1
|
Bashir B, Sethi P, Panda S, Manikyam HK, Vishwas S, Singh SK, Singh K, Jain D, Chaitanya MVNL, Coutinho HDM. Unravelling the epigenetic based mechanism in discovery of anticancer phytomedicine: Evidence based studies. Cell Signal 2025; 131:111743. [PMID: 40107479 DOI: 10.1016/j.cellsig.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic mechanisms play a crucial role in the normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of these processes can result in changes to gene function and the transformation of cells into a malignant state. Cancer is characterized by widespread alterations in the epigenetic landscape, revealing that it involves not only genetic mutations but also epigenetic abnormalities. Recent progress in the field of cancer epigenetics has demonstrated significant reprogramming of various components of the epigenetic machinery in cancer, such as DNA methylation, modifications to histones, positioning of nucleosomes, and the expression of non-coding RNAs, particularly microRNAs. The ability to reverse epigenetic abnormalities has given rise to the hopeful field of epigenetic therapy, which has shown advancement with the recent approval by the FDA of three drugs targeting epigenetic mechanisms for the treatment of cancer. In the present manuscript, a comprehensive review has been presented about the role of understanding the epigenetic link between cancer and mechanisms by which phytomedicine offers treatment avenues. Further, this review deciphers the significance of natural products in the identification of epigenetic therapeutics, the diversity of their molecular targets, the use of nanotechnology, and the creation of new strategies for overcoming the inherent clinical challenges associated with developing these drug leads.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India
| | - Hemanth Kumar Manikyam
- Department of Chemistry, Faculty of science, North East Frontier Technical University, Arunachal Pradesh 791001, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India.
| | | |
Collapse
|
2
|
Valdés-Correcher E, Kadiri Y, Bourdin A, Mrazova A, Bălăcenoiu F, Branco M, Bogdziewicz M, Bjørn MC, Damestoy T, Dobrosavljević J, Faticov M, Gripenberg S, Gossner MM, de Groot M, Hagge J, Hoopen JT, Lövei GL, Milanović S, Musolin DL, Mäntylä E, Moreira X, Piotti A, Rodríguez VM, Saez-Asensio C, Sallé A, Sam K, Sobral M, Tack AJM, Varela Z, Castagneyrol B. Effects of climate on leaf phenolics, insect herbivory, and their relationship in pedunculate oak (Quercus robur) across its geographic range in Europe. Oecologia 2025; 207:61. [PMID: 40186748 PMCID: PMC11972190 DOI: 10.1007/s00442-025-05696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
An increase in biotic interactions towards lower latitudes is one of the most consistent patterns in ecology. Higher temperatures and more stable climatic conditions at low latitudes are thought to enhance biotic interactions, accelerating biological evolution and leading to stronger anti-herbivore defences in plants. However, some studies report contradictory findings, highlighting the need for further investigation into the underlying mechanisms. We used a combination of field observations and feeding trials in controlled environments to investigate the effect of climate on chemical defences and insect herbivory in pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe, while controlling for physical defences. The concentration of lignin, flavonoids, and total phenolics increased significantly with temperature, whereas both field herbivory and weight of spongy moth (Lymantria dispar L.) larvae were negatively influenced by temperature. Lignin concentration positively influenced the weight of spongy moth larvae whereas it had no effect on field herbivory. We found no evidence of strong positive relationships between insect herbivory and larvae growth with leaf defences. Our study underscores the complexity of plant-herbivore interactions along climatic gradients and highlights the need for further research to disentangle these intricate relationships.
Collapse
Affiliation(s)
- Elena Valdés-Correcher
- Integrative Ecology Group, Estación Biológica de Doñana, Seville, Spain.
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France.
| | - Yasmine Kadiri
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- INRAE UE Ferlus, 86000, Lusignan, France
| | | | - Anna Mrazova
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Flavius Bălăcenoiu
- National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania
| | - Manuela Branco
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Mona Chor Bjørn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg, Denmark
| | - Thomas Damestoy
- UniLaSalle, AGHYLE, UP.2018.C101, FR-60026, Beauvais, France
| | - Jovan Dobrosavljević
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Maria Faticov
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Maarten de Groot
- Department of Forest Protection, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jonas Hagge
- Northwest German Forest Research Institute, Forest Nature Conservation, Prof.-Oelkers-Str. 6, 34346, Hann. Münden, Germany
- University of Göttingen, Forest Nature Conservation, Büsgenweg 3, 37077, Göttingen, Germany
| | | | - Gabor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg ResearchCentre, 4200, Slagelse, Denmark
- HUN-REN-DU Anthropocene Ecology Research Group, University of Debrecen, 4010, Debrecen, Hungary
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00, Brno, Czech Republic
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization (EPPO), 21 Boulevard Richard Lenoir, 75011, Paris, France
| | - Elina Mäntylä
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Andrea Piotti
- Institute of Biosciences and BioResources, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Víctor M Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Cristina Saez-Asensio
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | | | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Mar Sobral
- Department of Geography, University of Santiago de Compostela, Praza da Universidade, 1, 15703, Santiago de Compostela, Spain
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | |
Collapse
|
3
|
Moreira X, Durán J, Rodríguez A, Cao A, Correia M, Serôdio J, Rodríguez-Echeverría S. Interactions between macro- and micro-climate: Effects on phenolic compound production in Nardus stricta at high elevations. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:417-425. [PMID: 39945121 DOI: 10.1111/plb.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 03/29/2025]
Abstract
Phenolic compounds are key to plant defence, offering protection as antioxidants, UV shields, and antimicrobials. Their production is largely shaped by environmental conditions. It is believed that plants at lower elevations increase phenolic content to counter herbivory, while those at higher elevations rely on phenolics to manage abiotic stresses, such as climate variability. Microhabitat warming also affects phenolic levels, but responses differ, depending on broader climatic contexts: plants in warmer, lower-elevation environments show limited adaptability, whereas high-elevation plants demonstrate greater plasticity. Despite the importance of these environmental interactions, many small-scale abiotic studies lack sufficient spatial replication across broader gradients like elevation or latitude, while large-scale studies frequently overlook microscale factors. This study investigated the effects of macroclimate factors and microhabitat warming on phenolic production in Nardus stricta across five semi-natural grassland sites (1546-1875 m a.s.l.) in Portugal's Serra da Estrela. Warming was simulated using open-top chambers over two growing seasons, after which leaf samples were analysed for phenolic compounds, and soil nutrients were measured. The N. stricta plants at the highest elevation site contained significantly higher leaf flavonoid concentrations. Microhabitat warming led to a significant decrease in flavonoid concentrations, but only at the highest elevation site. These effects occurred independently of soil nutrient levels, suggesting direct thermal effects or stress responses might be involved. Our findings highlight the complex interactions between macro- and microenvironmental factors in shaping plant chemistry, underscoring critical considerations for plant resilience in the face of climate change. This understanding is essential for developing strategies to support plant and ecosystem adaptation to changing climates.
Collapse
Affiliation(s)
- X Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - J Durán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Cao
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - M Correia
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Serôdio
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Rodríguez-Echeverría
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Fyie JQ, Stratton CA, Morrison WR, Murrell EG. Intercropping Alters Phytochemicals Associated With Insect Herbivory. J Chem Ecol 2025; 51:46. [PMID: 40164956 DOI: 10.1007/s10886-025-01555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical profiles, which include phytochemical defense compounds, of crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on plant biomass and aerial volatile organic compound (VOC) emission profiles by intercropping sweetclover (Melilotus alba) and wheat (Triticum aestivum) with silflower (Silphium integrifolium) in AMF-inoculated soil. We also assessed the impact of intercropping on induced VOC profiles by conducting an in-situ, no-choice bioassay with fall armyworm (Spodoptera frugiperda). Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was introduced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. Wheat and sweetclover biomass increased when intercropped with silflower, but silflower biomass was unaffected by intercropping. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on volatile profile emissions, and possible pest resistance in agroecological systems, could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.
Collapse
Affiliation(s)
| | - Chase A Stratton
- The Land Institute, Salina, KS, 67401, USA
- Department of Biology, Delaware State University, 120 North State Street, Dover, DE, 19904, USA
| | - William R Morrison
- Agricultural Research Service, Center for Grain and Animal Health Research, USDA, 1515. College Ave., Manhattan, KS, 66502, USA
| | | |
Collapse
|
5
|
Schneider GF, Beckman NG. Different tools for different trades: contrasts in specialized metabolite chemodiversity and phylogenetic dispersion in fruit, leaves, and roots of the neotropical shrubs Psychotria and Palicourea (Rubiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40120124 DOI: 10.1111/plb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant-biotic interactions. Focusing on 21 sympatric species of Psychotria and Palicourea sensu lato (Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots. Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ-specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class. Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ-specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.
