1
|
Zhao Y, Yue R. White adipose tissue in type 2 diabetes and the effect of antidiabetic drugs. Diabetol Metab Syndr 2025; 17:116. [PMID: 40186308 PMCID: PMC11969724 DOI: 10.1186/s13098-025-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
White adipose tissue (WAT) is highly flexible and was previously considered a passive location for energy storage. Its endocrine function has been established for several years, earning it the title of an "endocrine organ" due to its ability to secrete many adipokines that regulate metabolism. WAT is one of the core tissues that influence insulin sensitivity. Its dysfunction enhances insulin resistance and type 2 diabetes (T2D) progression. However, T2D may cause WAT dysfunction, including changes in distribution, metabolism, adipocyte hypertrophy, inflammation, aging, and adipokines and free fatty acid levels, which may exacerbate insulin resistance. This review used PubMed to search WAT dysfunction in T2D and the effects of these changes on insulin resistance. Additionally, we described and discussed the effects of antidiabetic drugs, including insulin therapy, sulfonylureas, metformin, glucose-like peptide-1 receptor agonists, thiazolidinediones, and sodium-dependent glucose transporters-2 inhibitors, on WAT parameters under T2D conditions.
Collapse
Affiliation(s)
- Yixuan Zhao
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China
| | - Rensong Yue
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China.
| |
Collapse
|
2
|
Datta D, Kundu R, Basu R, Chakrabarti P. Pathophysiological hallmarks in type 2 diabetes heterogeneity (review). Diabetol Int 2025; 16:201-222. [PMID: 40166449 PMCID: PMC11954762 DOI: 10.1007/s13340-024-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/21/2024] [Indexed: 01/03/2025]
Abstract
The mechanistic complexity in type 2 diabetes (T2DM) is primarily responsible for the degrees of heterogeneity and development of complications. A complex mode of interactions between different pathophysiological events and diabetogenic environmental factors support for the genesis of diabetes heterogeneity both in phenotypic and clinical contexts. The currently used diabetes classification strategies suffer from several inconsistencies that cannot fully capture the inherent heterogeneity among the diabetes patients. To effectively address this pathobiological and heterogeneity-related issue in diabetes research, the current review proposes nine pathophysiological hallmarks of T2DM that aims to mechanistically explain complexities of diabetes associated pathophysiological events and their underlying features. These pathophysiological hallmarks are pancreatic beta cell dysfunction, insulin sensitivity, insulin resistance, obesity, aging, subclinical inflammation, metabolic dysregulation, prothrombotic state induction and hypertension. Detail knowledge of these pathophysiological hallmarks with their key molecular mediators, influencing factors, clinical biomarkers and clinical assessment methodologies will greatly support precision medicine approaches in diabetes including patient stratification, subtype diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00783-w.
Collapse
Affiliation(s)
- Dipamoy Datta
- Computer Education Training Program, NICS Computer, Kolkata, 700032 India
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata, 700032 India
| | - Raja Kundu
- Computer Education Training Program, NICS Computer, Kolkata, 700032 India
| | - Rajdeep Basu
- Department of Endocrinology, Nil Ratan Sarkar Medical College, Kolkata, 700014 India
| | - Partha Chakrabarti
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata, 700032 India
| |
Collapse
|
3
|
Zhang S, Dong Z, Feng Y, Guo W, Zhang C, Shi Y, Zhao Z, Wang J, Ning G, Huang G. WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals. Nucleic Acids Res 2025; 53:gkae1325. [PMID: 39878214 PMCID: PMC11775607 DOI: 10.1093/nar/gkae1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes. Subsequently, WBSCR16 was identified as a 16S rRNA-binding protein essential for the cleavage of 16S rRNA-mt-tRNALeu, facilitating 16S rRNA processing and mitochondrial ribosome assembly. Additionally, WBSCR16 recruited RNase P subunit MRPP3 to nascent 16S rRNA and assisted in this specific cleavage. Furthermore, evidence showed that adipose-specific Wbscr16 ablation promotes energy wasting via lipid preference in brown adipose tissue, leading to excess energy expenditure and resistance to obesity. In contrast, overexpression of WBSCR16 upregulated 16S rRNA processing and induced a preference for glucose utilization in both transgenic mouse models and cultured cells. These findings suggest that WBSCR16 plays essential roles in mitochondrial 16S rRNA processing in mammals, and is the key mitochondrial protein to balance glucose and lipid metabolism.
Collapse
Affiliation(s)
- Shengjie Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Zi Dong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Yang Feng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Wei Guo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Chen Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Yifan Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
| | - Guorui Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China
- National Research Center forTranslational Medicine, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China
| |
Collapse
|
4
|
Silva FM, Duarte-Mendes P, Ferreira JP, Carvalho E, Monteiro D, Massart A, Farinha C, Soares CM, Teixeira AM. Changes in Metabolic and Inflammatory Markers after a Combined Exercise Program in Workers: A Randomized Controlled Trial. Med Sci Sports Exerc 2024; 56:2156-2172. [PMID: 38934517 DOI: 10.1249/mss.0000000000003510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE We investigated the effects of a 16-wk combined exercise training on body composition, and metabolic and inflammatory markers in sedentary middle-aged workers. We also assessed whether alterations in metabolic markers were associated with changes in health-related outcomes. METHODS This randomized controlled trial involved 46 participants randomly allocated into control and exercise groups. The exercise group performed 16-wk combined aerobic and resistance training for 75 min per session, 3 times a week. Fasting blood samples were collected at baseline and after 16-wk intervention to determine lipid profile, and metabolic and inflammatory markers as primary outcomes. RESULTS A total of 36 participants completed the intervention (53.70 ± 6.92 yr old; n = 18 in each group). Waist circumference (interaction effect: F = 7.423, P = 0.002), fat mass (interaction effect: F = 5.070, P = 0.011), and muscle mass (interaction effect: F = 5.420, P = 0.007) were improved in the exercise group compared with the control group. Fasting glucose increased after the 16-wk follow-up (time effect: F = 73.253, P < 0.001), without an intergroup difference. Insulin levels were greater in the control compared with exercise group (group effect: F = 6.509, P = 0.015). The control group tended to increase the homeostatic model assessment of insulin resistance index (interaction effect: F = 3.493, P = 0.070) and to decrease the QUICKI index (interaction effect: F = 3.364, P = 0.075) to a greater extent compared with the exercise group. Exercise group reduced leptin (interaction effect: F = 11.175, P = 0.002) and adiponectin (interaction effect: F = 4.437, P = 0.043) concentrations in a greater magnitude than the control group. Interleukin (IL)-6 (time effect: F = 17.767, P < 0.001) and tumor necrosis factor α (time effect: F = 9.781, P = 0.004) concentrations decreased after the intervention, without an intergroup difference. IL-17A levels increased in the control compared with exercise group (interaction effect: F = 5.010, P = 0.033). Effects on adiponectin, IL-6, and IL-17A levels seem to depend on baseline body mass index, age, and sex. Percentage changes in leptin correlated positively with changes in homeostatic model assessment of insulin resistance index in the exercise ( r = 0.565, P = 0.015) and control ( r = 0.670, P = 0.002) groups. CONCLUSIONS A combined training program can be an effective strategy to improve body composition and inflammatory markers and prevent marked reductions in insulin sensitivity among middle-aged workers.
Collapse
Affiliation(s)
- Fernanda M Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, PORTUGAL
| | | | - José P Ferreira
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, PORTUGAL
| | | | | | - Alain Massart
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, PORTUGAL
| | | | | | - Ana M Teixeira
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, PORTUGAL
| |
Collapse
|
5
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
6
|
Barbosa P, Pinho A, Lázaro A, Paula D, Campos JC, Tralhão JG, Pereira MJ, Paiva A, Laranjeira P, Carvalho E. High percentage of immune Th1 and Tc1 cells infiltrating visceral adipose tissue in people with obesity. Obes Res Clin Pract 2024; 18:426-435. [PMID: 39765379 DOI: 10.1016/j.orcp.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/31/2025]
Abstract
Subcutaneous (SAT) and visceral (VAT) adipose tissue dysfunction during the obesity onset can lead to increased expression of inflammatory molecules, and consequently to immune cell infiltration. The aim was to deeply characterize the T cells, those infiltrating SAT and VAT, compared to peripheral blood (PB), in individuals undergoing bariatric surgery. Forty-two adult individuals were recruited, SAT and VAT samples were collected. T cell characterization was performed by flow cytometry. Results show that T cells infiltrating VAT from people with obesity display higher polarization towards Th1, Tc1 and T1-like CD4+CD8+ T cells, compared to SAT. These cells also display higher percentage of activated cells, and a higher percentage of PD-1-expressing cells. Furthermore, the percentage of Th1/17 and Tc1/17 cells was increased 7-18 months post-surgery. In summary, the phenotype of T cells and their expression of PD-1 within SAT and VAT appear different, especially compared to PB.
