1
|
Melepat B, Li T, Vinkler M. Natural selection directing molecular evolution in vertebrate viral sensors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105147. [PMID: 38325501 DOI: 10.1016/j.dci.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/30/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Diseases caused by pathogens contribute to molecular adaptations in host immunity. Variety of viral pathogens challenging animal immunity can drive positive selection diversifying receptors recognising the infections. However, whether distinct virus sensing systems differ across animals in their evolutionary modes remains unclear. Our review provides a comparative overview of natural selection shaping molecular evolution in vertebrate viral-binding pattern recognition receptors (PRRs). Despite prevailing negative selection arising from the functional constraints, multiple lines of evidence now suggest diversifying selection in the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and oligoadenylate synthetases (OASs). In several cases, location of the positively selected sites in the ligand-binding regions suggests effects on viral detection although experimental support is lacking. Unfortunately, in most other PRR families including the AIM2-like receptor family, C-type lectin receptors (CLRs), and cyclic GMP-AMP synthetase studies characterising their molecular evolution are rare, preventing comparative insight. We indicate shared characteristics of the viral sensor evolution and highlight priorities for future research.
Collapse
Affiliation(s)
- Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Tao Li
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, EU, Czech Republic.
| |
Collapse
|
2
|
Arbanasić H, Medrano-González L, Hrenar T, Mikelić A, Gomerčić T, Svetličić I, Pavlinec Ž, Đuras M, Galov A. Recent selection created distinctive variability patterns on MHC class II loci in three dolphin species from the Mediterranean Sea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105079. [PMID: 37832898 DOI: 10.1016/j.dci.2023.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic genes involved in antigen presentation, which is crucial for adaptive immune response. They represent fitness related genetic markers particularly informative for populations exposed to environmental challenges. Here we analyse the diversity and evolutionary traits of MHC class II DQA and DQB genes in the dolphins Stenella coeruleoalba and Grampus griseus from the Mediterranean Sea. We found substantial nucleotide and functional diversity, as well as strong evidence of balancing selection indicated by allele and supertype frequencies, Tajima's D statistics and dN/dS tests. The Risso's dolphin, considered the least abundant in the region, showed the effect of divergent allele advantage at the nucleotide and functional-peptide levels. An outstanding polymorphism was found in the striped dolphin, particularly intriguing in the DQA gene where the Ewens-Watterson test detected a selection sweep that occurred in recent history. We hypothesize that morbillivirus, which has recurrently invaded Mediterranean populations over the last decades, exerted the detected selective pressure.
Collapse
Affiliation(s)
- Haidi Arbanasić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Luis Medrano-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tomica Hrenar
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Ana Mikelić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ida Svetličić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Željko Pavlinec
- Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000, Zagreb, Croatia.
| | - Martina Đuras
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ana Galov
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
4
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
5
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
6
|
Gaczorek TS, Marszałek M, Dudek K, Arntzen JW, Wielstra B, Babik W. Interspecific introgression of MHC genes in Triturus newts: Evidence from multiple contact zones. Mol Ecol 2023; 32:867-880. [PMID: 36458894 PMCID: PMC10108261 DOI: 10.1111/mec.16804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The major histocompatibility complex (MHC) genes are central to the adaptive immune response in vertebrates. Selection generally maintains high MHC variation because the spectrum of recognized pathogens depends on MHC polymorphism. Novel alleles favoured by selection originate by interallelic recombination or de novo mutations but may also be acquired by introgression from related species. However, the extent and prevalence of MHC introgression remain an open question. In this study, we tested for MHC introgression in six hybrid zones formed by six Triturus newt species. We sequenced and genotyped the polymorphic second exons of the MHC class I and II genes and compared their interspecific similarity at various distances from the centre of the hybrid zone. We found evidence for introgression of both MHC classes in the majority of examined hybrid zones, with support for a more substantial class I introgression. Furthermore, the overall MHC allele sharing outside of hybrid zones was elevated between pairs of Triturus species with abutting ranges, regardless of the phylogenetic distance between them. No effect of past hybrid zone movement on MHC allele sharing was found. Finally, using previously published genome-wide data, we demonstrated that MHC introgression was more extensive than genome-wide introgression, supporting its adaptive potential. Our study thus provides evidence for the prevalence of MHC introgression across multiple Triturus hybrid zones, indicating that MHC introgression between divergent hybridizing species may be widespread and adaptive.