Collapse
Affiliation(s)
- G F Schneider
- Department of Biology, Utah State University, Logan, Utah, USA
| | - N G Beckman
- Department of Biology and Ecology Center, Utah State University, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
6
|
Xu S, Gaquerel E. Evolution of plant specialized metabolites: beyond ecological drivers. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00044-5. [PMID: 40113551 DOI: 10.1016/j.tplants.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, 55128 Mainz, Germany.
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Ninčević Runjić T, Pljevljakušić D, Runjić M, Grdiša M, Šatović Z. Phenotypic plasticity vs. local genetic adaptation: essential oil diversity of natural immortelle ( Helichrysum italicum (Roth.) G.Don) populations along eastern Adriatic coast. FRONTIERS IN PLANT SCIENCE 2025; 16:1467421. [PMID: 39974731 PMCID: PMC11836004 DOI: 10.3389/fpls.2025.1467421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
The essential oil of Helichrysum italicum (Roth) G.Don, commonly known as immortelle, is produced in Mediterranean countries to meet the increasing demand of the cosmetic and pharmaceutical industries. This study focused on the analysis of secondary metabolites, specifically essential oils, extracted from plants grown from the seeds of natural immortelle populations collected along the eastern Adriatic coast and cultivated ex situ under uniform conditions. Field trials were conducted to determine whether the observed variability was due to phenotypic plasticity or local genetic adaptation. Eighteen natural immortelle populations were sampled, hydrodistilled and their essential oil composition determined by gas chromatography-mass spectrometry. A total of 84 compounds were identified. Eighteen essential oil compounds were present in concentrations greater than 5% in at least one sample of 18 populations. The populations differed significantly in nine essential oil compounds: Limonene, linalool, nerol, neryl acetate, trans-caryophyllene, neryl propionate, ar-curcumene, β-selinene and δ-selinene and the differences were attributed to genetic adaptation to the native environment. Three chemotypes were identified within which the populations were grouped. Results showed a significant and strong correlation between biochemical and bioclimatic distance, with 22.4% of biochemical differentiation between populations explained by bioclimatic distance. Correlations between the 18 main compounds and the bioclimatic variables of the populations' native environment revealed that BIO14 Precipitation of driest month and BIO15 Precipitation seasonality, were the most informative. These results can serve as a first step for future selection of immortelle populations with desirable adaptations to obtain commercial cultivars that ensure high quality immortelle essential oil.
Collapse
Affiliation(s)
- Tonka Ninčević Runjić
- Department of Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Dejan Pljevljakušić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia
| | - Marko Runjić
- Department of Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| | - Martina Grdiša
- Department of Plant Biodiversity, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| | - Zlatko Šatović
- Department of Plant Biodiversity, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia
| |
Collapse
|
8
|
Speed M, Ruxton G. Refining our understanding of the diversity of plant specialised metabolites. THE NEW PHYTOLOGIST 2025; 245:924-926. [PMID: 39385406 PMCID: PMC11711947 DOI: 10.1111/nph.20173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This article is a Commentary on Wittmann & Bräutigam (2025), 245 : 1302–1314 .
Collapse
Affiliation(s)
- Mike Speed
- School of Biosciences, Faculty of Health & Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Graeme Ruxton
- School of BiologyUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
9
|
Wittmann MJ, Bräutigam A. How does plant chemodiversity evolve? Testing five hypotheses in one population genetic model. THE NEW PHYTOLOGIST 2025; 245:1302-1314. [PMID: 39238109 PMCID: PMC11711931 DOI: 10.1111/nph.20096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024]
Abstract
Plant chemodiversity, the diversity of plant-specialized metabolites, is an important dimension of biodiversity. However, there are so far few mathematical models to test verbal hypotheses on how chemodiversity evolved. Here, we develop such a model to test predictions of five hypotheses: the 'fluctuating selection hypothesis', the 'dominance reversal hypothesis', the interaction diversity hypothesis, the synergy hypothesis, and the screening hypothesis. We build a population genetic model of a plant population attacked by herbivore species whose occurrence fluctuates over time. We study the model using mathematical analysis and individual-based simulations. As predicted by the 'dominance reversal hypothesis', chemodiversity can be maintained if alleles conferring a defense metabolite are dominant with respect to the benefits, but recessive with respect to costs. However, even smaller changes in dominance can maintain polymorphism. Moreover, our results underpin and elaborate predictions of the synergy and interaction diversity hypotheses, and, to the extent that our model can address it, the screening hypotheses. By contrast, we found only partial support for the 'fluctuating selection hypothesis'. In summary, we have developed a flexible model and tested various verbal models for the evolution of chemodiversity. Next, more mechanistic models are needed that explicitly consider the organization of metabolic pathways.
Collapse
Affiliation(s)
- Meike J. Wittmann
- Faculty of Biology, Theoretical BiologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE)University of Münster and Bielefeld University33615BielefeldGermany
| | - Andrea Bräutigam
- Faculty of Biology, Computational BiologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
- Center for BiotechnologyBielefeld UniversityUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
10
|
Holmes KD, Fine PVA, Mesones I, Alvarez-Manjarrez J, Venturini AM, Peay KG, Salazar D. Evolutionary Trajectories of Shoots vs. Roots: Plant Volatile Metabolomes Are Richer but Less Structurally Diverse Belowground in the Tropical Tree Genus Protium. PLANTS (BASEL, SWITZERLAND) 2025; 14:225. [PMID: 39861579 PMCID: PMC11769111 DOI: 10.3390/plants14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025]
Abstract
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves. Here, we examine the GCMS detectable phytochemistry (for simplicity, hereafter referred to as specialized volatile metabolites) of the tropical tree genus Protium, testing the hypothesis that phenotypic divergence will be weaker belowground compared to aboveground due to more limited dispersal by enemies. We found that, after controlling for differences in chemical richness, roots expressed less structurally diverse compounds than leaves, despite having higher numbers of specialized volatile metabolites, and that species' phylogenetic distance was only positively correlated with compound structural distance in roots, not leaves. Taken together, our results suggest that root specialized volatile metabolites exhibit significantly less phenotypic divergence than leaf specialized metabolites and may be under relaxed selection pressure from enemies belowground.
Collapse
Affiliation(s)
- Katherine D. Holmes
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA;
- Biology Department, Florida International University, Miami, FL 33199, USA
| | - Paul V. A. Fine
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA; (P.V.A.F.)
| | - Italo Mesones
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA; (P.V.A.F.)
| | | | - Andressa M. Venturini
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (A.M.V.); (K.G.P.)
- Department of Environmental Science, American University, Washington, DC 20016, USA
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA; (A.M.V.); (K.G.P.)
| | - Diego Salazar
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA;
- Biology Department, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Pan VS, Ghosh E, Ode PJ, Wetzel WC, Gilbert KJ, Pearse IS. Large Differences in Herbivore Performance Emerge From Simple Herbivore Behaviours and Fine-Scale Spatial Heterogeneity in Phytochemistry. Ecol Lett 2025; 28:e70044. [PMID: 39737776 DOI: 10.1111/ele.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
Patterns of phytochemistry localisation in plant tissues are diverse within and across leaves. These spatial heterogeneities are important to the fitness of herbivores, but their effects on herbivore foraging and dietary experience remain elusive. We manipulated the spatial variance and clusteredness of a plant toxin in a synthetic diet landscape on which individual caterpillars fed. We monitored caterpillars with cameras across most of their larval development. Caterpillars that fed on diets with a lower spatial variance and more clustered arrangement of toxins had overall worse performance, mostly because those caterpillars ate less, moved more, ingested more toxin, or failed to physiologically acclimate. Using empirically parameterised individual-based models, we found that differences in movement away from, not towards, less toxic food drove a body size-dependent effect of clusteredness. Hence, the spatial pattern of phytochemicals itself, beyond mean concentration, can have important consequences for herbivores through complex interactions with herbivore foraging.