Collapse
Affiliation(s)
- Pedro Barbosa
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal; CNC-UC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, Coimbra 3030-789, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Aryane Pinho
- CNC-UC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Department of Life Science, University of Coimbra, Coimbra 3000-456, Portugal
| | - André Lázaro
- CNC-UC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-061, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Diogo Paula
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-061, Portugal
| | - José C Campos
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-061, Portugal
| | - José G Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-061, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Institute of Biophysics, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Artur Paiva
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-061, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-076, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra 3046-854, Portugal
| | - Paula Laranjeira
- CNC-UC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra 3000-061, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-076, Portugal.
| | - Eugenia Carvalho
- CNC-UC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, Coimbra 3030-789, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
7
|
Fiallo Diez JF, Tegeler AP, Flesher CG, Michelotti TC, Ford H, Hoque MN, Bhattarai B, Benitez OJ, Christopher GF, Strieder-Barboza C. Extracellular matrix modulates depot-specific adipogenic capacity in adipose tissue of dairy cattle. J Dairy Sci 2024; 107:9978-9996. [PMID: 38969002 DOI: 10.3168/jds.2024-25040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Adipose tissue (AT) expands through both hyperplasia and hypertrophy. During adipogenesis, adipose stromal and progenitor cells (ASPC) proliferate and then accumulate lipids, influenced by the local AT microenvironment. Increased adipogenic capacity is desirable as it relates to metabolic health, especially in transition dairy cows where excess free fatty acids in circulation can compromise metabolic and immune health. Our aim was to elucidate the depot-specific adipogenic capacity and extracellular matrix (EMX) properties of subcutaneous (SAT) and visceral (VAT) AT of dairy cows and define how the EMX affects adipogenesis. Flank SAT and omental VAT samples were collected from dairy cows in a local abattoir. Tissue samples were used for transcriptome analysis, targeted real-time quantitative PCR (RT-qPCR) for adipogenic markers, adipocyte sizing, assessment of viscoelastic properties and collagen accumulation, and then decellularized for native EMX isolation. For in vitro analyses, SAT and VAT samples were digested via collagenase, and ASPC cultured for metabolic analysis. Adipogenic capacity was assessed by adipocyte size, quantification of ASPC in stromal vascular fraction (SVF) via flow cytometry, and gene expression of adipogenic markers. In addition, functional assays including lipolysis and glucose uptake were performed to further characterize SAT and VAT adipocyte metabolic function. Data were analyzed using SAS (version 9.4; SAS Institute Inc., Cary, NC) and GraphPad Prism 9. Subcutaneous AT adipogenic capacity was greater than VAT's, as indicated by increased ASPC abundance, increased magnitude of adipocyte ADIPOQ and FASN expression during differentiation, and higher adipocyte lipid accumulation as shown by an increased proportion of larger adipocytes and abundance of lipid droplets. Rheologic analysis revealed that VAT is stiffer than SAT, which led us to hypothesize that differences between SAT and VAT adipogenic capacity were partly mediated by depot-specific EMX microenvironment. Thus, we studied depot-specific EMX-adipocyte crosstalk using a 3-dimensional model with native EMX (decellularized AT). Subcutaneous AT and VAT ASPC were cultured and differentiated into adipocytes within depot-matched and mismatched EMX for 14 d, followed by ADIPOQ expression analysis. Visceral AT EMX impaired ADIPOQ expression in SAT cells. Our results demonstrate that SAT is more adipogenic than VAT and suggest that divergences between SAT and VAT adipogenesis are partially mediated by the depot-specific EMX microenvironment.
Collapse
Affiliation(s)
- J F Fiallo Diez
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - A P Tegeler
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - C G Flesher
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - T C Michelotti
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - H Ford
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - M N Hoque
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409
| | - B Bhattarai
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409
| | - O J Benitez
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409; School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106
| | - G F Christopher
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409
| | - C Strieder-Barboza
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409; School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106.
| |
Collapse
|
8
|
Danowska M, Stefanowicz M, Strączkowski M. The expression of NFAT family genes in subcutaneous adipose tissue before and after weight loss in obese individuals. Nutr Metab Cardiovasc Dis 2024; 34:2455-2463. [PMID: 39069466 DOI: 10.1016/j.numecd.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS Adipose tissue (AT) serves as a vital energy storage site and plays a pivotal role in metabolic regulation, exhibiting a high response to insulin. Impairment in this response may closely associate with obesity, and NFAT (nuclear factor of activated T cells) family genes may be involved in the process. However, human data linking NFAT and AT remains elusive. The aim of this study was to assess the expression of NFAT family genes and markers of adipogenesis in subcutaneous adipose tissue (SAT) among normal-weight and overweight/obese individuals before and after weight loss, in relation to insulin sensitivity. METHODS AND RESULTS The study included 45 participants, 15 normal-weight (control group) and 30 overweight or obese, who underwent a 12-week dietary intervention (DI) program. Before and after the program hyperinsulinemic-euglycemic clamp and SAT biopsy were conducted. Before DI, a positive correlations was observed in the expression of NFATc1, NFATc4, and NFAT5 with insulin sensitivity. The expression of NFAT family genes and markers of adipogenesis in SAT was lower in individuals with overweight or obesity compared to normal-weight. Additionally, a positive correlation was noted between NFAT family genes and adipogenesis markers both before and after weight loss. Following the DI program, there was an increase in the expression of NFATc3, NFATc4, and NFAT5 in SAT. CONCLUSION Decreased SAT expression of NFAT genes in obesity is partly reversed in response to weight loss. NFAT genes in SAT are associated with insulin sensitivity and adipogenesis. Registration number for clinical trial: NCT01393210.
Collapse
Affiliation(s)
- Magdalena Danowska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
9
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
10
|
Sorek G, Haim Y, Chalifa-Caspi V, Lazarescu O, Ziv-Agam M, Hagemann T, Nono Nankam PA, Blüher M, Liberty IF, Dukhno O, Kukeev I, Yeger-Lotem E, Rudich A, Levin L. sNucConv: A bulk RNA-seq deconvolution method trained on single-nucleus RNA-seq data to estimate cell-type composition of human adipose tissues. iScience 2024; 27:110368. [PMID: 39071890 PMCID: PMC11277759 DOI: 10.1016/j.isci.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/27/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Deconvolution algorithms mostly rely on single-cell RNA-sequencing (scRNA-seq) data applied onto bulk RNA-sequencing (bulk RNA-seq) to estimate tissues' cell-type composition, with performance accuracy validated on deposited databases. Adipose tissues' cellular composition is highly variable, and adipocytes can only be captured by single-nucleus RNA-sequencing (snRNA-seq). Here we report the development of sNucConv, a Scaden deep-learning-based deconvolution tool, trained using 5 hSAT and 7 hVAT snRNA-seq-based data corrected by (i) snRNA-seq/bulk RNA-seq highly correlated genes and (ii) individual cell-type regression models. Applying sNucConv on our bulk RNA-seq data resulted in cell-type proportion estimation of 15 and 13 cell types, with accuracy of R = 0.93 (range: 0.76-0.97) and R = 0.95 (range: 0.92-0.98) for hVAT and hSAT, respectively. This performance level was further validated on an independent set of samples (5 hSAT; 5 hVAT). The resulting model was depot specific, reflecting depot differences in gene expression patterns. Jointly, sNucConv provides proof-of-concept for producing validated deconvolution models for tissues un-amenable to scRNA-seq.
Collapse
Affiliation(s)
- Gil Sorek
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Or Lazarescu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maya Ziv-Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Pamela Arielle Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Idit F. Liberty
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oleg Dukhno
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ivan Kukeev
- Soroka University Medical Center, and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
11
|
Wu Y, Sun Y, Chen L, Tong X, Liu C, Lu L, Zhang R, Wang S, Chen Z, Zhang J, Han Z, Zeng B, Li M, Jin L. Dynamics of single-nuclei transcriptomic profiling of adipose tissue from diverse anatomical locations during mouse aging process. Sci Rep 2024; 14:16093. [PMID: 38997312 PMCID: PMC11245496 DOI: 10.1038/s41598-024-66918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Adipose tissue plays critical roles in an individual's aging process. In this research, we use single-nucleus RNA sequencing to create highly detailed transcriptional maps of subcutaneous adipose tissue and visceral adipose tissue in young and aged mice. We comprehensively identify the various cell types within the white adipose tissue of mice, our study has elucidated seven distinct cell types within this tissue. Further analyses focus on adipocytes, fibro-adipogenic progenitors, and immune cells, revealing age-related declines in the synthetic metabolic activity of adipocytes, diminished immune regulation, and reduced maturation or proliferation of fibroblasts in undifferentiated adipocytes. We confirm the presence of distinct subpopulations of adipocytes, highlighting decreases in adipogenesis subgroups due to aging. Additionally, we uncover a reduction in immune cell subpopulations, driven by age-associated immune system dysregulation. Furthermore, pseudo-time analyses indicate that Adipocyte1 represents the 'nascent' phase of adipocyte development, while Adipocyte2 represents the 'mature' phase. We use cell-cell interaction to explore the age-dependent complexities of the interactions between FAPs and adipocytes, and observed increased expression of the inflammation-related Retn-Tlr4 interaction in older mice, while the anti-inflammatory Angpt1-Tek interaction was only detected in young mice. These transcriptional profiles serve as a valuable resource for understanding the functional genomics underlying metabolic disorders associated with aging in human adipose tissue.