Collapse
Affiliation(s)
- Tomasz S Gaczorek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Li X, Liu T, Li A, Xiao Y, Sun K, Feng J. Diversifying selection and climatic effects on major histocompatibility complex class
II
gene diversity in the greater horseshoe bat. Evol Appl 2023; 16:688-704. [PMID: 36969140 PMCID: PMC10033860 DOI: 10.1111/eva.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
Heterogeneous pathogenic stress can shape major histocompatibility complex (MHC) diversity by influencing the functional plasticity of the immune response. Therefore, MHC diversity could reflect environmental stress, demonstrating its importance in uncovering the mechanisms of adaptive genetic variation. In this study, we combined neutral microsatellite loci, an immune-related MHC II-DRB locus, and climatic factors to unravel the mechanisms affecting the diversity and genetic differentiation of MHC genes in the greater horseshoe bat (Rhinolophus ferrumequinum), a species with a wide geographical distribution that has three distinct genetic lineages in China. First, increased genetic differentiation at the MHC locus among populations compared using microsatellites indicated diversifying selection. Second, the genetic differentiation of MHC and microsatellites were significantly correlated, suggesting that demographic processes exist. However, MHC genetic differentiation was significantly correlated with geographical distance among populations, even after controlling for the neutral markers, suggesting a major effect of selection. Third, although the MHC genetic differentiation was larger than that for microsatellites, there was no significant difference in the genetic differentiation between the two markers among genetic lineages, indicating the effect of balancing selection. Fourth, combined with climatic factors, MHC diversity and supertypes showed significant correlations with temperature and precipitation, but not with the phylogeographic structure of R. ferrumequinum, suggesting an effect of local adaptation driven by climate on MHC diversity. Moreover, the number of MHC supertypes varied between populations and lineages, suggesting regional characteristics and support for local adaptation. Taken together, the results of our study provide insights into the adaptive evolutionary driving forces at different geographic scales in R. ferrumequinum. In addition, climate factors may have played a vital role in driving adaptive evolution in this species.
Collapse
Affiliation(s)
- Xiaolin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology, Ministry of Education Changchun China
| | - Tong Liu
- College of Life Science, Jilin Agricultural University Changchun China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology, Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science, Jilin Agricultural University Changchun China
| |
Collapse
|
8
|
Carruthers M, Edgley DE, Saxon AD, Gabagambi NP, Shechonge A, Miska EA, Durbin R, Bridle JR, Turner GF, Genner MJ. Ecological Speciation Promoted by Divergent Regulation of Functional Genes Within African Cichlid Fishes. Mol Biol Evol 2022; 39:msac251. [PMID: 36376993 PMCID: PMC10101686 DOI: 10.1093/molbev/msac251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.
Collapse
Affiliation(s)
- Madeleine Carruthers
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Duncan E Edgley
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Andrew D Saxon
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - Nestory P Gabagambi
- Tanzanian Fisheries Research Institute, Kyela Research
Centre, P.O. Box 98, Kyela, Mbeya, Tanzania
| | - Asilatu Shechonge
- Tanzanian Fisheries Research Institute, Dar es Salaam Research
Centre, P.O. Box 9750, Dar es Salaam, Tanzania
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge,
Cambridge CB2 1QN, United
Kingdom
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, United
Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus,
Cambridge CB10 1SA, United Kingdom
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| | - George F Turner
- School of Natural Sciences, Bangor University,
Bangor, Wales LL57 2UW, United
Kingdom
| | - Martin J Genner
- School of Biological Sciences, University of Bristol,
Bristol BS8 1TQ, United
Kingdom
| |
Collapse
|
9
|
Context-dependent parasite infection affects trophic niche in populations of sympatric stickleback species. Parasitology 2022; 149:1164-1172. [PMID: 35570701 PMCID: PMC10090597 DOI: 10.1017/s0031182022000531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
How parasites alter host feeding ecology remains elusive in natural populations. A powerful approach to investigate the link between infection and feeding ecology is quantifying unique and shared responses to parasite infection in related host species within a common environment. Here, 9 pairs of sympatric populations of the three-spined and nine-spined stickleback fishes were sampled across a range of freshwater and brackish habitats to investigate how parasites alter host feeding ecology: (i) biotic and abiotic determinants of parasite community composition, and (ii) to what extent parasite infection correlates with trophic niche specialization of the 2 species, using stable isotope analyses (δ15N and δ13C). It was determined that parasite community composition and host parasite load varied among sites and species and were correlated with dissolved oxygen. It was also observed that the digenean Cyathocotyle sp.'s abundance, a common directly infecting parasite with a complex life cycle, correlated with host δ13C in a fish species-specific manner. In 6 sites, correlations were found between parasite abundance and their hosts' feeding ecology. These effects were location-specific and occasionally host species or host size-specific. Overall, the results suggest a relationship between parasite infection and host trophic niche which may be an important and largely overlooked ecological factor. The population specificity and variation in parasite communities also suggest this effect is multifarious and context-dependent.
