1
|
Popova K, Benedum J, Engl M, Lütgendorf-Caucig C, Fossati P, Widder J, Podar K, Slade D. PARP7 as a new target for activating anti-tumor immunity in cancer. EMBO Mol Med 2025:10.1038/s44321-025-00214-6. [PMID: 40128585 DOI: 10.1038/s44321-025-00214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
ADP-ribosyl transferases (ARTs) are a family of enzymes which catalyze the addition of a chain (PARylation) or a single moiety (MARylation) of ADP-ribose to their substrates. PARP7 is a mono-ADP-ribosyl transferase (mono-ART) which has recently gained attention due to its emerging role as a negative regulator of the type I interferon (IFN-I) and nuclear receptor signaling, and due to its aberrant expression in cancer, contributing to disease progression and immune evasion. PARP7-mediated ADP-ribosylation can differentially affect protein stability. On the one hand, PARP7-mediated ADP-ribosylation of the transcription factor FRA1 protects it from proteosomal degradation and thereby supports its function in negatively regulating IRF1 and the expression of apoptosis and immune signaling genes. On the other hand, PARP7-mediated ADP-ribosylation of aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) marks them for proteosomal degradation. PARP7 also ADP-ribosylates the ligand-bound androgen receptor (AR), which is recognized by DTX3L-PARP9 that modulate the AR transcriptional activity. In this review, we discuss PARP7 enzymatic properties, biological functions and known substrates, its role in various cancers, and its targeting by specific inhibitors.
Collapse
Affiliation(s)
- Katerina Popova
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Carola Lütgendorf-Caucig
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Klaus Podar
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems and der Donau, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Pan Z, Liu Y, Dai H, Xu S, Qin M, Wang K, Luo C, Luo C, Zhang Q, Liang Z, Feng S. Identification of interferon-stimulated response elements (ISREs) in canines. BMC Vet Res 2025; 21:128. [PMID: 40025541 PMCID: PMC11871823 DOI: 10.1186/s12917-025-04577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
Interferon (IFN) responses are vital for antiviral defense, with interferon-stimulated response elements (ISREs) crucial for regulating IFN signaling. While ISREs are well-studied in humans and mice, research on canine ISREs is limited. This study aimed to clarify the role of canine ISREs and create a new method for detecting IFN activity. Canine IFN α (CaIFNα) was produced using the Pichia pastoris (P. pastoris) system, and an ISRE-based flow cytometry method was developed to measure its activity. ISREs for CaIFNα were predicted via bioinformatics analysis. Subsequently, viral suppression assays were conducted using vesicular stomatitis virus, canine influenza virus, and H9N2 to evaluate the antiviral activity of recombinant CaIFNα. Fluorescence analysis confirmed that CaIFNα activates ISRE2, ISRE8, and ISRE10, thereby enhancing the transcription and expression of the enhanced green fluorescent protein (EGFP) fusion gene. A novel ISRE and EGFP based flow cytometry method enabled precise quantification of CaIFNα levels through fluorescence cell counts, with a detection sensitivity reaching 0.1 × 10- 7 mg/mL. Results demonstrate that CaIFNα possesses multiple antiviral activity and activates specific ISREs, augmenting gene expression. This approach advances the study of canine ISREs and supports the development and clinical application of CaIFNα for diagnosing viral infections and monitoring treatment efficacy.
