed hepatic steatosis, and reduced serum and hepatic lipid levels. These preclinical data suggest the therapeutic potential of OXM-7 as a novel anti-diabetic, anti-steatotic and/or anti-obesity agent.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Yuchen Cai
- School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Zhihong Yao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Yan Li
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Jingjing Shi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, Guangxi, PR China.
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China.
| |
Collapse
|
30
|
Kayed A, Melander SA, Khan S, Andreassen KV, Karsdal MA, Henriksen K. The Effects of Dual GLP-1/Glucagon Receptor Agonists with Different Receptor Selectivity in Mouse Models of Obesity and Nonalcoholic Steatohepatitis. J Pharmacol Exp Ther 2023; 384:406-416. [PMID: 36418115 DOI: 10.1124/jpet.122.001440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
There is an unmet need for nonalcoholic steatohepatitis (NASH) therapeutics, considering the increase in global obesity. Dual GLP-1/glucagon (GCG) receptor agonists have shown beneficial effects in circumventing the pathophysiology linked to NASH. However, dual GLP-1/GCG receptor agonists as a treatment of metabolic diseases need delicate optimization to maximize metabolism effects. The impacts of increased relative GLP-1/GCG receptor activity in NASH settings must be addressed to unleash the full potential. In this study, we investigated the potential of OXM-104 and OXM-101, two dual GLP-1/GCG receptor agonists with different receptor selectivity in the setting of NASH, to establish the relative receptor activities leading to the best metabolic outcome efficacies to reduce the gap between surgery and pharmacological interventions. We developed dual GLP-1/GCG receptor agonists with selective agonism. Despite the improved metabolic effects of OXM-101, we explored a hyperglycemic risk attached to increased relative GCG receptor agonism. Thirty-eight days of treatment with a dual GLP-1/GCG receptor agonist, OXM-104, with increased GLP-1 receptor agonism in obese NASH mice was found to ameliorate the development of NASH by lowering body weight, improving liver and lipid profiles, reducing the levels of the fibrosis marker PRO-C4, and improving glucose control. Similarly, dual GLP-1/GCG receptor agonist OXM-101 with increased relative GCG receptor agonism ameliorated NASH by eliciting dramatic body weight reductions to OXM-104, reflected in the improvement of liver and lipid enzymes and reduced PRO-C4 levels. Optimizing dual GLP-1/GCG agonists with increased relative GCG receptor agonism can provide the setting for future agonists to treat obesity, type 2 diabetes, and NASH without having a hyperglycemic risk. SIGNIFICANT STATEMENT: There is an unmet need for nonalcoholic steatohepatitis (NASH) therapeutics, considering the increase in global obesity. Dual GLP-1/glucagon (GCG) receptor agonists have shown beneficial effects in circumventing the pathophysiology linked to NASH. Therefore, this study has examined OXM-104 and OXM-101, two dual GLP-1/GCG receptor agonists in the setting of NASH, to establish the relative receptor activities leading to the best metabolic outcome efficacies to reduce the gap between surgery and pharmacological interventions.
