1
|
Pariani AP, Huhn V, Maknis TR, Alonso V, Almada E, Vena R, Favre C, Goldenring JR, Kaverina I, Larocca MC. CLASP1/2 REGULATE IMMUNE SYNAPSE MATURATION IN NATURAL KILLER CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633904. [PMID: 39896676 PMCID: PMC11785047 DOI: 10.1101/2025.01.20.633904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Natural killer (NK) cells are the first line of defense against viral infections and tumors. Their cytotoxic activity relies on the formation of an immune synapse (IS) with target cells. The lymphocyte function-associated antigen (LFA)-1 plays a central role in NK cell cytotoxicity by modulating NK-IS assembly and maturation. LFA-1 organization at the IS involves a Golgi-dependent mechanism, which has not been completely elucidated. CLIP-associating proteins (CLASP) 1/2 are microtubule plus-tip interacting proteins that control the dynamics of Golgi derived microtubules (GDMTs). In the present study, we found that CLASP1/2 depletion impaired LFA-1 organization at the IS and inhibited the polarization of the centrosome and the lytic granules towards the target cell. Our results also revealed the role of the Golgi apparatus as a microtubule organizing center (MTOC) in these cells. Furthermore, we found that, similarly to what was described in other cell types, NK cells require CLASP1/2 and AKAP350 for efficient nucleation of microtubules at the Golgi. Overall, this study uncovers the role of CLASP1/2 in the maturation of the lytic IS in NK cells, and presents evidence supporting the contribution of GDMTs in this process. Summary sentence The Golgi apparatus (GA) functions as a microtubule-organizing center (MTOC) in NK cells. During the recognition of tumoral cells by NK cells, CLASP1/2-mediated stabilization of GA-derived microtubules (GDMTs) facilitates vesicular LFA-1 (LFA-1 v ) trafficking toward the interaction surface, thereby promoting the immune synapse (IS) maturation.
Collapse
|
2
|
Jain K, Kishan K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Immobile Integrin Signaling Transit and Relay Nodes Organize Mechanosignaling through Force-Dependent Phosphorylation in Focal Adhesions. ACS NANO 2025; 19:2070-2088. [PMID: 39760672 DOI: 10.1021/acsnano.4c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at subdiffraction limited resolution of ∼100 nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in an immobile population of integrin β3 organized as nanoclusters, which (ii) in turn serve to organize nanoclusters of associated key adhesome proteins-vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signaling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct protein dynamics, which is closely correlated to their function in signaling. (iv) Long-lived nanoclusters function as signaling hubs─wherein immobile integrin nanoclusters organize phosphorylated FAK to form stable nanoclusters in close proximity to them, which are disassembled in response to inactivation signal by removal of force and in turn activation of phosphatase PTPN12. (v) Signaling takes place in response to external signals such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. We term these functional nanoclusters as integrin signaling transit and relay nodes (STARnodes). Taken together, these results demonstrate that integrin STARnodes seed signaling downstream of the integrin receptors by organizing hubs of signaling proteins (FAK, paxillin, vinculin) to relay the incoming signal intracellularly and bring about robust function.
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kishan Kishan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Neurobit Inc., New York, New York 10036, United States
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Teora Pte. Ltd, Singapore 139955, Singapore
| |
Collapse
|
3
|
Mandal M, Rakib A, Mamun MAA, Kumar S, Park F, Hwang DJ, Li W, Miller DD, Singh UP. DJ-X-013 reduces LPS-induced inflammation, modulates Th17/ myeloid-derived suppressor cells, and alters NF-κB expression to ameliorate experimental colitis. Biomed Pharmacother 2024; 179:117379. [PMID: 39255739 PMCID: PMC11479677 DOI: 10.1016/j.biopha.2024.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
SCOPE Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition of unknown etiology, although recent evidence suggests that it is caused by an excessive immune response to mucosal antigens. We determined the anti-inflammatory properties of novel compound DJ-X-013 in vitro in lipopolysaccharide (LPS)-induced macrophages and in an in vivo dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS To evaluate the anti-inflammatory properties of DJ-X-013, we used LPS-activated RAW 264.7 macrophages in vitro and a DSS-induced experimental model of colitis in vivo. We examine cellular morphology, and tissue architecture by histology, flow cytometry, RT-qPCR, multiplex, and immunoblot analysis to perform cellular and molecular studies. DJ-X-013 treatment altered cell morphology and expression of inflammatory cytokines in LPS-activated macrophages as compared to cells treated with LPS alone. DJ-X-013 also impeded the migration of RAW 264.7 macrophages by modulating cytoskeletal organization and suppressed the expression of NF-κB and inflammatory markers as compared to LPS alone. DJ-X-013 treatment improved body weight, and colon length and attenuated inflammation in the colon of DSS-induced colitis. Intriguingly, DSS-challenged mice treated with DJ-X-013 induced the numbers of myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and natural killer T cells (NKT) in the colon lamina propria (LP) relative to DSS. DJ-X-013 also reduced the influx of neutrophils, TNF-α producing macrophages, restricted the number of Th17 cells, and suppressed inflammatory cytokines and NF-κB in the LP relative to DSS. CONCLUSION DJ-X-013 is proposed to be a therapeutic strategy for ameliorating inflammation and experimental colitis.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
4
|
Jain K, Minhaj RF, Kanchanawong P, Sheetz MP, Changede R. Nano-clusters of ligand-activated integrins organize immobile, signalling active, nano-clusters of phosphorylated FAK required for mechanosignaling in focal adhesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581925. [PMID: 38464288 PMCID: PMC10925161 DOI: 10.1101/2024.02.25.581925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transmembrane signalling receptors, such as integrins, organise as nanoclusters that are thought to provide several advantages including, increasing avidity, sensitivity (increasing the signal-to-noise ratio) and robustness (signalling above a threshold rather than activation by a single receptor) of the signal compared to signalling by single receptors. Compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, if nanoclusters function as signalling hubs remains poorly understood. Here, we employ fluorescence nanoscopy combined with photoactivation and photobleaching at sub-diffraction limited resolution of ~100nm length scale within a focal adhesion to examine the dynamics of diverse focal adhesion proteins. We show that (i) subregions of focal adhesions are enriched in immobile population of integrin β3 organised as nanoclusters, which (ii) in turn serve to organise nanoclusters of associated key adhesome proteins- vinculin, focal adhesion kinase (FAK) and paxillin, demonstrating that signalling proceeds by formation of nanoclusters rather than through individual proteins. (iii) Distinct focal adhesion protein nanoclusters exhibit distinct dynamics dependent on function. (iv) long-lived nanoclusters function as signalling hubs- wherein phosphorylated FAK and paxillin formed stable nanoclusters in close proximity to immobile integrin nanoclusters which are disassembled in response to inactivation signal by phosphatase PTPN12 (v) signalling takes place in response to an external signal such as force or geometric arrangement of the nanoclusters and when the signal is removed, these nanoclusters disassemble. Taken together, these results demonstrate that signalling downstream of transmembrane receptors is organised as hubs of signalling proteins (FAK, paxillin, vinculin) seeded by nanoclusters of the transmembrane receptor (integrin).