Collapse
Affiliation(s)
- Zhichao Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ke Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chenying Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changqi Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinying Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.
| |
Collapse
|
3
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Deng L, Wei SL, Wang L, Huang JQ. Feruloylated Oligosaccharides Prevented Influenza-Induced Lung Inflammation via the RIG-I/MAVS/TRAF3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9782-9794. [PMID: 38597360 DOI: 10.1021/acs.jafc.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-β, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lei Wei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Kurumi H, Yokoyama Y, Hirano T, Akita K, Hayashi Y, Kazama T, Isomoto H, Nakase H. Cytokine Profile in Predicting the Effectiveness of Advanced Therapy for Ulcerative Colitis: A Narrative Review. Biomedicines 2024; 12:952. [PMID: 38790914 PMCID: PMC11117845 DOI: 10.3390/biomedicines12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis (UC), but responses to these advanced therapies can vary. This variability may be due to differences in cytokine profiles among patients with UC. While the etiology of UC is not fully understood, abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various advanced therapies for UC. Understanding these associations may be helpful in selecting optimal therapeutic agents.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Kotaro Akita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| |
Collapse
|
6
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
7
|
Schemiko Almeida K, Rossi SA, Alves LR. RNA-containing extracellular vesicles in infection. RNA Biol 2024; 21:37-51. [PMID: 39589334 PMCID: PMC11601058 DOI: 10.1080/15476286.2024.2431781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells that play vital roles in intercellular communication by transporting diverse biologically active molecules, including RNA molecules, including mRNA, miRNA, lncRNA, and other regulatory RNAs. These RNA types are protected within the lipid bilayer of EVs, ensuring their stability and enabling long-distance cellular interactions. Notably, EVs play roles in infection, where pathogens and host cells use EV-mediated RNA transfer to influence immune responses and disease outcomes. For example, bacterial EVs play a crucial role in infection by modulating host immune responses and facilitating pathogen invasion. This review explores the complex interactions between EV-associated RNA and host-pathogen dynamics in bacteria, parasites, and fungi, aiming to uncover molecular mechanisms in infectious diseases and potential therapeutic targets.
Collapse
Affiliation(s)
- Kayo Schemiko Almeida
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Suélen Andreia Rossi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
8
|
Vasquez Ayala A, Hsu CY, Oles RE, Matsuo K, Loomis LR, Buzun E, Carrillo Terrazas M, Gerner RR, Lu HH, Kim S, Zhang Z, Park JH, Rivaud P, Thomson M, Lu LF, Min B, Chu H. Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice. J Exp Med 2024; 221:e20230063. [PMID: 38085267 PMCID: PMC10716256 DOI: 10.1084/jem.20230063] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.
Collapse
Affiliation(s)
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Renee E. Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhiko Matsuo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-osaka, Japan
| | - Luke R. Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Ekaterina Buzun
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | - Romana R. Gerner
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, Freising-Weihenstephan, Germany
| | - Hsueh-Han Lu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jong Hwee Park
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Paul Rivaud
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, La Jolla, CA, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
9
|
Wang Z, Hu X, Cui P, Kong C, Chen X, Wang W, Lu S. Progress in understanding the role of cGAS-STING pathway associated with programmed cell death in intervertebral disc degeneration. Cell Death Discov 2023; 9:377. [PMID: 37845198 PMCID: PMC10579269 DOI: 10.1038/s41420-023-01607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 10/18/2023] Open
