1
|
Hou L, Xiong W, Chen M, Xu J, Johnson AC, Zhan A, Jin X. Pesticide Pollution Reduces the Functional Diversity of Macroinvertebrates in Urban Aquatic Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8568-8577. [PMID: 40232133 DOI: 10.1021/acs.est.5c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Urbanization accelerates innovation and economic growth but imposes significant ecological challenges, particularly to aquatic biodiversity and ecosystem functionality. Among urban stressors, pesticide-driven chemical pollution represents a critical, yet under-recognized, global threat. Quantifying the causes and consequences of pesticides on biodiversity loss and ecosystem degradation is vital for ecological risk assessment and management, offering insights to promote sustainable societal development. This study evaluated anthropogenic stressors and macroinvertebrate communities at 42 sites across two major drainages in Beijing using chemical analysis and environmental DNA (eDNA), focusing on macroinvertebrate responses to pesticide exposure in the context of multiple anthropogenic stressors. Pesticides significantly impacted the α- and β-functional diversity of macroinvertebrates, accounting for 18.46 and 14.6% of the total observed variation, respectively, underscoring the role of functional groups in pesticide risk assessment. Land use and flow quantity directly influenced pesticide levels, which in turn affected macroinvertebrate functional diversity, while basic water quality had a less pronounced effect. These results provide empirical evidence of pesticide pollution's impact on macroinvertebrate functional diversity at the watershed scale under field conditions in a highly urbanized area. The findings highlight the importance of considering multiple stressors and sensitive taxa in pesticide risk assessment and management for urban aquatic ecosystems.
Collapse
Affiliation(s)
- Lin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming Economic and Technological Development District, 2 Puxin Road, Kunming, Yunnan 650214, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|
2
|
Orihuela-Rivero R, Morente-López J, Reyes-Betancort JA, Schaefer H, Valido A, Menezes de Sequeira M, Romeiras MM, Góis-Marques CA, Salas-Pascual M, Vanderpoorten A, Fernández-Palacios JM, Patiño J. Geographic and Biological Drivers Shape Anthropogenic Extinctions in the Macaronesian Vascular Flora. GLOBAL CHANGE BIOLOGY 2025; 31:e70072. [PMID: 39962933 DOI: 10.1111/gcb.70072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 05/10/2025]
Abstract
Whether species extinctions have accelerated during the Anthropocene and the extent to which certain species are more susceptible to extinction due to their ecological preferences and intrinsic biological traits are among the most pressing questions in conservation biology. Assessing extinction rates is, however, challenging, as best exemplified by the phenomenon of 'dark extinctions': the loss of species that disappear before they are even formally described. These issues are particularly problematic in oceanic islands, where species exhibit high rates of endemism and unique biological traits but are also among the most vulnerable to extinction. Here, we document plant species extinctions since Linnaeus' Species Plantarum in Macaronesia, a biogeographic region comprised of five hyperdiverse oceanic archipelagos, and identify the key drivers behind these extinctions. We compiled 168 records covering 126 taxa, identifying 13 global and 155 local extinction events. Significantly higher extinction rates were observed compared to the expected global background rate. We uncovered differentiated extinction patterns along altitudinal gradients, highlighting a recent coastal hotspot linked to socioeconomic changes in Macaronesian archipelagos from the 1960s onwards. Key factors influencing extinction patterns include island age, elevation, introduced herbivorous mammals, and human population size. Trait-based analyses across the floras of the Azores and Canary Islands revealed that endemicity, pollination by vertebrates, nitrogen-fixing capacity, woodiness, and zoochory consistently tended to increase extinction risk. Our findings emphasize the critical role of geography and biological traits, alongside anthropogenic impacts, in shaping extinction dynamics on oceanic islands. Enhancing our knowledge of life-history traits within island floras is crucial for accurately predicting and mitigating future extinction risks, underscoring the urgent need for comprehensive biodiversity assessments in island ecosystems.
Collapse
Affiliation(s)
- Raúl Orihuela-Rivero
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Javier Morente-López
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de La Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Puerto de La Cruz, Tenerife, Spain
| | - Hanno Schaefer
- Department of Life Science Systems, Plant Biodiversity Research, Technical University of Munich, Freising, Germany
| | - Alfredo Valido
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Miguel Menezes de Sequeira
- Madeira Botanical Group, Faculty of Life Sciences, Campus Universitário da Penteada, University of Madeira, Funchal, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Portugal
| | - María M Romeiras
- LEAF, Linking Landscape, Environment, Agriculture and Food & Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidadede Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| | - Carlos A Góis-Marques
- Madeira Botanical Group, Faculty of Life Sciences, Campus Universitário da Penteada, University of Madeira, Funchal, Portugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Ponta Delgada, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Instituto Dom Luiz (IDL), Laboratório Associado, Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Marcos Salas-Pascual
- Instituto de Estudios Ambientales y Recursos Naturales, Universidad de las Palmas de Gran Canaria, Campus de Tafira, Tafira Baja, Las Palmas de Gran Canaria Islas Canarias, Spain
| | | | | | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
3
|
González-Barrios FJ, Keith SA, Emslie MJ, Ceccarelli DM, Williams GJ, Graham NAJ. Emergent patterns of reef fish diversity correlate with coral assemblage shifts along the Great Barrier Reef. Nat Commun 2025; 16:303. [PMID: 39805820 PMCID: PMC11729903 DOI: 10.1038/s41467-024-55128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Escalating climate and anthropogenic disturbances draw into question how stable large-scale patterns in biological diversity are in the Anthropocene. Here, we analyse how patterns of reef fish diversity have changed from 1995 to 2022 by examining local diversity and species dissimilarity along a large latitudinal gradient of the Great Barrier Reef and to what extent this correlates with changes in coral cover and coral composition. We find that reef fish species richness followed the expected latitudinal diversity pattern (i.e., greater species richness toward lower latitudes), yet has undergone significant change across space and time. We find declines in species richness at lower latitudes in recent periods but high variability at higher latitudes. Reef fish turnover continuously increased over time at all latitudes and did not show evidence of a return. Altered diversity patterns are characterised by heterogeneous changes in reef fish trophic groups across the latitudinal gradient. Shifts in coral composition correlate more strongly with reef fish diversity changes than fluctuations in coral cover. Our findings provide insight into the extent to which classic macroecological patterns are maintained in the Anthropocene, ultimately questioning whether these patterns are decoupling from their original underlying drivers.
Collapse
Affiliation(s)
| | - Sally A Keith
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | | |
Collapse
|
4
|
Duchenne F, Barreto E, Guevara EA, Beck H, Bello C, Bobato R, Bôlla D, Brenes E, Büttner N, Caron AP, Chaves-Elizondo N, Gavilanes MJ, Restrepo-González A, Castro JA, Kaehler M, Machado-de-Souza T, Machnicki-Reis M, Marcayata ASF, de Menezes CG, Nieto A, de Oliveira R, de Oliveira RAC, Richter F, Rojas BG, Romanowski LL, de Souza WL, Veluza DS, Weinstein B, Wüest RO, Zanata TB, Zuniga K, Maglianesi MA, Santander T, Varassin IG, Graham CH. A Probabilistic View of Forbidden Links: Their Prevalence and Their Consequences for the Robustness of Plant-Hummingbird Communities. Ecol Lett 2025; 28:e70073. [PMID: 39873403 DOI: 10.1111/ele.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
The presence in ecological communities of unfeasible species interactions, termed forbidden links, due to physiological or morphological exploitation barriers has been long debated, but little direct evidence has been found. Forbidden links are likely to make ecological communities less robust to species extinctions, stressing the need to assess their prevalence. Here, we used a dataset of plant-hummingbird interactions, coupled with a Bayesian hierarchical model, to assess the importance of exploitation barriers in determining species interactions. We found evidence for exploitation barriers between flowers and hummingbirds across the 32 studied communities; however, the proportion of forbidden links changed drastically among communities because of changes in trait distributions. The higher the proportion of forbidden links, the more they decreased network robustness because of constraints on interaction rewiring. Our results suggest that exploitation barriers are not rare in plant-hummingbird communities and have the potential to limit the rescue of species experiencing partner extinction.
Collapse
Affiliation(s)
- François Duchenne
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Elisa Barreto
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Esteban A Guevara
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Holger Beck
- Santa Lucia Cloud Forest Reserve, Quito, Ecuador
| | - Carolina Bello
- ETH (Department of Environmental Systems Science), Zurich, Switzerland
| | - Rafaela Bobato
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Daniela Bôlla
- Post-graduation Program in Ecology, National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - Emanuel Brenes
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia (UNED), San José, Costa Rica
| | - Nicole Büttner
- Un poco del Chocó - Reserve and Biological Station, Quito, Ecuador
| | - Ana P Caron
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nelson Chaves-Elizondo
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia (UNED), San José, Costa Rica
| | - María J Gavilanes
- Instituto Nacional de Biodiversidad INABIO (Investigador Asociado), Santo Domingo, Costa Rica
| | - Alejandro Restrepo-González
- Programa de Ecologia e Conservação, Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jose Alejandro Castro
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia (UNED), San José, Costa Rica
| | - Miriam Kaehler
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Tiago Machado-de-Souza
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Miguel Machnicki-Reis
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Cauã G de Menezes
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Andrea Nieto
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Frankfurt, Germany
| | - Rafael de Oliveira
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
- Staatliches Museum für Naturkunde, Stuttgart, Germany
| | - Ricardo A C de Oliveira
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Bryan G Rojas
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratorio de Ecología Funcional, Universidad del Azuay, Cuenca, Ecuador
| | - Luciele L Romanowski
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Wellinton L de Souza
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Danila S Veluza
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Rafael O Wüest
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Thais B Zanata
- Laboratório de Interações e Síntese em Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Krystal Zuniga
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia (UNED), San José, Costa Rica
| | - María A Maglianesi
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia (UNED), San José, Costa Rica
| | | | - Isabela G Varassin
- Laboratório de Interações e Biologia Reprodutiva, Universidade Federal do Paraná, Curitiba, Brazil
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
5
|
Klinkovská K, Sperandii MG, Knollová I, Danihelka J, Hájek M, Hájková P, Hroudová Z, Jiroušek M, Lepš J, Navrátilová J, Peterka T, Petřík P, Prach K, Řehounková K, Rohel J, Sobotka V, Vávra M, Bruelheide H, Chytrý M. Half a Century of Temperate Non-Forest Vegetation Changes: No Net Loss in Species Richness, but Considerable Shifts in Taxonomic and Functional Composition. GLOBAL CHANGE BIOLOGY 2025; 31:e70030. [PMID: 39853920 PMCID: PMC11758476 DOI: 10.1111/gcb.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records. We focused not only on taxonomic diversity but also on the functional characteristics of communities. Species richness of most habitat types increased over time, and taxonomic and functional community composition shifted significantly. Habitat specialists and threatened species became less represented in plant communities, indicating a decline in habitat quality. The spread of trees, shrubs, tall herbaceous plants, strong competitors, and nutrient-demanding species in all non-forest habitats, coupled with the decline of light-demanding species, suggests an effect of eutrophication and natural succession following the abandonment of traditional management. Moreover, we identified specific trends in certain habitats. In wetlands, springs, and mires, moisture-demanding species decreased, probably due to drainage, river regulations, and increasing drought resulting from climate change. Dry grasslands, ruderal, weed, sand, and shallow-soil vegetation became more mesic, and successional processes were most pronounced in these communities, suggesting a stronger effect of abandonment of traditional management and eutrophication. In alpine and subalpine vegetation, meadows and mesic pastures, and heathlands, insect-pollinated species declined, and the proportion of grasses increased. Overall, these functional changes provide deep insights into the underlying drivers and help conservationists take appropriate countermeasures.