Collapse
Affiliation(s)
- Yujie Wu
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Sun
- Department of Geriatics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611130, China
| | - Long Chen
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyan Tong
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Zhang
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Wang
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyu Chen
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaman Zhang
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Long Jin
- Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Mladenović D, Vesković M, Šutulović N, Hrnčić D, Stanojlović O, Radić L, Macut JB, Macut D. Adipose-derived extracellular vesicles - a novel cross-talk mechanism in insulin resistance, non-alcoholic fatty liver disease, and polycystic ovary syndrome. Endocrine 2024; 85:18-34. [PMID: 38285412 DOI: 10.1007/s12020-024-03702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 01/30/2024]
Abstract
Obesity is the best described risk factor for the development of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) while the major pathogenic mechanism linking these entities is insulin resistance (IR). IR is primarily caused by increased secretion of proinflammatory cytokines, adipokines, and lipids from visceral adipose tissue. Increased fatty acid mobilization results in ectopic fat deposition in the liver which causes endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress resulting in increased cytokine production and subsequent inflammation. Similarly, IR with hyperinsulinemia cause hyperandrogenism, the hallmark of PCOS, and inflammation in the ovaries. Proinflammatory cytokines from both liver and ovaries aggravate IR thus providing a complex interaction between adipose tissue, liver, and ovaries in inducing metabolic abnormalities in obese subjects. Although many pathogenic mechanisms of IR, NAFLD/MASLD, and PCOS are known, there is still no effective therapy for these entities suggesting the need for further evaluation of their pathogenesis. Extracellular vesicles (EVs) represent a novel cross-talk mechanism between organs and include membrane-bound vesicles containing proteins, lipids, and nucleic acids that may change the phenotype and function of target cells. Adipose tissue releases EVs that promote IR, the development of all stages of NAFLD/MASLD and PCOS, while mesenchymal stem cell-derived AVs may alleviate metabolic abnormalities and may represent a novel therapeutic device in NAFLD/MASLD, and PCOS. The purpose of this review is to summarize the current knowledge on the role of adipose tissue-derived EVs in the pathogenesis of IR, NAFLD/MASLD, and PCOS.
Collapse
Affiliation(s)
- Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelica Bjekić Macut
- University of Belgrade Faculty of Medicine, Department of Endocrinology, UMC Bežanijska kosa, Belgrade, Serbia
| | - Djuro Macut
- University of Belgrade Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
13
|
Zhao Y, Li X, Yu W, Lin W, Wei W, Zhang L, Liu D, Ma H, Chen J. Differential expression of ADRB1 causes different responses to norepinephrine in adipocytes of Duroc-Landrace-Yorkshire pigs and min pigs. J Therm Biol 2024; 123:103906. [PMID: 38970835 DOI: 10.1016/j.jtherbio.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/11/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Research has shown that pigs from different regions exhibit varying responses to cold stimuli. Typically, cold stimuli induce browning of white adipose tissue mediated by adrenaline, promoting non-shivering thermogenesis. However, the molecular mechanisms underlying differential response of pig breeds to norepinephrine are unclear. The aim of this study was to investigate the differences and molecular mechanisms of the effects of norepinephrine (NE) treatment on adipocytes of Min pigs (a cold-resistant pig breed) and Duroc-Landrace-Yorkshire (DLY) pigs. Real time-qPCR, western blot, and immunofluorescence were performed following NE treatment on cell cultures of adipocytes originating from Min pigs (n = 3) and DLY pigs (n = 3) to assess the expressions of adipogenesis markers, beige fat markers, and mitochondrial biogenesis markers. The results showed that NE did not affect browning of adipocytes in DLY pigs, whereas promoted browning of adipocytes in Min pigs. Further, the expression of ADRB1 (Adrenoceptor Beta 1, ADRB1) was higher in subcutaneous adipose tissue and adipocytes of Min pigs than those of DLY pigs. Overexpression of ADRB1 in DLY pig adipocytes enhanced sensitivity to NE, exhibiting decreased adipogenesis markers, upregulated beige fat markers, and increased mitochondrial biogenesis. Conversely, adipocytes treated with ADRB1 antagonist in Min pigs resulted in decreased cellular sensitivity to NE. Further studies revealed differential CpG island methylation in ADRB1 promoter region, with lower methylation levels in Min pigs compared to DLY pigs. In conclusion, differential methylation of the ADRB1 promoter region leads to different ADRB1 expression, resulting in varying responsiveness to NE in adipocytes of two pig breeds. Our results provide new insights for further analysis of the differential cold responsiveness in pig breeds from different regions.
Collapse
Affiliation(s)
- Yuelei Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuexin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wensai Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbi, 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbi, 150086, China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Jung J, Lee M, Park SH, Cho W, Kim J, Eun S, Lee J. Rose Petal Extract Ameliorates Obesity in High Fat Diet-Induced Obese Mice. Prev Nutr Food Sci 2024; 29:125-134. [PMID: 38974597 PMCID: PMC11223920 DOI: 10.3746/pnf.2024.29.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 07/09/2024] Open
Abstract
In Asia, Rosa spp. has been used in traditional medicine for the treatment of osteoarthritis, rheumatoid arthritis, and edema. In this study, we investigated the effect of rose petal extract (RPE) on high fat diet (HFD)-induced obesity in mice. C57BL/6J mice were fed with either an AIN-93G diet (normal control), a 60% HFD, or a HFD plus supplementation with RPE at 100 or 200 mg/kg body weight (HFD+R100, HFD+R200) for 14 weeks. The HFD increased the body weight gain, liver and fat weight, lipid profiles (total cholesterol, triglyceride, high density lipoprotein cholesterol, and low density lipoprotein cholesterol), and the serum aspartate aminotransferase and alanine aminotransferase levels of mice, while RPE supplementation significantly decreased these parameters compared with the HFD group. Furthermore, the HFD increased the protein expressions of adipogenesis- and lipogenesis-related factors and decreased the protein expression of lipolysis- and energy metabolism-related factors. Conversely, RPE supplementation significantly decreased the protein expression of adipogenesis- and lipogenesis-related factors and increased the protein expression of lipolysis- and energy metabolism-related factors compared to the HFD group. Taken together, the results provide preliminary evidence for the potential protective effects of the RPE against obesity.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Minhee Lee
- Department of Food Innovation and Health, Kyung Hee University, Gyeonggi 17104, Korea
| | - Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Wonhee Cho
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Gyeonggi 13840, Korea
| | - Sangwon Eun
- R&D Division, Daehan Chemtech Co., Ltd., Gyeonggi 13840, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
- Department of Food Innovation and Health, Kyung Hee University, Gyeonggi 17104, Korea
- Clinical Nutrition Institute, Kyung Hee University, Seoul 02453, Korea
| |
Collapse
|
15
|
Azevedo-Martins AK, Santos MP, Abayomi J, Ferreira NJR, Evangelista FS. The Impact of Excessive Fructose Intake on Adipose Tissue and the Development of Childhood Obesity. Nutrients 2024; 16:939. [PMID: 38612973 PMCID: PMC11013923 DOI: 10.3390/nu16070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/14/2024] Open
Abstract
Worldwide, childhood obesity cases continue to rise, and its prevalence is known to increase the risk of non-communicable diseases typically found in adults, such as cardiovascular disease and type 2 diabetes mellitus. Thus, comprehending its multiple causes to build healthier approaches and revert this scenario is urgent. Obesity development is strongly associated with high fructose intake since the excessive consumption of this highly lipogenic sugar leads to white fat accumulation and causes white adipose tissue (WAT) inflammation, oxidative stress, and dysregulated adipokine release. Unfortunately, the global consumption of fructose has increased dramatically in recent years, which is associated with the fact that fructose is not always evident to consumers, as it is commonly added as a sweetener in food and sugar-sweetened beverages (SSB). Therefore, here, we discuss the impact of excessive fructose intake on adipose tissue biology, its contribution to childhood obesity, and current strategies for reducing high fructose and/or free sugar intake. To achieve such reductions, we conclude that it is important that the population has access to reliable information about food ingredients via food labels. Consumers also need scientific education to understand potential health risks to themselves and their children.
Collapse
Affiliation(s)
- Anna Karenina Azevedo-Martins
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Matheus Pedro Santos
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Julie Abayomi
- School of Medicine and Nutrition, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| | - Natália Juliana Ramos Ferreira
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| | - Fabiana S. Evangelista
- Group of Study in Endocrinology and Metabolism, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil; (M.P.S.); (N.J.R.F.); (F.S.E.)