Abstract
Nucleus pulposus (NP) inflammatory response can induce intervertebral disc degeneration (IVDD) by causing anabolic and catabolic disequilibrium of the extracellular matrix (ECM). This process is accompanied by the production of endogenous DNAs, then detectable by the DNA sensor cyclic GMP-AMP synthase (cGAS). cGAS recognizes these DNAs and activates the downstream adaptor protein, a stimulator of interferon genes (STING), initiating a cascade of inflammation responses through various cytokines. This evidence implies a crucial role of the cGAS-STING signaling pathway in IVDD. Additionally, it is suggested that this pathway could modulate IVDD progression by regulating apoptosis, autophagy, and pyroptosis. However, a detailed understanding of the role of cGAS-STING pathway in IVDD is still lacking. This review provides a comprehensive summary of recent advances in our understanding of the role of the cGAS-STING pathway in modulating inflammatory response in IVDD. We delve into the connection between the cGAS-STING axis and apoptosis, autophagy, and pyroptosis in IVDD. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING signaling pathway in IVDD treatment. Overall, this review aims to provide a foundation for future directions in IVDD treatment strategies.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
10
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Xu Q, Liang J, Jin J, Wu W, Ren J, Ruan J, Fan L, Yuan W, Cai J, Lin Q, Xiang B, Ding C, Ren T, Chen L. Newcastle disease virus nucleocapsid protein mediates the degradation of 14-3-3ε to antagonize the interferon response and promote viral replication. Vet Microbiol 2023; 284:109851. [PMID: 37598526 DOI: 10.1016/j.vetmic.2023.109851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Newcastle disease virus (NDV) is responsible for outbreaks that pose a threat to the global poultry industry. NDV triggers an interferon (IFN) response in the host upon infection. However, it also employs mechanisms that counteract this response. One important component in IFN-related signaling pathways is 14-3-3ε, which is known to interact with retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). The relationship between 14 and 3-3ε and NDV infection has not been previously explored; therefore, this study aimed to investigate this relationship in vivo and in vitro using overexpressed and knockdown 14-3-3ε experiments, along with co-immunoprecipitation analysis. We found that NDV infection led to the degradation of 14-3-3ε. Furthermore, 14-3-3ε inhibited the replication of NDV, suggesting that NDV may enhance its own replication by promoting the degradation of 14-3-3ε during infection. The study revealed that 14-3-3ε is degraded by lysosomes and the viral protein nucleocapsid protein (NP) of NDV induces this degradation. It was also observed that 14-3-3ε is involved in activating the IFN pathway during NDV infection and mediates the binding of MDA5 to MAVS. Our study reveals that NDV NP mediates the entry of 14-3-3ε into lysosomes and facilitates its degradation. These findings contribute to the existing knowledge on the molecular mechanisms employed by NDV to counteract the IFN response and enhance its own replication.
Collapse
Affiliation(s)
- Qiufan Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- Moganshan Institute Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wanyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jiayu Ruan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Weifeng Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
12
|
Alvik K, Shao P, Hutin D, Baglole C, Grant DM, Matthews J. Increased sensitivity to chemically induced colitis in mice harboring a DNA-binding deficient aryl hydrocarbon receptor. Toxicol Sci 2023; 191:321-331. [PMID: 36519841 PMCID: PMC9936212 DOI: 10.1093/toxsci/kfac132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a transcription factor best known for mediating toxic responses of environmental pollutants, also integrates metabolic signals to promote anti-inflammatory responses, intestinal homeostasis, and maintain barrier integrity. AHR regulates its target genes through direct DNA-binding to aryl hydrocarbon response elements (AHREs) but also through tethering to other transcription factors in a DNA-binding independent manner. However, it is not known if AHR's anti-inflammatory role in the gut requires its ability to