Collapse
|
10
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|
11
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
12
|
Fredericksen M, Ameline C, Krebs M, Hüssy B, Fields PD, Andras JP, Ebert D. Infection phenotypes of a coevolving parasite are highly diverse, structured, and specific. Evolution 2021; 75:2540-2554. [PMID: 34431523 PMCID: PMC9290032 DOI: 10.1111/evo.14323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Understanding how diversity is maintained in natural populations is a major goal of evolutionary biology. In coevolving hosts and parasites, negative frequency-dependent selection is one mechanism predicted to maintain genetic variation. While much is known about host diversity, parasite diversity remains understudied in coevolutionary research. Here, we survey natural diversity in a bacterial parasite by characterizing infection phenotypes for over 50 isolates in relation to 12 genotypes of their host, Daphnia magna. We find striking phenotypic variation among parasite isolates, and we discover the parasite can infect its host through at least five different attachment sites. Variation in attachment success at each site is explained to varying degrees by host and parasite genotypes. A spatial correlation analysis showed that infectivity of different isolates does not correlate with geographic distance, meaning isolates from widespread populations are equally able to infect the host. Overall, our results reveal that infection phenotypes of this parasite are highly diverse. Our results are consistent with the prediction that under Red Queen coevolutionary dynamics both the host and the parasite should show high genetic diversity for traits of functional importance in their interactions.
Collapse
Affiliation(s)
- Maridel Fredericksen
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Michelle Krebs
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Benjamin Hüssy
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Jason P Andras
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland.,Department of Biological Sciences, Clapp Laboratory, Mount Holyoke College, South Hadley, Massachusetts
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| |
Collapse
|
13
|
Bal TMP, Llanos-Garrido A, Chaturvedi A, Verdonck I, Hellemans B, Raeymaekers JAM. Adaptive Divergence under Gene Flow along an Environmental Gradient in Two Coexisting Stickleback Species. Genes (Basel) 2021; 12:435. [PMID: 33803820 PMCID: PMC8003309 DOI: 10.3390/genes12030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.
Collapse
Affiliation(s)
- Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway;
| | | | - Anurag Chaturvedi
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland;
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Io Verdonck
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000 Leuven, Belgium; (I.V.); (B.H.)
| | | |
Collapse
|
14
|
Liu C, Lei H, Ran X, Wang J. Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony. PeerJ 2020; 8:e9889. [PMID: 32999762 PMCID: PMC7505079 DOI: 10.7717/peerj.9889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
The Guizhou pony (GZP) is an indigenous species of equid found in the mountains of the Guizhou province in southwest China. We selected four regions of the equine leukocyte antigen (ELA), including DQA, DRA, DQB, and DRB, and used them to assess the diversity of the major histocompatibility complex (MHC) class II gene using direct sequencing technology. DRA had the lowest dN/dS ratio (0.560) compared with the other three loci, indicating that DRA was conserved and could be conserved after undergoing selective processes. Nine DQA, five DQB, nine DRA, and seven DRB codons were under significant positive selection at the antigen binding sites (ABS), suggesting that the selected residues in ABS may play a significant role in the innate immune system of the GZP. Two GZP alleles were shared with Przewalski’s horse, and six older GZP haplotypes had a better relationship with other horse species by one or two mutational steps, indicating that the GZP may be a natural ancient variety of equid. The specific diversity of ABS and the numbers of unique haplotypes in the evolutionary process affords this species a better genetic fitness and ability to adapt to the native environment.
Collapse
Affiliation(s)
- Chang Liu
- College of Animal Sciences, Guizhou University, Guiyang, China.,College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hongmei Lei
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Xueqin Ran
- College of Animal Sciences, Guizhou University, Guiyang, China
| | - Jiafu Wang
- College of Animal Sciences, Guizhou University, Guiyang, China.,Tongren University, Tongren, China
| |
Collapse
|
15
|
Ebert D, Fields PD. Host-parasite co-evolution and its genomic signature. Nat Rev Genet 2020; 21:754-768. [PMID: 32860017 DOI: 10.1038/s41576-020-0269-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Latitudinal diversity gradient and cetaceans from the perspective of MHC genes. Immunogenetics 2020; 72:393-398. [PMID: 32564115 DOI: 10.1007/s00251-020-01171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
Pathogen diversity is a key source of selective pressure on immune system genes, shaping molecular evolution mainly on widely distributed or migratory organisms such as cetaceans. Here, we investigated the effects of latitudinal span migration, different biomes occupation, and pathogen-mediated selection on MHC DQB locus divergence on cetaceans. We applied some evolutionary genetics methods using a dataset of 15 species and 121 sequences, and we found a trend on greater MHC divergence on tropical species when compared with either temperate or migratory species. In addition, oceanic cetaceans exhibit greater MHC divergence. Here, we show that, despite there was a correlation between the diversity of MHC DQB alleles with the distribution of organisms, the pattern of diversity found is not completely explained by pathogenic pressure, suggesting that other factors must be investigated for a better understanding of the processes related to the diversity of MHC in cetaceans.