| |
Collapse
|
16
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
17
|
Schön M, Prystupa K, Mori T, Zaharia OP, Bódis K, Bombrich M, Möser C, Yurchenko I, Kupriyanova Y, Strassburger K, Bobrov P, Nair ATN, Bönhof GJ, Strom A, Delgado GE, Kaya S, Guthoff R, Stefan N, Birkenfeld AL, Hauner H, Seissler J, Pfeiffer A, Blüher M, Bornstein S, Szendroedi J, Meyhöfer S, Trenkamp S, Burkart V, Schrauwen-Hinderling VB, Kleber ME, Niessner A, Herder C, Kuss O, März W, Pearson ER, Roden M, Wagner R. Analysis of type 2 diabetes heterogeneity with a tree-like representation: insights from the prospective German Diabetes Study and the LURIC cohort. Lancet Diabetes Endocrinol 2024; 12:119-131. [PMID: 38142707 DOI: 10.1016/s2213-8587(23)00329-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Heterogeneity in type 2 diabetes can be represented by a tree-like graph structure by use of reversed graph-embedded dimensionality reduction. We aimed to examine whether this approach can be used to stratify key pathophysiological components and diabetes-related complications during longitudinal follow-up of individuals with recent-onset type 2 diabetes. METHODS For this cohort analysis, 927 participants aged 18-69 years from the German Diabetes Study (GDS) with recent-onset type 2 diabetes were mapped onto a previously developed two-dimensional tree based on nine simple clinical and laboratory variables, residualised for age and sex. Insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, insulin secretion was assessed by intravenous glucose tolerance test, hepatic lipid content was assessed by 1 H magnetic resonance spectroscopy, serum interleukin (IL)-6 and IL-18 were assessed by ELISA, and peripheral and autonomic neuropathy were assessed by functional and clinical measures. Participants were followed up for up to 16 years. We also investigated heart failure and all-cause mortality in 794 individuals with type 2 diabetes undergoing invasive coronary diagnostics from the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort. FINDINGS There were gradients of clamp-measured insulin sensitivity (both dimensions: p<0·0001) and insulin secretion (pdim1<0·0001, pdim2=0·00097) across the tree. Individuals in the region with the lowest insulin sensitivity had the highest hepatic lipid content (n=205, pdim1<0·0001, pdim2=0·037), pro-inflammatory biomarkers (IL-6: n=348, pdim1<0·0001, pdim2=0·013; IL-18: n=350, pdim1<0·0001, pdim2=0·38), and elevated cardiovascular risk (nevents=143, pdim1=0·14, pdim2<0·00081), whereas individuals positioned in the branch with the lowest insulin secretion were more prone to require insulin therapy (nevents=85, pdim1=0·032, pdim2=0·12) and had the highest risk of diabetic sensorimotor polyneuropathy (nevents=184, pdim1=0·012, pdim2=0·044) and cardiac autonomic neuropathy (nevents=118, pdim1=0·0094, pdim2=0·06). In the LURIC cohort, all-cause mortality was highest in the tree branch showing insulin resistance (nevents=488, pdim1=0·12, pdim2=0·0032). Significant gradients differentiated individuals having heart failure with preserved ejection fraction from those who had heart failure with reduced ejection fraction. INTERPRETATION These data define the pathophysiological underpinnings of the tree structure, which has the potential to stratify diabetes-related complications on the basis of routinely available variables and thereby expand the toolbox of precision diabetes diagnosis. FUNDING German Diabetes Center, German Federal Ministry of Health, Ministry of Culture and Science of the state of North Rhine-Westphalia, German Federal Ministry of Education and Research, German Diabetes Association, German Center for Diabetes Research, European Community, German Research Foundation, and Schmutzler Stiftung.
Collapse
Affiliation(s)
- Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katsiaryna Prystupa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Tim Mori
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Oana P Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria Bombrich
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Clara Möser
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iryna Yurchenko
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Anand T N Nair
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Graciela E Delgado
- 5th Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Preventive Medicine and Digital Health Baden-Württemberg, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rainer Guthoff
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases, University of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases, University of Tübingen, Tübingen, Germany
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, München, Germany
| | - Jochen Seissler
- Diabetes Research Group, Medical Department 4, Ludwig-Maximilians University Munich, München, Germany
| | - Andreas Pfeiffer
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Matthias Blüher
- Department of Medicine, Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Stefan Bornstein
- Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Julia Szendroedi
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Svenja Meyhöfer
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany; Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Vera B Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Marcus E Kleber
- 5th Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB MVZ für Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Alexander Niessner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Austria
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Winfried März
- 5th Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg and Mannheim, Munich, Germany
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Bódis K, Breuer S, Crepzia-Pevzner A, Zaharia OP, Schön M, Saatmann N, Altenhofen D, Springer C, Szendroedi J, Wagner R, Al-Hasani H, Roden M, Pesta D, Chadt A. Impact of physical fitness and exercise training on subcutaneous adipose tissue beiging markers in humans with and without diabetes and a high-fat diet-fed mouse model. Diabetes Obes Metab 2024; 26:339-350. [PMID: 37869933 DOI: 10.1111/dom.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023]
Abstract
AIMS Exercise training induces white adipose tissue (WAT) beiging and improves glucose homeostasis and mitochondrial function in rodents. This could be relevant for type 2 diabetes in humans, but the effect of physical fitness on beiging of subcutaneous WAT (scWAT) remains unclear. This translational study investigates if beiging of scWAT associates with physical fitness in healthy humans and recent-onset type 2 diabetes and if a voluntary running wheel intervention is sufficient to induce beiging in mice. MATERIALS AND METHODS Gene expression levels of established beiging markers were measured in scWAT biopsies of humans with (n = 28) or without type 2 diabetes (n = 28), stratified by spiroergometry into low (L-FIT; n = 14 each) and high physical fitness (H-FIT; n = 14 each). High-fat diet-fed FVB/N mice underwent voluntary wheel running, treadmill training or no training (n = 8 each group). Following the training intervention, mitochondrial respiration and content of scWAT were assessed by high-resolution respirometry and citrate synthase activity, respectively. RESULTS Secreted CD137 antigen (Tnfrsf9/Cd137) expression was three-fold higher in glucose-tolerant H-FIT than in L-FIT, but not different between H-FIT and L-FIT with type 2 diabetes. In mice, both training modalities increased Cd137 expression and enhanced mitochondrial content without changing respiration in scWAT. Treadmill but not voluntary wheel running led to improved whole-body insulin sensitivity. CONCLUSIONS Higher physical fitness and different exercise interventions associated with higher gene expression levels of the beiging marker CD137 in healthy humans and mice on a high-fat diet. Humans with recent-onset type 2 diabetes show an impaired adipose tissue-specific response to physical activity.
Collapse
Affiliation(s)
- Kálmán Bódis
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Saida Breuer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Assja Crepzia-Pevzner
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Delsi Altenhofen
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Springer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Joint Heidelberg-IDC Transnational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Robert Wagner
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Faculty of Medicine and University Hospital, Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alexandra Chadt
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Kobayashi H, Imanaka S. Recent progress in metabolomics for analyzing common infertility conditions that affect ovarian function. Reprod Med Biol 2024; 23:e12609. [PMID: 39351127 PMCID: PMC11442066 DOI: 10.1002/rmb2.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Numerous efforts have been undertaken to identify biomarkers associated with embryo and oocyte quality to improve the success rate of in vitro fertilization. Metabolomics has gained traction for its ability to detect dynamic biological changes in real time and provide comprehensive metabolite profiles. This review synthesizes the most recent findings on metabolomic analysis of follicular fluid (FF) in clinical conditions leading to infertility, with a focus on the dynamics of energy metabolism and oocyte quality, and discusses future research directions. Methods A literature search was conducted without time constraints. Main findings The metabolites present in FF originate from five primary pathways: glycolysis, oxidative phosphorylation, lipid metabolism and β-oxidation, nucleic acid synthesis, and ketogenesis. Metabolomic profiling can broadly categorize infertile women into two groups: those with infertility due to aging and endometriosis, and those with infertility associated with polycystic ovarian syndrome and obesity. In the former group, glycolysis and lipid metabolism are upregulated to compensate for mitochondrial dysfunction, whereas the latter group exhibits the opposite trend. Assessing the levels of glucose, pyruvate, lactate, and plasmalogens in FF may be valuable for evaluating oocyte quality. Conclusion Metabolomic analysis, particularly focusing on energy metabolism in FF, holds promise for predicting female reproductive outcomes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| |
Collapse
|
20
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
21
|
Zaharia OP, Antoniou S, Bobrov P, Karusheva Y, Bódis K, Kupriyanova Y, Schrauwen-Hinderling V, Gastaldelli A, Szendroedi J, Wagner R, Burkart V, Roden M. Reduced Insulin Clearance Differently Relates to Increased Liver Lipid Content and Worse Glycemic Control in Recent-Onset Type 2 and Type 1 Diabetes. Diabetes Care 2023; 46:2232-2239. [PMID: 37874983 DOI: 10.2337/dc23-1267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE Diabetes may feature impaired insulin kinetics, which could be aggravated by altered hepatic metabolism and glycemic control. Thus, we examined insulin clearance and its possible determinants in individuals with recent-onset diabetes. RESEARCH DESIGN AND METHODS Participants of the German Diabetes Study (GDS) with type 1 diabetes (T1D) (n = 306), type 2 diabetes (T2D) (n = 489), or normal glucose tolerance (control [CON]) (n = 167) underwent hyperinsulinemic-euglycemic clamps for assessment of whole-body insulin sensitivity (M value) and insulin clearance (ICCLAMP). Insulin clearance rates were further calculated during intravenous glucose tolerance tests (ICIVGTT) and mixed-meal tests (ICMMT). Hepatocellular lipid content (HCL) was quantified with 1H-MRS. RESULTS Both T1D and T2D groups had lower ICCLAMP (0.12 ± 0.07 and 0.21 ± 0.06 vs. 0.28 ± 0.14 arbitrary units [a.u.], respectively, all P < 0.05) and ICMMT (0.71 ± 0.35 and 0.99 ± 0.33 vs. 1.20 ± 0.36 a.u., all P < 0.05) than CON. In T1D, ICCLAMP, ICIVGTT, and ICMMT correlated negatively with HbA1c (all P < 0.05). M value correlated positively with ICIVGTT in CON and T2D (r = 0.199 and r = 0.178, P < 0.05) and with ICMMT in CON (r = 0.176, P < 0.05). HCL negatively associated with ICIVGTT and ICMMT in T2D (r = -0.005 and r = -0.037) and CON (r = -0.127 and r = -0.058, all P < 0.05). In line, T2D or CON subjects with steatosis featured lower ICMMT than those without steatosis (both P < 0.05). CONCLUSIONS Insulin clearance is reduced in both T1D and T2D within the first year after diagnosis but correlates negatively with liver lipid content rather in T2D. Moreover, insulin clearance differently associates with glycemic control and insulin sensitivity in each diabetes type, which may suggest specific mechanisms affecting insulin kinetics.