bind to AHREs. To test this, we determined the sensitivity of Ahrdbd/dbd mice, a genetically modified mouse line that express an AHR protein incapable of binding to AHREs, to dextran sulfate sodium (DSS)-induced colitis. Ahrdbd/dbd mice exhibited more severe symptoms of intestinal inflammation than Ahr+/+ mice. None of the Ahrdbd/dbd mice survived after the 5-day DSS followed by 7-day washout period. By day 6, the Ahrdbd/dbd mice had severe body weight loss, shortening of the colon, higher disease index scores, enlarged spleens, and increased expression of several inflammation genes, including interleukin 1b (Il-1b), Il-6, Il-17, C-x-c motif chemokine ligand 1 (Cxcl1), Cxcl2, Prostaglandin-endoperoxide synthase (Ptgs2), and lipocalin-2. Our findings show that AHR's DNA-binding domain and ability to bind to AHREs are required to reduce inflammation, maintain a healthy intestinal environment, and protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Carolyn Baglole
- Department of Medicine, McGill University, Montreal H4A3J1, Canada.,Department of Pathology, McGill University, Montreal H4A3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| |
Collapse
|
13
|
Chen L, Dai M, Zuo W, Dai Y, Yang Q, Yu S, Huang M, Liu H. NF-κB p65 and SETDB1 expedite lipopolysaccharide-induced intestinal inflammation in mice by inducing IRF7/NLR-dependent macrophage M1 polarization. Int Immunopharmacol 2023; 115:109554. [PMID: 36580757 DOI: 10.1016/j.intimp.2022.109554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022]
Abstract
Macrophages exhibit distinct phenotypes that are pro-inflammatory (M1) or anti-inflammatory (M2) in response to inflammation. In this study, we tried to identify the roles and mechanisms of interferon regulatory factor 7 (IRF7) in modulating the phenotypes of macrophages in lipopolysaccharide (LPS)-induced intestinal inflammation. The mouse model of intestinal inflammation was induced by lipopolysaccharide (LPS), and mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells were selected for experimental verification in vitro. Results demonstrated that IRF7 was highly expressed in the mouse model of intestinal inflammation, while IRF7 deficiency repressed macrophage M1 polarization and attenuated intestinal inflammation in mice. p65 and SET domain bifurcated 1 (SETDB1) synergistically promoted histone 3 lysine 4 trimethylation (H3K4me3) methylation to elevate IRF7 expression, which activated the Nod-like receptor (NLR) pathway to induce macrophage M1 polarization. Through this mechanism, IRF7 in BMDMs functioned to accelerate intestinal epithelial cell apoptosis and their release of pro-inflammatory proteins. Furthermore, the promoting effect of p65 and SETDB1 on LPS-induced intestinal inflammation was validated in vivo. To sum up, NF-κB p65 and SETDB1 facilitated IRF7-mediated macrophage M1 polarization, thereby aggravating the LPS-induced intestinal inflammation. Hence, this study highlights the appealing value of these factors as anti-inflammatory targets.
Collapse
Affiliation(s)
- Li Chen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Maolin Dai
- Department of Anesthesia, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Wei Zuo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Yongyu Dai
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Qiqi Yang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Min Huang
- Department of Digestion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China.
| |
Collapse
|
14
|
Flood P, Fanning A, Woznicki JA, Crowley T, Christopher A, Vaccaro A, Houston A, McSweeney S, Ross S, Hogan A, Brint E, Skowyra A, Bustamante M, Ambrose M, Moloney G, MacSharry J, Hammarström ML, Hurley M, Fitzgibbons C, Quigley EMM, Shanahan F, Zulquernain SA, McCarthy J, Dodson GS, Dabbagh K, McRae BL, Melgar S, Nally K. DNA sensor-associated type I interferon signaling is increased in ulcerative colitis and induces JAK-dependent inflammatory cell death in colonic organoids. Am J Physiol Gastrointest Liver Physiol 2022; 323:G439-G460. [PMID: 36165492 DOI: 10.1152/ajpgi.00104.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-β), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1β/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-β or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1β/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-β, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.