Collapse
|
17
|
E GX, Chen LP, Zhou DK, Yang BG, Zhang JH, Zhao YJ, Hong QH, Ma YH, Chu MX, Zhang LP, Basang WD, Zhu YB, Han YG, Na RS, Zeng Y, Zhao ZQ, Huang YF, Han JL. Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers. Mol Immunol 2020; 124:83-90. [PMID: 32544655 DOI: 10.1016/j.molimm.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Major histocompatibility complex (MHC) genes are critical for disease resistance or susceptibility responsible for host-pathogen interactions determined mainly by extensive polymorphisms in the MHC genes. Here, we examined the diversity and phylogenetic pattern of MHC haplotypes reconstructed using three MHC-linked microsatellite markers in 55 populations of five Bovidae species and compared them with those based on neutral autosomal microsatellite markers (NAMs). Three-hundred-and-forty MHC haplotypes were identified in 1453 Bovidae individuals, suggesting significantly higher polymorphism and heterozygosity compared with those based on NAMs. The ambitious boundaries in population differentiation (phylogenetic network, pairwise FST and STRUCTURE analyses) within and between species assessed using the MHC haplotypes were different from those revealed by NAMs associated closely with speciation, geographical distribution, domestication and management histories. In addition, the mean FST was significantly correlated negatively with the number of observed alleles (NA), observed (HO) and expected (HE) heterozygosity and polymorphism information content (PIC) (P < 0.05) in the MHC haplotype dataset while there was no correction of the mean FST estimates (P> 0.05) between the MHC haplotype and NAMs datasets. Analysis of molecular variance (AMOVA) revealed a lower percentage of total variance (PTV) between species/groups based on the MHC-linked microsatellites than NAMs. Therefore, it was inferred that individuals within populations accumulated as many MHC variants as possible to increase their heterozygosity and thus the survival rate of their affiliated populations and species, which eventually reduced population differentiation and thereby complicated their classification and phylogenetic relationship inference. In summary, host-pathogen coevolution and heterozygote advantage, rather than demographic history, act as key driving forces shaping the MHC diversity within the populations and determining the interspecific MHC diversity.
Collapse
Affiliation(s)
- Guang-Xin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Li-Peng Chen
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Dong-Ke Zhou
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ming-Xing Chu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lu-Pei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Bin Zhu
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Science (TAAAS)), Lhasa 850002, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivores, Chongqing Engineering Research Centre for Herbivore Resource Protection and Utilization, Southwest University, Chongqing 400716, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| |
Collapse
|
18
|
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet 2020; 36:298-311. [DOI: 10.1016/j.tig.2020.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
|
19
|
Pierini F, Lenz TL. Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Mol Biol Evol 2020; 35:2145-2158. [PMID: 29893875 PMCID: PMC6106954 DOI: 10.1093/molbev/msy116] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The highly polymorphic genes of the major histocompatibility complex (MHC) play a key role in adaptive immunity. Divergent allele advantage, a mechanism of balancing selection, is proposed to contribute to their exceptional polymorphism. It assumes that MHC genotypes with more divergent alleles allow for broader antigen-presentation to immune effector cells, by that increasing immunocompetence. However, the direct correlation between pairwise sequence divergence and the corresponding repertoire of bound peptides has not been studied systematically across different MHC genes. Here, we investigated this relationship for five key classical human MHC genes (human leukocyte antigen; HLA-A, -B, -C, -DRB1, and -DQB1), using allele-specific computational binding prediction to 118,097 peptides derived from a broad range of human pathogens. For all five human MHC genes, the genetic distance between two alleles of a heterozygous genotype was positively correlated with the total number of peptides bound by these two alleles. In accordance with the major antigen-presentation pathway of MHC class I molecules, HLA-B and HLA-C alleles showed particularly strong correlations for peptides derived from intracellular pathogens. Intriguingly, this bias coincides with distinct protein compositions between intra- and extracellular pathogens, possibly suggesting adaptation of MHC I molecules to present specifically intracellular peptides. Eventually, we observed significant positive correlations between an allele’s average divergence and its population frequency. Overall, our results support the divergent allele advantage as a meaningful quantitative mechanism through which pathogen-mediated selection leads to the evolution of MHC diversity.
Collapse
Affiliation(s)
- Federica Pierini
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
20
|
Sagonas K, Runemark A, Antoniou A, Lymberakis P, Pafilis P, Valakos ED, Poulakakis N, Hansson B. Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity (Edinb) 2019; 122:468-484. [PMID: 30258107 PMCID: PMC6460769 DOI: 10.1038/s41437-018-0146-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
The major histocompatibility complex (MHC) has long served as a model for the evolution of adaptive genetic diversity in wild populations. Pathogen-mediated selection is thought to be a main driver of MHC diversity, but it remains elusive to what degree selection shapes MHC diversity in complex biogeographical scenarios where other evolutionary processes (e.g. genetic drift and introgression) may also be acting. Here we focus on two closely related green lizard species, Lacerta trilineata and L. viridis, to address the evolutionary forces acting on MHC diversity in populations with different biogeographic structure. We characterized MHC class I exon 2 and exon 3, and neutral diversity (microsatellites), to study the relative importance of selection, drift, and introgression in shaping MHC diversity. As expected, positive selection was a significant force shaping the high diversity of MHC genes in both species. Moreover, introgression significantly increased MHC diversity in mainland populations, with a primary direction of gene flow from L. viridis to L. trilineata. Finally, we found significantly fewer MHC alleles in island populations, but maintained MHC sequence and functional diversity, suggesting that positive selection counteracted the effect of drift. Overall, our data support that different evolutionary processes govern MHC diversity in different biogeographical scenarios: positive selection occurs broadly while introgression acts in sympatry and drift when the population sizes decrease.