Collapse
Affiliation(s)
- Kashish Jain
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rida F Minhaj
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA
| | - Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- TeOra Pte. Ltd, Singapore, Singapore
| |
Collapse
|
5
|
Patterson C, Hazime KS, Zelenay S, Davis DM. Prostaglandin E₂ impacts multiple stages of the natural killer cell antitumor immune response. Eur J Immunol 2024; 54:e2350635. [PMID: 38059519 DOI: 10.1002/eji.202350635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tumor immune escape is a major factor contributing to cancer progression and unresponsiveness to cancer therapies. Tumors can produce prostaglandin E2 (PGE2 ), an inflammatory mediator that directly acts on Natural killer (NK) cells to inhibit antitumor immunity. However, precisely how PGE2 influences NK cell tumor-restraining functions remains unclear. Here, we report that following PGE₂ treatment, human NK cells exhibited altered expression of specific activating receptors and a reduced ability to degranulate and kill cancer targets. Transcriptional analysis uncovered that PGE₂ also differentially modulated the expression of chemokine receptors by NK cells, inhibiting CXCR3 but increasing CXCR4. Consistent with this, PGE₂-treated NK cells exhibited decreased migration to CXCL10 but increased ability to migrate toward CXCL12. Using live cell imaging, we showed that in the presence of PGE2 , NK cells were slower and less likely to kill cancer target cells following conjugation. Imaging the sequential stages of NK cell killing revealed that PGE₂ impaired NK cell polarization, but not the re-organization of synaptic actin or the release of perforin itself. Together, these findings demonstrate that PGE₂ affects multiple but select NK cell functions. Understanding how cancer cells subvert NK cells is necessary to more effectively harness the cancer-inhibitory function of NK cells in treatments.
Collapse
Affiliation(s)
- Chloe Patterson
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | - Khodor S Hazime
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| | - Santiago Zelenay
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Daniel M Davis
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
6
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
7
|
Fernández-Hermira S, Sanz-Fernández I, Botas M, Calvo V, Izquierdo M. Analysis of centrosomal area actin reorganization and centrosome polarization upon lymphocyte activation at the immunological synapse. Methods Cell Biol 2023; 173:15-32. [PMID: 36653081 DOI: 10.1016/bs.mcb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation of T and B lymphocytes, by antigen presented on an antigen-presenting cell (APC) induces the formation of the immunological synapse (IS). IS formation is associated with an initial increase in cortical filamentous actin (F-actin) at the IS, followed by a decrease in F-actin density at the central region of the IS, which contains the secretory domain. This is followed by the convergence of secretion vesicles towards the centrosome, and the polarization of the centrosome to the IS. These reversible, cortical actin cytoskeleton reorganization processes occur during lytic granule secretion in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, proteolytic granules secretion in B lymphocytes and during cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. In addition, several findings obtained in T and B lymphocytes forming IS show that actin cytoskeleton reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be associated with centrosome polarization. In this chapter we deal with the analysis of centrosomal area F-actin reorganization, as well as the centrosome polarization analysis toward the IS.
Collapse
Affiliation(s)
| | | | - Marta Botas
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain.
| |
Collapse
|
8
|
Pariani AP, Almada E, Hidalgo F, Borini-Etichetti C, Vena R, Marín L, Favre C, Goldenring JR, Cecilia Larocca M. Identification of a novel mechanism for LFA-1 organization during NK cytolytic response. J Cell Physiol 2023; 238:227-241. [PMID: 36477412 DOI: 10.1002/jcp.30921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.
Collapse
Affiliation(s)
- Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Evangelina Almada
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET-UNR, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Carla Borini-Etichetti
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Leandra Marín
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - James R Goldenring
- Epithelial Biology Center and Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Maria Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
9
|
Marin IA, Gutman-Wei AY, Chew KS, Raissi AJ, Djurisic M, Shatz CJ. The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex. Proc Natl Acad Sci U S A 2022; 119:e2203965119. [PMID: 35648829 PMCID: PMC9191652 DOI: 10.1073/pnas.2203965119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
During developmental critical periods, circuits are sculpted by a process of activity-dependent competition. The molecular machinery involved in regulating the complex process of responding to different levels of activity is now beginning to be identified. Here, we show that the nonclassical major histocompatibility class I (MHCI) molecule Qa-1 is expressed in the healthy brain in layer 6 corticothalamic neurons. In the visual cortex, Qa-1 expression begins during the critical period for ocular dominance (OD) plasticity and is regulated by neuronal activity, suggesting a role in regulating activity-dependent competition. Indeed, in mice lacking Qa-1, OD plasticity is perturbed. Moreover, signaling through CD94/NKG2, a known cognate Qa-1 heterodimeric receptor in the immune system, is implicated: selectively targeting this interaction phenocopies the plasticity perturbation observed in Qa-1 knockouts. In the cortex, CD94/NKG2 is expressed by microglial cells, which undergo activity-dependent changes in their morphology in a Qa-1–dependent manner. Our study thus reveals a neuron–microglial interaction dependent upon a nonclassical MHCI molecule expressed in L6 neurons, which regulates plasticity in the visual cortex. These results also point to an unexpected function for the Qa-1/HLA-E (ligand) and CD94/NKG2 (receptor) interaction in the nervous system, in addition to that described in the immune system.