Collapse
Affiliation(s)
- Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Sofia Antoniou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Kálmán Bódis
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Wagner
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Göransson O, Kopietz F, Rider MH. Metabolic control by AMPK in white adipose tissue. Trends Endocrinol Metab 2023; 34:704-717. [PMID: 37673765 DOI: 10.1016/j.tem.2023.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
White adipose tissue (WAT) plays an important role in the integration of whole-body metabolism by storing fat and mobilizing triacylglycerol when needed. The released free fatty acids can then be oxidized by other tissues to provide ATP. AMP-activated protein kinase (AMPK) is a key regulator of metabolic pathways, and can be targeted by a new generation of direct, small-molecule activators. AMPK activation in WAT inhibits insulin-stimulated lipogenesis and in some situations also inhibits insulin-stimulated glucose uptake, but AMPK-induced inhibition of β-adrenergic agonist-stimulated lipolysis might need to be re-evaluated in vivo. The lack of dramatic effects of AMPK activation on basal metabolism in WAT could be advantageous when treating type 2 diabetes with pharmacological pan-AMPK activators.
Collapse
Affiliation(s)
- Olga Göransson
- Lund University, Department of Experimental Medical Science, BMC, 221 84 Lund, Sweden.
| | - Franziska Kopietz
- Lund University, Department of Experimental Medical Science, BMC, 221 84 Lund, Sweden
| | - Mark H Rider
- Université catholique de Louvain (UCLouvain) and de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium
| |
Collapse
|
23
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Tan Y, Tan S, Ren T, Yu L, Li P, Xie G, Chen C, Yuan M, Xu Q, Chen Z. Transcriptomics Reveals the Mechanism of Rosa roxburghii Tratt Ellagitannin in Improving Hepatic Lipid Metabolism Disorder in db/db Mice. Nutrients 2023; 15:4187. [PMID: 37836471 PMCID: PMC10574348 DOI: 10.3390/nu15194187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
A complex metabolic disorder, type 2 diabetes, was investigated to explore the impact of ellagitannin, derived from Rosa roxburghii Tratt (RTT), on liver lipid metabolism disorders in db/db mice. The findings demonstrated that both RTT ellagitannin (C1) and RTT ellagic acid (C4) considerably decelerated body mass gain in db/db mice, significantly decreased fasting blood glucose (FBG) levels, and mitigated the aggregation of hepatic lipid droplets. At LDL-C levels, C1 performed substantially better than the C4 group, exhibiting no significant difference compared to the P (positive control) group. An RNA-seq analysis further disclosed that 1245 differentially expressed genes were identified in the livers of experimental mice following the C1 intervention. The GO and KEGG enrichment analysis revealed that, under ellagitannin intervention, numerous differentially expressed genes were significantly enriched in fatty acid metabolic processes, the PPAR signaling pathway, fatty acid degradation, fatty acid synthesis, and other lipid metabolism-related pathways. The qRT-PCR and Western blot analysis results indicated that RTT ellagitannin notably upregulated the gene and protein expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ). In contrast, it downregulated the gene and protein expression levels of sterol regulatory element-binding protein (SREBP), recombinant fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC). Therefore, RTT ellagitannin can activate the PPAR signaling pathway, inhibit fatty acid uptake and de novo synthesis, and ameliorate hepatic lipid metabolism disorder in db/db mice, thus potentially aiding in maintaining lipid homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Yunyun Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuming Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556018, China
| | - Guofang Xie
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Meng Yuan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qing Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Zhen Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
26
|
Buyco DG, Dempsey JL, Scorletti E, Jeon S, Lin C, Harkin J, Bayen S, Furth EE, Martin J, Delima M, Hooks R, Sostre-Colón J, Gharib SA, Titchenell PM, Carr RM. Concomitant western diet and chronic-binge alcohol dysregulate hepatic metabolism. PLoS One 2023; 18:e0281954. [PMID: 37134024 PMCID: PMC10155975 DOI: 10.1371/journal.pone.0281954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND AND AIMS There is significant overlap between non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) with regards to risk factors and disease progression. However, the mechanism by which fatty liver disease arises from concomitant obesity and overconsumption of alcohol (syndrome of metabolic and alcohol-associated fatty liver disease; SMAFLD), is not fully understood. METHODS Male C57BL6/J mice were fed chow diet (Chow) or high-fructose, high-fat, high-cholesterol diet (FFC) for 4 weeks, then administered either saline or ethanol (EtOH, 5% in drinking water) for another 12 weeks. The EtOH treatment also consisted of a weekly 2.5 g EtOH/kg body weight gavage. Markers for lipid regulation, oxidative stress, inflammation, and fibrosis were measured by RT-qPCR, RNA-seq, Western blot, and metabolomics. RESULTS Combined FFC-EtOH induced more body weight gain, glucose intolerance, steatosis, and hepatomegaly compared to Chow, EtOH, or FFC. Glucose intolerance by FFC-EtOH was associated with decreased hepatic protein kinase B (AKT) protein expression and increased gluconeogenic gene expression. FFC-EtOH increased hepatic triglyceride and ceramide levels, plasma leptin levels, hepatic Perilipin 2 protein expression, and decreased lipolytic gene expression. FFC and FFC-EtOH also increased AMP-activated protein kinase (AMPK) activation. Finally, FFC-EtOH enriched the hepatic transcriptome for genes involved in immune response and lipid metabolism. CONCLUSIONS In our model of early SMAFLD, we observed that the combination of an obesogenic diet and alcohol caused more weight gain, promoted glucose intolerance, and contributed to steatosis by dysregulating leptin/AMPK signaling. Our model demonstrates that the combination of an obesogenic diet with a chronic-binge pattern alcohol intake is worse than either insult alone.
Collapse
Affiliation(s)
- Delfin Gerard Buyco
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph L. Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eleonora Scorletti
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sookyoung Jeon
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Chelsea Lin
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julia Harkin
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Susovon Bayen
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jasmin Martin
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Monique Delima
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Royce Hooks
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rotonya M. Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Wang LH, Wang YY, Liu L, Gong Q. From Diabetes to Diabetic Complications: Role of Autophagy. Curr Med Sci 2023:10.1007/s11596-023-2727-4. [PMID: 37115396 DOI: 10.1007/s11596-023-2727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/29/2022] [Indexed: 04/29/2023]
Abstract
Diabetes and its complications reduce quality of life and are life-limiting. At present, diabetes treatment consists of hypoglycemic agents to control blood glucose and the use of insulin-sensitizing drugs to overcome insulin resistance. In diabetes, autophagy is impaired and thus there is poor intracellular environment homeostasis. Pancreatic β-cells and insulin target tissues are protected by enhancing autophagy. Autophagy decreases β-cell apoptosis, promotes β-cell proliferation, and alleviates insulin resistance. Autophagy in diabetes is regulated by the mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway and others. Autophagy enhancers can likely be used as a treatment for diabetes and its complications. This review examines the evidence linking autophagy to diabetes.
Collapse
Affiliation(s)
- Lin-Hua Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou, 434023, China
| | - Yang-Yang Wang
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou, 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Quan Gong
- Clinical Molecular Immunology Center, Yangtze University, Jingzhou, 434023, China.
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
28
|
Errafii K, Boujraf S, Chikri M. Transcriptomic Analysis from Normal Glucose Tolerance to T2D of Obese Individuals Using Bioinformatic Tools. Int J Mol Sci 2023; 24:ijms24076337. [PMID: 37047308 PMCID: PMC10093815 DOI: 10.3390/ijms24076337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Understanding the role of white adipose tissue (WAT) in the occurrence and progression of metabolic syndrome is of considerable interest; among the metabolic syndromes are obesity and type 2 diabetes (T2D). Insulin resistance is a key factor in the development of T2D. When the target cells become resistant to insulin, the pancreas responds by producing more insulin to try to lower blood glucose. Over time, this can lead to a state of hyperinsulinemia (high levels of insulin in the blood), which can further exacerbate insulin resistance and contribute to the development of T2D. In order to understand the difference between healthy and unhealthy obese individuals, we have used published transcriptomic profiling to compare differences between the WAT obtained from obese diabetics and subjects who are obese with normal glucose tolerance and insulin resistance. The identification of aberrantly expressed messenger RNA (mRNA) and the resulting molecular interactions and signaling networks is essential for a better understanding of the progression from normal glucose-tolerant obese individuals to obese diabetics. Computational analyses using Ingenuity Pathway Analysis (IPA) identified multiple activated signaling networks in obesity progression from insulin-resistant and normal glucose-tolerant (IR-NGT) individuals to those with T2D. The pathways affected are: Tumor Necrosis Factor (TNF), Extracellular signal-Regulated protein Kinase 1/2 ERK1/2, Interleukin 1 A (IL1A), Protein kinase C (Pkcs), Convertase C5, Vascular endothelial growth factor (Vegf), REL-associated protein (RELA), Interleukin1/1 B (IL1/1B), Triggering receptor expressed on myeloid cells (TREM1) and Nuclear factor KB1 (NFKB1) networks, while functional annotation highlighted Liver X Receptor (LXR) activation, phagosome formation, tumor microenvironment pathway, LPS/IL-1 mediated inhibition of RXR function, TREM1 signaling and IL-6 signaling. Together, by conducting a thorough bioinformatics study of protein-coding RNAs, prospective targets could be exploited to clarify the molecular pathways underlying the development of obesity-related type 2 diabetes.