Collapse
Affiliation(s)
- Vincent S Pan
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, Easting Lansing, Michigan, USA
| | - Enakshi Ghosh
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Paul J Ode
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - William C Wetzel
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, Easting Lansing, Michigan, USA
- Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kadeem J Gilbert
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, Easting Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Ayyadurai P, Ragavendran C. Nano-bio-encapsulation of phyto-vaccines: a breakthrough in targeted cancer immunotherapy. Mol Biol Rep 2024; 52:58. [PMID: 39692899 DOI: 10.1007/s11033-024-10164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Nano bio-encapsulation of phyto-vaccines for cancer has marked a cutting-edge strategy that brings together nanotechnology with plant-derived vaccines to enhance cancer therapy. Phyto-vaccines, isolated from bioactive compounds found in plants called protein bodies, have been shown to potentially stimulate the immune system to recognise and destroy cancer cells. However, challenges such as poor stability, rapid degradation, and limited bioavailability in the body have hindered their clinical application. Nano bio-encapsulation offers a solution by packaging these phyto-vaccines into nanoscale carriers such as lectins have provided ways to overcome these limitations. They protect the protein bodies from degradation by proteolytic enzymes, enhance targeted delivery to cancer cells, and enable controlled release. This approach not only improves the bio-distribution and potency of the vaccines but also minimizes side effects, making it a highly promising, sustainable, and efficient method for cancer immunotherapy. As research progresses, this technology has the potential to revolutionize cancer treatment by providing safer and more precise therapeutic options. This review focuses on the concept of nano bio-encapsulation of phyto-vaccines for cancer treatment. It explores how nanotechnology can enhance the stability, bioavailability, and targeted delivery of plant-derived vaccines, addressing the limitations of traditional vaccines. The review delves into the potential of this innovative strategy to advance cancer immunotherapy, providing a comprehensive overview of current research and future directions.
Collapse
Affiliation(s)
- Pavithra Ayyadurai
- Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
13
|
López-Goldar X, Zhang X, Hastings AP, Duplais C, Agrawal AA. Plant chemical diversity enhances defense against herbivory. Proc Natl Acad Sci U S A 2024; 121:e2417524121. [PMID: 39661060 DOI: 10.1073/pnas.2417524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Multiple hypotheses have been put forth to understand why defense chemistry in individual plants is so diverse. A major challenge has been teasing apart the importance of concentration vs. composition of defense compounds and resolving the mechanisms of diversity effects that determine plant resistance against herbivores. Accordingly, we first outline nonexclusive mechanisms by which phytochemical diversity may increase toxicity of a mixture compared to the average effect of each compound alone. We then leveraged independent in vitro, in vivo transgenic, and organismal experiments to test the effect of equimolar concentrations of purified milkweed toxins in isolation vs. mixtures on the specialist and sequestering monarch butterfly. We show that cardenolide toxin mixtures from milkweed plants enhance resistance against this herbivore compared to equal concentrations of single compounds. In mixtures, highly potent toxins dominated the inhibition of the monarch's target enzyme (Na+/K+-ATPase) in vitro, revealing toxin-specific affinity for the adapted enzyme in the absence of other physiological adaptations of the monarch. Mixtures also caused increased mortality in CRISPR-edited adult Drosophila melanogaster with the monarch enzyme in vivo, whereas wild-type flies showed lower survival regardless of mixture type. Finally, although experimentally administered mixtures were not more toxic to monarch caterpillars than single compounds overall, increasing caterpillar sequestration from mixtures resulted in an increasing burden for growth compared to single compounds. Phytochemical diversity likely provides an economical plant defense by acting on multiple aspects of herbivore physiology and may be particularly effective against sequestering specialist herbivores.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Xuening Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
- Department of Entomology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
14
|
Petrović L, Filipović B, Skorić M, Šiler B, Banjanac T, Matekalo D, Nestorović Živković J, Dmitrović S, Aničić N, Milutinović M, Božunović J, Gašić U, Mišić D. Molecular background of the diverse metabolic profiles in leaves and inflorescences of naked catmint ( Nepeta nuda L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1452804. [PMID: 39670275 PMCID: PMC11634604 DOI: 10.3389/fpls.2024.1452804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Nepeta nuda L. shares a typical secondary chemistry with other Nepeta species (fam. Lamiaceae), characterized by the tendency to intensively produce monoterpenoid iridoids, whereas the phenylpropanoid chemistry is steered towards the production of a caffeic acid ester, rosmarinic acid. Combining complementary state-of-the-art analytical techniques, N. nuda metabolome was here comprehensively characterized in the quest for the organ-specific composition of phenolics and terpenoids that possess well-defined functions in plant-biotic interactions as well as therapeutic potential. N. nuda inflorescences showed generally higher constitutive levels of specialized metabolites, as compared to leaves, and the composition of major iridoids and phenolics in reproductive organs was found to be more conserved than in leaves across 13 populations from the Central Balkans. The results suggest that N. nuda plants most likely invest more in constitutive than inducible biosynthesis of functional metabolites in flowers, since they are of essential importance for both pollination and defense against herbivores and pathogens. Conversely, specialized metabolism of leaves is found to be more susceptible to reprograming in response to differential growth conditions. The defense strategy of leaves, primarily functioning in CO2 fixation during photosynthesis, more likely relies on the induction of metabolite levels following plant-environment interplay. Organ-specific biosynthesis of iridoids in N. nuda is found to be tightly regulated at the transcriptional level, and high constitutive levels of these compounds in inflorescences most likely result from the up-regulated expression of several key genes (NnG8H, NnNEPS1, NnNEPS2, and NnNEPS3) determining the metabolic flux through the pathway. The organ-specific content of rosmarinic acid and co-expression patterns of the corresponding biosynthetic genes were much less correlated, which suggests independent organ-specific transcriptional regulation of the iridoid and phenolic pathways. Knowledge gathered within the present study can assist growers to select productive genotypes and manipulate phenology of N. nuda towards maximizing yields and facilitating its integration into pest management systems and other applications related to human health.
Collapse
Affiliation(s)
| | - Biljana Filipović
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša
Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Vandergrift GW, Bell SL, Schrader SE, Jensen SM, Wahl JH, Tagestad JD, China S, Hofmockel KS. Harvest Initiated Volatile Organic Compound Emissions from In-Field Tall Wheatgrass. ACS EARTH & SPACE CHEMISTRY 2024; 8:1961-1969. [PMID: 39440017 PMCID: PMC11492378 DOI: 10.1021/acsearthspacechem.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 10/25/2024]
Abstract
While crop and grassland usage continues to increase, the full diversity of plant-specific volatile organic compounds (VOCs) emitted from these ecosystems, including their implications for atmospheric chemistry and carbon cycling, remains poorly understood. It is particularly important to investigate VOCs in the context of potential biofuels: aside from the implications of large-scale land use, harvest may shift both the flux and speciation of emitted VOCs. To this point, we evaluate the diversity of VOCs emitted both pre and postharvest from "Alkar" tall wheatgrass (Thinopyrum ponticum), a candidate biofuel that exhibits greater tolerance to frost and saline land compared to other grass varieties. Mature plants grown under field conditions (n = 6) were sampled for VOCs both pre- and postharvest (October 2022). Via hierarchical clustering of emitted VOCs from each plant, we observe distinct "volatilomes" (diversity of VOCs) specific to the pre- and postharvest conditions despite plant-to-plant variability. In total, 50 VOCs were found to be unique to the postharvest tall wheatgrass volatilome, and these unique VOCs constituted a significant portion (26%) of total postharvest signal. While green leaf volatiles (GLVs) dominate the speciation of postharvest emissions (e.g., 54% of unique postharvest VOC signal was due to 1-penten-3-ol), we demonstrate novel postharvest VOCs from tall wheatgrass that are under characterized in the context of carbon cycling and atmospheric chemistry (e.g., 3-octanone). Continuing evaluations will quantitatively investigate tall wheatgrass VOC fluxes, better informing the feasibility and environmental impact of tall wheatgrass as a biofuel.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Sheryl L Bell
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Shannon E Schrader
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Sonja M Jensen
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jon H Wahl
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jerry D Tagestad
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Swarup China
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| |
Collapse
|
16
|
Johnson SN, Waterman JM, Hartley SE, Cooke J, Ryalls JMW, Lagisz M, Nakagawa S. Plant Silicon Defences Suppress Herbivore Performance, but Mode of Feeding Is Key. Ecol Lett 2024; 27:e14519. [PMID: 39400424 DOI: 10.1111/ele.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