Collapse
Affiliation(s)
- Klára Klinkovská
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Marta Gaia Sperandii
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ilona Knollová
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jiří Danihelka
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Institute of Botany, Czech Academy of SciencesPrůhoniceCzech Republic
| | - Michal Hájek
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Petra Hájková
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of PaleoecologyInstitute of Botany, Czech Academy of SciencesBrnoCzech Republic
| | - Zdenka Hroudová
- Institute of Botany, Czech Academy of SciencesPrůhoniceCzech Republic
| | - Martin Jiroušek
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Plant BiologyMendel University in BrnoBrnoCzech Republic
| | - Jan Lepš
- Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Jana Navrátilová
- Experimental Garden and Gene Pool Collections Třeboň, Institute of BotanyCzech Academy of SciencesTřeboňCzech Republic
| | - Tomáš Peterka
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Petr Petřík
- Faculty of Environmental SciencesCzech University of Life SciencesPragueCzech Republic
- Department of Vegetation Ecology, Institute of BotanyCzech Academy of SciencesPrůhoniceCzech Republic
| | - Karel Prach
- Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Klára Řehounková
- Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Jaroslav Rohel
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Vojtěch Sobotka
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Michal Vávra
- Department of Biology, Faculty of ScienceUniversity of Hradec KrálovéHradec KrálovéCzech Republic
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Milan Chytrý
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
6
|
Wauchope HS, zu Ermgassen SOSE, Jones JPG, Carter H, Schulte to Bühne H, Milner-Gulland EJ. What is a unit of nature? Measurement challenges in the emerging biodiversity credit market. Proc Biol Sci 2024; 291:20242353. [PMID: 39657801 PMCID: PMC11631508 DOI: 10.1098/rspb.2024.2353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Bending the curve of biodiversity loss requires the business and financial sectors to disclose and reduce their biodiversity impacts and help fund nature recovery. This has sparked interest in developing generalizable, standardized measurements of biodiversity-essentially a 'unit of nature'. We examine how such units are defined in the rapidly growing voluntary biodiversity credits market and present a framework exploring how biodiversity is quantified, how delivery of positive outcomes is detected and attributed to the investment and how the number of credits issued is adjusted to account for uncertainties. We demonstrate that there are deep uncertainties throughout the process and question if the benefits of biodiversity credits, and other efforts to abstract nature to a single unit, outweigh the harms. Credits can only be positive for biodiversity if they are used with unprecedentedly strict regulation that ensures businesses mostly avoid negative impacts and if they are purchased to quantify positive contributions rather than as direct offsets. While there may be a role for markets in attracting conservation funding, they will only ever be part of the solution, especially for the many aspects of nature that cannot be reduced to a unit.
Collapse
Affiliation(s)
| | | | - Julia P. G. Jones
- School of Environment and Natural Sciences, Bangor University, Bangor, UK
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | | | | |
Collapse
|
7
|
Huszarik M, Roodt AP, Wernicke T, Link M, Lima-Fernandes E, Åhlén D, Schreiner VC, Schulz R, Hambäck P, Entling MH. Shift in diet composition of a riparian predator along a stream pollution gradient. Proc Biol Sci 2024; 291:20242104. [PMID: 39561799 PMCID: PMC11576108 DOI: 10.1098/rspb.2024.2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Terrestrial insectivores in riparian areas, such as spiders, can depend on emergent aquatic insects as high-quality prey. However, chemical pollution entering streams from agricultural and urban sources can alter the dynamics and composition of aquatic insect emergence, which may also affect the riparian food web. Few studies have examined the effects of stressor-induced alterations in aquatic insect emergence on spiders, especially in terms of chemical pollution and diet composition. We used DNA metabarcoding of gut content to describe the diet of Tetragnatha montana spiders collected from 10 forested streams with differing levels of pesticide and wastewater pollution. We found that spiders consumed more Chironomidae and fewer other aquatic Diptera, including Tipulidae, Ptychopteridae and Culicidae, at more polluted streams. Pollution-related effects were mainly observed in the spider diet, and were not significant for the number nor composition of flying insects trapped at each site. Our results indicate that the composition of riparian spider diets is sensitive to stream pollution, even in the absence of a change in the overall proportion of aquatic prey consumed. A high reliance on aquatic prey at polluted streams may give spiders an increased risk of dietary exposure to chemical pollutants retained by emergent insects.
Collapse
Affiliation(s)
- Maike Huszarik
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
- Field Station Fabrikschleichach, Chair of Conservation Biology and Forest Ecology, Biocenter, University of Würzburg, Glashüttenstraße 5, Rauhenebrach96181, Germany
| | - Alexis P. Roodt
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - Teagan Wernicke
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - Moritz Link
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - Eva Lima-Fernandes
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| | - David Åhlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm10691, Sweden
| | - Verena C. Schreiner
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 2, Essen45141, Germany
- Research Center One Health Ruhr, University Alliance Ruhr, Universitätsstrasse 2, Essen45141, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
- Eußerthal Ecosystem Research Station, University of Kaiserslautern-Landau (RPTU), Birkenthalstraße 13, Eußerthal76857, Germany
| | - Peter Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm10691, Sweden
| | - Martin H. Entling
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, Landau in der Pfalz76829, Germany
| |
Collapse
|
8
|
Wehrli M, Slotsbo S, Fomsgaard IS, Laursen BB, Gröning J, Liess M, Holmstrup M. A Dirt(y) World in a Changing Climate: Importance of Heat Stress in the Risk Assessment of Pesticides for Soil Arthropods. GLOBAL CHANGE BIOLOGY 2024; 30:e17542. [PMID: 39450625 DOI: 10.1111/gcb.17542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
The rise in global temperatures and increasing severity of heat waves pose significant threats to soil organisms, disrupting ecological balances in soil communities. Additionally, the implications of environmental pollution are exacerbated in a warmer world, as changes in temperature affect the uptake, transformation and elimination of toxicants, thereby increasing the vulnerability of organisms. Nevertheless, our understanding of such processes remains largely unexplored. The present study examines the impact of high temperatures on the uptake and effects of the fungicide fluazinam on the springtail Folsomia candida (Collembola, Isotomidae). Conducted under non-optimum but realistic high temperatures, the experiments revealed that increased temperature hampered detoxification processes in F. candida, enhancing the toxic effects of fluazinam. High temperatures and the fungicide exerted synergistic interactions, reducing F. candida's reproduction and increasing adult mortality beyond what would be predicted by simple addition of the heat and chemical effects. These findings highlight the need to reevaluate the current ecological risk assessment and the regulatory framework in response to climate changes. This research enhances our understanding of how global warming affects the toxicokinetics and toxicodynamics (TK-TD) of chemicals in terrestrial invertebrates. In conclusion, our results suggest that adjustments to regulatory threshold values are necessary to address the impact of a changing climate.
Collapse
Affiliation(s)
- Micha Wehrli
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Stine Slotsbo
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | | | - Bente B Laursen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jonas Gröning
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
| | - Matthias Liess
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
9
|
Tabi A, Siqueira T, Tonkin JD. Species interactions drive continuous assembly of freshwater communities in stochastic environments. Sci Rep 2024; 14:21747. [PMID: 39294211 PMCID: PMC11411068 DOI: 10.1038/s41598-024-72405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Understanding the factors driving the maintenance of long-term biodiversity in changing environments is essential for improving restoration and sustainability strategies in the face of global environmental change. Biodiversity is shaped by both niche and stochastic processes, however the strength of deterministic processes in unpredictable environmental regimes is highly debated. Since communities continuously change over time and space-species persist, disappear or (re)appear-understanding the drivers of species gains and losses from communities should inform us about whether niche or stochastic processes dominate community dynamics. Applying a nonparametric causal discovery approach to a 30-year time series containing annual abundances of benthic invertebrates across 66 locations in New Zealand rivers, we found a strong negative causal relationship between species gains and losses directly driven by predation indicating that niche processes dominate community dynamics. Despite the unpredictable nature of these system, environmental noise was only indirectly related to species gains and losses through altering life history trait distribution. Using a stochastic birth-death framework, we demonstrate that the negative relationship between species gains and losses can not emerge without strong niche processes. Our results showed that even in systems that are dominated by unpredictable environmental variability, species interactions drive continuous community assembly.
Collapse
Affiliation(s)
- Andrea Tabi
- Computational Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, Auckland, New Zealand.
| | - Tadeu Siqueira
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence in Complex Systems, Auckland, New Zealand
| |
Collapse
|
10
|
Wayman JP, Sadler JP, Martin TE, Graham LJ, White HJ, Tobias JA, Matthews TJ. Unravelling the complexities of biotic homogenization and heterogenization in the British avifauna. J Anim Ecol 2024; 93:1288-1302. [PMID: 39120041 DOI: 10.1111/1365-2656.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/18/2024] [Indexed: 08/10/2024]
Abstract
Biotic homogenization is a process whereby species assemblages become more similar through time. The standard way of identifying the process of biotic homogenization is to look for decreases in spatial beta-diversity. However, using a single assemblage-level metric to assess homogenization can mask important changes in the occupancy patterns of individual species. Here, we analysed changes in the spatial beta-diversity patterns (i.e. biotic heterogenization or homogenization) of British bird assemblages within 30 km × 30 km regions between two periods (1988-1991 and 2008-2011). We partitioned the change in spatial beta-diversity into extirpation and colonization-resultant change (i.e. change in spatial beta-diversity within each region resulting from both extirpation and colonization). We used measures of abiotic change in combination with Bayesian modelling to disentangle the drivers of biotic heterogenization and homogenization. We detected both heterogenization and homogenization across the two time periods and three measures of diversity (taxonomic, phylogenetic, and functional). In addition, both extirpation and colonization contributed to the observed changes, with heterogenization mainly driven by extirpation and homogenization by colonization. These assemblage-level changes were primarily due to shifting occupancy patterns of generalist species. Compared to habitat generalists, habitat specialists had significantly (i) higher average contributions to colonization-resultant change (indicating heterogenization within a region due to colonization) and (ii) lower average contributions to extirpation-resultant change (indicating homogenization from extirpation). Generalists showed the opposite pattern. Increased extirpation-resultant homogenization within regions was associated with increased urban land cover and decreased habitat diversity, precipitation, and temperature. Changes in extirpation-resultant heterogenization and colonization-resultant heterogenization were associated with differences in elevation between regions and changes in temperature and land cover. Many of the 'winners' (i.e. species that increased in occupancy) were species that had benefitted from conservation action (e.g. buzzard (Buteo buteo)). The 'losers' (i.e. those that decreased in occupancy) consisted primarily of previously common species, such as cuckoo (Cuculus canorus). Our results show that focusing purely on changes in spatial beta-diversity over time may obscure important information about how changes in the occupancy patterns of individual species contribute to homogenization and heterogenization.