Collapse
Affiliation(s)
- Khaoula Errafii
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah University, Fez 30000, Morocco
- Biochemistry and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah University, Fez 30000, Morocco
- African Genome Center, Mohamed IV Polytechnic University, Benguerir 43151, Morocco
| | - Said Boujraf
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah University, Fez 30000, Morocco
- Biochemistry and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah University, Fez 30000, Morocco
| | - Mohamed Chikri
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah University, Fez 30000, Morocco
- Biochemistry and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammad Ben Abdullah University, Fez 30000, Morocco
- Inserm Unite CNRS, Lille University UMR 1283-8199, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
29
|
Muhli E, Benchraka C, Lotankar M, Houttu N, Niinikoski H, Lahti L, Laitinen K. Aberrations in the early pregnancy serum metabolic profile in women with prediabetes at two years postpartum. Metabolomics 2023; 19:20. [PMID: 36961590 PMCID: PMC10038958 DOI: 10.1007/s11306-023-01994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Aberrations in circulating metabolites have been associated with diabetes and cardiovascular risk. OBJECTIVES To investigate if early and late pregnancy serum metabolomic profiles differ in women who develop prediabetes by two years postpartum compared to those who remain normoglycemic. METHODS An NMR metabolomics platform was used to measure 228 serum metabolite variables from women with pre-pregnancy overweight in early and late pregnancy. Co-abundant groups of metabolites were compared between the women who were (n = 40) or were not (n = 138) prediabetic at two years postpartum. Random Forests classifiers, based on the metabolic profiles, were used to predict the prediabetes status, and correlations of the metabolites to glycemic traits (fasting glucose and insulin, HOMA2-IR and HbA1c) and hsCRP at postpartum were evaluated. RESULTS Women with prediabetes had higher concentrations of small HDL particles, total lipids in small HDL, phospholipids in small HDL and free cholesterol in small HDL in early pregnancy (p = 0.029; adj with pre-pregnancy BMI p = 0.094). The small HDL related metabolites also correlated positively with markers of insulin resistance at postpartum. Similar associations were not detected for metabolites in late pregnancy. A Random Forests classifier based on serum metabolites and clinical variables in early pregnancy displayed an acceptable predictive power for the prediabetes status at postpartum (AUROC 0.668). CONCLUSION Elevated serum concentrations of small HDL particles in early pregnancy associate with prediabetes and insulin resistance at two years postpartum. The serum metabolic profile during pregnancy might be used to identify women at increased risk for type 2 diabetes.
Collapse
Affiliation(s)
- Ella Muhli
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland.
- Department of Obstetrics and Gynecology, University of Turku, Turku, Finland.
| | - Chouaib Benchraka
- Department of Computing, Faculty of Technology, University of Turku, Turku, Finland
| | - Mrunalini Lotankar
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland
| | - Noora Houttu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland
| | - Harri Niinikoski
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Technology, University of Turku, Turku, Finland
| | - Kirsi Laitinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, 20014, Finland
- Functional Foods Forum, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
31
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
32
|
Peng C, Miao Z, Wang Y, Cheng R, Shen X, He F. Sex discrepancy in establishing mouse visceral obesity model induced by high-fat diet. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:117-125. [PMID: 37283125 PMCID: PMC10407992 DOI: 10.3724/zdxbyxb-2022-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/17/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To establish a mouse visceral obesity model, and to investigate the effect of animal sex on this model. METHODS Thirty-two 4-week-old BALB/c mice were randomly divided into female control group, female high-fat group, male control group and male high-fat group with 8 mice in each group.The control groups were given ordinary diet, and the high-fat groups were given high-fat diet. After 12 weeks of feeding, body weight, visceral fat, fasting blood glucose, glucose tolerance, blood lipid and metabolism-related hormone levels were measured, and the composition of gut microbiota of mice was analyzed by 16S rRNA sequencing. RESULTS The high fat diet resulted in a significant increase of body weight and visceral fat content in male mice; the pathological results showed significantly increased fat area, accumulation of liver fat droplets, increased total cholesterol, fasting blood glucose, oral glucose tolerance and serum insulin levels (all P<0.05), as well as significant insulin resistance (P<0.01). However, the above changes were not significant in female mice. Compared with the control groups, there was an increase in the relative abundance of obesity-related gut microbiota in the model groups (such as Blautia), and the microbiota structure changed significantly, while the changes were less obvious in female mice. CONCLUSIONS A visceral obesity mouse model has been stably established by feeding high-fat diet in BALB/c male mice, showing visceral fat accumulation, metabolic dysfunction and gut microbiota changes; while female mice are not sensitive in this obesity model.
Collapse
Affiliation(s)
- Chenrui Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhonghua Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yimei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyue Cheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Shen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
Zhang Y, Zhu W, Wang M, Xi P, Wang H, Tian D. Nicotinamide mononucleotide alters body composition and ameliorates metabolic disorders induced by a high-fat diet. IUBMB Life 2023; 75:548-562. [PMID: 36785893 DOI: 10.1002/iub.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Obesity is caused by an imbalance between calorie intake and energy expenditure, leading to excessive adipose tissue accumulation. Nicotinamide adenine dinucleotide (NAD+ ) is an important molecule in energy and signal transduction, and NAD+ supplementation therapy is a new treatment for obesity in recent years. Liver kinase B1 (LKB1) is an energy metabolism regulator. The relationship between NAD+ and LKB1 has only been studied in the heart and has not yet been reported in obesity. Nicotinamide mononucleotide (NMN), as a direct precursor of NAD+ , can effectively enhance the level of NAD+ . In the current study, we showed that NMN intervention altered body composition in obese mice, characterized by a reduction in fat mass and an increase in lean mass. NMN reversed high-fat diet-induced blood lipid levels then contributed to reducing hepatic steatosis. NMN also improved glucose tolerance and alleviated adipose tissue inflammation. Moreover, our data suggested that NMN supplementation may be depends on the NAD+ /SIRT6/LKB1 pathway to regulate brown adipose metabolism. These results provided new evidence for NMN in obesity treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Wenjuan Zhu
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Meng Wang
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Pengjiao Xi
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Haomin Wang
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin, China
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China.,Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Zhu J, Wilding JP, Hu J. Adipocytes in obesity: A perfect reservoir for SARS-CoV-2? Med Hypotheses 2023; 171:111020. [PMID: 36742015 PMCID: PMC9889082 DOI: 10.1016/j.mehy.2023.111020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023]
Abstract
Research evidence suggests that adipocytes in obesity might facilitate SARS-CoV-2 replication, for it was only found in adipose tissue of individuals with overweight or obesity but not lean individuals who died from COVID-19. As lipid metabolism is key to adipocyte function, and viruses are capable of exploiting and manipulating lipid metabolism of host cells for their own benefit of infection, we hypothesize that adipocytes could not only impair host immune defense against viral infection, but also facilitate SARS-CoV-2 entry, replication and assembly as a reservoir to boost the viral infection in obesity. The latter of which could mainly be mediated by SARS-CoV-2 hijacking the abnormal lipid metabolism in the adipocytes. If these were to be confirmed, an approach to combat COVID-19 in people with obesity by taking advantage of the abnormal lipid metabolism in adipocytes might be considered, as well as modifying lipid metabolism of other host cells as a potential adjunctive treatment for COVID-19.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- ATP, adenosine triphosphate
- Adipocyte
- COVID-19, coronavirus disease 2019
- ER, endoplasmic reticulum
- ERGIC, ER-to-Golgi intermediate compartment
- FFAs, free fatty acids
- LDs, lipid droplets
- Lipid metabolism
- Obesity
- S protein, spike protein
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Severe acute respiratory syndrome coronavirus 2
- TAGs, triacylglycerols
Collapse
Affiliation(s)
- JingJing Zhu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China,Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, United Kingdom
| | - John P.H. Wilding
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, United Kingdom
| | - Ji Hu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China,Corresponding author
| |
Collapse
|
35
|
Zhang J, Jia Q, Li Y, He J. The Function of Xenobiotic Receptors in Metabolic Diseases. Drug Metab Dispos 2023; 51:237-248. [PMID: 36414407 DOI: 10.1124/dmd.122.000862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases are a series of metabolic disorders that include obesity, diabetes, insulin resistance, hypertension, and hyperlipidemia. The increased prevalence of metabolic diseases has resulted in higher mortality and mobility rates over the past decades, and this has led to extensive research focusing on the underlying mechanisms. Xenobiotic receptors (XRs) are a series of xenobiotic-sensing nuclear receptors that regulate their downstream target genes expression, thus defending the body from xenobiotic and endotoxin attacks. XR activation is associated with the development of a number of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes, and cardiovascular diseases, thus suggesting an important role for XRs in modulating metabolic diseases. However, the regulatory mechanism of XRs in the context of metabolic disorders under different nutrient conditions is complex and remains controversial. This review summarizes the effects of XRs on different metabolic components (cholesterol, lipids, glucose, and bile acids) in different tissues during metabolic diseases. As chronic inflammation plays a critical role in the initiation and progression of metabolic diseases, we also discuss the impact of XRs on inflammation to comprehensively recognize the role of XRs in metabolic diseases. This will provide new ideas for treating metabolic diseases by targeting XRs. SIGNIFICANCE STATEMENT: This review outlines the current understanding of xenobiotic receptors on nutrient metabolism and inflammation during metabolic diseases. This work also highlights the gaps in this field, which can be used to direct the future investigations on metabolic diseases treatment by targeting xenobiotic receptors.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy (J.Z., Y.L., J.H.) and Department of Endocrinology and Metabolism (Q.J.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