The performance of herbivorous animals depends on the nutritional and defensive traits of the plants they consume. The uptake and deposition of biogenic silicon in plant tissues is arguably the most basic and ubiquitous anti-herbivore defence used by plants, especially grasses. We conducted meta-analyses of 150 studies reporting how vertebrate and invertebrate herbivores performed when feeding on silicon-rich plants relative to those feeding on low-silicon plants. Silicon levels were 52% higher and 32% more variable in silicon-rich plants compared to plants with low silicon, which resulted in an overall 33% decline in herbivore performance. Fluid-feeding herbivore performance was less adversely impacted (-14%) than tissue-chewing herbivores, including mammals (-45%), chewing arthropods (-33%) and plant-boring arthropods (-39%). Fluid-feeding arthropods with a wide diet breadth or those feeding on perennial plant species were mostly unaffected by silicon defences. Unlike many other plant defences, where diet specialisation often helps herbivores overcome their effects, silicon negatively impacts chewing herbivores regardless of diet breadth. We conclude that silicon defences primarily target chewing herbivores and impact vertebrate and invertebrate herbivores to a similar degree.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jamie M Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Plant Sciences, University of Bern, Bern, Switzerland
| | - Susan E Hartley
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Julia Cooke
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - James M W Ryalls
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
17
|
Mezzomo P, Leong JV, Vodrážka P, Moos M, Jorge LR, Volfová T, Michálek J, de L Ferreira P, Kozel P, Sedio BE, Volf M. Variation in induced responses in volatile and non-volatile metabolites among six willow species: Do willow species share responses to herbivory? PHYTOCHEMISTRY 2024; 226:114222. [PMID: 39047854 DOI: 10.1016/j.phytochem.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Chemical variation is a critical aspect affecting performance among co-occurring plants. High chemical variation in metabolites with direct effects on insect herbivores supports chemical niche partitioning, and it can reduce the number of herbivores shared by co-occurring plant species. In contrast, low intraspecific variation in metabolites with indirect effects, such as induced volatile organic compounds (VOCs), may improve the attraction of specialist predators or parasitoids as they show high specificity to insect herbivores. We explored whether induced chemical variation following herbivory by various insect herbivores differs between VOCs vs. secondary non-volatile metabolites (non-VOCs) and salicinoids with direct effects on herbivores in six closely related willow species. Willow species identity explained most variation in VOCs (18.4%), secondary non-VOCs (41.1%) and salicinoids (60.7%). The variation explained by the independent effect of the herbivore treatment was higher in VOCs (2.8%) compared to secondary non-VOCs (0.5%) and salicinoids (0.5%). At the level of individual VOCs, willow species formed groups, as some responded similarly to the same herbivores. Most non-VOCs and salicinoids were upregulated by sap-suckers compared to other herbivore treatments and control across the willow species. In contrast, induced responses in non-VOCs and salicinoids to other herbivores largely differed between the willows. Our results suggest that induced responses broadly differ between various types of chemical defences, with VOCs and non-VOCs showing different levels of specificity and similarity across plant species. This may further contribute to flexible plant responses to herbivory and affect how closely related plants share or partition their chemical niches.
Collapse
Affiliation(s)
- Priscila Mezzomo
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Jing V Leong
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Leonardo R Jorge
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Algatech Centre, Institute of Microbiology, Trebon, Czech Republic
| | - Paola de L Ferreira
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; Aarhus University, Department of Biology, Aarhus, Denmark
| | - Petr Kozel
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, United States; Smithsonian Tropical Research Institute, Balboa, the Republic of Panama
| | - Martin Volf
- Biology Centre CAS, Institute of Entomology, Ceske Budejovice, Czech Republic; University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| |
Collapse
|
18
|
Fyie JQ, Stratton CA, Morrison WR, Murrell EG. Intercropping Alters Phytochemical Defenses Against Insect Herbivory. RESEARCH SQUARE 2024:rs.3.rs-4920649. [PMID: 39315259 PMCID: PMC11419272 DOI: 10.21203/rs.3.rs-4920649/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Given the multiple possible mechanisms for interspecific chemical interaction between adjacent heterospecific plants, phytochemical defenses of pest-susceptible crop species could potentially be enhanced or altered by intercropping with phytochemically diverse neighbors. We assessed the influence of intercropping between phytochemically diverse plants on aerial volatile organic compound (VOC) emission profiles by intercropping Melilotus alba and Triticum aestivum with Silphium integrifolium in AMF-inoculated soil. We also assessed the impact of intercropping on induced plant defenses by conducting an in-situ, no-choice bioassay with Spodoptera frugiperda. Of eight compound classes we identified across the three plant species, prenol lipids (terpenoids) were upregulated in silflower plants when monocropped with wheat and when herbivory was induced. Carboxylic acids and organooxygen compounds were reduced in sweetclover when intercropped with silflower, but increased under herbivory. Uninfested wheat plants emitted more organooxygen compounds and fatty acyls than infested plants when intercropped with silflower, but not when monocropped. This study showed that VOC emissions of plants from three diverse taxa are altered by both intercropping and herbivory in ways that may impact their resistance to insect herbivory. Further research into the role of intercropping on pest resistance in agroecological systems could help farmers to design intercropping systems that optimize natural plant herbivory defenses, thus improving agricultural sustainability.
Collapse
|
19
|
Glassmire AE, Hauri KC, Turner DB, Zehr LN, Sugimoto K, Howe GA, Wetzel WC. The frequency and chemical phenotype of neighboring plants determine the effects of intraspecific plant diversity. Ecology 2024; 105:e4392. [PMID: 39113178 DOI: 10.1002/ecy.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel B Turner
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Luke N Zehr
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Gregg A Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
20
|
Rahimova H, Heinen R, Weber B, Weisser WW, Schnitzler JP. Exogenous stimulation of Tanacetum vulgare roots with pipecolic acid leads to tissue-specific responses in terpenoid composition. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150974 DOI: 10.1111/plb.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/19/2024] [Indexed: 08/18/2024]
Abstract
Tanacetum vulgare L., tansy, is a perennial plant with highly variable terpenoid composition, with mono- and sesquiterpenoids being the most abundant. The high diversity of terpenoids plays an important role in mediating ecological interactions. However, the distribution of terpenoids in different tissues and inducibility of terpenoids in these tissues via biotic stress are poorly understood. We investigated changes in terpenoid profiles and concentrations in different organs following treatment of roots with pipecolic acid (Pip), a non-proteinogenic amino acid that triggers defence responses leading to induce systemic resistance (SAR) in plants. Tansy leaves and midribs contained mainly monoterpenoids, while coarse and fine roots contained mainly sesquiterpenoids. Rhizomes contained terpenoid profiles of both midribs and roots but also unique compounds. Treatment with Pip led to an increase in concentrations of mono- and sesquiterpenoids in all tissues except rhizomes. However, significantly more sesquiterpenoids was formed in root tissues in response to Pip treatment, compared to shoots. The metabolic atlas for terpenoids presented here shows that there is exceptionally strong differentiation of terpenoid patterns and terpenoid content in different tissues of tansy. This, together with differential inducibility by Pip, suggests that the chemical diversity of terpenoids may play an important role in tansy ecological interactions and defence against biotic stressors that feed on below- and aboveground organs.
Collapse
Affiliation(s)
- H Rahimova
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - B Weber
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J-P Schnitzler
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
21
|
Anaia RA, Chiocchio I, Sontowski R, Swinkels B, Vergara F, van Dam NM. Ontogeny and organ-specific steroidal glycoside diversity is associated with differential expression of steroidal glycoside pathway genes in two Solanum dulcamara leaf chemotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150982 DOI: 10.1111/plb.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity'). However, if and how SG chemodiversity varies among organs and across ontogeny, and how this relates to SG metabolism gene expression is unknown. Among organs and across ontogeny, S. dulcamara plants with saturated (S) and unsaturated (U) SG leaf chemotypes were selected and clonally propagated. Roots, stems and leaves were harvested from vegetative and flowering plants. Extracts were analysed using untargeted LC-MS. Expression of candidate genes in SG metabolism (SdGAME9, SdGAME4, SdGAME25, SdS5αR2 and SdDPS) was analysed using RT-qPCRs. Our analyses showed that SG chemodiversity varies among organs and across ontogeny in S. dulcamara; SG richness (Dmg) was higher in flowering than vegetative plants. In vegetative plants, Dmg was higher for leaves than for roots. Lack of SdGAME25 expression in U-chemotype leaves, while readily expressed in roots and stems, suggests a pivotal role for SdGAME25 in differentiation of leaf chemotypes in vegetative and flowering plants. By acting as an ontogeny-dependent chemotypic switch, differential regulation of SdGAME25 enables adaptive allocation of SGs, thereby increasing SG chemodiversity in leaves. This indicates that differential expression and/or regulation of glycoalkaloid metabolism genes, rather than their presence or absence, explains observed chemotypic variation in SG chemodiversity among organs and across ontogeny.