Collapse
Affiliation(s)
- Ioana A. Marin
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Alan Y. Gutman-Wei
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Kylie S. Chew
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Aram J. Raissi
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Maja Djurisic
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Carla J. Shatz
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| |
Collapse
|
10
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Veillette A. The spatial distribution of target cell ligands determines NK cell degranulation. Sci Signal 2021; 14:eabi8525. [PMID: 34035144 DOI: 10.1126/scisignal.abi8525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cell-bound ligands are often viewed as moving passively in response to displacement of their cognate receptors. Verron et al provide an example of the distribution of ligands influencing the functional outcome of receptor stimulation.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Département de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada; and Department of Medicine, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
13
|
Lee M, Kim D, Kwon S. Hypergravity-induced changes in actin response of breast cancer cells to natural killer cells. Sci Rep 2021; 11:7267. [PMID: 33790394 PMCID: PMC8012622 DOI: 10.1038/s41598-021-86799-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Although immunotherapy holds promising cytotoxic activity against lymphoma or leukemia, the immunosuppressive mechanisms of solid tumors remain challenging. In this study, we developed and applied a hypergravity exposure system as a novel strategy to improve the responsiveness of breast cancer cells to natural killer (NK) cells for efficient immunotherapy. Following exposure to hypergravity, either in the presence or absence of NK cells, we investigated for changes in the cell cytoskeletal structure, which is related to the F-actin mediated immune evasion mechanism (referred to as "actin response") of cancer cells. Breast cancer cell line MDA-MB-231 cells were exposed thrice to a 20 min hypergravitational condition (10 × g), with a 20 min rest period between each exposure. The applied hypergravity induces changes in the intracellular cytoskeleton structure without decreasing the cell viability but increasing the cytotoxicity of MDA-MB-231 from 4 to 18% (4.5-fold) at a 3:1 ratio (NK-to-target). Analyses related to F-actin further demonstrate that the applied hypergravity results in rearrangement of the cytoskeleton, leading to inhibition of the actin response of MDA-MB-231. Taken together, our results suggest that the mechanical load increases through application of hypergravity, which potentially improves efficiency of cell-based immunotherapies by sensitizing tumors to immune cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Minseon Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inharo Nam-gu, Inchon, 22212, South Korea
| | - Dongjoo Kim
- Biology and Medical Device Evaluation Team, Korea Testing and Research Institute, Gwacheon, Korea
| | - Soonjo Kwon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inharo Nam-gu, Inchon, 22212, South Korea.
| |
Collapse
|
14
|
Kritikou JS, Oliveira MM, Record J, Saeed MB, Nigam SM, He M, Keszei M, Wagner AK, Brauner H, Sendel A, Sedimbi SK, Rentouli S, Lane DP, Snapper SB, Kärre K, Vandenberghe P, Orange JS, Westerberg LS. Constitutive activation of WASp leads to abnormal cytotoxic cells with increased granzyme B and degranulation response to target cells. JCI Insight 2021; 6:140273. [PMID: 33621210 PMCID: PMC8026198 DOI: 10.1172/jci.insight.140273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
X-linked neutropenia (XLN) is caused by gain-of-function mutations in the actin regulator Wiskott-Aldrich Syndrome protein (WASp). XLN patients have reduced numbers of cytotoxic cells in peripheral blood; however, their capacity to kill tumor cells remains to be determined. Here, we examined NK and T cells from 2 patients with XLN harboring the activating WASpL270P mutation. XLN patient NK and T cells had increased granzyme B content and elevated degranulation and IFN-γ production when compared with healthy control cells. Murine WASpL272P NK and T cells formed stable synapses with YAC-1 tumor cells and anti-CD3/CD28-coated beads, respectively. WASpL272P mouse T cells had normal degranulation and cytokine response whereas WASpL272P NK cells showed an enhanced response. Imaging experiments revealed that while WASpL272P CD8+ T cells had increased accumulation of actin upon TCR activation, WASpL272P NK cells had normal actin accumulation at lytic synapses triggered through NKp46 signaling but had impaired response to lymphocyte function associated antigen-1 engagement. When compared with WT mice, WASpL272P mice showed reduced growth of B16 melanoma and increased capacity to reject MHC class I-deficient cells. Together, our data suggest that cytotoxic cells with constitutively active WASp have an increased capacity to respond to and kill tumor cells.