Collapse
Affiliation(s)
- Joseph P Wayman
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Operation Wallacea, Spilsby, UK
| | - Jonathan P Sadler
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Thomas E Martin
- Operation Wallacea, Spilsby, UK
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - Laura J Graham
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Biodiversity Ecology & Conservation Group, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Hannah J White
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Thomas J Matthews
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores-Depto de Ciências Agráriase Engenharia do Ambiente, Angra do Heroísmo, Portugal
| |
Collapse
|
11
|
Gordon JD, Fagan B, Milner N, Thomas CD. Floristic diversity and its relationships with human land use varied regionally during the Holocene. Nat Ecol Evol 2024; 8:1459-1471. [PMID: 38977831 PMCID: PMC11310077 DOI: 10.1038/s41559-024-02457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/06/2024] [Indexed: 07/10/2024]
Abstract
Humans have caused growing levels of ecosystem and diversity changes at a global scale in recent centuries but longer-term diversity trends and how they are affected by human impacts are less well understood. Analysing data from 64,305 pollen samples from 1,763 pollen records revealed substantial community changes (turnover) and reductions in diversity (richness and evenness) in the first ~1,500 to ~4,000 years of the Holocene epoch (starting 11,700 years ago). Turnover and diversity generally increased thereafter, starting ~6,000 to ~1,000 years ago, although the timings, magnitudes and even directions of these changes varied among continents, biomes and sites. Here, modelling these diversity changes, we find that most metrics of biodiversity change are associated with human impacts (anthropogenic land-cover change estimates for the last 8,000 years), often positively but the magnitudes, timings and sometimes directions of associations differed among continents and biomes and sites also varied. Once-forested parts of the world tended to exhibit biodiversity increases while open areas tended to decline. These regionally specific relationships between humans and floristic diversity highlight that human-biodiversity relationships have generated positive diversity responses in some locations and negative responses in others, for over 8,000 years.
Collapse
Affiliation(s)
- Jonathan D Gordon
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK.
- Department of Biology, University of York, York, UK.
- Department of Archaeology, University of York, York, UK.
| | - Brennen Fagan
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - Nicky Milner
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Archaeology, University of York, York, UK
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Biology, University of York, York, UK
| |
Collapse
|
12
|
Manca F, Benedetti-Cecchi L, Bradshaw CJA, Cabeza M, Gustafsson C, Norkko AM, Roslin TV, Thomas DN, White L, Strona G. Projected loss of brown macroalgae and seagrasses with global environmental change. Nat Commun 2024; 15:5344. [PMID: 38914573 PMCID: PMC11196678 DOI: 10.1038/s41467-024-48273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2024] [Indexed: 06/26/2024] Open
Abstract
Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.
| | | | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Alf M Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Tomas V Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 5, 00014, Helsinki, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
| | - Lydia White
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | | |
Collapse
|
13
|
Toszogyova A, Smyčka J, Storch D. Mathematical biases in the calculation of the Living Planet Index lead to overestimation of vertebrate population decline. Nat Commun 2024; 15:5295. [PMID: 38906876 PMCID: PMC11192898 DOI: 10.1038/s41467-024-49070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/22/2024] [Indexed: 06/23/2024] Open
Abstract
The Living Planet Index (LPI) measures the average change in population size of vertebrate species over recent decades and has been repeatedly used to assess the changing state of nature. The LPI indicates that vertebrate populations have decreased by almost 70% over the last 50 years. This is in striking contrast with current studies based on the same population time series data that show that increasing and decreasing populations are balanced on average. Here, we examine the methodological pipeline of calculating the LPI to search for the source of this discrepancy. We find that the calculation of the LPI is biased by several mathematical issues which impose an imbalance between detected increasing and decreasing trends and overestimate population declines. Rather than indicating that vertebrate populations do not substantially change, our findings imply that we need better measures for providing a balanced picture of current biodiversity changes. We also show some modifications to improve the reliability of the LPI.
Collapse
Affiliation(s)
- Anna Toszogyova
- Center for Theoretical Study, Charles University & Czech Academy of Sciences, CZ-110 00, Prague, Czech Republic.
| | - Jan Smyčka
- Center for Theoretical Study, Charles University & Czech Academy of Sciences, CZ-110 00, Prague, Czech Republic
| | - David Storch
- Center for Theoretical Study, Charles University & Czech Academy of Sciences, CZ-110 00, Prague, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, CZ-128 44, Prague, Czech Republic
| |
Collapse
|
14
|
Callaghan CT, Santini L, Spake R, Bowler DE. Population abundance estimates in conservation and biodiversity research. Trends Ecol Evol 2024; 39:515-523. [PMID: 38508923 DOI: 10.1016/j.tree.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
Measuring and tracking biodiversity from local to global scales is challenging due to its multifaceted nature and the range of metrics used to describe spatial and temporal patterns. Abundance can be used to describe how a population changes across space and time, but it can be measured in different ways, with consequences for the interpretation and communication of spatiotemporal patterns. We differentiate between relative and absolute abundance, and discuss the advantages and disadvantages of each for biodiversity monitoring, conservation, and ecological research. We highlight when absolute abundance can be advantageous and should be prioritized in biodiversity monitoring and research, and conclude by providing avenues for future research directions to better assess the necessity of absolute abundance in biodiversity monitoring.
Collapse
Affiliation(s)
- Corey T Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314-7719, USA.
| | - Luca Santini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Rebecca Spake
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Diana E Bowler
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| |
Collapse
|
15
|
Paraskevopoulos AW, Sanders NJ, Resasco J. Temperature-driven homogenization of an ant community over 60 years in a montane ecosystem. Ecology 2024; 105:e4302. [PMID: 38594213 DOI: 10.1002/ecy.4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Identifying the mechanisms underlying the changes in the distribution of species is critical to accurately predict how species have responded and will respond to climate change. Here, we take advantage of a late-1950s study on ant assemblages in a canyon near Boulder, Colorado, USA, to understand how and why species distributions have changed over a 60-year period. Community composition changed over 60 years with increasing compositional similarity among ant assemblages. Community composition differed significantly between the periods, with aspect and tree cover influencing composition. Species that foraged in broader temperature ranges became more widespread over the 60-year period. Our work highlights that shifts in community composition and biotic homogenization can occur even in undisturbed areas without strong habitat degradation. We also show the power of pairing historical and contemporary data and encourage more mechanistic studies to predict species changes under climate change.
Collapse
Affiliation(s)
- Anna W Paraskevopoulos
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julian Resasco
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
16
|
Chaikin S, Riva F, Marshall KE, Lessard JP, Belmaker J. Marine fishes experiencing high-velocity range shifts may not be climate change winners. Nat Ecol Evol 2024; 8:936-946. [PMID: 38459374 DOI: 10.1038/s41559-024-02350-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
Climate change is driving the global redistribution of species. A common assumption is that rapid range shifts occur in tandem with overall stable or positive abundance trends throughout the range and thus these species may be considered as climate change 'winners'. However, although establishing the link between range shift velocities and population trends is crucial for predicting climate change impacts it has not been empirically tested. Using 2,572 estimates of changes in marine fish abundance spread across the world's oceans, we show that poleward range shifts are not necessarily associated with positive population trends. Species experiencing high-velocity range shifts seem to experience local population declines irrespective of the position throughout the species range. High range shift velocities of 17 km yr-1 are associated with a 50% decrease in population sizes over a period of 10 yr, which is dramatic compared to the overall stable population trends in non-shifting species. This pattern, however, mostly occurs in populations located in the poleward, colder, portion of the species range. The lack of a positive association between poleward range shift velocities and population trends at the coldest portion of the range contrasts with the view that rapid range shifts safeguard against local population declines. Instead, our work suggests that marine fishes experiencing rapid range shifts could be more vulnerable to climatic change and therefore should be carefully assessed for conservation status.
Collapse
Affiliation(s)
- Shahar Chaikin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Federico Riva
- Department of Environmental Geography, Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jonathan Belmaker
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
17
|
Lenoir J, Comte L. Rapid range shifters show unexpected population dynamics. Nat Ecol Evol 2024; 8:850-851. [PMID: 38459375 DOI: 10.1038/s41559-024-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Affiliation(s)
- Jonathan Lenoir
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, Amiens, France.
| | - Lise Comte
- Conservation Science Partners, Inc., Truckee, CA, USA
| |
Collapse
|
18
|
Johnson TF, Beckerman AP, Childs DZ, Webb TJ, Evans KL, Griffiths CA, Capdevila P, Clements CF, Besson M, Gregory RD, Thomas GH, Delmas E, Freckleton RP. Revealing uncertainty in the status of biodiversity change. Nature 2024; 628:788-794. [PMID: 38538788 PMCID: PMC11041640 DOI: 10.1038/s41586-024-07236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Biodiversity faces unprecedented threats from rapid global change1. Signals of biodiversity change come from time-series abundance datasets for thousands of species over large geographic and temporal scales. Analyses of these biodiversity datasets have pointed to varied trends in abundance, including increases and decreases. However, these analyses have not fully accounted for spatial, temporal and phylogenetic structures in the data. Here, using a new statistical framework, we show across ten high-profile biodiversity datasets2-11 that increases and decreases under existing approaches vanish once spatial, temporal and phylogenetic structures are accounted for. This is a consequence of existing approaches severely underestimating trend uncertainty and sometimes misestimating the trend direction. Under our revised average abundance trends that appropriately recognize uncertainty, we failed to observe a single increasing or decreasing trend at 95% credible intervals in our ten datasets. This emphasizes how little is known about biodiversity change across vast spatial and taxonomic scales. Despite this uncertainty at vast scales, we reveal improved local-scale prediction accuracy by accounting for spatial, temporal and phylogenetic structures. Improved prediction offers hope of estimating biodiversity change at policy-relevant scales, guiding adaptive conservation responses.
Collapse
Affiliation(s)
- T F Johnson
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.
| | - A P Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - D Z Childs
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - T J Webb
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - K L Evans
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - C A Griffiths
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| | - P Capdevila
- School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - C F Clements
- School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK
| | - M Besson
- School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - R D Gregory
- RSPB Centre for Conservation Science, The Lodge, Sandy, UK
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - G H Thomas
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - E Delmas
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Habitat, Montreal, Quebec, Canada
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, Quebec, Canada
| | - R P Freckleton
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Debrecen Biodiversity Centre, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Sinclair JS, Welti EAR, Altermatt F, Álvarez-Cabria M, Aroviita J, Baker NJ, Barešová L, Barquín J, Bonacina L, Bonada N, Cañedo-Argüelles M, Csabai Z, de Eyto E, Dohet A, Dörflinger G, Eriksen TE, Evtimova V, Feio MJ, Ferréol M, Floury M, Forio MAE, Fornaroli R, Goethals PLM, Heino J, Hering D, Huttunen KL, Jähnig SC, Johnson RK, Kuglerová L, Kupilas B, L'Hoste L, Larrañaga A, Leitner P, Lorenz AW, McKie BG, Muotka T, Osadčaja D, Paavola R, Palinauskas V, Pařil P, Pilotto F, Polášek M, Rasmussen JJ, Schäfer RB, Schmidt-Kloiber A, Scotti A, Skuja A, Straka M, Stubbington R, Timm H, Tyufekchieva V, Tziortzis I, Vannevel R, Várbíró G, Velle G, Verdonschot RCM, Vray S, Haase P. Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics. Nat Ecol Evol 2024; 8:430-441. [PMID: 38278985 DOI: 10.1038/s41559-023-02305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/11/2023] [Indexed: 01/28/2024]
Abstract
Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.