Collapse
Affiliation(s)
- R A Anaia
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - I Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - R Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - B Swinkels
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - F Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - N M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
22
|
Sun L, He Y, Cao M, Wang X, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol 2024; 8:1426-1436. [PMID: 38937611 DOI: 10.1038/s41559-024-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
A long-standing but poorly tested hypothesis in plant ecology and evolution is that biotic interactions play a more important role in producing and maintaining species diversity in the tropics than in the temperate zone. A core prediction of this hypothesis is that tropical plants deploy a higher diversity of phytochemicals within and across communities because they experience more herbivore pressure than temperate plants. However, simultaneous comparisons of phytochemical diversity and herbivore pressure in plant communities from the tropical to the temperate zone are lacking. Here we provide clear support for this prediction by examining phytochemical diversity and herbivory in 60 tree communities ranging from species-rich tropical rainforests to species-poor subalpine forests. Using a community metabolomics approach, we show that phytochemical diversity is higher within and among tropical tree communities than within and among subtropical and subalpine communities, and that herbivore pressure and specialization are highest in the tropics. Furthermore, we show that the phytochemical similarity of trees has little phylogenetic signal, indicating rapid divergence between closely related species. In sum, we provide several lines of evidence from entire tree communities showing that biotic interactions probably play an increasingly important role in generating and maintaining tree diversity in the lower latitudes.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Xiang Zhou
- School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
23
|
Liao LH, Wu WY, Berenbaum MR. Variation in Pesticide Toxicity in the Western Honey Bee (Apis mellifera) Associated with Consuming Phytochemically Different Monofloral Honeys. J Chem Ecol 2024; 50:397-408. [PMID: 38760625 PMCID: PMC11399171 DOI: 10.1007/s10886-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Abdala-Roberts L, Moreira X. Effects of phytochemical diversity on multitrophic interactions. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101228. [PMID: 38944275 DOI: 10.1016/j.cois.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The ecological effects of plant diversity have been well studied, but the extent to which they are driven by variation in specialized metabolites is not well understood. Here, we provide theoretical background on phytochemical diversity effects on herbivory and its expanded consequences for higher trophic levels. We then review empirical evidence for effects on predation and parasitism by focusing on a handful of studies that have undertaken manipulative approaches and link back their results to theory on mechanisms. We close by summarizing key aspects for future research, building on knowledge gained thus far.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, Mexico.
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080 Pontevedra, Galicia, Spain
| |
Collapse
|
25
|
Grosjean J, Pashalidou FG, Fauvet A, Baillet A, Kergunteuil A. Phytochemical drivers of insect herbivory: a functional toolbox to support agroecological diversification. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240890. [PMID: 39021775 PMCID: PMC11251780 DOI: 10.1098/rsos.240890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Plant metabolism is a key feature of biodiversity that remains underexploited in functional frameworks used in agroecology. Here, we study how phytochemical diversity considered at three organizational levels can promote pest control. In a factorial field experiment, we manipulated plant diversity in three monocultures and three mixed crops of oilseed rape to explore how intra- and interspecific phytochemical diversity affects pest infestation. We combined recent progress in metabolomics with classic metrics used in ecology to test a box of hypotheses grounded in plant defence theory. According to the hypothesis of 'phytochemically mediated coevolution', our study stresses the relationships between herbivore infestation and particular classes of specialized metabolites like glucosinolates. Among 178 significant relationships between metabolites and herbivory rates, only 20% were negative. At the plant level, phytochemical abundance and richness had poor predictive power on pest regulation. This challenges the hypothesis of 'synergistic effects'. At the crop cover level, in line with the hypothesis of 'associational resistance', the phytochemical dissimilarity between neighbouring plants limited pest infestation. We discuss the intricate links between associational resistance and bottom-up pest control. Bridging different levels of organization in agroecosystems helps to dissect the multi-scale relationships between phytochemistry and insect herbivory.
Collapse
Affiliation(s)
- Jeremy Grosjean
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
- Platform of Structural and Metabolomics Analyses, SF4242, EFABA, Lorraine University, Vandoeuvre-les-Nancy, France
| | | | - Aude Fauvet
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
| | | | - Alan Kergunteuil
- Université de Lorraine, LAE, INRAE, 54000 Nancy, France
- INRAE, PSH, 84000 Avignon, France
| |
Collapse
|
26
|
Zhang Y, Worthy SJ, Xu S, He Y, Wang X, Song X, Cao M, Yang J. Phytochemical diversity and their adaptations to abiotic and biotic pressures in fine roots across a climatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172051. [PMID: 38565347 DOI: 10.1016/j.scitotenv.2024.172051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Phytochemicals and their ecological significance are long ignored in trait-based ecology. Moreover, the adaptations of phytochemicals produced by fine roots to abiotic and biotic pressures are less understood. Here, we explored the fine roots metabolomes of 315 tree species and their rhizosphere microbiome in southwestern China spanning tropical, subtropical, and subalpine forest ecosystems, to explore phytochemical diversity and endemism patterns of various metabolic pathways and phytochemical-microorganism interactions. We found that subalpine species showed higher phytochemical diversity but lower interspecific variation than tropical species, which favors coping with high abiotic pressures. Tropical species harbored higher interspecific phytochemical variation and phytochemical endemism, which favors greater species coexistence and adaptation to complex biotic pressures. Moreover, there was evidence of widespread chemical niche partitioning of closely related species in all regions, and phytochemicals showed a weak phylogenetic signal, but were regulated by abiotic and biotic pressures. Our findings support the Latitudinal Biotic Interaction Hypothesis, i.e., the intensity of phytochemical-microorganism interactions decreases from tropical to subalpine regions, which promotes greater microbial community turnover and phytochemical niche partitioning of host plants in the tropics than in higher latitude forests. Our study reveals the convergent phytochemical diversity patterns of various pathways and their interactions with microorganism, thus promoting species coexistence.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, CA, USA.
| | - Shijia Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming 650504, Yunnan, China.
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| |
Collapse
|
27
|
Ojeda-Prieto L, Medina-van Berkum P, Unsicker SB, Heinen R, Weisser WW. Intraspecific chemical variation of Tanacetum vulgare affects plant growth and reproductive traits in field plant communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38593287 DOI: 10.1111/plb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 04/11/2024]
Abstract
The study investigated the impact of intraspecific plant chemodiversity on plant growth and reproductive traits at both the plant and plot levels. It also aimed to understand how chemodiversity at stand level affects ecosystem functioning and plant-plant interactions. We describe a biodiversity experiment in which we manipulated intraspecific plant chemodiversity at the plot level using six different chemotypes of common tansy (Tanacetum vulgare L., Asteraceae). We tested the effects of chemotype identity and plot-level chemotype richness on plant growth and reproductive traits and plot-level headspace emissions. The study found that plant chemotypes differed in growth and reproductive traits and that traits were affected by the chemotype richness of the plots. Although morphological differences among chemotypes became less pronounced over time, reproductive phenology patterns persisted. Plot-level trait means were also affected by the presence or absence of certain chemotypes in a plot, and the direction of the effect depended on the specific chemotype. However, chemotype richness did not lead to overyielding effects. Lastly, chemotype blends released from plant communities were neither richer nor more diverse with increasing plot-level chemotype richness, but became more dissimilar as they became more dissimilar in their leaf terpenoid profiles. We found that intraspecific plant chemodiversity is crucial in plant-plant interactions. We also found that the effects of chemodiversity on plant growth and reproductive traits were complex and varied depending on the chemotype richness of the plots. This long-term field experiment will allow further investigation into plant-insect interactions and insect community assembly in response to intraspecific chemodiversity.
Collapse
Affiliation(s)
- L Ojeda-Prieto
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - P Medina-van Berkum
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S B Unsicker
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant-Environment-Interactions Group, Botanical Institute, University of Kiel, Kiel, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
28
|
Gallon ME, Muchoney ND, Smilanich AM. Viral Infection Induces Changes to the Metabolome, Immune Response and Development of a Generalist Insect Herbivore. J Chem Ecol 2024; 50:152-167. [PMID: 38353894 DOI: 10.1007/s10886-024-01472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 04/25/2024]
Abstract
Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.