Collapse
Affiliation(s)
| | | | - Julien Record
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Mezida B. Saeed
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Saket M. Nigam
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Minghui He
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Marton Keszei
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Arnika K. Wagner
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Hanna Brauner
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
- Department of Medicine, Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anton Sendel
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | | | | | - David P. Lane
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | - Scott B. Snapper
- Gastroenterology Division, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Klas Kärre
- Department of Microbiology Tumor and Cell Biology, Biomedicum C7, and
| | | | - Jordan S. Orange
- Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
15
|
Li M, Yu Y. Innate immune receptor clustering and its role in immune regulation. J Cell Sci 2021; 134:134/4/jcs249318. [PMID: 33597156 DOI: 10.1242/jcs.249318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of receptor clustering in the activation of adaptive immune cells has revolutionized our understanding of the physical basis of immune signal transduction. In contrast to the extensive studies of adaptive immune cells, particularly T cells, there is a lesser, but emerging, recognition that the formation of receptor clusters is also a key regulatory mechanism in host-pathogen interactions. Many kinds of innate immune receptors have been found to assemble into nano- or micro-sized domains on the surfaces of cells. The clusters formed between diverse categories of innate immune receptors function as a multi-component apparatus for pathogen detection and immune response regulation. Here, we highlight these pioneering efforts and the outstanding questions that remain to be answered regarding this largely under-explored research topic. We provide a critical analysis of the current literature on the clustering of innate immune receptors. Our emphasis is on studies that draw connections between the phenomenon of receptor clustering and its functional role in innate immune regulation.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
16
|
Calvo V, Izquierdo M. Role of Actin Cytoskeleton Reorganization in Polarized Secretory Traffic at the Immunological Synapse. Front Cell Dev Biol 2021; 9:629097. [PMID: 33614660 PMCID: PMC7890359 DOI: 10.3389/fcell.2021.629097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation by antigen presented on an antigen-presenting cell (APC) induces the formation of the immune synapse (IS), the convergence of secretory vesicles from T and B lymphocytes toward the centrosome, and the polarization of the centrosome to the immune synapse. Immune synapse formation is associated with an initial increase in cortical F-actin at the synapse, followed by a decrease in F-actin density at the central region of the immune synapse, which contains the secretory domain. These reversible, actin cytoskeleton reorganization processes occur during lytic granule degranulation in cytotoxic T lymphocytes (CTL) and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Recent evidences obtained in T and B lymphocytes forming synapses show that F-actin reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be involved in centrosome polarization. In this review we deal with the biological significance of both cortical and centrosomal area F-actin reorganization and some of the derived biological consequences.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
18
|
Novel Functions of the Septin Cytoskeleton: Shaping Up Tissue Inflammation and Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:40-51. [PMID: 33039354 DOI: 10.1016/j.ajpath.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory diseases cause profound alterations in tissue homeostasis, including unchecked activation of immune and nonimmune cells leading to disease complications such as aberrant tissue repair and fibrosis. Current anti-inflammatory therapies are often insufficient in preventing or reversing these complications. Remodeling of the intracellular cytoskeleton is critical for cell activation in inflamed and fibrotic tissues; however, the cytoskeleton has not been adequately explored as a therapeutic target in inflammation. Septins are GTP-binding proteins that self-assemble into higher order cytoskeletal structures. The septin cytoskeleton exhibits a number of critical cellular functions, including regulation of cell shape and polarity, cytokinesis, cell migration, vesicle trafficking, and receptor signaling. Surprisingly, little is known about the role of the septin cytoskeleton in inflammation. This article reviews emerging evidence implicating different septins in the regulation of host-pathogen interactions, immune cell functions, and tissue fibrosis. Targeting of the septin cytoskeleton as a potential future therapeutic intervention in human inflammatory and fibrotic diseases is also discussed.
Collapse
|
19
|
Forkosh E, Kenig A, Ilan Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol Res Perspect 2020; 8:e00616. [PMID: 32608157 PMCID: PMC7327382 DOI: 10.1002/prp2.616] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are highly dynamic polymers that constitute the cellular cytoskeleton and play a role in multiple cellular functions. Variability characterizes biological systems and is considered a part of the normal function of cells and organs. Variability contributes to cell plasticity and is a mechanism for overcoming errors in cellular level assembly and function, and potentially the whole organ level. Dynamic instability is a feature of biological variability that characterizes the function of MTs. The dynamic behavior of MTs constitutes the basis for multiple biological processes that contribute to cellular plasticity and the timing of cell signaling. Colchicine is a MT-modifying drug that exerts anti-inflammatory and anti-cancer effects. This review discusses some of the functions of colchicine and presents a platform for introducing variability while targeting MTs in intestinal cells, the microbiome, the gut, and the systemic immune system. This platform can be used for implementing novel therapies, improving response to chronic MT-based therapies, overcoming drug resistance, exerting gut-based systemic immune responses, and generating patient-tailored dynamic therapeutic regimens.
Collapse
Affiliation(s)
- Esther Forkosh
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Ariel Kenig
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Yaron Ilan
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| |
Collapse
|
20
|
Gunesch JT, Dixon AL, Ebrahim TAM, Berrien-Elliott MM, Tatineni S, Kumar T, Hegewisch-Solloa E, Fehniger TA, Mace EM. CD56 regulates human NK cell cytotoxicity through Pyk2. eLife 2020; 9:e57346. [PMID: 32510326 PMCID: PMC7358009 DOI: 10.7554/elife.57346] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
Human natural killer (NK) cells are defined as CD56+CD3-. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.
Collapse
Affiliation(s)
| | - Amera L Dixon
- Baylor College of MedicineHoustonUnited States
- Rice UniversityHoustonUnited States
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Tasneem AM Ebrahim
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
- Barnard CollegeNew YorkUnited States
| | | | | | | | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Todd A Fehniger
- Washington University School of MedicineSt. LouisUnited States
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
21
|
Lam MT, Mace EM, Orange JS. A research-driven approach to the identification of novel natural killer cell deficiencies affecting cytotoxic function. Blood 2020; 135:629-637. [PMID: 31945148 PMCID: PMC7046607 DOI: 10.1182/blood.2019000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Natural killer cell deficiencies (NKDs) are an emerging phenotypic subtype of primary immune deficiency. NK cells provide a defense against virally infected cells using a variety of cytotoxic mechanisms, and patients who have defective NK cell development or function can present with atypical, recurrent, or severe herpesviral infections. The current pipeline for investigating NKDs involves the acquisition and clinical assessment of patients with a suspected NKD followed by subsequent in silico, in vitro, and in vivo laboratory research. Evaluation involves initially quantifying NK cells and measuring NK cell cytotoxicity and expression of certain NK cell receptors involved in NK cell development and function. Subsequent studies using genomic methods to identify the potential causative variant are conducted along with variant impact testing to make genotype-phenotype connections. Identification of novel genes contributing to the NKD phenotype can also be facilitated by applying the expanding knowledge of NK cell biology. In this review, we discuss how NKDs that affect NK cell cytotoxicity can be approached in the clinic and laboratory for the discovery of novel gene variants.