Collapse
Affiliation(s)
- Ashref Kayed
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Simone Anna Melander
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Suheb Khan
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Vietz Andreassen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Department of Endocrinology, Herlev, Denmark
| |
Collapse
|
31
|
Corbin KD, Carnero EA, Allerton TD, Tillner J, Bock CP, Luyet PP, Göbel B, Hall KD, Parsons SA, Ravussin E, Smith SR. Glucagon-like peptide-1/glucagon receptor agonism associates with reduced metabolic adaptation and higher fat oxidation: A randomized trial. Obesity (Silver Spring) 2023; 31:350-362. [PMID: 36695055 PMCID: PMC9881753 DOI: 10.1002/oby.23633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/16/2022] [Accepted: 10/02/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study tested the hypothesis that treatment with the glucagon-like peptide-1/glucagon receptor agonist SAR425899 would lead to a smaller decrease in sleeping metabolic rate (SMR; kilocalories/day) than expected from the loss of lean and fat mass (metabolic adaptation). METHODS This Phase 1b, double-blind, randomized, placebo-controlled study was conducted at two centers in inpatient metabolic wards. Thirty-five healthy males and females with overweight and obesity (age = 36.5 ± 7.1 years) were randomized to a calorie-reduced diet (-1000 kcal/d) and escalating doses (0.06-0.2 mg/d) of SAR425899 (n = 17) or placebo (n = 18) for 19 days. SMR was measured by whole-room calorimetry. RESULTS Both groups lost weight (-3.68 ± 1.37 kg placebo; -4.83 ± 1.44 kg SAR425899). Those treated with SAR425899 lost more weight, fat mass, and fat free mass (p < 0.05) owing to a greater achieved energy deficit than planned. The SAR425899 group had a smaller reduction in body composition-adjusted SMR (p = 0.002) as compared with placebo, but not 24-hour energy expenditure. Fat oxidation and ketogenesis increased in both groups, with significantly greater increases with SAR425899 (p < 0.05). CONCLUSIONS SAR425899 led to reduced selective metabolic adaptation and increased lipid oxidation, which are believed to be beneficial for weight loss and weight-loss maintenance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | - Elvis A Carnero
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | | | | | | | | | | | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| |
Collapse
|
32
|
Darbalaei S, Chang RL, Zhou QT, Chen Y, Dai AT, Wang MW, Yang DH. Effects of site-directed mutagenesis of GLP-1 and glucagon receptors on signal transduction activated by dual and triple agonists. Acta Pharmacol Sin 2023; 44:421-433. [PMID: 35953646 PMCID: PMC9889767 DOI: 10.1038/s41401-022-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
The paradigm of one drug against multiple targets, known as unimolecular polypharmacology, offers the potential to improve efficacy while overcoming some adverse events associated with the treatment. This approach is best exemplified by targeting two or three class B1 G protein-coupled receptors, namely, glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor (GCGR) and glucose-dependent insulinotropic polypeptide receptor for treatment of type 2 diabetes and obesity. Some of the dual and triple agonists have already shown initial successes in clinical trials, although the molecular mechanisms underlying their multiplexed pharmacology remain elusive. In this study we employed structure-based site-directed mutagenesis together with pharmacological assays to compare agonist efficacy across two key signaling pathways, cAMP accumulation and ERK1/2 phosphorylation (pERK1/2). Three dual agonists (peptide 15, MEDI0382 and SAR425899) and one triple agonist (peptide 20) were evaluated at GLP-1R and GCGR, relative to the native peptidic ligands (GLP-1 and glucagon). Our results reveal the existence of residue networks crucial for unimolecular agonist-mediated receptor activation and their distinct signaling patterns, which might be useful to the rational design of biased drug leads.
Collapse
Affiliation(s)
- Sanaz Darbalaei
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru-Lue Chang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - An-Tao Dai
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - De-Hua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| |
Collapse
|
33
|
Krogh LSL, Henriksen K, Stensen S, Skov-Jeppesen K, Bergmann NC, Størling J, Rosenkilde MM, Hartmann B, Holst JJ, Gasbjerg LS, Knop FK. The naturally occurring GIP(1-30)NH2 is a GIP receptor agonist in humans. Eur J Endocrinol 2023; 188:6979719. [PMID: 36651162 DOI: 10.1093/ejendo/lvac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of glucose and bone metabolism. In rodents, the naturally occurring GIP variant, GIP(1-30)NH2, has shown similar effects as full-length GIP (GIP(1-42)), but its effects in humans are unsettled. Here, we investigated the actions of GIP(1-30)NH2 compared to GIP(1-42) on glucose and bone metabolism in healthy men and in isolated human pancreatic islets. METHODS Nine healthy men completed three separate three-step glucose clamps (0-60 minutes at fasting plasma glucose (FPG) level, 60-120 minutes at 1.5× FPG, and 120-180 minutes at 2× FPG) with infusion of GIP(1-42) (4 pmol/kg/min), GIP(1-30)NH2 (4 pmol/kg/min), and saline (9 mg/mL) in randomised order. Blood was sampled for measurement of relevant hormones and bone turnover markers. Human islets were incubated with low (2 mmol/L) or high (20 mmol/L) d-glucose with or without GIP(1-42) or GIP(1-30)NH2 in three different concentrations for 30 minutes, and secreted insulin and glucagon were measured. RESULTS Plasma glucose (PG) levels at FPG, 1.5× FPG, and 2× FPG were obtained by infusion of 1.45 g/kg, 0.97 g/kg, and 0.6 g/kg of glucose during GIP(1-42), GIP(1-30)NH2, and saline, respectively (P = .18), and were similar on the three experimental days. Compared to placebo, GIP(1-30)NH2 resulted in similar glucagonotropic, insulinotropic, and carboxy-terminal type 1 collagen crosslinks-suppressing effects as GIP(1-42). In vitro experiments on human islets showed similar insulinotropic and glucagonotropic effects of the two GIP variants. CONCLUSIONS GIP(1-30)NH2 has similar effects on glucose and bone metabolism in healthy individuals and in human islets in vitro as GIP(1-42).