Collapse
Affiliation(s)
- K Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece.
| | - A Runemark
- Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - A Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003, Heraklion, Crete, Greece
| | - P Lymberakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, 71409, Heraklion, Crete, Greece
| | - P Pafilis
- Department of Zoology and Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - E D Valakos
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - N Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, 71409, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, 71003, Heraklion, Crete, Greece
| | - B Hansson
- Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
21
|
Mulder KP, Cortazar-Chinarro M, Harris DJ, Crottini A, Campbell Grant EH, Fleischer RC, Savage AE. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:177-188. [PMID: 28587861 DOI: 10.1016/j.dci.2017.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.
Collapse
Affiliation(s)
- Kevin P Mulder
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Maria Cortazar-Chinarro
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - D James Harris
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Angelica Crottini
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Evan H Campbell Grant
- United States Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Lab, 1 Migratory Way, Turner Falls, MA 01376, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Anna E Savage
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
22
|
Kaesler E, Kappeler PM, Brameier M, Demeler J, Kraus C, Rakotoniaina JH, Hämäläinen AM, Huchard E. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol Ecol 2017; 26:5629-5645. [PMID: 28833696 DOI: 10.1111/mec.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.
Collapse
Affiliation(s)
- Eva Kaesler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany
| | - Peter M Kappeler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markus Brameier
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Janina Demeler
- Institut für Parasitologie und Tropenveterinärmedizin, Berlin, Germany
| | - Cornelia Kraus
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Josué H Rakotoniaina
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anni M Hämäläinen
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elise Huchard
- Institute for Evolutionary Biology, Montpellier (ISEM, UMR 5554), CNRS, Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
23
|
Lohman BK, Steinel NC, Weber JN, Bolnick DI. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System. Front Immunol 2017; 8:1071. [PMID: 28955327 PMCID: PMC5600903 DOI: 10.3389/fimmu.2017.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/16/2017] [Indexed: 12/31/2022] Open
Abstract
Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus) from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.
Collapse
Affiliation(s)
- Brian K Lohman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Natalie C Steinel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Medical Education, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jesse N Weber
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Division of Biological Sciences, The University of Montana, Missoula, MT, United States
| | - Daniel I Bolnick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
24
|
Raeymaekers JAM, Chaturvedi A, Hablützel PI, Verdonck I, Hellemans B, Maes GE, De Meester L, Volckaert FAM. Adaptive and non-adaptive divergence in a common landscape. Nat Commun 2017; 8:267. [PMID: 28814718 PMCID: PMC5559485 DOI: 10.1038/s41467-017-00256-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Species in a common landscape often face similar selective environments. The capacity of organisms to adapt to these environments may be largely species specific. Quantifying shared and unique adaptive responses across species within landscapes may thus improve our understanding of landscape-moderated biodiversity patterns. Here we test to what extent populations of two coexisting and phylogenetically related fishes—three-spined and nine-spined stickleback—differ in the strength and nature of neutral and adaptive divergence along a salinity gradient. Phenotypic differentiation, neutral genetic differentiation and genomic signatures of adaptation are stronger in the three-spined stickleback. Yet, both species show substantial phenotypic parallelism. In contrast, genomic signatures of adaptation involve different genomic regions, and are thus non-parallel. The relative contribution of spatial and environmental drivers of population divergence in each species reflects different strategies for persistence in the same landscape. These results provide insight in the mechanisms underlying variation in evolutionary versatility and ecological success among species within landscapes. The three-spined stickleback is a model species for the study of adaptive divergence. Here, Raeymaekers et al. compare how the three-spined stickleback and its relative the nine-spined stickleback vary at the phenotypic and genomic levels in response to the same spatial and environmental drivers.
Collapse
Affiliation(s)
- Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium. .,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway. .,Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| | - Anurag Chaturvedi
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium.,Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000, Leuven, Belgium
| | - Pascal I Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium.,Flanders Marine Institute, B-8400, Oostende, Belgium
| | - Io Verdonck
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium
| | - Bart Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium
| | - Gregory E Maes
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium.,Genomics Core, Center for Human Genetics, UZ Leuven, B-3000, Leuven, Belgium.,Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000, Leuven, Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
25
|
Sullivan AP, de Manuel M, Marques-Bonet T, Perry GH. An evolutionary medicine perspective on Neandertal extinction. J Hum Evol 2017. [PMID: 28622932 DOI: 10.1016/j.jhevol.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Eurasian sympatry of Neandertals and anatomically modern humans - beginning at least 45,000 years ago and possibly lasting for more than 5000 years - has sparked immense anthropological interest into the factors that potentially contributed to Neandertal extinction. Among many different hypotheses, the "differential pathogen resistance" extinction model posits that Neandertals were disproportionately affected by exposure to novel infectious diseases that were transmitted during the period of spatiotemporal sympatry with modern humans. Comparisons of new archaic hominin paleogenome sequences with modern human genomes have confirmed a history of genetic admixture - and thus direct contact - between humans and Neandertals. Analyses of these data have also shown that Neandertal nuclear genome genetic diversity was likely considerably lower than that of the Eurasian anatomically modern humans with whom they came into contact, perhaps leaving Neandertal innate immune systems relatively more susceptible to novel pathogens. In this study, we compared levels of genetic diversity in genes for which genetic variation is hypothesized to benefit pathogen defense among Neandertals and African, European, and Asian modern humans, using available exome sequencing data (three individuals, or six chromosomes, per population). We observed that Neandertals had only 31-39% as many nonsynonymous (amino acid changing) polymorphisms across 73 innate immune system genes compared to modern human populations. We also found that Neandertal genetic diversity was relatively low in an unbiased set of balancing selection candidate genes for primates, those genes with the highest 1% genetic diversity genome-wide in non-human hominoids (apes). In contrast, Neandertals had similar or higher levels of genetic diversity than humans in 12 major histocompatibility complex (MHC) genes. Thus, while Neandertals may have been relatively more susceptible to some novel pathogens and differential pathogen resistance could be considered as one potential contributing factor in their extinction, the expectations of this model are not universally met.