37
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
38
|
Proulx F, Ostinelli G, Biertho L, Tchernof A. Pathophysiology of the Cardiometabolic Alterations in Obesity. DUODENAL SWITCH AND ITS DERIVATIVES IN BARIATRIC AND METABOLIC SURGERY 2023:69-83. [DOI: 10.1007/978-3-031-25828-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Jiang Y, Yue R, Liu G, Liu J, Peng B, Yang M, Zhao L, Li Z. Garlic ( Allium sativum L.) in diabetes and its complications: Recent advances in mechanisms of action. Crit Rev Food Sci Nutr 2022; 64:5290-5340. [PMID: 36503329 DOI: 10.1080/10408398.2022.2153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jun Liu
- People's Hospital of NanJiang, Bazhong, China
| | - Bo Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianxue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Pafili K, Kahl S, Mastrototaro L, Strassburger K, Pesta D, Herder C, Pützer J, Dewidar B, Hendlinger M, Granata C, Saatmann N, Yavas A, Gancheva S, Heilmann G, Esposito I, Schlensak M, Roden M. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J Hepatol 2022; 77:1504-1514. [PMID: 35988689 DOI: 10.1016/j.jhep.2022.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Adipose tissue dysfunction is involved in the development of insulin resistance and is responsible for excessive lipid delivery to other organs such as the liver. We tested the hypothesis that impaired mitochondrial function is a common feature of subcutaneous (SAT) and visceral adipose tissue (VAT), but may differently contribute to adipose tissue insulin resistance (IR) in obesity, non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). METHODS In this cross-sectional study, we analyzed tissue-specific insulin sensitivity using stable isotope dilution and hyperinsulinemic-normoglycemic clamp tests. We also assessed mitochondrial respiration, mRNA and protein expression, and tissue morphology in biopsies of SAT and VAT from obese humans without NAFL, with NAFL or with NASH (n = 22/group). RESULTS Compared to individuals without liver disease, persons with NAFL and NASH had about 30% (p = 0.010) and 33% (p = 0.002) lower maximal mitochondrial respiration, respectively, in VAT, but not in SAT. The lower maximal mitochondrial respiration of VAT was associated with lower adipose tissue insulin sensitivity (β = 0.985, p = 0.041) and with increased VAT protein expression of tumor necrosis factor A across all groups (β = -0.085, p = 0.040). VAT from individuals with NASH was characterized by lower expression of oxidative phosphorylation complex IV (p = 0.042) and higher mRNA expression of the macrophage marker CD68 (p = 0.002) than VAT from participants without NAFL. CONCLUSIONS Humans with non-alcoholic fatty liver disease have distinct abnormalities of VAT energy metabolism, which correlate with adipose tissue dysfunction and may favor progression of NAFL to NASH. LAY SUMMARY Adipose tissue (commonly called body fat) can be found under the skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease. CLINICAL TRIAL NUMBER NCT01477957.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jennifer Pützer
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Mona Hendlinger
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Nina Saatmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Aslihan Yavas
- Institute of Pathology, University Hospital and Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Matthias Schlensak
- Department of General and Visceral Surgery, Neuwerk Hospital, 41066, Mönchengladbach, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, 85764, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
41
|
Zhang W, Wang J, Wang L, Shi R, Chu C, Shi Z, Liu P, Li Y, Liu X, Liu Z. Alternate-day fasting prevents non-alcoholic fatty liver disease and working memory impairment in diet-induced obese mice. J Nutr Biochem 2022; 110:109146. [PMID: 36049672 DOI: 10.1016/j.jnutbio.2022.109146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Alternate-day fasting (ADF) regimen has been reported to alleviate obesity and insulin resistance. However, the effects of ADF on preventing diet-induced non-alcoholic fatty liver disease (NAFLD) and related cognitive deficits are still elusive. In the present study, a high-fat diet (HFD)-induced obese (DIO) C57BL/6 mouse model was established. Mice were treated with a 4-week long ADF regimen and/or switching the diet to a standard diet. ADF reduced lipid accumulation, activated AMPK/ULK1 signaling, and suppressed the phosphorylation of mTOR. Also, ADF inhibited lipid accumulation and inflammatory responses in the white adipose tissue and down-regulated expressions of PPAR-γ and cytokines. Moreover, ADF improved the working memory and synaptic structure in the DIO mice and upregulated PSD-95 and BDNF in the hippocampus. ADF reduced oxidative stress and microglial over-activation in the CNS. These results suggest that ADF attenuates NAFLD development in the liver of DIO mice, which is related to the mediating effects of ADF on autophagy and energy metabolism. ADF also enhanced cognitive function, which could be partly explained by the down-regulated peripheral inflammatory responses. This study indicates that ADF could be a promising intervention for alleviating NAFLD development and cognitive decline.
Collapse
Affiliation(s)
- Wentong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jun Wang
- Department of Digestive Diseases, Xijing Hospital, Xi'an, Shaanxi Province, China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Renjie Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chuanqi Chu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhiling Shi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Pujie Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yitong Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China; Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
42
|
Circulating microRNA levels differ in the early stages of insulin resistance in prepubertal children with obesity. Life Sci 2022; 312:121246. [PMID: 36455651 PMCID: PMC10375861 DOI: 10.1016/j.lfs.2022.121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
AIMS The increasing prevalence of childhood obesity escalates the risk for related complications. Circulating microRNAs (miRNAs) have been suggested as good predictive markers of insulin resistance in those with obesity. The aim was to identify a circulating miRNA profile that reflects insulin resistance in prepubertal children with obesity. MATERIAL AND METHODS Plasma miRNAs were measured in prepubertal children (n = 63, 5-9 years) using TaqMan Advanced miRNA Human Serum/Plasma plates and then were validated by RT-qPCR. Subjects were divided into normal weight (n = 20, NW) and overweight or obese (n = 43, OW/OB) groups according to their BMI z-scores. The OW/OB group was further subdivided into insulin sensitive or metabolically healthy obese (n = 26, MHO) and insulin resistant or metabolically unhealthy obese (n = 17, MUO) according to HOMA-IR. KEY FINDINGS While no differences were observed in the fasting plasma glucose levels, serum insulin levels were significantly elevated in the OW/OB compared to the NW group. Of 188 screened miRNAs, eleven were differentially expressed between the NW and OW/OB groups. Validation confirmed increased circulating levels of miR-146a-5p and miR-18a-5p in the OW/OB group, which correlated with BMI z-score. Interestingly, miR-146a-5p was also correlated with HOMA-IR index. While only miR-18a-5p was upregulated in the OW/OB children, independently of their degree of insulin sensitivity, miR-146-5p, miR-423-3p and miR-152-3p were associated with insulin resistance. SIGNIFICANCE The present study provides evidence of molecular alterations that occur early in life in prepubertal obesity. These alterations may potentially be crucial for targeted prevention or prompt precision therapeutic development and subsequent interventions.
Collapse
|
43
|
Zhang J, Yi C, Han J, Ming T, Zhou J, Lu C, Li Y, Wang Z, Su X. Dose effect of high-docosahexaenoic acid tuna oil on dysbiosis in high-fat diet mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5531-5543. [PMID: 35368101 DOI: 10.1002/jsfa.11908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The health benefits of tuna oil, which is different from the fish oil commonly studied, and its higher docosahexaenoic acid (DHA) content, have attracted much scientific attention in recent years. In this study, prepared tuna oil with higher DHA (HDTO) content was employed. It was the first to integrate microbiome and metabolome from a dose-effect perspective to investigate the influence of HDTO on gut dysbiosis and metabolic disorders in diet-induced obese mice. RESULTS Higher DHA tuna oil was effective in reversing high-fat-diet-induced metabolic disorders and altering the composition and function of gut microbiota, but these effects were not uniformly dose dependent. The flora and metabolites that were targeted to be regulated by HDTO supplementation were Prevotella, Bifidobacterium, Olsenella, glycine, l-aspartate, l-serine, l-valine, l-isoleucine, l-threonine, l-tyrosine, glyceric acid, glycerol, butanedioic acid, and citrate, respectively. Functional pathway analysis revealed that alterations in these metabolic biomarkers were associated with six main metabolic pathways: glycine, serine, and threonine metabolism; glycerolipid metabolism; glyoxylate and dicarboxylate metabolism; alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis, and the citrate cycle (TCA cycle). CONCLUSION Various doses of HDTO could attenuate endogenous disorders to varying degrees by regulating multiple perturbed pathways to the normal state. This explicit dose research for novel fish oil with high-DHA will provide a valuable reference for those seeking to exploit its clinical therapeutic potential. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Congmin Yi
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| | - Zhonghua Wang
- Shandong beiyou biotechnology Co., Ltd., Weifang, China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultral Biotechnology, (Ningbo University) Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
44
|
Szkudelski T, Konieczna K, Szkudelska K. Regulatory Effects of Metformin, an Antidiabetic Biguanide Drug, on the Metabolism of Primary Rat Adipocytes. Molecules 2022; 27:molecules27165250. [PMID: 36014488 PMCID: PMC9415039 DOI: 10.3390/molecules27165250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin is a biguanide compound commonly applied in humans with type 2 diabetes. The drug affects different tissues, including fat tissue. The direct influence of metformin on cells of fat tissue, i.e., adipocytes, is poorly elucidated. In the present study, the short-term (4-h) effects of metformin on lipogenesis, glucose transport, lipolysis, and lactate release in primary rat adipocytes were explored. It was demonstrated that metformin reduced insulin-induced lipogenesis and increased glucose transport into adipocytes. The tested compound also decreased lactate release from fat cells. It was shown that metformin substantially limited lipolysis stimulated by epinephrine (adrenergic receptor agonist) and dibutyryl-cAMP (direct activator of protein kinase A). Moreover, metformin decreased the lipolytic process triggered by DPCPX (adenosine A1 receptor antagonist). In the case of each lipolytic stimulator, the drug evoked a similar inhibitory effect in the presence of 3 and 12 mM glucose. The lipolytic response of adipocytes to epinephrine was also found to be reduced by metformin when glucose was replaced by alanine. It was demonstrated that the tested compound limits the release of both glycerol and fatty acids from fat cells. The results of the present study provided evidence that metformin significantly affects the metabolism of primary rat adipocytes. Its action covers processes related to lipid accumulation and release and occurs after relatively short-term exposure.