Collapse
Affiliation(s)
- Liva S L Krogh
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kristine Henriksen
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Bergmann NC, Davies MJ, Lingvay I, Knop FK. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes Metab 2023; 25:18-35. [PMID: 36254579 PMCID: PMC10092086 DOI: 10.1111/dom.14863] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 12/14/2022]
Abstract
Obesity is a chronic, relapsing disease associated with multiple complications and a substantial morbidity, mortality and health care burden. Pharmacological treatments for obesity provide a valuable adjunct to lifestyle intervention, which often achieves only limited weight loss that is difficult to maintain. The Semaglutide Treatment Effect in People with obesity (STEP) clinical trial programme is evaluating once-weekly subcutaneous semaglutide 2.4 mg (a glucagon-like peptide-1 analogue) in people with overweight or obesity. Across STEP 1, 3, 4 and 8, semaglutide 2.4 mg was associated with mean weight losses of 14.9%-17.4% in individuals with overweight or obesity without type 2 diabetes from baseline to week 68; 69%-79% of participants achieved ≥10% weight loss with semaglutide 2.4 mg (vs. 12%-27% with placebo) and 51%-64% achieved ≥15% weight loss (vs. 5%-13% with placebo). In STEP 5, mean weight loss was -15.2% with semaglutide 2.4 mg versus -2.6% with placebo from baseline to week 104. In STEP 2 (individuals with overweight or obesity, and type 2 diabetes), mean weight loss was -9.6% with semaglutide 2.4 mg versus -3.4% with placebo from baseline to week 68. Improvements in cardiometabolic risk factors, including high blood pressure, atherogenic lipids and benefits on physical function and quality of life were seen with semaglutide 2.4 mg. The safety profile of semaglutide 2.4 mg was consistent across trials, primarily gastrointestinal adverse events. The magnitude of weight loss reported in the STEP trials offers the potential for clinically relevant improvement for individuals with obesity-related diseases.