Collapse
Affiliation(s)
- Alexis P Sullivan
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - George H Perry
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
26
|
Hamley M, Franke F, Kurtz J, Scharsack JP. An experimental approach to the immuno-modulatory basis of host-parasite local adaptation in tapeworm-infected sticklebacks. Exp Parasitol 2017; 180:119-132. [PMID: 28322743 DOI: 10.1016/j.exppara.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 01/08/2023]
Abstract
The evolutionary arms race of hosts and parasites often results in adaptations, which may differ between populations. Investigation of such local adaptation becomes increasingly important to understand dynamics of host-parasite interactions and co-evolution. To this end we performed an infection experiment involving pairs of three-spined sticklebacks and their tapeworm parasite Schistocephalus solidus from three geographically separated origins (Germany, Spain and Iceland) in a fully-crossed design for sympatric and allopatric host/parasite combinations. We hypothesized that local adaptation of the hosts results in differences in parasite resistance with variation in parasite infection rates and leukocyte activation, whereas parasites from different origins might differ in virulence reflected in host exploitation rates (parasite indices) and S. solidus excretory-secretory products (SsESP) involved in immune manipulation. In our experimental infections, sticklebacks from Iceland were more resistant to S. solidus infection compared to Spanish and German sticklebacks. Higher resistance of Icelandic sticklebacks seemed to depend on adaptive immunity, whereas sticklebacks of German origin, which were more heavily afflicted by S. solidus, showed elevated activity of innate immune traits. German S. solidus were less successful in infecting and exploiting allopatric hosts compared to their Icelandic and Spanish conspecifics. Nevertheless, exclusively SsESP from German S. solidus triggered significant in vitro responses of leukocytes from naïve sticklebacks. Interestingly, parasite indices were almost identical across the sympatric combinations. Differences in host resistance and parasite virulence between the origins were most evident in allopatric combinations and were consistent within origin; i.e. Icelandic sticklebacks were more resistant and their S. solidus were more virulent in all allopatric combinations, whereas German sticklebacks were less resistant and their parasites less virulent. Despite such differences between origins, the degree of host exploitation was almost identical in the sympatric host-parasite combinations, suggesting that the local evolutionary arms race of hosts and parasites resulted in an optimal virulence, maximising parasite fitness while avoiding host overexploitation.
Collapse
Affiliation(s)
- Madeleine Hamley
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Frederik Franke
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Joachim Kurtz
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| | - Jörn Peter Scharsack
- Department of Animal Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany.
| |
Collapse
|
27
|
Hofmann MJ, Bracamonte SE, Eizaguirre C, Barluenga M. Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids. BMC Genet 2017; 18:15. [PMID: 28201988 PMCID: PMC5310070 DOI: 10.1186/s12863-017-0474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a key component of the adaptive immune system of all vertebrates and consists of the most polymorphic genes known to date. Due to this complexity, however, MHC remains to be characterized in many species including any Neotropical cichlid fish. Neotropical crater lake cichlids are ideal models to study evolutionary processes as they display one of the most convincing examples of sympatric and repeated parallel radiation events within and among isolated crater lakes. RESULTS Here, we characterized the genes of MHC class IIB chain of the Midas cichlid species complex (Amphilophus cf. citrinellus) including fish from five lakes in Nicaragua. We designed 19 new specific primers anchored in a stepwise fashion in order to detect all alleles present. We obtained 866 genomic DNA (gDNA) sequences from thirteen individuals and 756 additional sequences from complementary DNA (cDNA) of seven of those individuals. We identified 69 distinct alleles with up to 25 alleles per individual. We also found considerable intron length variation and mismatches of alleles detected in cDNA and gDNA suggesting that some loci have undergone pseudogenization. Lastly, we created a model of protein structure homology for each allele and identified their key structural components. CONCLUSIONS Overall, the Midas cichlid has one of the most diverse repertoires of MHC class IIB genes known, which could serve as a powerful tool to elucidate the process of divergent radiations, colonization and speciation in sympatry.