Collapse
Affiliation(s)
- James S Sinclair
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mario Álvarez-Cabria
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Jukka Aroviita
- Freshwater and Marine Solutions, Finnish Environment Institute, Oulu, Finland
| | - Nathan J Baker
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | | | - José Barquín
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Luca Bonacina
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, Italy
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Zoltán Csabai
- Department of Hydrobiology, University of Pécs, Pécs, Hungary
- Balaton Limnological Research Institute, Tihany, Hungary
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
| | - Alain Dohet
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gerald Dörflinger
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Tor E Eriksen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Vesela Evtimova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria J Feio
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, Associated Laboratory ARNET, Coimbra, Portugal
| | - Martial Ferréol
- INRAE, UR RiverLy, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Mathieu Floury
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, Italy
| | - Peter L M Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Jani Heino
- Geography Research Unit, University of Oulu, Oulu, Finland
| | - Daniel Hering
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Sonja C Jähnig
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lenka Kuglerová
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Benjamin Kupilas
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Institute of Landscape Ecology, Chair for Applied Landscape Ecology and Ecological Planning, University of Münster, Münster, Germany
| | - Lionel L'Hoste
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, University of the Basque Country, Leioa, Spain
| | - Patrick Leitner
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Timo Muotka
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Diana Osadčaja
- Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Riku Paavola
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, Finland
| | | | - Petr Pařil
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Marek Polášek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jes J Rasmussen
- NIVA Denmark (Norwegian Institute for Water Research), Copenhagen, Denmark
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Astrid Schmidt-Kloiber
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Alberto Scotti
- Eurac Research, Institute for Alpine Environment, Bolzano/Bozen, Italy
- APEM Ltd, Stockport, UK
| | - Agnija Skuja
- Institute of Biology, University of Latvia, Riga, Latvia
| | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- T.G. Masaryk Water Research Institute, p.r.i., Brno, Czech Republic
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Henn Timm
- Chair of Hydrobiology and Fishery, Centre for Limnology, Estonian University of Life Sciences, Elva vald, Estonia
| | - Violeta Tyufekchieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iakovos Tziortzis
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Rudy Vannevel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
- Flanders Environment Agency, Aalst, Belgium
| | - Gábor Várbíró
- Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
| | - Gaute Velle
- LFI - The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
| | - Sarah Vray
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Danet A, Giam X, Olden JD, Comte L. Past and recent anthropogenic pressures drive rapid changes in riverine fish communities. Nat Ecol Evol 2024; 8:442-453. [PMID: 38291153 DOI: 10.1038/s41559-023-02271-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 02/01/2024]
Abstract
Understanding how and why local communities change is a pressing task for conservation, especially in freshwater systems. It remains challenging because of the complexity of biodiversity changes, driven by the spatio-temporal heterogeneity of human pressures. Using a compilation of riverine fish community time series (93% between 1993 and 2019) across the Palaearctic, Nearctic and Australasia realms, we assessed how past and recent anthropogenic pressures drive community changes across both space and time. We found evidence of rapid changes in community composition of 30% per decade characterized by important changes in the dominant species, together with a 13% increase in total abundance per decade and a 7% increase in species richness per decade. The spatial heterogeneity in these trends could be traced back to the strength and timing of anthropogenic pressures and was mainly mediated by non-native species introductions. Specifically, we demonstrate that the negative effects of anthropogenic pressures on species richness and total abundance were compensated over time by the establishment of non-native species, a pattern consistent with previously reported biotic homogenization at the global scale. Overall, our study suggests that accounting for the complexity of community changes and its drivers is a crucial step to reach global conservation goals.
Collapse
Affiliation(s)
- Alain Danet
- School of Biological Sciences, Illinois State University, Normal, IL, USA.
- School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Xingli Giam
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
21
|
Blowes SA, McGill B, Brambilla V, Chow CFY, Engel T, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Xu WB, Gotelli NJ, Magurran A, Dornelas M, Chase JM. Synthesis reveals approximately balanced biotic differentiation and homogenization. SCIENCE ADVANCES 2024; 10:eadj9395. [PMID: 38381832 PMCID: PMC10881054 DOI: 10.1126/sciadv.adj9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.
Collapse
Affiliation(s)
- Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Brian McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cher F. Y. Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Thore Engel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S. Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Department of Data Science, Kitasato University, Kanagawa, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
22
|
Auliz-Ortiz DM, Benítez-Malvido J, Arroyo-Rodríguez V, Dirzo R, Pérez-Farrera MÁ, Luna-Reyes R, Mendoza E, Álvarez-Añorve MY, Álvarez-Sánchez J, Arias-Ataide DM, Ávila-Cabadilla LD, Botello F, Braasch M, Casas A, Campos-Villanueva DÁ, Cedeño-Vázquez JR, Chávez-Tovar JC, Coates R, Dechnik-Vázquez Y, del Coro Arizmendi M, Dias PA, Dorado O, Enríquez P, Escalona-Segura G, Farías-González V, Favila ME, García A, García-Morales LJ, Gavito-Pérez F, Gómez-Domínguez H, González-García F, González-Zamora A, Cuevas-Guzmán R, Haro-Belchez E, Hernández-Huerta AH, Hernández-Ordoñez O, Horváth A, Ibarra-Manríquez G, Lavín-Murcio PA, Lira-Saade R, López-Díaz K, MacSwiney G. MC, Mandujano S, Martínez-Camilo R, Martínez-Ávalos JG, Martínez-Meléndez N, Monroy-Ojeda A, Mora F, Mora-Olivo A, Muench C, Peña-Mondragón JL, Percino-Daniel R, Ramírez-Marcial N, Reyna-Hurtado R, Rodríguez-Ruíz ER, Sánchez-Cordero V, Suazo-Ortuño I, Terán-Juárez SA, Valdivieso-Pérez IA, Valencia V, Valenzuela-Galván D, Vargas-Contreras JA, Vázquez-Pérez JR, Vega-Rivera JH, Venegas-Barrera CS, Martínez-Ramos M. Underlying and proximate drivers of biodiversity changes in Mesoamerican biosphere reserves. Proc Natl Acad Sci U S A 2024; 121:e2305944121. [PMID: 38252845 PMCID: PMC10861858 DOI: 10.1073/pnas.2305944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.
Collapse
Affiliation(s)
- Daniel Martín Auliz-Ortiz
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Julieta Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Víctor Arroyo-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida97357, Mexico
| | - Rodolfo Dirzo
- Department of Biology, Stanford University, Palo Alto, CA9430
- Department of Earth Systems Science, Stanford University, Palo Alto, CA9430
| | - Miguel Ángel Pérez-Farrera
- Herbario Eizi Matuda, Laboratorio de Ecología, Evolutiva, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez29039, Mexico
| | - Roberto Luna-Reyes
- Dirección de Áreas Naturales y Vida Silvestre, Secretaría de Medio Ambiente e Historia Natural, Tuxtla Gutiérrez29000, Mexico
| | - Eduardo Mendoza
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia58337, Mexico
| | | | - Javier Álvarez-Sánchez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Dulce María Arias-Ataide
- Centro de Investigación y Educación Ambiental Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca62914, Mexico
| | - Luis Daniel Ávila-Cabadilla
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida97357, Mexico
| | - Francisco Botello
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Marco Braasch
- Faktorgruen, Landschaftsarchitekten bdla Beratende Ingenieure, Abteilung Landschaftsplanung, Rottweil, Baden-Württemberg78628, Germany
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Delfino Álvaro Campos-Villanueva
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, San Andrés Tuxtla, Veracruz95701, Mexico
| | - José Rogelio Cedeño-Vázquez
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Unidad Chetumal, Chetumal77014, Mexico
| | - José Cuauhtémoc Chávez-Tovar
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Estado de México52006, Mexico
| | - Rosamond Coates
- Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México, San Andrés Tuxtla, Veracruz95701, Mexico
| | - Yanus Dechnik-Vázquez
- Pre-Planning Center of the Gulf, Federal Electricity Comission, Boca del Río, Veracruz94295, Mexico
| | - María del Coro Arizmendi
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Pedro Américo Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz91190, Mexico
| | - Oscar Dorado
- Centro de Investigación y Educación Ambiental Sierra de Huautla, Universidad Autónoma del Estado de Morelos, Cuernavaca62914, Mexico
| | - Paula Enríquez
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Griselda Escalona-Segura
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Campeche, Campeche24500, Mexico
| | - Verónica Farías-González
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Mario E. Favila
- Red de Ecoetología, Instituto de Ecología, A.C., Xalapa, Veracruz91070, Mexico
| | - Andrés García
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio48980, Mexico
| | - Leccinum Jesús García-Morales
- Departamento de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Fernando Gavito-Pérez
- Reserva de la Biosfera Sierra de Manantlán, Comisión Nacional de Áreas Naturales Protegidas, Autlán de Navarro48903, Mexico
| | - Héctor Gómez-Domínguez
- Herbario Eizi Matuda, Laboratorio de Ecología, Evolutiva, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez29039, Mexico
| | - Fernando González-García
- Red Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, Veracruz91073, Mexico
| | - Arturo González-Zamora
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz911901, Mexico
| | - Ramón Cuevas-Guzmán
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro48900, Mexico
| | | | | | - Omar Hernández-Ordoñez
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Anna Horváth
- Quirón, Centro de Intervenciones Asistidas con Equinos y Formación para el Bienestar y Sustentabilidad, Asociación Civil, Comitán de Domínguez30039, Mexico
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Pablo Antonio Lavín-Murcio
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua32315, Mexico
| | - Rafael Lira-Saade
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalneplantla54090, Mexico
| | - Karime López-Díaz
- Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca62209, Mexico
| | | | - Salvador Mandujano
- Red Biología y Conservación de Vertebrados, Instituto de Ecología, A.C., Xalapa, Veracruz91073, Mexico
| | - Rubén Martínez-Camilo
- Unidad Villa Corzo, Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Villa de Corzo30520, Mexico
| | | | - Nayely Martínez-Meléndez
- Orquidario y Jardín Botánico "Comitán", Secretaría de Medio Ambiente e Historia Natural, Comitán de Domínguez30106, Mexico
| | | | - Francisco Mora
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Arturo Mora-Olivo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tamaulipas87019, Mexico
| | - Carlos Muench
- Coordinación Universitaria para la Sustentabilidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Juan L. Peña-Mondragón
- Consejo Nacional de Humanidades, Ciencia y Tecnología -Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| | - Ruth Percino-Daniel
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Neptalí Ramírez-Marcial
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Rafael Reyna-Hurtado
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Campeche, Campeche24500, Mexico
| | - Erick Rubén Rodríguez-Ruíz
- Comisión de Parques y Biodiversidad de Tamaulipas, Gobierno del Estado de Tamaulipas, Ciudad Victoria, Tamaulipas87083, Mexico
| | - Víctor Sánchez-Cordero
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México04510, Mexico
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia58337, Mexico
| | - Sergio Alejandro Terán-Juárez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Campus Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Ingrid Abril Valdivieso-Pérez
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Conkal, Tecnológico Nacional de México, Conkal97345, Mexico
| | - Vivian Valencia
- Department of Environment, Agriculture and Geography, Bishop’s University, Sherbrooke, QCJ1M 1Z7, Canada
| | - David Valenzuela-Galván
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca62209, Mexico
| | | | - José Raúl Vázquez-Pérez
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad San Cristóbal, San Cristóbal de Las Casas, Chiapas29290, Mexico
| | - Jorge Humberto Vega-Rivera
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio48980, Mexico
| | - Crystian Sadiel Venegas-Barrera
- Departamento de Posgrado e Investigación, Instituto Tecnológico de Ciudad Victoria, Ciudad Victoria, Tamaulipas87010, Mexico
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia58190, Mexico
| |
Collapse
|
23
|
Hogan KFE, Jones HP, Savage K, Burke AM, Guiden PW, Hosler SC, Rowland-Schaefer E, Barber NA. Functional consequences of animal community changes in managed grasslands: An application of the CAFE approach. Ecology 2024; 105:e4192. [PMID: 37878728 DOI: 10.1002/ecy.4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
In the midst of an ongoing biodiversity crisis, much research has focused on species losses and their impacts on ecosystem functioning. The functional consequences (ecosystem response) of shifts in communities are shaped not only by changes in species richness, but also by compositional shifts that result from species losses and gains. Species differ in their contribution to ecosystem functioning, so species identity underlies the consequences of species losses and gains on ecosystem functions. Such research is critical to better predict the impact of disturbances on communities and ecosystems. We used the "Community Assembly and the Functioning of Ecosystems" (CAFE) approach, a modification of the Price equation to understand the functional consequences and relative effects of richness and composition changes in small nonvolant mammal and dung beetle communities as a result of two common disturbances in North American prairie restorations, prescribed fire and the reintroduction of large grazing mammals. Previous research in this system has shown dung beetles are critically important decomposers, while small mammals modulate much energy in prairie food webs. We found that dung beetle communities were more responsive to bison reintroduction and prescribed fires than small nonvolant mammals. Dung beetle richness increased after bison reintroduction, with higher dung beetle community biomass resulting from changes in remaining species (context-dependent component) rather than species turnover (richness components); prescribed fire caused a minor increase in dung beetle biomass for the same reason. For small mammals, bison reintroduction reduced energy transfer through the loss of species, while prescribed fire had little impact on either small mammal richness or energy transfer. The CAFE approach demonstrates how bison reintroduction controls small nonvolant mammal communities by increasing prairie food web complexity, and increases dung beetle populations with possible benefits for soil health through dung mineralization and soil bioturbation. Prescribed fires, however, have little effect on small mammals and dung beetles, suggesting a resilience to fire. These findings illustrate the key role of re-establishing historical disturbance regimes when restoring endangered prairie ecosystems and their ecological function.