Collapse
Affiliation(s)
| | - Melanie J. Davies
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research CentreLeicesterUK
| | - Ildiko Lingvay
- Department of Internal Medicine/Endocrinology and Department of Population and Data SciencesUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Filip K. Knop
- Steno Diabetes Center CopenhagenHerlevDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
35
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
36
|
Abstract
INTRODUCTION Obesity is a key target in the treatment and prevention of diabetes and independently to reduce the burden of cardiovascular disease. We reviewed the options now available and anticipated to deal with obesity. AREAS COVERED We considered the epidemiology, genetics, and causation of obesity and the relationship to diabetes, and the dietary, pharmaceutical, and surgical management of the condition. The literature search covered both popular media via Google Search and the academic literature as indexed on PubMed with search terms including obesity, childhood obesity, adipocytes, insulin resistance, mechanisms of satiety, bariatric surgery, GLP-1 receptor agonists, and SGLT2 inhibitors. EXPERT OPINION Although bariatric surgery has been the primary approach to treating obese individuals, the emergence of agents impacting the brain satiety centers now promises effective, non-invasive treatment of obesity for individuals with and without diabetes. The GLP-1 receptor agonists have assumed the primary role in treating obesity with significant weight loss. Long-term results with semaglutide and tirzepatide are now approaching the success seen with bariatric surgery. Future agents combining the benefits of satiety control and thermogenesis to dissipate caloric excess are under investigation.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
| |
Collapse
|
37
|
Oikonomou E, Xenou M, Zakynthinos GE, Tsaplaris P, Lampsas S, Bletsa E, Gialamas I, Kalogeras K, Goliopoulou A, Gounaridi MI, Pesiridis T, Tsatsaragkou A, Vavouranakis M, Siasos G, Tousoulis D. Novel Approaches to the Management of Diabetes Mellitus in Patients with Coronary Artery Disease. Curr Pharm Des 2023; 29:1844-1862. [PMID: 37403390 DOI: 10.2174/1381612829666230703161058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in individuals with diabetes mellitus (DM). Although benefit has been attributed to the strict control of hyperglycemia with traditional antidiabetic treatments, novel antidiabetic medications have demonstrated cardiovascular (CV) safety and benefits by reducing major adverse cardiac events, improving heart failure (HF), and decreasing CVD-related mortality. Emerging data underline the interrelation between diabetes, as a metabolic disorder, and inflammation, endothelial dysfunction, and oxidative stress in the pathogenesis of microvascular and macrovascular complications. Conventional glucose-lowering medications demonstrate controversial CV effects. Dipeptidyl peptidase- 4 inhibitors have not only failed to prove to be beneficial in patients with coronary artery disease, but also their safety is questionable for the treatment of patients with CVD. However, metformin, as the first-line option for type 2 DM (T2DM), shows CVD protective properties for DM-induced atherosclerotic and macrovascular complications. Thiazolidinedione and sulfonylureas have questionable effects, as evidence from large studies shows a reduction in the risk of CV events and deaths, but with an increased rate of hospitalization for HF. Moreover, several studies have revealed that insulin monotherapy for T2DM treatment increases the risk of major CV events and deaths from HF, when compared to metformin, although it may reduce the risk of myocardial infarction. Finally, this review aimed to summarize the mechanisms of action of novel antidiabetic drugs acting as glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors that show favorable effects on blood pressure, lipid levels, and inflammation, leading to reduced CVD risk in T2DM patients.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Xenou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George E Zakynthinos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Tsaplaris
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gialamas
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria I Gounaridi
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Dimitris Tousoulis