Collapse
Affiliation(s)
- Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Seraina E Bracamonte
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Christophe Eizaguirre
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| |
Collapse
|
28
|
Li D, Sun K, Zhao Y, Lin A, Li S, Jiang Y, Feng J. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting ( Emberiza jankowskii). PeerJ 2017; 5:e2917. [PMID: 28149689 PMCID: PMC5270597 DOI: 10.7717/peerj.2917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022] Open
Abstract
Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0.1667. Overall, compared to other passerine birds, a relatively low level of MHC polymorphism was revealed in E. jankowskii, which was similar to that in E. cioides. Positive selection was detected by PAML/SLAC/FEL analyses in the region encoding the peptide-binding region in both species, and no recombination was detected. Phylogenetic analysis showed that the alleles from E. jankowskii and E. cioides belong to the same clade and the two species shared similar alleles, suggesting the occurrence of a trans-species polymorphism between the two Emberiza species.
Collapse
Affiliation(s)
- Dan Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
| | - Yunjiao Zhao
- College of Animal Science and Technology, Jilin Agricultural University , Changchun , China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
| | - Shi Li
- College of Animal Science and Technology, Jilin Agricultural University , Changchun , China
| | - Yunlei Jiang
- College of Animal Science and Technology, Jilin Agricultural University , Changchun , China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
| |
Collapse
|
29
|
Eimes JA, Lee SI, Townsend AK, Jablonski P, Nishiumi I, Satta Y. Early Duplication of a Single MHC IIB Locus Prior to the Passerine Radiations. PLoS One 2016; 11:e0163456. [PMID: 27658204 PMCID: PMC5033386 DOI: 10.1371/journal.pone.0163456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
A key characteristic of MHC genes is the persistence of allelic lineages over macroevolutionary periods, often through multiple speciation events. This phenomenon, known as trans-species polymorphism (TSP), is well documented in several major taxonomic groups, but has less frequently been observed in birds. The order Passeriformes is arguably the most successful terrestrial vertebrate order in terms of diversity of species and ecological range, but the reasons for this success remain unclear. Passerines exhibit the most highly duplicated MHC genes of any major vertebrate taxonomic group, which may generate increased immune response relative to other avian orders with fewer MHC loci. Here, we describe phylogenetic patterns of the MHC IIB in the passerine family Corvidae. Our results indicate wide-spread TSP within this family, with at least four supported MHC IIB allelic lineages that predate speciation by many millions of years. Markov chain Monte Carlo simulations indicate that divergence of these lineages occurred near the time of the divergence of the Passeriformes and other avian orders. We suggest that the current MHC diversity observed in passerines is due in part to the multiple duplication of a single MHC locus, DAB1, early in passerine evolution and that subsequent duplications of these paralogues have contributed to the enormous success of this order by increasing their ability to recognize and mount immune responses to novel pathogens.
Collapse
Affiliation(s)
- John A. Eimes
- Seoul National University, Department of Biological Sciences, Seoul, Korea
| | - Sang-im Lee
- Seoul National University, Institute of Advanced Machines and Design, Seoul, Korea
- * E-mail:
| | - Andrea K. Townsend
- Hamilton College, Department of Biology, Clinton, NY, United States of America
| | - Piotr Jablonski
- Seoul National University, Department of Biological Sciences, Seoul, Korea
| | - Isao Nishiumi
- National Museum of Nature and Science, Department of Zoology, Tsukuba, Japan
| | - Yoko Satta
- The Graduate University for Advanced Studies, Department of Evolutionary Studies of Biosystems, Hayama, Japan
| |
Collapse
|
30
|
Messer PW, Ellner SP, Hairston NG. Can Population Genetics Adapt to Rapid Evolution? Trends Genet 2016; 32:408-418. [DOI: 10.1016/j.tig.2016.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
31
|
Baltazar-Soares M, Bracamonte SE, Bayer T, Chain FJ, Hanel R, Harrod C, Eizaguirre C. Evaluating the adaptive potential of the European eel: is the immunogenetic status recovering? PeerJ 2016; 4:e1868. [PMID: 27077000 PMCID: PMC4830236 DOI: 10.7717/peerj.1868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/09/2016] [Indexed: 02/03/2023] Open
Abstract
The recent increased integration of evolutionary theory into conservation programs has greatly improved our ability to protect endangered species. A common application of such theory links population dynamics and indices of genetic diversity, usually estimated from neutrally evolving markers. However, some studies have suggested that highly polymorphic adaptive genes, such as the immune genes of the Major Histocompatibility Complex (MHC), might be more sensitive to fluctuations in population dynamics. As such, the combination of neutrally- and adaptively-evolving genes may be informative in populations where reductions in abundance have been documented. The European eel (Anguilla anguilla) underwent a drastic and well-reported decline in abundance in the late 20th century and still displays low recruitment. Here we compared genetic diversity indices estimated from neutral (mitochondrial DNA and microsatellites) and adaptive markers (MHC) between two distinct generations of European eels. Our results revealed a clear discrepancy between signatures obtained for each class of markers. Although mtDNA and microsatellites showed no changes in diversity between the older and the younger generations, MHC diversity revealed a contemporary drop followed by a recent increase. Our results suggest ongoing gain of MHC genetic diversity resulting from the interplay between drift and selection and ultimately increasing the adaptive potential of the species.