Collapse
Affiliation(s)
- Marilia Elias Gallon
- Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Ribeirão Preto, SP, 14040-903, Brazil.
| | | | | |
Collapse
|
29
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
30
|
Thon FM, Müller C, Wittmann MJ. The evolution of chemodiversity in plants-From verbal to quantitative models. Ecol Lett 2024; 27:e14365. [PMID: 38362774 DOI: 10.1111/ele.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 12/09/2023] [Indexed: 02/17/2024]
Abstract
Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.
Collapse
Affiliation(s)
- Frans M Thon
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Faculty of Biology, Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Meike J Wittmann
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
31
|
Volf M, Fontanilla AM, Vanhakylä S, Abe T, Libra M, Kogo R, Lilip R, Kamata N, Murakami M, Novotny V, Salminen J, Segar ST. High intraspecific variability and previous experience affect polyphenol metabolism in polyphagous Lymantria mathura caterpillars. Ecol Evol 2024; 14:e10973. [PMID: 38343568 PMCID: PMC10857923 DOI: 10.1002/ece3.10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 10/28/2024] Open
Abstract
Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.
Collapse
Affiliation(s)
- Martin Volf
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Alyssa M. Fontanilla
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | | | - Martin Libra
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | - Roll Lilip
- New Guinea Binatang Research CenterMadangPapua New Guinea
| | - Naoto Kamata
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | - Vojtech Novotny
- Biology CentreCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | | | - Simon T. Segar
- Agriculture and Environment DepartmentHarper Adams UniversityNewportUK
| |
Collapse
|
32
|
Volf M, Renoult SA, Panthee S, van Dam NM. Quantifying various aspects of chemical diversity in hybrid plants can help understanding ecological consequences of hybridization. AMERICAN JOURNAL OF BOTANY 2024; 111:e16283. [PMID: 38332482 DOI: 10.1002/ajb2.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Martin Volf
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Sofian A Renoult
- Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Shristee Panthee
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Nicole M van Dam
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität Jena, Dornburgerstraße 159, Jena, 07745, Germany
| |
Collapse
|
33
|
Elbalola AA, Abbas ZK. Chemotaxonomy, antibacterial and antioxidant activities of selected aromatic plants from Tabuk region-KSA. Heliyon 2024; 10:e23641. [PMID: 38192876 PMCID: PMC10772130 DOI: 10.1016/j.heliyon.2023.e23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Chemotaxonomy is a valuable tool for obtaining taxonomic insights, which are most effectively employed in combination with other forms of data to establish a system of classification that closely reflects natural connections. The utilization of plant secondary metabolites possessing diverse therapeutic qualities signifies the growing exploitation of natural products in the medical discipline. The objectives of the current study encompassed the identification of phytochemicals in the extracts of nine species of medicinal plants, the examination of their chemotaxonomic properties, and the assessment of the antibacterial and antioxidant capabilities exhibited by the extracts. GC-MS technology was employed for the identification of phytochemical compounds. The study utilized ClassyFire, an automated chemical classification system that incorporates an extensive and computable classification, to categorize chemicals. The chemical classification of plants was examined by the application of principal component analysis (PCA) and cluster analysis (CA). The bactericidal properties of plants were assessed against four harmful bacterial species using the disc diffusion technique. The antioxidant properties of plant extracts were assessed employing the DPPH free radical scavenging methodology, and the half maximal effective concentration (EC50) was determined using dose response models. The calculator being referred to is the Quest Graph™ EC50 Calculator. In the plant extracts, the analysis disclosed the occurrence of 160 phytochemicals, classified into 36 phytochemical classes. The results of CA and PCA demonstrated the proximity and associations among Asteraceae species, while indicating the divergence of the two Lamiaceae species. Achillea fragrantissima and Ducrosia flabellifolia demonstrated the most diversity in phytochemical classes, while Thymus vulgaris displayed the highest level of dominance. Pulicaria undulata and T. vulgaris had the most notable antibacterial activity. D. flabellifolia and P. incisa demonstrated the highest levels of antioxidant activity. Ethanol exhibited superior antibacterial efficacy compared to other solvents. The remarkable biological activities exhibited by these plant extracts can be ascribed to the copious presence of certain chemicals, predominantly sesquiterpenoids, monoterpenoids, benzene and its derivatives, naphthalenes, fatty acyls, and phenols. The susceptibility of Gram-positive bacterial species to plant extracts was shown to be higher in comparison to Gram-negative bacterial species.
Collapse
|
34
|
Agrawal AA, Hastings AP, Duplais C. Testing the selective sequestration hypothesis: Monarch butterflies preferentially sequester plant defences that are less toxic to themselves while maintaining potency to others. Ecol Lett 2024; 27:e14340. [PMID: 38017619 DOI: 10.1111/ele.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, New York, USA
| |
Collapse
|
35
|
Sasidharan R, Brokate L, Eilers EJ, Müller C. Chemodiversity in flowers of Tanacetum vulgare has consequences on a florivorous beetle. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1071-1082. [PMID: 37703504 DOI: 10.1111/plb.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
The chemical composition of plant individuals can vary, leading to high intraspecific chemodiversity. Diversity of floral chemistry may impact the responses of flower-feeding insects. Tanacetum vulgare plants vary significantly in their leaf terpenoid composition, forming distinct chemotypes. We investigated the composition of terpenoids and nutrients of flower heads and pollen in plants belonging to three chemotypes - dominated either by β-thujone (BThu), artemisia ketone (Keto) or a mixture of (Z)-myroxide, santolina triene, and artemisyl acetate (Myrox) - using different analytical platforms. We tested the effects of these differences on preferences, weight gain and performance of adults of the shining flower beetle, Olibrus aeneus. The terpenoid composition and diversity of flower heads and pollen significantly differed among individuals belonging to the above chemotypes, while total concentrations of pollen terpenoids, sugars, amino acids, and lipids did not differ. Beetles preferred BThu over the Myrox chemotype in both olfactory and contact choice assays, while the Keto chemotype was marginally repellent according to olfactory assays. The beetles gained the least weight within 48 h and their initial mortality was highest when feeding exclusively on floral tissues of the Myrox chemotype. Short-term weight gain and long-term performance were highest when feeding on the BThu chemotype. In conclusion, the beetles showed chemotype-specific responses towards different T. vulgare chemotypes, which may be attributed to the terpenoid composition in flower heads and pollen rather than to differences in nutrient profiles. Both richness and overall diversity are important factors when determining chemodiversity of individual plants and their consequences on interacting insects.
Collapse
Affiliation(s)
- R Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - L Brokate
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - E J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
- CTL GmbH Bielefeld, Bielefeld, Germany
| | - C Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
36
|
Sasidharan R, Junker RR, Eilers EJ, Müller C. Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. ANNALS OF BOTANY 2023; 132:1-14. [PMID: 37220889 PMCID: PMC10550281 DOI: 10.1093/aob/mcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.
Collapse
Affiliation(s)
- Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Robert R Junker
- Department of Biology, Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Kapitalgasse 4-6, 5020 Salzburg, Austria
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
37
|
Frost CJ. Overlaps and trade-offs in the diversity and inducibility of volatile chemical profiles among diverse sympatric neotropical canopy trees. PLANT, CELL & ENVIRONMENT 2023; 46:3059-3071. [PMID: 37082810 DOI: 10.1111/pce.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
A central goal in ecology is to understand the mechanisms by which biological diversity is maintained. The diversity of plant chemical defences and the strategies by which they are deployed in nature may influence biological diversity. Trees in neotropical forests are subject to relatively high herbivore pressure. Such consistent pressure is thought to select for constitutive, non-flexible defence-related phytochemistry with limited capacity for inducible phytochemical responses. However, this has not been explored for volatile organic compounds (VOCs) that have a relatively low ratio of production costs to ecological benefits. To test this, I sampled VOCs emitted from canopy leaves of 10 phylogenetically diverse tree species (3 Magnoliids and 7 Rosids) in the Peruvian Amazon before and after induction with the phytohormone methyl jasmonate (MeJA). There was no phylogenetic signal in induction or magnitude of MeJA-induced VOC emissions from intact leaves: all trees induced VOC profiles dominated by β-ocimene, linalool, and α-farnesene of varying ratios. Moreover, overall inducibility of VOCs from intact leaves was unrelated to phytochemical diversity or richness. In contrast, experimentally wounded leaves showed considerable phylogeny-based and MeJA-independent variation the richness and diversity of constitutive wound-emitted VOCs. Moreover, VOC inducibility from wounded leaves correlated negatively with phytochemical richness and diversity, potentially indicating a tradeoff in constitutive and inducible defence strategies for non-volatile specialised metabolites but not for inducible VOCs. Importantly, there was no correlation between any chemical profile and either natural herbivory or leaf toughness. The coexistence of multiple phytochemical strategies in a hyper-diverse forest has broad implications for competitive and multitrophic interactions, and the evolutionary forces that maintain the exceptional plant biodiversity in neotropical forests.