- 3rd Department of Cardiology, Medical School, "Sotiria" Chest Diseases Hospital, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Cardiology, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Ji L, Gao L, Jiang H, Yang J, Yu L, Wen J, Cai C, Deng H, Feng L, Song B, Ma Q, Qian L. Safety and efficacy of a GLP-1 and glucagon receptor dual agonist mazdutide (IBI362) 9 mg and 10 mg in Chinese adults with overweight or obesity: A randomised, placebo-controlled, multiple-ascending-dose phase 1b trial. EClinicalMedicine 2022; 54:101691. [PMID: 36247927 PMCID: PMC9561728 DOI: 10.1016/j.eclinm.2022.101691] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mazdutide (also known as IBI362 or LY3305677), a novel once-weekly glucagon-like peptide-1 (GLP-1) and glucagon receptor dual agonist, achieved 12-week body weight loss up to 6.4% at doses up to 6 mg in Chinese adults with overweight or obesity. We further explored the safety and efficacy of mazdutide dosed up to 9 mg and 10 mg. Methods In this randomised, placebo-controlled, multiple-ascending-dose phase 1b trial, we enrolled adults (aged 18-75 years, both inclusive) with overweight (body-mass index [BMI] ≥24 kg/m2) accompanied by hyperphagia and/or at least one obesity-related comorbidity or obesity (BMI ≥28 kg/m2) from five hospitals in China. Eligible participants were randomly assigned (2:1) within each cohort by using an interactive web-response system to receive once-weekly subcutaneous mazdutide or placebo for 12 weeks in the 9 mg cohort (3 mg weeks 1-4; 6 mg weeks 5-8; 9 mg weeks 9-12) and for 16 weeks in the 10 mg cohort (2.5 mg weeks 1-4; 5 mg weeks 5-8; 7.5 mg weeks 9-12; 10 mg weeks 13-16). The participants, investigators, study site personnel involved in treating and assessing participants in each cohort and sponsor personnel were masked to treatment allocation. The primary outcomes were safety and tolerability of mazdutide, assessed from baseline to end of follow-up in all participants who received at least one dose of the study treatment. The secondary outcomes included the change from baseline to week 12 or week 16 in body weight, waist circumference and BMI. This trial is registered with ClinicalTrials.gov, NCT04440345. Findings Between Mar. 1, 2021 and Mar. 26, 2021, a total of 24 participants were enrolled, with eight randomly assigned to mazdutide and four to placebo in each cohort. One participant receiving mazdutide and two receiving placebo in the 10 mg cohort withdrew consent and quitted the study. No serious adverse event was reported. All treatment-emergent adverse events (TEAEs) were mild or moderate in severity and most commonly-reported TEAEs were upper respiratory tract infection, diarrhoea, decreased appetite, nausea, urinary tract infection, abdominal distension and vomiting. The mean percent change from baseline to week 12 in body weight were -11.7% (SE 1.5) for participants receiving mazdutide in the 9 mg cohort and -1.8% (1.6) for participants receiving placebo (estimated treatment difference [ETD]: -9.8%; 95% confidence interval [CI]: -14.4, -5.3; P = 0.0002). The mean percent change from baseline to week 16 in body weight were -9.5% (SE 1.7) for participants receiving mazdutide in the 10 mg cohort and -3.3% (1.9) for participants receiving placebo (ETD: -6.2%; 95% CI: -11.5, -0.9; P = 0.024). In addition, compared with placebo, mazdutide achieved more profound reductions in waist circumference and BMI. Interpretation Mazdutide dosed up to 9 mg and 10 mg was both well tolerated and showed a favourable safety profile. High-dose mazdutide showed promising 12-week body weight loss, holding great potential for the treatment of moderate-to-severe obesity. A larger and longer phase 2 trial will further evaluate the efficacy and safety of high-dose mazdutide in Chinese adults with obesity. Funding Innovent Biologics, Inc.
Collapse
Affiliation(s)
- Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Hongwei Jiang
- The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, China
| | - Jing Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Yu
- Department of Endocrinology, Bengbu Medical College, Bengbu, China
| | - Jie Wen
- Innovent Biologics, Inc., Suzhou, China
| | | | - Huan Deng
- Innovent Biologics, Inc., Suzhou, China
| | - Liqi Feng
- Innovent Biologics, Inc., Suzhou, China
| | | | | | - Lei Qian
- Innovent Biologics, Inc., Suzhou, China
| |
Collapse
|
39
|
Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity. Chin J Nat Med 2022; 20:863-872. [DOI: 10.1016/s1875-5364(22)60196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/23/2022]
|
40
|
Elmelund E, Galsgaard KD, Johansen CD, Trammell SA, Bomholt AB, Winther-Sørensen M, Hunt JE, Sørensen CM, Kruse T, Lau JF, Grevengoed TJ, Holst JJ, Wewer Albrechtsen NJ. Opposing effects of chronic glucagon receptor agonism and antagonism on amino acids, hepatic gene expression, and alpha cells. iScience 2022; 25:105296. [PMID: 36325048 PMCID: PMC9618771 DOI: 10.1016/j.isci.2022.105296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 01/09/2023] Open
Abstract
The pancreatic hormone, glucagon, is known to regulate hepatic glucose production, but recent studies suggest that its regulation of hepatic amino metabolism is equally important. Here, we show that chronic glucagon receptor activation with a long-acting glucagon analog increases amino acid catabolism and ureagenesis and causes alpha cell hypoplasia in female mice. Conversely, chronic glucagon receptor inhibition with a glucagon receptor antibody decreases amino acid catabolism and ureagenesis and causes alpha cell hyperplasia and beta cell loss. These effects were associated with the transcriptional regulation of hepatic genes related to amino acid uptake and catabolism and by the non-transcriptional modulation of the rate-limiting ureagenesis enzyme, carbamoyl phosphate synthetase-1. Our results support the importance of glucagon receptor signaling for amino acid homeostasis and pancreatic islet integrity in mice and provide knowledge regarding the long-term consequences of chronic glucagon receptor agonism and antagonism. Glucagon receptor agonism increases amino acid catabolism and hepatic CPS-1 activity Glucagon receptor signaling regulates the number of pancreatic alpha cells Glucagon regulates the hepatic transcription of genes involved in amino acid metabolism