Collapse
Affiliation(s)
- Katharine F E Hogan
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Holly P Jones
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, Illinois, USA
| | - Kirstie Savage
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Angela M Burke
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Peter W Guiden
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Sheryl C Hosler
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Erin Rowland-Schaefer
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
24
|
Zheng W, Zhang E, Langdon PG, Wang R. Systematic loss in biotic heterogeneity but not biodiversity across multiple trophic levels in Erhai lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167479. [PMID: 37778549 DOI: 10.1016/j.scitotenv.2023.167479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Anthropogenic disturbances and climate change have significantly altered the biotic composition across many ecosystems, leading to changes in biodiversity and even ecological collapse. An ecosystem comprises multiple trophic levels, and the issue how these disturbances affect their assembly processes remains unclear. Ecological stability of assemblages was maintained by their structure, and thus, revealing structure changes across trophic levels could improve our understanding of how ecosystems response to disturbances as a whole. In this study, we combined methods from palaeolimnology, ecology and network analysis, and observed the changes of biodiversity and network structure of two trophic levels (algae - diatoms and zoobenthos - chironomids) in Erhai lake, Southwest China over the last century. Results showed nutrient enrichment induced shifts in diatom and chironomid assemblages at ∼2001 CE, suggesting that the shift in Erhai lake may have occurred at multiple trophic levels. We found biodiversity exhibit different trends across trophic levels as it decreased in diatoms but increased in chironomids. However, network skewness declined in both trophic levels, indicating the common loss of biotic heterogeneity. The consistent decline of skewness among trophic levels long before the compositional shift is a potential parameter to warn of the shifts in lake ecosystems.
Collapse
Affiliation(s)
- Wenxiu Zheng
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China.
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Guy Langdon
- School of Geography and Environmental Science, University of Southampton, Southampton, Hampshire, UK.
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yuxi 653100, China.
| |
Collapse
|
25
|
Tourani M, Sollmann R, Kays R, Ahumada J, Fegraus E, Karp DS. Maximum temperatures determine the habitat affiliations of North American mammals. Proc Natl Acad Sci U S A 2023; 120:e2304411120. [PMID: 38048469 PMCID: PMC10723132 DOI: 10.1073/pnas.2304411120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/14/2023] [Indexed: 12/06/2023] Open
Abstract
Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might switch habitat affiliations across time and space: an organism may venture into human-modified areas in benign regions but retreat into thermally buffered forested habitats in areas with high temperatures. Here, we apply community occupancy models to a large-scale camera trapping dataset with 29 mammal species distributed over 2,485 sites across the continental United States, to ask three questions. First, are species' responses to forest and anthropogenic habitats consistent across continental scales? Second, do macroclimatic conditions explain spatial variation in species responses to land use? Third, can species traits elucidate which taxa are most likely to show climate-dependent habitat associations? We found that all species exhibited significant spatial variation in how they respond to land-use, tending to avoid anthropogenic areas and increasingly use forests in hotter regions. In the hottest regions, species occupancy was 50% higher in forested compared to open habitats, whereas in the coldest regions, the trend reversed. Larger species with larger ranges, herbivores, and primary predators were more likely to change their habitat affiliations than top predators, which consistently affiliated with high forest cover. Our findings suggest that climatic conditions influence species' space-use and that maintaining forest cover can help protect mammals from warming climates.
Collapse
Affiliation(s)
- Mahdieh Tourani
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT59812
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA95616
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA95616
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin10315, Germany
| | - Roland Kays
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC27607
- North Carolina Museum of Natural Sciences, Raleigh, NC27601
| | - Jorge Ahumada
- Moore Center for Science, Conservation International, Arlington, VA22202
- Center for Biodiversity Outcomes, Julia Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ85281
| | - Eric Fegraus
- Moore Center for Science, Conservation International, Arlington, VA22202
| | - Daniel S. Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA95616
| |
Collapse
|
26
|
Kuipers KJJ, Sim S, Hilbers JP, van den Berg SK, de Jonge MMJ, Trendafilova K, Huijbregts MAJ, Schipper AM. Land use diversification may mitigate on-site land use impacts on mammal populations and assemblages. GLOBAL CHANGE BIOLOGY 2023; 29:6234-6247. [PMID: 37665234 DOI: 10.1111/gcb.16932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Land use is a major cause of biodiversity decline worldwide. Agricultural and forestry diversification measures, such as the inclusion of natural elements or diversified crop types, may reduce impacts on biodiversity. However, the extent to which such measures may compensate for the negative impacts of land use remains unknown. To fill that gap, we synthesised data from 99 studies that recorded mammal populations or assemblages in natural reference sites and in cropland and forest plantations, with or without diversification measures. We quantified the responses to diversification measures based on individual species abundance, species richness and assemblage intactness as quantified by the mean species abundance indicator. In cropland with natural elements, mammal species abundance and richness were, on average, similar to natural conditions, while in cropland without natural elements they were reduced by 28% and 34%, respectively. We found that mammal species richness was comparable between diversified forest plantations and natural reference sites, and 32% lower in plantations without natural elements. In both cropland and plantations, assemblage intactness was reduced compared with natural reference conditions, but the reduction was smaller if diversification measures were in place. In addition, we found that responses to land use were modified by species traits and environmental context. While habitat specialist populations were reduced in cropland without diversification and in forest plantations, habitat generalists benefited. Furthermore, assemblages were impacted more by land use in tropical regions and landscapes containing a larger share of (semi)natural habitat compared with temperate regions and more converted landscapes. Given that mammal assemblage intactness is reduced also when diversification measures are in place, special attention should be directed to species that suffer from land use impacts. That said, our results suggest potential for reconciling land use and mammal conservation, provided that the diversification measures do not compromise yield.
Collapse
Affiliation(s)
- Koen J J Kuipers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Sarah Sim
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- Safety and Environmental Assurance Centre (SEAC), Unilever R&D, Colworth Science Park, Sharnbrook, UK
| | - Jelle P Hilbers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Stefanie K van den Berg
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Melinda M J de Jonge
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Krista Trendafilova
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| |
Collapse
|
27
|
Millard J, Outhwaite CL, Ceaușu S, Carvalheiro LG, da Silva e Silva FD, Dicks LV, Ollerton J, Newbold T. Key tropical crops at risk from pollinator loss due to climate change and land use. SCIENCE ADVANCES 2023; 9:eadh0756. [PMID: 37824611 PMCID: PMC10569713 DOI: 10.1126/sciadv.adh0756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Insect pollinator biodiversity is changing rapidly, with potential consequences for the provision of crop pollination. However, the role of land use-climate interactions in pollinator biodiversity changes, as well as consequent economic effects via changes in crop pollination, remains poorly understood. We present a global assessment of the interactive effects of climate change and land use on pollinator abundance and richness and predictions of the risk to crop pollination from the inferred changes. Using a dataset containing 2673 sites and 3080 insect pollinator species, we show that the interactive combination of agriculture and climate change is associated with large reductions in insect pollinators. As a result, it is expected that the tropics will experience the greatest risk to crop production from pollinator losses. Localized risk is highest and predicted to increase most rapidly, in regions of sub-Saharan Africa, northern South America, and Southeast Asia. Via pollinator loss alone, climate change and agricultural land use could be a risk to human well-being.
Collapse
Affiliation(s)
- Joseph Millard
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Charlotte L. Outhwaite
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Silvia Ceaușu
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Luísa G. Carvalheiro
- Department of Ecology, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
- Centre for Ecology, Evolution and Environmental Change (CE3C), University of Lisbon, Lisbon, Portugal
| | - Felipe Deodato da Silva e Silva
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT)—Campus Barra do Garças, Barra do Garças, MT 78600-000, Brazil
| | - Lynn V. Dicks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, NN1 5PH UK
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
28
|
Finn C, Grattarola F, Pincheira-Donoso D. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biol Rev Camb Philos Soc 2023; 98:1732-1748. [PMID: 37189305 DOI: 10.1111/brv.12974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
The global-scale decline of animal biodiversity ('defaunation') represents one of the most alarming consequences of human impacts on the planet. The quantification of this extinction crisis has traditionally relied on the use of IUCN Red List conservation categories assigned to each assessed species. This approach reveals that a quarter of the world's animal species are currently threatened with extinction, and ~1% have been declared extinct. However, extinctions are preceded by progressive population declines through time that leave demographic 'footprints' that can alert us about the trajectories of species towards extinction. Therefore, an exclusive focus on IUCN conservation categories, without consideration of dynamic population trends, may underestimate the true extent of the processes of ongoing extinctions across nature. In fact, emerging evidence (e.g. the Living Planet Report), reveals a widespread tendency for sustained demographic declines (an average 69% decline in population abundances) of species globally. Yet, animal species are not only declining. Many species worldwide exhibit stable populations, while others are even thriving. Here, using population trend data for >71,000 animal species spanning all five groups of vertebrates (mammals, birds, reptiles, amphibians and fishes) and insects, we provide a comprehensive global-scale assessment of the diversity of population trends across species undergoing not only declines, but also population stability and increases. We show a widespread global erosion of species, with 48% undergoing declines, while 49% and 3% of species currently remain stable or are increasing, respectively. Geographically, we reveal an intriguing pattern similar to that of threatened species, whereby declines tend to concentrate around tropical regions, whereas stability and increases show a tendency to expand towards temperate climates. Importantly, we find that for species currently classed by the IUCN Red List as 'non-threatened', 33% are declining. Critically, in contrast with previous mass extinction events, our assessment shows that the Anthropocene extinction crisis is undergoing a rapid biodiversity imbalance, with levels of declines (a symptom of extinction) greatly exceeding levels of increases (a symptom of ecological expansion and potentially of evolution) for all groups. Our study contributes a further signal indicating that global biodiversity is entering a mass extinction, with ecosystem heterogeneity and functioning, biodiversity persistence, and human well-being under increasing threat.