Collapse
Affiliation(s)
- Michael T Lam
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
- Medical Scientist Training Program, and
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX
| | - Emily M Mace
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Medical Center, New York, NY; and
| |
Collapse
|
22
|
ERM Proteins at the Crossroad of Leukocyte Polarization, Migration and Intercellular Adhesion. Int J Mol Sci 2020; 21:ijms21041502. [PMID: 32098334 PMCID: PMC7073024 DOI: 10.3390/ijms21041502] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ezrin, radixin and moesin proteins (ERMs) are plasma membrane (PM) organizers that link the actin cytoskeleton to the cytoplasmic tail of transmembrane proteins, many of which are adhesion receptors, in order to regulate the formation of F-actin-based structures (e.g., microspikes and microvilli). ERMs also effect transmission of signals from the PM into the cell, an action mainly exerted through the compartmentalized activation of the small Rho GTPases Rho, Rac and Cdc42. Ezrin and moesin are the ERMs more highly expressed in leukocytes, and although they do not always share functions, both are mainly regulated through phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the N-terminal band 4.1 protein-ERM (FERM) domain and phosphorylation of a conserved Thr in the C-terminal ERM association domain (C-ERMAD), exerting their functions through a wide assortment of mechanisms. In this review we will discuss some of these mechanisms, focusing on how they regulate polarization and migration in leukocytes, and formation of actin-based cellular structures like the phagocytic cup-endosome and the immune synapse in macrophages/neutrophils and lymphocytes, respectively, which represent essential aspects of the effector immune response.
Collapse
|
23
|
Terrén I, Orrantia A, Mikelez-Alonso I, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell-Based Immunotherapy in Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020316. [PMID: 32013092 PMCID: PMC7072691 DOI: 10.3390/cancers12020316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that are able to kill tumor cells without prior sensitization. It has been shown that NK cells play a pivotal role in a variety of cancers, highlighting their relevance in tumor immunosurveillance. NK cell infiltration has been reported in renal cell carcinoma (RCC), the most frequent kidney cancer in adults, and their presence has been associated with patients’ survival. However, the role of NK cells in this disease is not yet fully understood. In this review, we summarize the biology of NK cells and the mechanisms through which they are able to recognize and kill tumor cells. Furthermore, we discuss the role that NK cells play in renal cell carcinoma, and review current strategies that are being used to boost and exploit their cytotoxic capabilities.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Idoia Mikelez-Alonso
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
- CIC biomaGUNE, 20014 Donostia-San Sebastián, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.T.); (A.O.); (I.M.-A.); (J.V.); (O.Z.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: ; Tel.: +34-94-600-6000 (ext. 7079)
| |
Collapse
|
24
|
Sun L, Cao X, Lechuga S, Feygin A, Naydenov NG, Ivanov AI. A Septin Cytoskeleton-Targeting Small Molecule, Forchlorfenuron, Inhibits Epithelial Migration via Septin-Independent Perturbation of Cellular Signaling. Cells 2019; 9:cells9010084. [PMID: 31905721 PMCID: PMC7016606 DOI: 10.3390/cells9010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Septins are GTP-binding proteins that self-assemble into high-order cytoskeletal structures, filaments, and rings. The septin cytoskeleton has a number of cellular functions, including regulation of cytokinesis, cell migration, vesicle trafficking, and receptor signaling. A plant cytokinin, forchlorfenuron (FCF), interacts with septin subunits, resulting in the altered organization of the septin cytoskeleton. Although FCF has been extensively used to examine the roles of septins in various cellular processes, its specificity, and possible off-target effects in vertebrate systems, has not been investigated. In the present study, we demonstrate that FCF inhibits spontaneous, as well as hepatocyte growth factor-induced, migration of HT-29 and DU145 human epithelial cells. Additionally, FCF increases paracellular permeability of HT-29 cell monolayers. These inhibitory effects of FCF persist in epithelial cells where the septin cytoskeleton has been disassembled by either CRISPR/Cas9-mediated knockout or siRNA-mediated knockdown of septin 7, insinuating off-target effects of FCF. Biochemical analysis reveals that FCF-dependent inhibition of the motility of control and septin-depleted cells is accompanied by decreased expression of the c-Jun transcription factor and inhibited ERK activity. The described off-target effects of FCF strongly suggests that caution is warranted while using this compound to examine the biological functions of septins in cellular systems and model organisms.
Collapse
Affiliation(s)
- Lei Sun
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Xuelei Cao
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA 23298, USA;
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (L.S.); (X.C.); (S.L.); (N.G.N.)
- Correspondence: ; Tel.: +1-216-444-5620
| |
Collapse
|
25
|
Ilan-Ber T, Ilan Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol Immunol 2019; 111:73-82. [DOI: 10.1016/j.molimm.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
|
26
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
27
|
MacFawn I, Wilson H, Selth LA, Leighton I, Serebriiskii I, Bleackley RC, Elzamzamy O, Farris J, Pifer PM, Richer J, Frisch SM. Grainyhead-like-2 confers NK-sensitivity through interactions with epigenetic modifiers. Mol Immunol 2018; 105:137-149. [PMID: 30508726 DOI: 10.1016/j.molimm.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Natural Killer (NK) cells suppress tumor initiation and metastasis. Most carcinomas are heterogeneous mixtures of epithelial, mesenchymal and hybrid tumor cells, but the relationships of these phenotypes to NK susceptibility are understood incompletely. Grainyhead-like-2 (GRHL2) is a master programmer of the epithelial phenotype, that is obligatorily down-regulated during experimentally induced Epithelial-Mesenchymal Transition (EMT). Here, we utilize GRHL2 re-expression to discover unifying molecular mechanisms that link the epithelial phenotype with NK-sensitivity. GRHL2 enhanced the expression of ICAM-1, augmenting NK-target cell synaptogenesis and NK killing of target cells. The expression of multiple interferon response genes, including ICAM1, anti-correlated with EMT. We identified two novel GRHL2-interacting proteins, the histone methyltransferases KMT2C and KMT2D. Mesenchymal-epithelial transition, NK-sensitization and ICAM-1 expression were promoted by GRHL2-KMT2C/D interactions and by GRHL2 inhibition of p300, revealing novel and potentially targetable epigenetic mechanisms connecting the epithelial phenotype with target cell susceptibility to NK killing.