Collapse
Affiliation(s)
- Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian D. Johansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Samuel A.J. Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anna B. Bomholt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Kruse
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Jesper F. Lau
- Novo Nordisk A/S, Research Chemistry, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Trisha J. Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark
- Corresponding author
| |
Collapse
|
41
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
42
|
Les approches thérapeutiques non invasives de l’obésité : hier, aujourd’hui et demain. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Koullias ES, Koskinas J. Pharmacotherapy for Non-alcoholic Fatty Liver Disease Associated with Diabetes Mellitus Type 2. J Clin Transl Hepatol 2022; 10:965-971. [PMID: 36304499 PMCID: PMC9547270 DOI: 10.14218/jcth.2021.00564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes mellitus type 2 commonly coexist as a manifestation of metabolic syndrome. The presence of diabetes promotes the progression of simple fatty liver to non-alcoholic steatohepatitis (NASH) and cirrhosis, and the presence of NAFLD increases the risk of diabetic complications. This coexistence affects a large part of the population, imposing a great burden on health care systems worldwide. Apart from diet modification and exercise, recent advances in the pharmacotherapy of diabetes offer new prospects regarding liver steatosis and steatohepatitis improvement, enriching the existing algorithm and supporting a multifaceted approach to diabetic patients with fatty liver disease. These agents mainly include members of the families of glucagon-like peptide-1 analogues and the sodium-glucose co-transporter-2 inhibitors. In addition, agents acting on more than one receptor simultaneously are presently under study, in an attempt to further enhance our available options.
Collapse
Affiliation(s)
- Emmanouil S. Koullias
- Correspondence to: Emmanouil S. Koullias, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Ampelokipoi, Athens, Greece. ORCID: https://orcid.org/0000-0002-4037-7123. Tel: +69-4-5631-395, E-mail:
| | | |
Collapse
|
44
|
Wang J, Liu C, Yang H, Ma T, Liu Y, Chen F. Intramolecularly lactam stapled oxyntomodulin analogues inhibit cancer cell proliferation in vitro. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
46
|
Knerr PJ, Mowery SA, Douros JD, Premdjee B, Hjøllund KR, He Y, Kruse Hansen AM, Olsen AK, Perez-Tilve D, DiMarchi RD, Finan B. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Mol Metab 2022; 63:101533. [PMID: 35809773 PMCID: PMC9305623 DOI: 10.1016/j.molmet.2022.101533] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
Objective Pharmacological strategies that engage multiple mechanisms-of-action have demonstrated synergistic benefits for metabolic disease in preclinical models. One approach, concurrent activation of the glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptors (i.e. triagonism), combines the anorectic and insulinotropic activities of GLP-1 and GIP with the energy expenditure effect of glucagon. While the efficacy of triagonism in preclinical models is known, the relative contribution of GcgR activation remains unassessed. This work aims to addresses that central question. Methods Herein, we detail the design of unimolecular peptide triagonists with an empirically optimized receptor potency ratio. These optimized peptide triagonists employ a protraction strategy permitting once-weekly human dosing. Additionally, we assess the effects of these peptides on weight-reduction, food intake, glucose control, and energy expenditure in an established DIO mouse model compared to clinically relevant GLP-1R agonists (e.g. semaglutide) and dual GLP-1R/GIPR agonists (e.g. tirzepatide). Results Optimized triagonists normalize body weight in DIO mice and enhance energy expenditure in a manner superior to that of GLP-1R mono-agonists and GLP-1R/GIPR co-agonists. Conclusions These pre-clinical data suggest unimolecular poly-pharmacology as an effective means to target multiple mechanisms contributing to obesity and further implicate GcgR activation as the differentiating factor between incretin receptor mono- or dual-agonists and triagonists. Details the design of unimolecular peptide triagonists for GLP-1R/GIPR/GCGR. Optimal weight-loss is achieved when receptor potency ratio is weighted toward GCGR vs GLP-1R or GIPR. These agonists are protracted for once-weekly human dosing. Optimized triagonists normalizes body weight & enhance energy expenditure in mice. Efficacy of optimized triagonists is superior to GLP-1R & GLP-1R/GIPR agonists.