Collapse
|
45
|
Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23105382. [PMID: 35628194 PMCID: PMC9142011 DOI: 10.3390/ijms23105382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Available data suggest that cannabidiol (CBD) may ameliorate symptoms of insulin resistance by modulating the sphingolipid concentrations in particular organs. However, it is not entirely clear whether its beneficial actions also involve adipose tissues in a state of overnutrition. The aim of the study was to evaluate the effect of CBD on sphingolipid metabolism pathways and, as a result, on the development of insulin resistance in subcutaneous (SAT) and visceral (VAT) adipose tissues of an animal model of HFD-induced insulin resistance. Our experiment was performed on Wistar rats that were fed with a high-fat diet and/or received intraperitoneal CBD injections. We showed that CBD significantly lowered the ceramide content in VAT by reducing its de novo synthesis and increasing its catabolism. However, in SAT, CBD decreased the ceramide level through the inhibition of salvage and de novo synthesis pathways. All of these changes restored adipose tissues’ sensitivity to insulin. Our study showed that CBD sensitized adipose tissue to insulin by influencing the metabolism of sphingolipids under the conditions of increased availability of fatty acids in the diet. Therefore, we believe that CBD use may be considered as a potential therapeutic strategy for treating or reducing insulin resistance, T2DM, and metabolic syndrome.
Collapse
|
46
|
Georgiev A, Granata C, Roden M. The role of mitochondria in the pathophysiology and treatment of common metabolic diseases in humans. Am J Physiol Cell Physiol 2022; 322:C1248-C1259. [PMID: 35508191 DOI: 10.1152/ajpcell.00035.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Common metabolic diseases such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease significantly contribute to morbidity and mortality worldwide. They frequently associate with insulin resistance and altered mitochondrial functionality. Insulin-responsive tissues can show changes in mitochondrial features such as oxidative capacity, mitochondrial content and turnover, which do not necessarily reflect abnormalities but rather adaption to a certain metabolic condition. Lifestyle modifications and classic or novel drugs can modify these alterations and help treating these metabolic diseases. This review addresses the role of mitochondria in human metabolic diseases and discusses potential future research directions.
Collapse
Affiliation(s)
- Asen Georgiev
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Cesare Granata
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Michael Roden
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Amentoflavone-Enriched Selaginella rossii Warb. Suppresses Body Weight and Hyperglycemia by Inhibiting Intestinal Lipid Absorption in Mice Fed a High-Fat Diet. Life (Basel) 2022; 12:life12040472. [PMID: 35454963 PMCID: PMC9024644 DOI: 10.3390/life12040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Many Selaginellaceae species are used as traditional medicines in Asia. This study is the first to investigate the anti-obesity and anti-diabetic effects of Selaginella rossii (SR) in high-fat diet (HFD)–fed C57BL/6J mice. Seven-day oral administration of ethanol extract (100 mg/kg/day) or ethyl acetate (EtOAc) extract (50 mg/kg/day) from SR improved oral fat tolerance by inhibiting intestinal lipid absorption; 10-week long-term administration of the EtOAc extract markedly reduced HFD-induced body weight gain and hyperglycemia by reducing adipocyte hypertrophy, glucose levels, HbA1c, and plasma insulin levels. Treatment with SR extracts reduced the expression of intestinal lipid absorption-related genes, including Cd36, fatty acid-binding protein 6, ATP-binding cassette subfamily G member 8, NPC1 like intracellular cholesterol transporter 1, and ATP-binding cassette subfamily A member 1. In addition, the EtOAc extract increased the expression of protein absorption–related solute carrier family genes, including Slc15a1, Slc8a2, and Slc6a9. SR extracts reduced HFD-induced hepatic steatosis by suppressing fatty acid transport to hepatocytes and hepatic lipid accumulation. Furthermore, amentoflavone (AMF), the primary compound in SR extracts, reduced intestinal lipid absorption by inhibiting fatty acid transport in HFD-fed mice. AMF-enriched SR extracts effectively protected against HFD-induced body weight gain and hyperglycemia by inhibiting intestinal lipid absorption.
Collapse
|
48
|
Adipocyte Phenotype Flexibility and Lipid Dysregulation. Cells 2022; 11:cells11050882. [PMID: 35269504 PMCID: PMC8909878 DOI: 10.3390/cells11050882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
The prevalence of obesity and associated cardiometabolic diseases continues to rise, despite efforts to improve global health. The adipose tissue is now regarded as an endocrine organ since its multitude of secretions, lipids chief among them, regulate systemic functions. The loss of normal adipose tissue phenotypic flexibility, especially related to lipid homeostasis, appears to trigger cardiometabolic pathogenesis. The goal of this manuscript is to review lipid balance maintenance by the lean adipose tissue’s propensity for phenotype switching, obese adipose tissue’s narrower range of phenotype flexibility, and what initial factors account for the waning lipid regulatory capacity. Metabolic, hypoxic, and inflammatory factors contribute to the adipose tissue phenotype being made rigid. A better grasp of normal adipose tissue function provides the necessary context for recognizing the extent of obese adipose tissue dysfunction and gaining insight into how pathogenesis evolves.
Collapse
|
49
|
Huang Y, Tu M, Qian Y, Ma J, Chen L, Liu Y, Wu Y, Chen K, Liu J, Ying Y, Chen Y, Ye Y, Xing L, Zhang F, Hu Y, Zhang R, Ruan YC, Zhang D. Age-Dependent Metabolomic Profile of the Follicular Fluids From Women Undergoing Assisted Reproductive Technology Treatment. Front Endocrinol (Lausanne) 2022; 13:818888. [PMID: 35250874 PMCID: PMC8888916 DOI: 10.3389/fendo.2022.818888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Female fertility declines with age, and this natural variation culminates in reproductive senescence. Human follicular fluids are rich in low-molecular weight metabolites which are responsible for the maturation of oocytes. The metabolomic approaches are powerful tools to study biochemical markers of oocyte quality in the follicular fluids. It is necessary to identify and quantify the reliable metabolites in follicular fluids reflecting oocyte developmental potential. The goal of this study is to conduct a metabolomic analysis of the follicular fluids in women of different ages and study the metabolomic profile of the follicular fluids in relationship with oocyte quality in assisted reproductive technology (ART) treatment. A total of 30 women seeking for ART treatment at the Women's Hospital, Zhejiang University School of Medicine from October 2014 to April 2015 were recruited for the present study. Fifteen women aged from 39 to 47 were grouped as advanced maternal age, and the other 15 women aged from 27 to 34, as young controls. Ovarian stimulation and oocyte retrieval were conducted using a regular protocol involving mid-luteal pituitary down-regulation and controlled ovarian stimulation. Follicular fluids from mature follicles were collected and centrifuged for analyses. Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectroscopy (GC-MS) were used to perform the quantitative metabolomic analysis. The follicular fluid levels of 311 metabolites and the metabolic significance were assessed. 70 metabolites showed significant differences between women with young and advanced ages. Follicular fluids from women with advanced age showed significantly higher levels of creatine, histidine, methionine, trans-4-hydroxyproline, choline, mevalonate, N2,N2-dimethylguanosine and gamma-glutamylvaline, as compared to those from the young age group. 8 metabolites were found significantly correlated with maternal age positively. Moreover, 3 metabolites were correlated with the number of oocytes retrieved, and 5 metabolites were correlated with cleaved embryo numbers, both negatively. The follicular fluids from women undergoing ART treatment exhibited age-dependent metabolomic profile. Metabolites associated with oocyte quality were identified, suggesting them as potential biomarkers for oocyte maturation and ART outcomes.
Collapse
Affiliation(s)
- Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuli Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Ma
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifen Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Chen
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghui Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanfeng Xing
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zhang
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Hu
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Runjv Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|