Collapse
Affiliation(s)
- Peter Flood
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aine Fanning
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Tadhg Crowley
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Aileen Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | | | - Sarah Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Hogan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | | | | | - Monica Ambrose
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John MacSharry
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Marie-Louise Hammarström
- Section of Infection and Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Margot Hurley
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | | | | | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Syed A Zulquernain
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Jane McCarthy
- Department of Gastroenterology, Mercy University Hospital, Cork, Ireland
| | | | | | - Bradford L McRae
- Immunology Discovery, Abbvie Bioresearch Center, Worcester, Massachusetts
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Choi SH, Huang AY, Letterio JJ, Kim BG. Smad4-deficient T cells promote colitis-associated colon cancer via an IFN-γ-dependent suppression of 15-hydroxyprostaglandin dehydrogenase. Front Immunol 2022; 13:932412. [PMID: 36045676 PMCID: PMC9420841 DOI: 10.3389/fimmu.2022.932412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune cells and the cytokines they produce are important mediators of the transition from colitis to colon cancer, but the mechanisms mediating this disease progression are poorly understood. Interferon gamma (IFN-γ) is known to contribute to the pathogenesis of colitis through immune modulatory mechanisms, and through direct effects on endothelial and epithelial homeostasis. Here we explore whether IFN-γ influences tumor progression by expanding the effector memory T cells (TEM) population and restricting the expression of tumor suppressors in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show that IFN-γ expression is significantly increased both in the T cells and the colonic mucosal epithelia of mice with a T cell-restricted deletion of the TGF-β intermediate, SMAD4 (Smad4TKO). The increase of IFN-γ expression correlates with the onset of spontaneous CAC in Smad4TKO mice by 6 months of age. This phenotype is greatly ameliorated by the introduction of a germline deletion of IFN-γ in Smad4TKO mice (Smad4TKO/IFN-γKO, DKO). DKO mice had a significantly reduced incidence and progression of CAC, and a decrease in the number of mucosal CD4+ TEM cells, when compared to those of Smad4TKO mice. Similarly, the colon epithelia of DKO mice exhibited a non-oncogenic signature with a decrease in the expression of iNOS and p-STAT1, and a restoration of the tumor suppressor gene, 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In vitro, treatment of human colon cancer cells with IFN-γ decreased the expression of 15-PGDH. Our data suggest that Smad4-deficient T cells promote CAC through mechanisms that include an IFN-γ-dependent suppression of the tumor suppressor 15-PGDH.
Collapse
Affiliation(s)
- Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alex Y. Huang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals (UH) Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - John J. Letterio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- The Angie Fowler Adolescent and Young Adult Cancer Institute, University Hospitals (UH) Rainbow Babies and Children’s Hospital, Cleveland, OH, United States
| | - Byung-Gyu Kim
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Byung-Gyu Kim,
| |
Collapse
|
16
|
Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cell Mol Life Sci 2022; 79:313. [PMID: 35604464 PMCID: PMC9125963 DOI: 10.1007/s00018-022-04332-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to maintain intestinal homeostasis.
Collapse
|
17
|
Guimarães Sousa S, Kleiton de Sousa A, Maria Carvalho Pereira C, Sofia Miranda Loiola Araújo A, de Aguiar Magalhães D, Vieira de Brito T, Barbosa ALDR. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine 2022; 152:155826. [PMID: 35158258 PMCID: PMC8828414 DOI: 10.1016/j.cyto.2022.155826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the newly emerging lung disease pandemic COVID-19. This viral infection causes a series of respiratory disorders, and although this virus mainly infects respiratory cells, the small intestine can also be an important site of entry or interaction, as enterocytes highly express in angiotensin-2 converting enzyme (ACE) receptors. There are countless reports pointing to the importance of interferons (IFNs) with regard to the mediation of the immune system in viral infection by SARS-CoV-2. Thus, this review will focus on the main cells that make up the large intestine, their specific immunology, as well as the function of IFNs in the intestinal mucosa after the invasion of coronavirus-2.
Collapse
|
18
|
Jia L, Wu G, Alonso S, Zhao C, Lemenze A, Lam YY, Zhao L, Edelblum KL. A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunol 2022; 15:772-782. [PMID: 35589986 PMCID: PMC9262869 DOI: 10.1038/s41385-022-00522-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified two guilds of small intestinal or fecal bacteria represented by 12 amplicon sequence variants (ASV) that are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.