Collapse
Affiliation(s)
- Ian MacFawn
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Hannah Wilson
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, South Australia, Australia
| | - Ian Leighton
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; Washington and Jefferson College, 60 S. Lincoln Street, Washington, PA 15301, United States
| | - Ilya Serebriiskii
- Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111, United States
| | - R Christopher Bleackley
- Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Osama Elzamzamy
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; West Virginia Clinical and Translational Sciences Institute, School of Medicine, West Virginia University PO Box 9102, Morgantown, WV 26506-9102, United States
| | - Joshua Farris
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Phillip M Pifer
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, 31 Aurora, CO 80045, United States
| | - Steven M Frisch
- West Virginia University Cancer Institute, 1 Medical Center Drive, West Virginia University, Morgantown, WV 26505, United States; Department of Biochemistry, 1 Medical Center Drive, West Virginia University, Morgantown WV, United States.
| |
Collapse
|
28
|
Wilton KM, Billadeau DD. VASP Regulates NK Cell Lytic Granule Convergence. THE JOURNAL OF IMMUNOLOGY 2018; 201:2899-2909. [PMID: 30282752 DOI: 10.4049/jimmunol.1800254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022]
Abstract
NK cells eliminate viral-infected and malignant cells through a highly orchestrated series of cytoskeletal rearrangements, resulting in the release of cytolytic granule contents toward the target cell. Central to this process is the convergence of cytolytic granules to a common point, the microtubule-organizing center (MTOC), before delivery to the synapse. In this study, we show that vasodialator-stimulated phosphoprotein (VASP), an actin regulatory protein, localizes to the cytolytic synapse, but surprisingly, shows no impact on conjugate formation or synaptic actin accumulation despite being required for human NK cell-mediated killing. Interestingly, we also find that a pool of VASP copurifies with lytic granules and localizes with lytic granules at the MTOC. Significantly, depletion of VASP decreased lytic granule convergence without impacting MTOC polarization. Using the KHYG-1 cell line in which lytic granules are in a constitutively converged state, we find that either VASP depletion or F-actin destabilization promoted spreading of formerly converged granules. Our results demonstrate a novel requirement for VASP and actin polymerization in maintaining lytic granule convergence during NK cell-mediated killing.
Collapse
Affiliation(s)
- Katelynn M Wilton
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905.,Medical Scientist Training Program, College of Medicine, Mayo Clinic, Rochester, MN 55905; and
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905; .,Division of Oncology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
29
|
Walwyn-Brown K, Guldevall K, Saeed M, Pende D, Önfelt B, MacDonald AS, Davis DM. Human NK Cells Lyse Th2-Polarizing Dendritic Cells via NKp30 and DNAM-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2028-2041. [PMID: 30120122 PMCID: PMC6139540 DOI: 10.4049/jimmunol.1800475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Cross-talk between NK cells and dendritic cells (DCs) is important in Th1 immune responses, including antitumor immunity and responses to infections. DCs also play a crucial role in polarizing Th2 immunity, but the impact of NK cell-DC interactions in this context remains unknown. In this study, we stimulated human monocyte-derived DCs in vitro with different pathogen-associated molecules: LPS or polyinosinic-polycytidylic acid, which polarize a Th1 response, or soluble egg Ag from the helminth worm Schistosoma mansoni, a potent Th2-inducing Ag. Th2-polarizing DCs were functionally distinguishable from Th1-polarizing DCs, and both showed distinct morphology and dynamics from immature DCs. We then assessed the outcome of autologous NK cells interacting with these differently stimulated DCs. Confocal microscopy showed polarization of the NK cell microtubule organizing center and accumulation of LFA-1 at contacts between NK cells and immature or Th2-polarizing DCs but not Th1-polarizing DCs, indicative of the assembly of an activating immune synapse. Autologous NK cells lysed immature DCs but not DCs treated with LPS or polyinosinic-polycytidylic acid as reported previously. In this study, we demonstrated that NK cells also degranulated in the presence of Th2-polarizing DCs. Moreover, time-lapse live-cell microscopy showed that DCs that had internalized fluorescently labeled soluble egg Ag were efficiently lysed. Ab blockade of NK cell-activating receptors NKp30 or DNAM-1 abrogated NK cell lysis of Th2-polarizing DCs. Thus, these data indicate a previously unrecognized role of NK cell cytotoxicity and NK cell-activating receptors NKp30 and DNAM-1 in restricting the pool of DCs involved in Th2 immune responses.
Collapse
Affiliation(s)
- Katherine Walwyn-Brown
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Karolin Guldevall
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, SE-106 91 Stockholm, Sweden
| | - Mezida Saeed
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Daniela Pende
- Laboratorio Immunologia, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genova, Italy; and
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, SE-106 91 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom;
| |
Collapse
|
30
|
Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, Jang JH, Qin L, Liu H, Dotti G, Liu D. Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 2018; 26:963-975. [PMID: 29503199 PMCID: PMC6080133 DOI: 10.1016/j.ymthe.2018.01.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has the potential to improve the overall survival of patients with malignancies by enhancing the effectiveness of CAR T cells. Precisely predicting the effectiveness of various CAR T cells represents one of today’s key unsolved problems in immunotherapy. Here, we predict the effectiveness of CAR-modified cells by evaluating the quality of the CAR-mediated immunological synapse (IS) by quantitation of F-actin, clustering of tumor antigen, polarization of lytic granules (LGs), and distribution of key signaling molecules within the IS. Long-term killing capability, but not secretion of conventional cytokines or standard 4-hr cytotoxicity, correlates positively with the quality of the IS in two different CAR T cells that share identical antigen specificity. Xenograft model data confirm that the quality of the IS in vitro correlates positively with performance of CAR-modified immune cells in vivo. Therefore, we propose that the quality of the IS predicts the effectiveness of CAR-modified immune cells, which provides a novel strategy to guide CAR therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Gene Expression
- Gene Order
- Genes, Reporter
- Genetic Vectors/genetics
- Humans
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Microscopy, Confocal
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Retroviridae/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yuhui Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Xi Kang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peilin Zheng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yi-Hsin Hsu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Hao Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Houston, TX 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Carisey AF, Mace EM, Saeed MB, Davis DM, Orange JS. Nanoscale Dynamism of Actin Enables Secretory Function in Cytolytic Cells. Curr Biol 2018; 28:489-502.e9. [PMID: 29398219 PMCID: PMC5835143 DOI: 10.1016/j.cub.2017.12.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cells are innate immune effectors that lyse virally infected and tumorigenic cells through the formation of an immunological synapse. Actin remodeling at the lytic immunological synapse is a critical requirement for multiple facets of cytotoxic function. Activating receptor and integrin signaling leads to the regulated turnover and remodeling of actin, which is required for adhesion, sustained receptor signaling, and ultimately exocytosis. NK cells undergo lytic granule exocytosis in hypodense regions of a pervasive actin network. Although these requirements have been well demonstrated, neither the dynamic regulation of synaptic actin nor its specific function, however, has been determined at a nanoscale level. Here, live-cell super-resolution microscopy demonstrates nanoscale filamentous actin dynamism in NK cell lytic granule secretion. Following cell spreading, the overall content of the branched actin network at an immune synapse is stable over time and contains branched actin fibers and discrete actin foci. Similar actin architecture is generated in cytolytic T cells, although the timescale differs from that of NK cells. Individual filament displacement leads to stochastic clearance formation and disappearance, which are independent of lytic granule positioning. Actin dynamism is dependent upon branched network formation mediated by Arp2/3 and contractility generated by myosin IIA. Importantly, the use of small-molecule inhibitors demonstrates that actin dynamism is ultimately needed for granule secretion. Thus, we describe a requirement for nanoscale actin fiber rearrangement in generating the complex actin architecture that enables lytic granule secretion.