Collapse
Affiliation(s)
- Catherine Finn
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Florencia Grattarola
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
29
|
Hemberger J, Bernauer OM, Gaines-Day HR, Gratton C. Landscape-scale floral resource discontinuity decreases bumble bee occurrence and alters community composition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2907. [PMID: 37602909 DOI: 10.1002/eap.2907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Agricultural practices and intensification during the past two centuries have dramatically altered the abundance and temporal continuity of floral resources that support pollinating insects such as bumble bees. Long-term trends among bumble bees within agricultural regions suggest that intensive agricultural conditions have created inhospitable conditions for some species, while other species have maintained their relative abundances despite landscape-level changes in flower availability. Bumble bee responses to spatiotemporal resource heterogeneity have been explored at the colony and behavioral level, but we have yet to understand whether these conditions drive community structure and ultimately explain the diverging patterns in long-term species trends. To explore the relationship between landscape-level floral resource continuity and the likelihood of bumble bee occurrence, we mapped the relative spatial and temporal availability of floral resources within an intensive agricultural region in the US Upper Midwest and related this resource availability with bumble bee species relative abundance. Across the bee community, we found that relative bumble bee occurrence increases in landscapes containing more abundant and more temporally continuous floral resources. Declining species, such as Bombus terricola, exhibited the strongest, positive responses to resource abundance and continuity whereas common, stable species, such as Bombus impatiens, showed no statistical relationship to either. Together with existing experimental evidence, this work suggests that efforts to increase spatiotemporal flower availability, along with overall flower abundance at landscape scales may have positive effects on bumble bee communities in the US Upper Midwest.
Collapse
Affiliation(s)
- Jeremy Hemberger
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Olivia M Bernauer
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hannah R Gaines-Day
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Claudio Gratton
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Lindenmayer DB, Florance D, Smith D, Crane C, Siegrist A, Lang E, Crane M, Michael DR, Scheele BC, Evans MJ. Temporal trends in reptile occurrence among temperate old-growth, regrowth and replanted woodlands. PLoS One 2023; 18:e0291641. [PMID: 37768982 PMCID: PMC10538651 DOI: 10.1371/journal.pone.0291641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023] Open
Abstract
Reptiles are an important part of the vertebrate fauna in the temperate woodlands of south-eastern Australia. However, compared to birds and mammals, the long-term occurrence of reptiles across woodland growth types-old growth, regrowth, and replantings-remains poorly understood. Here, using 18-years of data gathered at 218 sites across 1.5 million hectares in New South Wales South West Slopes bioregion, we sought to quantify patterns of temporal change in reptile occurrence and determine if such changes varied between woodland growth types. Despite extensive sampling, almost 75% of our 6341 surveys produced no detections of reptiles. Significant survey effort exceeding 2000 surveys was needed over a prolonged period of time to record detections of 26 reptile species in our study area. Our analyses showed a temporal increase in estimated reptile species richness and abundance over 18 years. Such increases characterized all three vegetation structural types we surveyed. At the individual species level, we had sufficient data to construct models for five of the 26 species recorded. Three of these species were least commonly detected in replantings, whereas the remaining two were most often detected in replantings relative to old growth and regrowth woodland. We found evidence of a temporal increase in two skink species, a decline in one gecko species, and no change in the remaining two skink species. Although detections were consistently low, active searches were the best survey method, and we suggest using this method in habitats known to be hotspots for reptiles, such as rocky outcrops, if the aim is to maximize the number of individuals and species detected. Our findings highlight the value of all three broad vegetation structure types in contributing to woodland reptile biodiversity.
Collapse
Affiliation(s)
- David B. Lindenmayer
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - Daniel Florance
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - David Smith
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - Clare Crane
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - Angelina Siegrist
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - Eleanor Lang
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - Mason Crane
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
- NSW Biodiversity Conservation Trust, Gundagai, NSW, Australia
| | - Damian R. Michael
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Albury, NSW, Australia
| | - Ben C. Scheele
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| | - Maldwyn John Evans
- Sustainable Farms, Fenner School of Environment & Society, The Australian National University, Canberra, Australia
| |
Collapse
|
31
|
Abdelhady AA, Samy-Kamal M, Abdel-Raheem KHM, Ahmed MS, Khalil MM. Historical changes in fish landings indicate a significant shift in fish catch composition and biodiversity loss in the Nile-Delta lakes. MARINE POLLUTION BULLETIN 2023; 194:115368. [PMID: 37572433 DOI: 10.1016/j.marpolbul.2023.115368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
To monitor the changes in fish biodiversity and to elucidate the factors responsible for these changes, the landings composition (LC) over the past 30 years in the Nile-Delta lakes was quantitatively analyzed. The LC data indicates a shift in target species towards demersal opportunistic species. A significant difference (P < 0.001) between two main intervals highlighted in both PERMANOVA and PCA plot; the first interval (1991-2002) is dominated by Tilapia and rare species, while the second interval (2003-2020) is dominated by the opportunistic catfish and mullet species. Noticeable declines in species richness and landings of rare species were observed, where rare taxa either have been overexploited or they may be positively affected by increasing pollution levels than do other dominated species such as Tilapia. In contrast, opportunistic fish species such as catfish and mullet, have flourished in such polluted water due to their ability to tolerate seasonal pollution-related hypoxia.
Collapse
Affiliation(s)
- Ahmed A Abdelhady
- Geology Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt.
| | - Mohamed Samy-Kamal
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Edificio Ciencias V, Campus de San Vicente del Raspeig, PO Box 99, 03080 Alicante, Spain
| | | | - Mohamed S Ahmed
- Geology and Geophysics Department, College of Science, King Saud University 2455, Riyadh 11451, Saudi Arabia
| | - Mahmoud M Khalil
- Geology Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| |
Collapse
|
32
|
Cannon CH, Lerdau M. Conservation should not make 'perfect' an enemy of 'good'. TRENDS IN PLANT SCIENCE 2023; 28:971-972. [PMID: 37438215 DOI: 10.1016/j.tplants.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Charles H Cannon
- Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA.
| | | |
Collapse
|
33
|
Mudge L, Bruno JF. Disturbance intensification is altering the trait composition of Caribbean reefs, locking them into a low functioning state. Sci Rep 2023; 13:14022. [PMID: 37640770 PMCID: PMC10462730 DOI: 10.1038/s41598-023-40672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient "weedy" corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value.
Collapse
Affiliation(s)
- Laura Mudge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Barefoot Ocean, LLC., Houston, Texas, USA.
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Rolls RJ, Deane DC, Johnson SE, Heino J, Anderson MJ, Ellingsen KE. Biotic homogenisation and differentiation as directional change in beta diversity: synthesising driver-response relationships to develop conceptual models across ecosystems. Biol Rev Camb Philos Soc 2023; 98:1388-1423. [PMID: 37072381 DOI: 10.1111/brv.12958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed 'beta diversity') is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.
Collapse
Affiliation(s)
- Robert J Rolls
- School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, 2351, Australia
| | - David C Deane
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sarah E Johnson
- Natural Resources Department, Northland College, Ashland, WI, 54891, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu, FI-90014, Finland
| | - Marti J Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Albany Campus, Auckland, New Zealand
| | - Kari E Ellingsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, P.O. Box 6606 Langnes, Tromsø, 9296, Norway
| |
Collapse
|
35
|
Dornelas M, Chase JM, Gotelli NJ, Magurran AE, McGill BJ, Antão LH, Blowes SA, Daskalova GN, Leung B, Martins IS, Moyes F, Myers-Smith IH, Thomas CD, Vellend M. Looking back on biodiversity change: lessons for the road ahead. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220199. [PMID: 37246380 PMCID: PMC10225864 DOI: 10.1098/rstb.2022.0199] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/24/2023] [Indexed: 05/30/2023] Open
Abstract
Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Maria Dornelas
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Guia Marine Laboratory, MARE, Faculdade de Ciencias da Universidade de Lisboa, Cascais 2750-374, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | | | - Anne E Magurran
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Laura H. Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki,Finland
| | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | - Gergana N. Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Brian Leung
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
| | - Inês S. Martins
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Faye Moyes
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | | | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mark Vellend
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Département de biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
36
|
Gregory RD, Eaton MA, Burfield IJ, Grice PV, Howard C, Klvaňová A, Noble D, Šilarová E, Staneva A, Stephens PA, Willis SG, Woodward ID, Burns F. Drivers of the changing abundance of European birds at two spatial scales. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220198. [PMID: 37246375 DOI: 10.1098/rstb.2022.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 05/30/2023] Open
Abstract
Detecting biodiversity change and identifying its causes is challenging because biodiversity is multifaceted and temporal data often contain bias. Here, we model temporal change in species' abundance and biomass by using extensive data describing the population sizes and trends of native breeding birds in the United Kingdom (UK) and the European Union (EU). In addition, we explore how species' population trends vary with species' traits. We demonstrate significant change in the bird assemblages of the UK and EU, with substantial reductions in overall bird abundance and losses concentrated in a relatively small number of abundant and smaller sized species. By contrast, rarer and larger birds had generally fared better. Simultaneously, overall avian biomass had increased very slightly in the UK and was stable in the EU, indicating a change in community structure. Abundance trends across species were positively correlated with species' body mass and with trends in climate suitability, and varied with species' abundance, migration strategy and niche associations linked to diet. Our work highlights how changes in biodiversity cannot be captured easily by a single number; care is required when measuring and interpreting biodiversity change given that different metrics can provide very different insights. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Richard D Gregory
- RSPB Centre for Conservation Science, Sandy, Befordshire SG19 2DL, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | | | - Ian J Burfield
- BirdLife International, Cambridge, Cambridgeshire CB2 3QZ, UK
| | - Philip V Grice
- Chief Scientist Directorate, Natural England, Peterborough PE2 8YY, UK
| | - Christine Howard
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, County Durham DH1 3LE, UK
| | - Alena Klvaňová
- Czech Society for Ornithology, 150 00 Prague 5, Czech Republic
| | - David Noble
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Eva Šilarová
- Czech Society for Ornithology, 150 00 Prague 5, Czech Republic
| | - Anna Staneva
- BirdLife International, Cambridge, Cambridgeshire CB2 3QZ, UK
| | - Philip A Stephens
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, County Durham DH1 3LE, UK
| | - Stephen G Willis
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, County Durham DH1 3LE, UK
| | - Ian D Woodward
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Fiona Burns
- RSPB Centre for Conservation Science, Cambridge CB2 3QZ, UK
| |
Collapse
|
37
|
Woods T, Freeman MC, Krause KP, Maloney KO. Observed and projected functional reorganization of riverine fish assemblages from global change. GLOBAL CHANGE BIOLOGY 2023; 29:3759-3780. [PMID: 37021672 DOI: 10.1111/gcb.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 06/06/2023]
Abstract
Climate and land-use/land-cover change ("global change") are restructuring biodiversity, globally. Broadly, environmental conditions are expected to become warmer, potentially drier (particularly in arid regions), and more anthropogenically developed in the future, with spatiotemporally complex effects on ecological communities. We used functional traits to inform Chesapeake Bay Watershed fish responses to future climate and land-use scenarios (2030, 2060, and 2090). We modeled the future habitat suitability of focal species representative of key trait axes (substrate, flow, temperature, reproduction, and trophic) and used functional and phylogenetic metrics to assess variable assemblage responses across physiographic regions and habitat sizes (headwaters through large rivers). Our focal species analysis projected future habitat suitability gains for carnivorous species with preferences for warm water, pool habitats, and fine or vegetated substrates. At the assemblage level, models projected decreasing habitat suitability for cold-water, rheophilic, and lithophilic individuals but increasing suitability for carnivores in the future across all regions. Projected responses of functional and phylogenetic diversity and redundancy differed among regions. Lowland regions were projected to become less functionally and phylogenetically diverse and more redundant while upland regions (and smaller habitat sizes) were projected to become more diverse and less redundant. Next, we assessed how these model-projected assemblage changes 2005-2030 related to observed time-series trends (1999-2016). Halfway through the initial projecting period (2005-2030), we found observed trends broadly followed modeled patterns of increasing proportions of carnivorous and lithophilic individuals in lowland regions but showed opposing patterns for functional and phylogenetic metrics. Leveraging observed and predicted analyses simultaneously helps elucidate the instances and causes of discrepancies between model predictions and ongoing observed changes. Collectively, results highlight the complexity of global change impacts across broad landscapes that likely relate to differences in assemblages' intrinsic sensitivities and external exposure to stressors.