Collapse
Affiliation(s)
- Christopher J Frost
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
38
|
Volf M, Leong JV, de Lima Ferreira P, Volfová T, Kozel P, Matos-Maraví P, Hörandl E, Wagner ND, Luntamo N, Salminen JP, Segar ST, Sedio BE. Contrasting levels of β-diversity and underlying phylogenetic trends indicate different paths to chemical diversity in highland and lowland willow species. Ecol Lett 2023; 26:1559-1571. [PMID: 37345539 DOI: 10.1111/ele.14273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and β-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical β-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.
Collapse
Affiliation(s)
- Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jing Vir Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Tereza Volfová
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Petr Kozel
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Natascha D Wagner
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Göttingen, Germany
| | - Niko Luntamo
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Smithsonian Tropical Research Institute, Ancón, Panama
| |
Collapse
|
39
|
Salgado AL, Glassmire AE, Sedio BE, Diaz R, Stout MJ, Čuda J, Pyšek P, Meyerson LA, Cronin JT. Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass. J Chem Ecol 2023; 49:437-450. [PMID: 37099216 DOI: 10.1007/s10886-023-01425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.
Collapse
Affiliation(s)
- Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado, 0843-03092, Republic of Panama
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael J Stout
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jan Čuda
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, CZ -128 44, Czech Republic
| | - Laura A Meyerson
- Department of Natural Resource Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
40
|
Carvajal Acosta AN, Formenti L, Godschalx A, Katsanis A, Schapheer C, Mooney K, Villagra C, Rasmann S. Ecological convergence in phytochemistry and flower-insect visitor interactions along an Andean elevation gradient. Ecol Evol 2023; 13:e10418. [PMID: 37600487 PMCID: PMC10432872 DOI: 10.1002/ece3.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The diversity of specialized molecules produced by plants radiating along ecological gradients is thought to arise from plants' adaptations to local conditions. Therefore, closely related species growing in similar habitats should phylogenetically converge, or diverge, in response to similar climates, or similar interacting animal communities. We here asked whether closely related species in the genus Haplopappus (Asteraceae) growing within the same elevation bands in the Andes, converged to produce similar floral odors. To do so, we combine untargeted analysis of floral volatile organic compounds with insect olfactory bioassay in congeneric Haplopappus (Asteraceae) species growing within the same elevation bands along the Andean elevational gradient. We then asked whether the outcome of biotic interactions (i.e., pollination vs. seed predation) would also converge across species within the same elevation. We found that flower odors grouped according to their elevational band and that the main floral visitor preferred floral heads from low-elevation band species. Furthermore, the cost-benefit ratio of predated versus fertilized seeds was consistent within elevation bands, but increased with elevation, from 6:1 at low to 8:1 at high elevations. In the light of our findings, we propose that climate and insect community changes along elevation molded a common floral odor blend, best adapted for the local conditions. Moreover, we suggest that at low elevation where floral resources are abundant, the per capita cost of attracting seed predators is diluted, while at high elevation, sparse plants incur a higher herbivory cost per capita. Together, our results suggest that phytochemical convergence may be an important factor driving plant-insect interactions and their ecological outcomes along ecological gradients.
Collapse
Affiliation(s)
- Alma Nalleli Carvajal Acosta
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Ludovico Formenti
- Institut für Ökologie und EvolutionUniversität BernBernSwitzerland
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | | - Angelos Katsanis
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Constanza Schapheer
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Kailen Mooney
- Department of Ecology & Evolutionary BiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Cristian Villagra
- Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
41
|
Eckert S, Eilers EJ, Jakobs R, Anaia RA, Aragam KS, Bloss T, Popp M, Sasidharan R, Schnitzler JP, Stein F, Steppuhn A, Unsicker SB, van Dam NM, Yepes S, Ziaja D, Müller C. Inter-laboratory comparison of plant volatile analyses in the light of intra-specific chemodiversity. Metabolomics 2023; 19:62. [PMID: 37351733 DOI: 10.1007/s11306-023-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.
Collapse
Affiliation(s)
- Silvia Eckert
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Redouan Adam Anaia
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Tanja Bloss
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Moritz Popp
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Florian Stein
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anke Steppuhn
- Department of Molecular Botany, Hohenheim University, Stuttgart, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole M van Dam
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sol Yepes
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dominik Ziaja
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
42
|
Olazcuaga L, Baltenweck R, Leménager N, Maia-Grondard A, Claudel P, Hugueney P, Foucaud J. Metabolic consequences of various fruit-based diets in a generalist insect species. eLife 2023; 12:84370. [PMID: 37278030 DOI: 10.7554/elife.84370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.
Collapse
Affiliation(s)
- Laure Olazcuaga
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, United States
| | | | - Nicolas Leménager
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| | | | | | | | - Julien Foucaud
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| |
Collapse
|
43
|
Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. THE NEW PHYTOLOGIST 2023; 237:2478-2492. [PMID: 36527232 DOI: 10.1111/nph.18685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Plants produce large numbers of phytochemical compounds affecting plant physiology and interactions with their biotic and abiotic environment. Recently, chemodiversity has attracted considerable attention as an ecologically and evolutionary meaningful way to characterize the phenotype of a mixture of phytochemical compounds. Currently used measures of phytochemical diversity, and related measures of phytochemical dissimilarity, generally do not take structural or biosynthetic properties of compounds into account. Such properties can be indicative of the compounds' function and inform about their biosynthetic (in)dependence, and should therefore be included in calculations of these measures. We introduce the R package chemodiv, which retrieves biochemical and structural properties of compounds from databases and provides functions for calculating and visualizing chemical diversity and dissimilarity for phytochemicals and other types of compounds. Our package enables calculations of diversity that takes the richness, relative abundance and - most importantly - structural and/or biosynthetic dissimilarity of compounds into account. We illustrate the use of the package with examples on simulated and real datasets. By providing the R package chemodiv for quantifying multiple aspects of chemodiversity, we hope to facilitate investigations of how chemodiversity varies across levels of biological organization, and its importance for the ecology and evolution of plants and other organisms.
Collapse
Affiliation(s)
- Hampus Petrén
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
44
|
Edwards CB, Ellner SP, Agrawal AA. Plant defense synergies and antagonisms affect performance of specialist herbivores of common milkweed. Ecology 2023; 104:e3915. [PMID: 36336890 DOI: 10.1002/ecy.3915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these "leaf economic" traits typically covary in milkweed, a defense synergy could reinforce their co-expression. We report that each of the plant defense traits showed context-dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists.
Collapse
Affiliation(s)
- Collin B Edwards
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
45
|
Forrister DL, Endara MJ, Soule AJ, Younkin GC, Mills AG, Lokvam J, Dexter KG, Pennington RT, Kidner CA, Nicholls JA, Loiseau O, Kursar TA, Coley PD. Diversity and divergence: evolution of secondary metabolism in the tropical tree genus Inga. THE NEW PHYTOLOGIST 2023; 237:631-642. [PMID: 36263711 DOI: 10.1111/nph.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Plants are widely recognized as chemical factories, with each species producing dozens to hundreds of unique secondary metabolites. These compounds shape the interactions between plants and their natural enemies. We explore the evolutionary patterns and processes by which plants generate chemical diversity, from evolving novel compounds to unique chemical profiles. We characterized the chemical profile of one-third of the species of tropical rainforest trees in the genus Inga (c. 100, Fabaceae) using ultraperformance liquid chromatography-mass spectrometry-based metabolomics and applied phylogenetic comparative methods to understand the mode of chemical evolution. We show: each Inga species contain structurally unrelated compounds and high levels of phytochemical diversity; closely related species have divergent chemical profiles, with individual compounds, compound classes, and chemical profiles showing little-to-no phylogenetic signal; at the evolutionary time scale, a species' chemical profile shows a signature of divergent adaptation. At the ecological time scale, sympatric species were the most divergent, implying it is also advantageous to maintain a unique chemical profile from community members; finally, we integrate these patterns with a model for how chemical diversity evolves. Taken together, these results show that phytochemical diversity and divergence are fundamental to the ecology and evolution of plants.