Collapse
Affiliation(s)
- Alexandre F Carisey
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA; Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
| | - Mezida B Saeed
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Kobayashi T, Mattarollo SR. Natural killer cell metabolism. Mol Immunol 2017; 115:3-11. [PMID: 29179986 DOI: 10.1016/j.molimm.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are a critical component in the innate immune response against disease. NK cell function is tightly regulated by specific cytokine and activation/inhibitory receptor signalling, leading to diverse effector responses. Like all living cells, energy metabolism is a fundamental requirement for NK cell activation and survival. There is growing evidence that distinct functional profiles of NK cells are determined by alterations to cellular metabolic pathways. In this review, we summarise current literature that has explored NK cell metabolism to provide insight into how metabolic regulation controls NK cell function. We focus on metabolism pathways induced by different NK cell stimuli, metabolic regulatory proteins, and nutrient and hormonal levels in health and disease which impact on NK cell metabolic and functional activity.
Collapse
Affiliation(s)
- Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia.
| |
Collapse
|
33
|
Liu D, Tian S, Zhang K, Xiong W, Lubaki NM, Chen Z, Han W. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017; 8:861-877. [PMID: 28488245 PMCID: PMC5712291 DOI: 10.1007/s13238-017-0415-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body’s immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Collapse
Affiliation(s)
- Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| | - Shuo Tian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ndongala Michel Lubaki
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
34
|
Lopes FB, Bálint Š, Valvo S, Felce JH, Hessel EM, Dustin ML, Davis DM. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J Cell Biol 2017; 216:1123-1141. [PMID: 28289091 PMCID: PMC5379948 DOI: 10.1083/jcb.201608094] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023] Open
Abstract
Lopes et al. use superresolution microscopy to visualize the nanoscale organization of activating and inhibitory receptors on human macrophages. Nanoclusters of inhibitory SIRPα and activating FcγRI associate in the cell’s resting state, but engagement of FcγRI induces their segregation. Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration.
Collapse
Affiliation(s)
- Filipa B Lopes
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, England, UK
| | - Štefan Bálint
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, England, UK
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, England, UK
| | - James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, England, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Hertfordshire SG1 2NY, England, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, England, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, England, UK
| |
Collapse
|
35
|
Kritikou JS, Dahlberg CIM, Baptista MAP, Wagner AK, Banerjee PP, Gwalani LA, Poli C, Panda SK, Kärre K, Kaech SM, Wermeling F, Andersson J, Orange JS, Brauner H, Westerberg LS. IL-2 in the tumor microenvironment is necessary for Wiskott-Aldrich syndrome protein deficient NK cells to respond to tumors in vivo. Sci Rep 2016; 6:30636. [PMID: 27477778 PMCID: PMC4967920 DOI: 10.1038/srep30636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
To kill target cells, natural killer (NK) cells organize signaling from activating and inhibitory receptors to form a lytic synapse. Wiskott-Aldrich syndrome (WAS) patients have loss-of-function mutations in the actin regulator WASp and suffer from immunodeficiency with increased risk to develop lymphoreticular malignancies. NK cells from WAS patients fail to form lytic synapses, however, the functional outcome in vivo remains unknown. Here, we show that WASp KO NK cells had decreased capacity to degranulate and produce IFNγ upon NKp46 stimulation and this was associated with reduced capacity to kill MHC class I-deficient hematopoietic grafts. Pre-treatment of WASp KO NK cells with IL-2 ex vivo restored degranulation, IFNγ production, and killing of MHC class I negative hematopoietic grafts. Moreover, WASp KO mice controlled growth of A20 lymphoma cells that naturally produced IL-2. WASp KO NK cells showed increased expression of DNAM-1, LAG-3, and KLRG1, all receptors associated with cellular exhaustion and NK cell memory. NK cells isolated from WAS patient spleen cells showed increased expression of DNAM-1 and had low to negative expression of CD56, a phenotype associated with NK cells exhaustion. Finally, in a cohort of neuroblastoma patients we identified a strong correlation between WASp, IL-2, and patient survival.
Collapse
Affiliation(s)
- Joanna S. Kritikou
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Carin I. M. Dahlberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Marisa A. P. Baptista
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Arnika K. Wagner
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Pinaki P. Banerjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lavesh Amar Gwalani
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Cecilia Poli
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sudeepta K. Panda
- Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Klas Kärre
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Fredrik Wermeling
- Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm 171 76, Sweden
| | - John Andersson
- Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Jordan S. Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hanna Brauner
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
36
|
Oszmiana A, Williamson DJ, Cordoba SP, Morgan DJ, Kennedy PR, Stacey K, Davis DM. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling. Cell Rep 2016; 15:1957-72. [PMID: 27210755 PMCID: PMC4893158 DOI: 10.1016/j.celrep.2016.04.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 01/24/2023] Open
Abstract
Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR), KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling. Activating and inhibitory NK cell receptors have a distinct nanoscale organization The transmembrane sequence of KIR controls their nanoscale organization Nanoclusters of KIR2DS1 and its adaptor are juxtaposed but mix upon activation Phosphorylation of ZAP-70 or SHP-1 is favored in larger receptor nanoclusters
Collapse
Affiliation(s)
- Anna Oszmiana
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - David J Williamson
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Shaun-Paul Cordoba
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Philippa R Kennedy
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Kevin Stacey
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
37
|
Abstract
Recent advances in imaging technology have enabled significant advances in the study of NK cell cytotoxic effector function through quantitative analysis of the NK cell immunological synapse. This can include the use of high- and super-resolution microscopy to quantify dynamics of cytoskeletal elements and the role they play in the regulation and execution of NK cell directed secretion. Here we describe a protocol for the recapitulation of the NK cell lytic synapse on glass, the acquisition of microscopy images, and suggested approaches for the processing and analysis of microscopy data.