Collapse
Affiliation(s)
- Taylor Woods
- Eastern Ecological Science Center, U.S. Geological Survey, West Virginia, Kearneysville, USA
| | - Mary C Freeman
- Eastern Ecological Science Center, U.S. Geological Survey, Georgia, Athens, USA
| | - Kevin P Krause
- Eastern Ecological Science Center, U.S. Geological Survey, West Virginia, Kearneysville, USA
| | - Kelly O Maloney
- Eastern Ecological Science Center, U.S. Geological Survey, West Virginia, Kearneysville, USA
| |
Collapse
|
38
|
Carroll T, Cardou F, Dornelas M, Thomas CD, Vellend M. Biodiversity change under adaptive community dynamics. GLOBAL CHANGE BIOLOGY 2023; 29:3525-3538. [PMID: 36916852 DOI: 10.1111/gcb.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
Compositional change is a ubiquitous response of ecological communities to environmental drivers of global change, but is often regarded as evidence of declining "biotic integrity" relative to historical baselines. Adaptive compositional change, however, is a foundational idea in evolutionary biology, whereby changes in gene frequencies within species boost population-level fitness, allowing populations to persist as the environment changes. Here, we present an analogous idea for ecological communities based on core concepts of fitness and selection. Changes in community composition (i.e., frequencies of genetic differences among species) in response to environmental change should normally increase the average fitnessof community members. We refer to compositional changes that improve the functional match, or "fit," between organisms' traits and their environment as adaptive community dynamics. Environmental change (e.g., land-use change) commonly reduces the fit between antecedent communities and new environments. Subsequent change in community composition in response to environmental changes, however, should normally increase community-level fit, as the success of at least some constituent species increases. We argue that adaptive community dynamics are likely to improve or maintain ecosystem function (e.g., by maintaining productivity). Adaptive community responses may simultaneously produce some changes that are considered societally desirable (e.g., increased carbon storage) and others that are undesirable (e.g., declines of certain species), just as evolutionary responses within species may be deemed desirable (e.g., evolutionary rescue of an endangered species) or undesirable (e.g., enhanced virulence of an agricultural pest). When assessing possible management interventions, it is important to distinguish between drivers of environmental change (e.g., undesired climate warming) and adaptive community responses, which may generate some desirable outcomes. Efforts to facilitate, accept, or resist ecological change require separate consideration of drivers and responses, and may highlight the need to reconsider preferences for historical baseline communities over communities that are better adapted to the new conditions.
Collapse
Affiliation(s)
- Tadhg Carroll
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Biology, University of York, York, United Kingdom
| | - Françoise Cardou
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, Toronto, Canada
| | - Maria Dornelas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Biology, University of York, York, United Kingdom
| | - Mark Vellend
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Département de Biologie, Université de Sherbrooke, Québec, Sherbrooke, Canada
| |
Collapse
|
39
|
Davis KP, Sofaer HR, Pejchar L. Land cover differentially affects abundance of common and rare birds. GLOBAL CHANGE BIOLOGY 2023; 29:2999-3009. [PMID: 36974627 DOI: 10.1111/gcb.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
While rare species are vulnerable to global change, large declines in common species (i.e., those with large population sizes, large geographic distributions, and/or that are habitat generalists) also are of conservation concern. Understanding if and how commonness mediates species' responses to global change, including land cover change, can help guide conservation strategies. We explored avian population responses to land cover change along a gradient from common to rare species using avian data from the North American Breeding Bird Survey (BBS) and land cover data from the National Land Cover Database for the conterminous United States. Specifically, we used generalized linear mixed effects models to ask if species' commonness affected the relationship between land cover and counts, using the initial amount of and change in land cover surrounding each North American BBS route from 2001 to 2016. We quantified species' commonness as a continuous metric at the national scale using the logarithm (base 10) of each species' total count across all routes in the conterminous United States in 2001. For our focal 15-year period, we found that higher proportions of initial natural land cover favored (i.e., were correlated with higher) counts of rare but not common species. We also found that commonness mediated how change in human land cover, but not natural land cover, was associated with species' counts at the end of the study period. Increases in developed lands did not favor counts of any species. Increases in agriculture and declines in pasture favored counts of common but not rare species. Our findings show a signal of commonness in how species respond to a major dimension of global change. Evaluating how and why commonness mediates species' responses to land cover change can help managers design conservation portfolios that sustain the spectrum of common to rare species.
Collapse
Affiliation(s)
- Kristin P Davis
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Helen R Sofaer
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, Hawaii, USA
| | - Liba Pejchar
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
40
|
Carroll T, Stafford R, Gillingham PK, Bullock JM, Brown D, Brown M, Walls RM, Diaz A. Correlated biodiversity change between plant and insect assemblages resurveyed after 80 years across a dynamic habitat mosaic. Ecol Evol 2023; 13:e10168. [PMID: 37304373 PMCID: PMC10251423 DOI: 10.1002/ece3.10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Historical data on co-occurring taxa are extremely rare. As such, the extent to which distinct co-occurring taxa experience similar long-term patterns in species richness and compositional change (e.g., when exposed to a changing environment) is not clear. Using data from a diverse ecological community surveyed in the 1930s and resurveyed in the 2010s, we investigated whether local plant and insect assemblages displayed cross-taxon congruence-that is, spatiotemporal correlation in species richness and compositional change-across six co-occurring taxa: vascular plants, non-vascular plants, grasshoppers and crickets (Orthoptera), ants (Hymenoptera: Formicinae), hoverflies (Diptera: Syrphidae), and dragonflies and damselflies (Odonata). All taxa exhibited high levels of turnover across the ca. 80-year time period. Despite minimal observed changes at the level of the whole study system, species richness displayed widespread cross-taxon congruence (i.e., correlated temporal change) across local assemblages within the study system. Hierarchical logistic regression models suggest a role for shared responses to environmental change underlying cross-taxon correlations and highlight stronger correlations between vascular plants and their direct consumers, suggesting a possible role for biotic interactions between these groups. These results provide an illustration of cross-taxon congruence in biodiversity change using data unique in its combination of temporal and taxonomic scope, and highlight the potential for cascading and comparable effects of environmental change (abiotic and biotic) on co-occurring plant and insect communities. However, analyses of historical resurveys based on currently available data come with inherent uncertainties. As such, this study highlights a need for well-designed experiments, and monitoring programs incorporating co-occurring taxa, to determine the underlying mechanisms and prevalence of congruent biodiversity change as anthropogenic environmental change accelerates apace.
Collapse
Affiliation(s)
- Tadhg Carroll
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
- Leverhulme Centre for Anthropocene BiodiversityYorkUK
- Department of BiologyUniversity of YorkYorkUK
| | - Richard Stafford
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | | | | | | | | | - Anita Diaz
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| |
Collapse
|
41
|
Penny A, Dornelas M, Magurran A. Comparing temporal dynamics of compositional reorganization in long-term studies of birds and fish. Ecol Lett 2023. [PMID: 37183392 DOI: 10.1111/ele.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 05/16/2023]
Abstract
The composition of ecological assemblages has changed rapidly over the past century. Compositional reorganization rates are high relative to rates of alpha diversity change, creating an urgent need to understand how this compositional reorganization is progressing. We developed a quantitative framework for comparing temporal trajectories of compositional reorganization and applied it to two long-term bird and marine fish datasets. We then evaluated how the number and magnitude of short-term changes relate to overall rates of change. We found varied trajectories of turnover across birds and fish, with linear directional change predominating in birds and non-directional change more common in fish. The number of changes away from the baseline was a more consistent correlate of the overall rate of change than the magnitude of such changes, but large unreversed changes were found in both fish and birds, as were time series with accelerating compositional change. Compositional reorganization is progressing through a complex mix of temporal trajectories, including both threshold-like behaviour and the accumulation of repeated, linear change.
Collapse
Affiliation(s)
- Amelia Penny
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
42
|
Rumschlag SL, Mahon MB, Jones DK, Battaglin W, Behrens J, Bernhardt ES, Bradley P, Brown E, De Laender F, Hill R, Kunz S, Lee S, Rosi E, Schäfer R, Schmidt TS, Simonin M, Smalling K, Voss K, Rohr JR. Density declines, richness increases, and composition shifts in stream macroinvertebrates. SCIENCE ADVANCES 2023; 9:eadf4896. [PMID: 37134169 PMCID: PMC10156106 DOI: 10.1126/sciadv.adf4896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Documenting trends of stream macroinvertebrate biodiversity is challenging because biomonitoring often has limited spatial, temporal, and taxonomic scopes. We analyzed biodiversity and composition of assemblages of >500 genera, spanning 27 years, and 6131 stream sites across forested, grassland, urban, and agricultural land uses throughout the United States. In this dataset, macroinvertebrate density declined by 11% and richness increased by 12.2%, and insect density and richness declined by 23.3 and 6.8%, respectively, over 27 years. In addition, differences in richness and composition between urban and agricultural versus forested and grassland streams have increased over time. Urban and agricultural streams lost the few disturbance-sensitive taxa they once had and gained disturbance-tolerant taxa. These results suggest that current efforts to protect and restore streams are not sufficient to mitigate anthropogenic effects.
Collapse
Affiliation(s)
- Samantha L Rumschlag
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Michael B Mahon
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Devin K Jones
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - William Battaglin
- Colorado Water Science Center, U.S. Geological Survey, Denver, CO, USA
| | - Jonny Behrens
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Paul Bradley
- South Atlantic Water Science Center, U.S. Geological Survey, Columbia, SC, USA
| | - Ethan Brown
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Namur, Belgium
| | - Ryan Hill
- Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Stefan Kunz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Sylvia Lee
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Emma Rosi
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - Ralf Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Travis S Schmidt
- Wyoming-Montana Water Science Center, U.S. Geological Survey, Helena, MT, USA
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Kelly Smalling
- New Jersey Water Science Center, U.S. Geological Survey, Lawrenceville, NJ, USA
| | - Kristofor Voss
- Department of Biology, Regis University, Denver, CO, USA
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
43
|
Riva F, Barbero F, Balletto E, Bonelli S. Combining environmental niche models, multi-grain analyses, and species traits identifies pervasive effects of land use on butterfly biodiversity across Italy. GLOBAL CHANGE BIOLOGY 2023; 29:1715-1728. [PMID: 36695553 DOI: 10.1111/gcb.16615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 05/28/2023]
Abstract
Understanding how species respond to human activities is paramount to ecology and conservation science, one outstanding question being how large-scale patterns in land use affect biodiversity. To facilitate answering this question, we propose a novel analytical framework that combines environmental niche models, multi-grain analyses, and species traits. We illustrate the framework capitalizing on the most extensive dataset compiled to date for the butterflies of Italy (106,514 observations for 288 species), assessing how agriculture and urbanization have affected biodiversity of these taxa from landscape to regional scales (3-48 km grains) across the country while accounting for its steep climatic gradients. Multiple lines of evidence suggest pervasive and scale-dependent effects of land use on butterflies in Italy. While land use explained patterns in species richness primarily at grains ≤12 km, idiosyncratic responses in species highlighted "winners" and "losers" across human-dominated regions. Detrimental effects of agriculture and urbanization emerged from landscape (3-km grain) to regional (48-km grain) scales, disproportionally affecting small butterflies and butterflies with a short flight curve. Human activities have therefore reorganized the biogeography of Italian butterflies, filtering out species with poor dispersal capacity and narrow niche breadth not only from local assemblages, but also from regional species pools. These results suggest that global conservation efforts neglecting large-scale patterns in land use risk falling short of their goals, even for taxa typically assumed to persist in small natural areas (e.g., invertebrates). Our study also confirms that consideration of spatial scales will be crucial to implementing effective conservation actions in the Post-2020 Global Biodiversity Framework. In this context, applications of the proposed analytical framework have broad potential to identify which mechanisms underlie biodiversity change at different spatial scales.