Collapse
Affiliation(s)
- Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | - Yantao He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Jiang H, Pang S, Zhang Y, Yu T, Liu M, Deng H, Li L, Feng L, Song B, Han-Zhang H, Ma Q, Qian L, Yang W. A phase 1b randomised controlled trial of a glucagon-like peptide-1 and glucagon receptor dual agonist IBI362 (LY3305677) in Chinese patients with type 2 diabetes. Nat Commun 2022; 13:3613. [PMID: 35750681 PMCID: PMC9232612 DOI: 10.1038/s41467-022-31328-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
The success of glucagon-like peptide-1 (GLP-1) receptor agonists to treat type 2 diabetes (T2D) and obesity has sparked considerable efforts to develop next-generation co-agonists that are more effective. We conducted a randomised, placebo-controlled phase 1b study (ClinicalTrials.gov: NCT04466904) to evaluate the safety and efficacy of IBI362 (LY3305677), a GLP-1 and glucagon receptor dual agonist, in Chinese patients with T2D. A total of 43 patients with T2D were enrolled in three cohorts in nine study centres in China and randomised in each cohort to receive once-weekly IBI362 (3.0 mg, 4.5 mg or 6.0 mg), placebo or open-label dulaglutide (1.5 mg) subcutaneously for 12 weeks. Forty-two patients received the study treatment and were included in the analysis, with eight receiving IBI362, four receiving placebo and two receiving dulaglutide in each cohort. The patients, investigators and study site personnel involved in treating and assessing patients in each cohort were masked to IBI362 and placebo allocation. Primary outcomes were safety and tolerability of IBI362. Secondary outcomes included the change in glycated haemoglobin A1c (HbA1c), fasting plasma glucose (FPG) and post-mixed-meal tolerance test (post-MTT) glucose levels. IBI362 was well tolerated. Most commonly-reported treatment-emergent adverse events were diarrhoea (29.2% for IBI362, 33.3% for dulaglutide, 0% for placebo), decreased appetite (25.0% for IBI362, 16.7% for dulaglutide, 0% for placebo) and nausea (16.7% for IBI362, 16.7% for dulaglutide and 8.3% for placebo). HbA1c, FPG and post-MTT glucose levels were reduced from baseline to week 12 in patients receiving IBI362 in all three cohorts. IBI362 showed a favourable safety profile and clinically meaningful reductions in blood glucose in Chinese patients with T2D. Glucagon-like peptide-1 receptor (GLP1R) agonists are used to treat type 2 diabetes (T2D), and polyagonists targeting multiple hormone receptors are investigated as potential therapeutics for T2D. Here the authors report that IBI362 (LY3305677), a balanced once-weekly GLP-1 and glucagon receptor dual agonist, showed favourable safety and tolerability in Chinese patients with type 2 diabetes in a randomized controlled phase 1b clinical trial.