Collapse
Affiliation(s)
- Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
|
39
|
Schwingshackl A, Roan E, Teng B, Waters CM. TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements. PLoS One 2015; 10:e0126781. [PMID: 26001192 PMCID: PMC4441361 DOI: 10.1371/journal.pone.0126781] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/28/2015] [Indexed: 01/15/2023] Open
Abstract
Background TREK-1 deficient alveolar epithelial cells (AECs) secrete less IL-6, more MCP-1, and contain less F-actin. Whether these alterations in cytokine secretion and F-actin content are related remains unknown. We now hypothesized that cytokine secretion from TREK-1-deficient AECs was regulated by cytoskeletal rearrangements. Methods We determined F-actin and α-tubulin contents of control, TREK-1-deficient and TREK-1-overexpressing human A549 cells by confocal microscopy and western blotting, and measured IL-6 and MCP-1 levels using real-time PCR and ELISA. Results Cytochalasin D decreased the F-actin content of control cells. Jasplakinolide increased the F-actin content of TREK-1 deficient cells, similar to the effect of TREK-1 overexpression in control cells. Treatment of control and TREK-1 deficient cells with TNF-α, a strong stimulus for IL-6 and MCP-1 secretion, had no effect on F-actin structures. The combination of TNF-α+cytochalasin D or TNF-α+jasplakinolide had no additional effect on the F-actin content or architecture when compared to cytochalasin D or jasplakinolide alone. Although TREK-1 deficient AECs contained less F-actin at baseline, quantified biochemically, they contained more α-tubulin. Exposure to nocodazole disrupted α-tubulin filaments in control and TREK-1 deficient cells, but left the overall amount of α-tubulin unchanged. Although TNF-α had no effect on the F-actin or α-tubulin contents, it increased IL-6 and MCP-1 production and secretion from control and TREK-1 deficient cells. IL-6 and MCP-1 secretions from control and TREK-1 deficient cells after TNF-α+jasplakinolide or TNF-α+nocodazole treatment was similar to the effect of TNF-α alone. Interestingly, cytochalasin D decreased TNF-α-induced IL-6 but not MCP-1 secretion from control but not TREK-1 deficient cells. Conclusion Although cytochalasin D, jasplakinolide and nocodazole altered the F-actin and α-tubulin structures of control and TREK-1 deficient AEC, the changes in cytokine secretion from TREK-1 deficient cells cannot be explained by cytoskeletal rearrangements in these cells.
Collapse
Affiliation(s)
- Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| | - Esra Roan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Christopher M. Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
40
|
Lenalidomide augments actin remodeling and lowers NK-cell activation thresholds. Blood 2015; 126:50-60. [PMID: 26002964 DOI: 10.1182/blood-2015-01-625004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
As multiple myeloma (MM) progresses, natural killer (NK)-cell responses decline against malignant plasma cells. The immunomodulatory drug lenalidomide is widely used for treatment of MM but its influence on NK-cell biology is unclear. Here, we report that lenalidomide lowers the threshold for NK-cell activation, causing a 66% decrease in the 50% effective concentration (EC50) for activation through CD16, and a 38% decrease in EC50 for NK group 2 member D (NKG2D)-mediated activation, allowing NK cells to respond to lower doses of ligand. In addition, lenalidomide augments NK-cell responses, causing a twofold increase in the proportion of primary NK cells producing interferon-γ (IFN-γ), and a 20-fold increase in the amount of IFN-γ produced per cell. Importantly, lenalidomide did not trigger IFN-γ production in unstimulated NK cells. Thus, lenalidomide enhances the NK-cell arm of the immune response, without activating NK cells inappropriately. Of particular clinical importance, lenalidomide also allowed NK cells to be activated by lower doses of rituximab, an anti-CD20 monoclonal antibody (mAb) widely used to treat B-cell malignancies. This supports combined use of lenalidomide and rituximab in a clinical setting. Finally, superresolution microscopy revealed that lenalidomide increased the periodicity of cortical actin at immune synapses, resulting in an increase in the area of the actin mesh predicted to be penetrable to vesicles containing IFN-γ. NK cells from MM patients also responded to lenalidomide in this way. This indicates that nanometer-scale rearrangements in cortical actin, a recently discovered step in immune synapse assembly, are a potential new target for therapeutic compounds.
Collapse
|
41
|
Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 2015; 15:243-54. [PMID: 25743219 DOI: 10.1038/nri3799] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for the control of infections and malignancies. NK cells express a variety of inhibitory and activating receptors that facilitate fine discrimination between damaged and healthy cells. Among them, a family of molecules that bind nectin and nectin-like proteins has recently emerged and has been shown to function as an important regulator of NK cell functions. These molecules include CD226, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), CD96, and cytotoxic and regulatory T cell molecule (CRTAM). In this Review, we focus on the recent advances in our understanding of how these receptors regulate NK cell biology and of their roles in pathologies such as cancer, infection and autoimmunity.
Collapse
Affiliation(s)
- Ludovic Martinet
- 1] Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. [2] Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037, Cancer Research Center of Toulouse, Toulouse F-31000, France
| | - Mark J Smyth
- 1] Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. [2] School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
42
|
Das D, Zalewski JK, Mohan S, Plageman TF, VanDemark AP, Hildebrand JD. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biol Open 2014; 3:850-60. [PMID: 25171888 PMCID: PMC4163662 DOI: 10.1242/bio.20147450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jenna K Zalewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Timothy F Plageman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
43
|
Affiliation(s)
- Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine; The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|