Collapse
Affiliation(s)
- Federico Riva
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| | - Emilio Balletto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| |
Collapse
|
44
|
Xu WB, Blowes SA, Brambilla V, Chow CFY, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Magurran AE, Gotelli NJ, McGill BJ, Dornelas M, Chase JM. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 2023; 14:1463. [PMID: 36927847 PMCID: PMC10020147 DOI: 10.1038/s41467-023-37127-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.
Collapse
Affiliation(s)
- Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
45
|
Hounyèmè R, Logez M, Mama D, Argillier C. Bayesian inference of physicochemical quality elements of tropical lagoon Nokoué (Benin). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:446. [PMID: 36879106 DOI: 10.1007/s10661-023-10957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant physicochemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven physicochemical parameters were selected for their response to at least one stressor and their threshold quality standards also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 ‰), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to "good to medium" suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the physicochemical status of this anthropized African ecosystem.
Collapse
Affiliation(s)
- Romuald Hounyèmè
- ED 251, Aix-Marseille University, CEREGE, Europole de l'Arbois BP80, Aix-en-Provence, 13545, France.
- UMR RECOVER, INRAE, Aix Marseille Univ, Aix-en-Provence, 13182, France.
- LHA-INE, University of Abomey-Calavi, 01BP: 526, Cotonou, Bénin.
| | - Maxime Logez
- UMR RECOVER, INRAE, Aix Marseille Univ, Aix-en-Provence, 13182, France
| | - Daouda Mama
- LHA-INE, University of Abomey-Calavi, 01BP: 526, Cotonou, Bénin
| | - Christine Argillier
- ED 251, Aix-Marseille University, CEREGE, Europole de l'Arbois BP80, Aix-en-Provence, 13545, France
- UMR RECOVER, INRAE, Aix Marseille Univ, Aix-en-Provence, 13182, France
| |
Collapse
|
46
|
Moyes F, Trindade-Santos I, Magurran AE. Temporal change in functional rarity in marine fish assemblages. Proc Biol Sci 2023; 290:20222273. [PMID: 36809807 PMCID: PMC9943642 DOI: 10.1098/rspb.2022.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Recent research has uncovered rapid compositional and structural reorganization of ecological assemblages, with these changes particularly evident in marine ecosystems. However, the extent to which these ongoing changes in taxonomic diversity are a proxy for change in functional diversity is not well understood. Here we focus on trends in rarity to ask how taxonomic rarity and functional rarity covary over time. Our analysis, drawing on 30 years of scientific trawl data, reveals that the direction of temporal shifts in taxonomic rarity in two Scottish marine ecosystems is consistent with a null model of change in assemblage size (i.e. change in numbers of species and/or individuals). In both cases, however, functional rarity increases, as assemblages become larger, rather than showing the expected decrease. These results underline the importance of measuring both taxonomic and functional dimensions of diversity when assessing and interpreting biodiversity change.
Collapse
Affiliation(s)
- Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Isaac Trindade-Santos
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
- Marine Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigamigun, 904-0495, Okinawa, Japan
| | - Anne E. Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
47
|
de Souza JS, Dos Santos LN. Resident species, not immigrants, drive reorganization of estuarine fish assemblages in response to warming. Ecology 2023; 104:e3987. [PMID: 36756662 DOI: 10.1002/ecy.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 02/10/2023]
Abstract
Climate change is reshaping biological communities, as species track environmental temperature. Assemblage reorganization is underpinned by shifts in species abundance and distribution, but studies often focus on documenting compositional turnover. As a consequence, phenomena such as the tropicalization of temperate communities have been widely associated with increased occupancy of warm-affinity species. Abundance-weighted change in thermal affinity can be tracked with the Community Temperature Index (CTI), and decomposed into four processes: tropicalization (increasing warm-affinity), borealization (increasing cold-affinity), deborealization (decreasing cold-affinity), and detropicalization (decreasing warm-affinity). Further evaluation of these processes according to species persistence (i.e., immigrant, emigrant, and resident) may provide insights on whether novel communities emerge primarily from local shifts in species abundance or distribution. Using long-term data on fish assemblages undergoing climate change's effects across 19 temperate estuaries surveyed for at least 20 years, we hypothesized (1) deborealization is the main process reshaping communities under climate change, and (2) the contribution of resident species to processes reshaping communities surpass the ones from immigrants and emigrants. Community dissimilarity was calculated through the Temporal Beta Index (TBI), which was further decomposed into species and individual losses and gains. These values were then used as effect sizes in the meta-analyses performed to detect systematic trends in assemblage reorganization in response to climate change. We also calculated CTI and the strength of temperature-related processes for resident, immigrant and emigrant species. Species and individual gains outweighed losses in estuaries. Temperature was correlated with changes in species abundance, but not occurrence. Fish abundance decreased with warming, and initially cooler estuaries gained more fish than warmer ones. Novel communities were shaped by a variety of processes, but mainly tropicalization. Assemblage reorganization was primarily driven by shifts in abundance of resident species with distinct thermal affinities, while contributions of arriving and exiting species played a secondary role. These findings reveal that novel communities are drawn primarily from the local species pool, due to changes in climate-related drivers that favor distinct resident species.
Collapse
Affiliation(s)
- Joice Silva de Souza
- Graduate Course in Ecology and Evolution (PPGEE), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Laboratory of Theoretical and Applied Ichthyology (LICTA), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Luciano Neves Dos Santos
- Graduate Course in Ecology and Evolution (PPGEE), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Laboratory of Theoretical and Applied Ichthyology (LICTA), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Kramer JMF, Zwiener VP, Müller SC. Biotic homogenization and differentiation of plant communities in tropical and subtropical forests. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14025. [PMID: 36285615 DOI: 10.1111/cobi.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic impacts on biodiversity can lead to biotic homogenization (BH) and biotic differentiation (BD). BH is a process of increasing similarity in community composition (including taxonomic, functional, and phylogenetic components), whereas BD is a process of decreasing similarity over space and time. Here, we conducted a systematic review of BH and BD in plant communities in tropical and subtropical forests to identify trends and knowledge gaps. Our bibliometric search in the Web of Science returned 1989 papers, of which 151 matched our criteria and were included in the analysis. The Neotropical region had the largest number of articles, and Brazil was the most represented country with 92 studies. Regarding the type of change, homogenization was more frequent than differentiation (noted in 69.6% of publications). The taxonomic diversity component was measured more often than functional and phylogenetic diversity components. Most studies (75.6%) assessed homogenization and differentiation based on a single observation in time; as opposed to few studies that monitored plant community over multiple years. Forest fragmentation was cited as the main determinant of homogenization and differentiation processes (57.2% of articles). Our results highlight the importance of evaluating community composition over time and more than taxonomic components (i.e., functional and phylogenetic) to advance understanding of homogenization and differentiation. Both processes were scale dependent and not mutually exclusive. As such, future research should consider differentiation as a potential transition phase to homogenization and that potential differences in both processes may depend on the spatial and temporal scale adopted. Understanding the complexity and causes of homogenization and differentiation is essential for biodiversity conservation in a world increasingly affected by anthropogenic disturbances.
Collapse
Affiliation(s)
- Jean M Freitag Kramer
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná (UFPR), Palotina, Brazil
| | - Victor P Zwiener
- Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná (UFPR), Palotina, Brazil
| | - Sandra Cristina Müller
- Laboratório de Ecologia Vegetal (LEVEG), Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
49
|
Ohler K, Schreiner VC, Link M, Liess M, Schäfer RB. Land use changes biomass and temporal patterns of insect cross-ecosystem flows. GLOBAL CHANGE BIOLOGY 2023; 29:81-96. [PMID: 36178427 DOI: 10.1111/gcb.16462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Emergent aquatic insects constitute an important food source for higher trophic levels, linking aquatic to terrestrial ecosystems. Little is known about how land use affects the biomass or composition of insect emergence. Previous studies are limited to individual time points or seasons, hampering understanding of annual biomass export patterns and detection of phenological changes. Over 1 year's primary emergence period, we continuously determined the biomass, abundance, and identity of >45,000 aquatic insects and recorded land-use-related environmental variables in 20 stream sites using a paired design with upstream forested sites and downstream agricultural sites. Total insect biomass and abundance were 2-7 mg day-1 m-2 and 7-36 ind day-1 m-2 higher in agricultural than forested sites. However, we found turnover of families between forested and agricultural sites, with more insects with shorter generation time in agriculture, indicating lower sensitivity to land-use-related stress because of higher recovery potential. Except for stoneflies, biomass and abundance of major orders were higher in agriculture, but their phenology differed. For different orders, emergence peaked 30 days earlier to 51 days later in agriculture than forest, whereas total abundance and biomass both peaked earlier in agriculture: 3-5 and 3-19 days, respectively. The most important land-use-related drivers were pesticide toxicity and electrical conductivity, which were differentially associated with different aquatic insect order abundances and biomass. Overall, we found that land use was related to changes in composition and phenology of aquatic insect emergence, which is likely to affect food-web dynamics in a cross-ecosystem context.
Collapse
Affiliation(s)
- Katharina Ohler
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Moritz Link
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| |
Collapse
|
50
|
Strona G, Bradshaw CJ. Coextinctions dominate future vertebrate losses from climate and land use change. SCIENCE ADVANCES 2022; 8:eabn4345. [PMID: 36525487 PMCID: PMC9757742 DOI: 10.1126/sciadv.abn4345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/09/2022] [Indexed: 05/19/2023]
Abstract
Although theory identifies coextinctions as a main driver of biodiversity loss, their role at the planetary scale has yet to be estimated. We subjected a global model of interconnected terrestrial vertebrate food webs to future (2020-2100) climate and land-use changes. We predict a 17.6% (± 0.16% SE) average reduction of local vertebrate diversity globally by 2100, with coextinctions increasing the effect of primary extinctions by 184.2% (± 10.9% SE) on average under an intermediate emissions scenario. Communities will lose up to a half of ecological interactions, thus reducing trophic complexity, network connectance, and community resilience. The model reveals that the extreme toll of global change for vertebrate diversity might be of secondary importance compared to the damages to ecological network structure.
Collapse
Affiliation(s)
- Giovanni Strona
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, Biocentre 3, 00790 Helsinki, Finland
- Corresponding author.
| | - Corey J. A. Bradshaw
- Global Ecology, College of Science and Engineering and ARC Centre of Excellence for Australian Biodiversity and Heritage, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|