Collapse
Affiliation(s)
- Dale L Forrister
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - María-José Endara
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS - Universidad de las Américas, 170513, Quito, Ecuador
| | - Abrianna J Soule
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Gordon C Younkin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Anthony G Mills
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - John Lokvam
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Kyle G Dexter
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - R Toby Pennington
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
| | - Catherine A Kidner
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JW, UK
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
| | - James A Nicholls
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian National Insect Collection (ANIC), Building 101, Clunies Ross Street, Black Mountain, ACT, 2601, Australia
| | - Oriane Loiseau
- School of Geosciences, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, UK
| | - Thomas A Kursar
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| | - Phyllis D Coley
- School of Biological Sciences, University of Utah, Aline W. Skaggs Biology Building, 257 S 1400 E, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
46
|
Ziaja D, Müller C. Intraspecific chemodiversity provides plant individual- and neighbourhood-mediated associational resistance towards aphids. FRONTIERS IN PLANT SCIENCE 2023; 14:1145918. [PMID: 37082343 PMCID: PMC10111025 DOI: 10.3389/fpls.2023.1145918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Some plant species express an extraordinarily high intraspecific diversity in phytochemicals (= chemodiversity). As discussed for biodiversity, higher chemodiversity may provide better protection against environmental stress, including herbivory. However, little is known about whether the resistance of a plant individual towards herbivores is mostly governed by its own chemodiversity or by associational resistance provided by conspecific neighbours. To investigate the role of chemodiversity in plant-aphid interactions, we used the Asteraceae Tanacetum vulgare, whose individuals differ pronouncedly in the composition of leaf terpenoids, forming distinct chemotypes. Plants were set up in a field consisting of plots containing five individuals of either the same or different chemotypes. Presence of winged aphids, indicating attraction, and abundance of winged and unwinged aphids, indicating fitness, were counted weekly on each plant. During the peak abundance of aphids, leaf samples were taken from all plants for re-analyses of the terpenoid composition and quantification of terpenoid chemodiversity, calculated on an individual plant (Shannon index, Hsind, also considered as α-chemodiversity) and plot level (Hsplot, = β-chemodiversity). Aphid attraction was neither influenced by chemotype nor plot-type. The real-time odour environment may be very complex in this setting, impeding clear preferences. In contrast, the abundance was affected by both chemotype and plot-type. On average, more Uroleucon tanaceti aphids were found on plants of two of the chemotypes growing in homogenous compared to heterogenous plots, supporting the associational resistance hypothesis. For Macrosiphoniella tanacetaria aphids, the probability of presence differed between plot-types on one chemotype. Terpenoid chemodiversity expressed as a gradient revealed negative Hsplot effects on U. tanaceti, but a positive correlation of Hsind with M. tanacetaria abundance. Aphids of M. fuscoviride were not affected by any level of chemodiversity. In conclusion, this study shows that not only the chemotype and chemodiversity of individual plants but also that of conspecific neighbours can influence certain plant-herbivore interactions. These effects are highly specific with regard to the plant chemotype and differ between aphid species and their morphs (winged vs. unwinged). Furthermore, our results highlight the importance of analysing chemodiversity at different levels.
Collapse
|
47
|
Bernal JS, Helms AM, Fontes-Puebla AA, DeWitt TJ, Kolomiets MV, Grunseich JM. Root volatile profiles and herbivore preference are mediated by maize domestication, geographic spread, and modern breeding. PLANTA 2022; 257:24. [PMID: 36562877 DOI: 10.1007/s00425-022-04057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 05/19/2023]
Abstract
Domestication affected the abundances and diversity of maize root volatiles more than northward spread and modern breeding, and herbivore preference for roots was correlated with volatile diversity and herbivore resistance. Studies show that herbivore defenses in crops are mediated by domestication, spread, and breeding, among other human-driven processes. They also show that those processes affected chemical communication between crop plants and herbivores. We hypothesized that (i) preference of the herbivore (Diabrotica virgifera virgifera) larvae for embryonic roots of maize (Zea mays mays) would increase and (ii) root volatile diversity would decrease with the crop's domestication, northward spread to present-day USA, and modern breeding. We used Balsas teosinte (Zea mays parviglumis), Mexican and USA landrace maizes, and US inbred maize lines to test these hypotheses. We found that herbivore preference and volatile diversity increased with maize domestication and northward spread but decreased with modern breeding. Additionally, we found that the abundances of single volatiles did not consistently increase or decrease with maize domestication, spread, and breeding; rather, volatiles grouped per their abundances were differentially affected by those processes, and domestication had the greatest effects. Altogether, our results suggested that: the herbivore's preference for maize roots is correlated with volatile diversity and herbivore resistance; changes in abundances of individual volatiles are evident at the level of volatile groups; and maize domestication, but not spread and breeding, affected the abundances of some green leaf volatiles and sesquiterpenes/sesquiterpenoids. In part, we discussed our results in the context of herbivore defense evolution when resources for plant growth and defense vary across environments. We suggested that variability in relative abundance of volatiles may be associated with their local, functional relevance across wild and agricultural environments.
Collapse
Affiliation(s)
- Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Ana A Fontes-Puebla
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
- Instituto Nacional de Investigaciones Forestales, Texas A&M University, 83220, Hermosillo, Son, Mexico
| | - Thomas J DeWitt
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843-2258, USA
| | - Michael V Kolomiets
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
- Department of Plant Pathology and Microbiolgy, Texas A&M University, College Station, TX, 77843-2132, USA
| | - John M Grunseich
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| |
Collapse
|
48
|
Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW, Mason CM. Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. AMERICAN JOURNAL OF BOTANY 2022; 109:2051-2067. [PMID: 36317693 DOI: 10.1002/ajb2.16093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
PREMISE As plant lineages diversify across environmental gradients, species are predicted to encounter divergent biotic pressures. This study investigated the evolution of volatile secondary metabolism across species of Helianthus. METHODS Leaves and petals of 40 species of wild Helianthus were analyzed via gas chromatography-mass spectrometry to determine volatile secondary metabolite profiles. RESULTS Across all species, 500 compounds were identified; 40% were sesquiterpenes, 18% monoterpenes, 3% diterpenes, 4% fatty acid derivatives, and 35% other compounds such as phenolics and small organic molecules. Qualitatively, annuals and species from more arid western climates had leaf compositions with a higher proportion of total monoterpenes, while erect perennials and species from more mesic eastern habitats contained a higher proportion of total sesquiterpenes. Among species, mass-based leaf monoterpene and sesquiterpene abundance were identified as largely orthogonal axes of variation by principal component analysis. Profiles for leaves were not strongly correlated with those of petals. CONCLUSIONS Volatile metabolites were highly diverse among wild Helianthus, indicating the value of this genus as a model system and rich genetic resource. The independence of leaf and petal volatile profiles indicates a low level of phenotypic integration between vegetative and reproductive structures, implying vegetative defense and reproductive defense or pollinator attraction functions mediated by terpene profiles in these two organs can evolve without major trade-offs. The major biosynthetic pathways for the major terpenes in wild Helianthus are already well described, providing a road map to deeper inquiry into the drivers of this diversity.
Collapse
Affiliation(s)
- Keivan Bahmani
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Sambadi Majumder
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Jordan A Dowell
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
49
|
Rotter MC, Christie K, Holeski LM. Climate and the biotic community structure plant resistance across biogeographic groups of yellow monkeyflower. Ecol Evol 2022; 12:e9520. [PMID: 36440318 PMCID: PMC9682197 DOI: 10.1002/ece3.9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing correlates of phytochemical resistance trait variation across a landscape can provide insight into the ecological factors that have shaped the evolution of resistance arsenals. Using field-collected data and a greenhouse common garden experiment, we assessed the relative influences of abiotic and biotic drivers of genetic-based defense trait variation across 41 yellow monkeyflower populations from western and eastern North America and the United Kingdom. Populations experience different climates, herbivore communities, and neighboring vegetative communities, and have distinct phytochemical resistance arsenals. Similarities in climate as well as herbivore and vegetative communities decline with increasing physical distance separating populations, and phytochemical resistance arsenal composition shows a similarly decreasing trend. Of the abiotic and biotic factors examined, temperature and the neighboring vegetation community had the strongest relative effects on resistance arsenal differentiation, whereas herbivore community composition and precipitation have relatively small effects. Rather than simply controlling for geographic proximity, we jointly assessed the relative strengths of both geographic and ecological variables on phytochemical arsenal compositional dissimilarity. Overall, our results illustrate how abiotic conditions and biotic interactions shape plant defense traits in natural populations.
Collapse
Affiliation(s)
- Michael C. Rotter
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of BiologyUtah Valley UniversityOremUtahUSA
| | - Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
50
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|