Collapse
Affiliation(s)
- Miguel Baltazar-Soares
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Seraina E. Bracamonte
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Till Bayer
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Chris Harrod
- Universidad de Antofagasta, Instituto de Ciencias Naturales Alexander von Humboldt, Antofagasta, Chile
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
32
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
33
|
Gulisija D, Kim Y. Emergence of long-term balanced polymorphism under cyclic selection of spatially variable magnitude. Evolution 2015; 69:979-92. [PMID: 25707330 DOI: 10.1111/evo.12630] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 02/15/2015] [Indexed: 01/09/2023]
Abstract
A fundamental question in evolutionary biology is what promotes genetic variation at nonneutral loci, a major precursor to adaptation in changing environments. In particular, balanced polymorphism under realistic evolutionary models of temporally varying environments in finite natural populations remains to be demonstrated. Here, we propose a novel mechanism of balancing selection under temporally varying fitnesses. Using forward-in-time computer simulations and mathematical analysis, we show that cyclic selection that spatially varies in magnitude, such as along an environmental gradient, can lead to elevated levels of nonneutral genetic polymorphism in finite populations. Balanced polymorphism is more likely with an increase in gene flow, magnitude and period of fitness oscillations, and spatial heterogeneity. This polymorphism-promoting effect is robust to small systematic fitness differences between competing alleles or to random environmental perturbation. Furthermore, we demonstrate analytically that protected polymorphism arises as spatially heterogeneous cyclic fitness oscillations generate a type of storage effect that leads to negative frequency dependent selection. Our findings imply that spatially variable cyclic environments can promote elevated levels of nonneutral genetic variation in natural populations.
Collapse
Affiliation(s)
- Davorka Gulisija
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, 53706; Current Address: Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | |
Collapse
|
34
|
Eimes JA, Townsend AK, Sepil I, Nishiumi I, Satta Y. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism. PeerJ 2015; 3:e853. [PMID: 25802816 PMCID: PMC4369332 DOI: 10.7717/peerj.853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of positively selected amino acids by supertyping revealed a single supertype shared by only jungle and carrion crows, a pattern consistent with convergence, the overall phylogenetic patterns we observed suggest that TSP, rather than convergence, explains the interspecific allelic similarity of MHC IIB genes in these species of crows.
Collapse
Affiliation(s)
- John A Eimes
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| | | | - Irem Sepil
- Department of Zoology, University of Oxford , Oxford , UK
| | - Isao Nishiumi
- Department of Zoology, National Museum of Nature and Science , Tsukuba , Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| |
Collapse
|
35
|
Pechouskova E, Dammhahn M, Brameier M, Fichtel C, Kappeler PM, Huchard E. MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener. Immunogenetics 2015; 67:229-45. [PMID: 25687337 PMCID: PMC4357647 DOI: 10.1007/s00251-015-0827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe’s mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Collapse
Affiliation(s)
- Eva Pechouskova
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
36
|
Stutz WE, Bolnick DI. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology. PLoS One 2014; 9:e100587. [PMID: 25036866 PMCID: PMC4103772 DOI: 10.1371/journal.pone.0100587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022] Open
Abstract
Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC)--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.
Collapse
Affiliation(s)
- William E. Stutz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| | - Daniel I. Bolnick
- Howard Hughes Medical Institute & Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
37
|
Loginov VV, Klevakin AA, Moreva OA, Tarbeyev ML, Bayanov NG, Darsia NA. The morphological characteristics and feeding of Nine-spined stickleback (Pungitius pungitius Linnaeus, 1758) in the basin of the Cheboksary reservoir. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2014. [DOI: 10.1134/s2075111714030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Tobler M, Plath M, Riesch R, Schlupp I, Grasse A, Munimanda GK, Setzer C, Penn DJ, Moodley Y. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. J Evol Biol 2014; 27:960-74. [PMID: 24725091 DOI: 10.1111/jeb.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
Abstract
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution).
Collapse
Affiliation(s)
- M Tobler
- Department of Zoology, Oklahoma State University, Stillwater, OK, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stiebens VA, Merino SE, Chain FJJ, Eizaguirre C. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing. BMC Evol Biol 2013; 13:95. [PMID: 23627726 PMCID: PMC3655109 DOI: 10.1186/1471-2148-13-95] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/17/2013] [Indexed: 11/17/2022] Open
Abstract
Background In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. Methods We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. Results MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Conclusions Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.
Collapse
Affiliation(s)
- Victor A Stiebens
- Department of Evolutionary Ecology of Marine Fishes, GEOMAR
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | | | | | | |
Collapse
|