Collapse
Affiliation(s)
- Hongwei Jiang
- The First Affiliated Hospital and Clinical Medicine College, Henan University of Science and Technology, Luoyang, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Jinan, China
| | - Yawei Zhang
- Department of Endocrinology, Pingxiang People's Hospital, Pingxiang, China
| | - Ting Yu
- Innovent Biologics, Inc, Suzhou, China
| | - Meng Liu
- Innovent Biologics, Inc, Suzhou, China
| | - Huan Deng
- Innovent Biologics, Inc, Suzhou, China
| | - Li Li
- Innovent Biologics, Inc, Suzhou, China
| | - Liqi Feng
- Innovent Biologics, Inc, Suzhou, China
| | | | | | | | - Lei Qian
- Innovent Biologics, Inc, Suzhou, China.
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
48
|
Jia Y, Liu Y, Feng L, Sun S, Sun G. Role of Glucagon and Its Receptor in the Pathogenesis of Diabetes. Front Endocrinol (Lausanne) 2022; 13:928016. [PMID: 35784565 PMCID: PMC9243425 DOI: 10.3389/fendo.2022.928016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Various theories for the hormonal basis of diabetes have been proposed and debated over the past few decades. Insulin insufficiency was previously regarded as the only hormone deficiency directly leading to metabolic disorders associated with diabetes. Although glucagon and its receptor are ignored in this framework, an increasing number of studies have shown that they play essential roles in the development and progression of diabetes. However, the molecular mechanisms underlying the effects of glucagon are still not clear. In this review, recent research on the mechanisms by which glucagon and its receptor contribute to the pathogenesis of diabetes as well as correlations between GCGR mutation rates in populations and the occurrence of diabetes are summarized. Furthermore, we summarize how recent research clearly establishes glucagon as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Yunbo Jia
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linlin Feng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
De Block CEM, Dirinck E, Verhaegen A, Van Gaal LF. Efficacy and safety of high-dose glucagon-like peptide-1, glucagon-like peptide-1/glucose-dependent insulinotropic peptide, and glucagon-like peptide-1/glucagon receptor agonists in type 2 diabetes. Diabetes Obes Metab 2022; 24:788-805. [PMID: 34984793 DOI: 10.1111/dom.14640] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have become agents of choice for people with type 2 diabetes (T2D) with established cardiovascular disease or in high-risk individuals. With currently available GLP-1 RAs, 51%-79% of subjects achieve an HbA1c target of less than 7.0% and 4%-27% lose 10% of body weight, illustrating the need for more potent agents. Three databases (PubMed, Cochrane, Web of Science) were searched using the MESH terms 'glucagon-like peptide-1 receptor agonist', 'glucagon receptor agonist', 'glucose-dependent insulinotropic peptide', 'dual or co-agonist', and 'tirzepatide'. Quality of papers was scored using PRISMA guidelines. Risk of bias was evaluated using the Cochrane assessment tool. An HbA1c target of less than 7.0% was attained by up to 80% with high-dose GLP-1 RAs and up to 97% with tirzepatide, with even up to 62% of people with T2D reaching an HbA1c of less than 5.7%. A body weight loss of 10% or greater was obtained by up to 50% and up to 69% with high-dose GLP-1 RAs or tirzepatide, respectively. The glucose- and weight-lowering effects of the GLP-1/glucagon RA cotadutide equal those of liraglutide 1.8 mg. Gastrointestinal side effects of high-dose GLP-1 RAs and co-agonists occurred in 30%-70% of patients, mostly arising within the first 2 weeks of the first dose, being mild or moderate in severity, and transient. The development of high-dose GLP-1 RAs and the dual GLP-1/glucose-dependent insulinotropic peptide RA tirzepatide resulted in increasing numbers of people reaching HbA1c and body weight targets, with up to 62% attaining normoglycaemia with 15-mg tirzepatide. Whether this will also translate to better cardiovascular outcomes and affect treatment guidelines remains to be studied.
Collapse
Affiliation(s)
- Christophe E M De Block
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| | - Eveline Dirinck
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| | - Ann Verhaegen
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| | - Luc F Van Gaal
- Department of Endocrinology, Diabetology & Metabolism, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Faculty of Medicine & Health Sciences, Laboratory of Experimental Medicine and Paediatrics (LEMP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|