Collapse
Affiliation(s)
- Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guojun Wu
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Sara Alonso
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Cuiping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yan Y Lam
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong, China
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
19
|
Li J, Kemper T, Broering R, Chen J, Yuan Z, Wang X, Lu M. Interferon Alpha Induces Cellular Autophagy and Modulates Hepatitis B Virus Replication. Front Cell Infect Microbiol 2022; 12:804011. [PMID: 35186790 PMCID: PMC8847603 DOI: 10.3389/fcimb.2022.804011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low. Yet, the immunological and molecular mechanisms for successful IFNα-2a treatment remain elusive. One issue is whether the application of increasing IFNα doses may modulate cellular processes and HBV replication in hepatic cells. In the present study, we focused on the interaction of IFNα signaling with other cellular signaling pathways and the consequence for HBV replication. The results showed that with the concentration of 6000 U/ml IFNα-2a treatment downregulated the activity of not only the Akt/mTOR signaling but also the AMPK signaling. Additionally, IFNα-2a treatment increased the formation of the autophagosomes by blocking autophagic degradation. Furthermore, IFNα-2a treatment inhibited the Akt/mTOR signaling and initiated autophagy under low and high glucose concentrations. In reverse, inhibition of autophagy using 3-methyladenine (3-MA) and glucose concentrations influenced the expression of IFNα-2a-induced ISG15 and IFITM1. Despite of ISGs induction, HBV replication and gene expression in HepG2.2.15 cells, a cell model with continuous HBV replication, were slightly increased at high doses of IFNα-2a. In conclusion, our study indicates that IFNα-2a treatment may interfere with multiple intracellular signaling pathways, facilitate autophagy initiation, and block autophagic degradation, thereby resulting in slightly enhanced HBV replication.
Collapse
Affiliation(s)
- Jia Li
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thekla Kemper
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyu Wang
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| | - Mengji Lu
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| |
Collapse
|
20
|
Reduced Colonic Mucosal Injury in 2,3,7,8-Tetrachlorodibenzo- p-Dioxin Poly ADP-Ribose Polymerase (TIPARP/PARP7)-Deficient Mice. Int J Mol Sci 2022; 23:ijms23020920. [PMID: 35055106 PMCID: PMC8779828 DOI: 10.3390/ijms23020920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) are important regulators of the immune system, including TCDD-inducible poly-ADP-ribose polymerase (TIPARP), also known as poly-ADP-ribose polymerase 7 (PARP7). PARP7 negatively regulates aryl hydrocarbon receptor (AHR) and type I interferon (IFN-I) signaling, both of which have been implicated in intestinal homeostasis and immunity. Since the loss of PARP7 expression increases AHR and IFN-I signaling, we used a murine dextran sulfate sodium (DSS)-induced colitis model to investigate the effect of PARP7 loss on DSS-induced intestinal inflammation. DSS-exposed Parp7−/− mice had less body weight loss, lower disease index scores, and reduced expression of several inflammation genes, including interleukin IL-6, C-x-c motif chemokine ligand 1 (Cxcl1), and lipocalin-2, when compared with wild-type mice. However, no significant difference was observed between genotypes in the colonic expression of the AHR target gene cytochrome P450 1A1 (Cyp1a1). Moreover, no significant differences in microbial composition were observed between the genotypes. Our findings demonstrate that the absence of PARP7 protein results in an impaired immune response to colonic inflammation and suggests that PARP7 may participate in the recruitment of immune cells to the inflammation site, which may be due to its role in IFN-I signaling rather than AHR signaling.
Collapse
|
21
|
Stolzer I, Schickedanz L, Chiriac MT, López-Posadas R, Grassl GA, Mattner J, Wirtz S, Winner B, Neurath MF, Günther C. STAT1 coordinates intestinal epithelial cell death during gastrointestinal infection upstream of Caspase-8. Mucosal Immunol 2022; 15:130-142. [PMID: 34497340 PMCID: PMC8732278 DOI: 10.1038/s41385-021-00450-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Intestinal homeostasis and the maintenance of the intestinal epithelial barrier are essential components of host defense during gastrointestinal Salmonella Typhimurium infection. Both require a strict regulation of cell death. However, the molecular pathways regulating epithelial cell death have not been completely understood. Here, we elucidated the contribution of central mechanisms of regulated cell death and upstream regulatory components during gastrointestinal infection. Mice lacking Caspase-8 in the intestinal epithelium are highly sensitive towards bacterial induced enteritis and intestinal inflammation, resulting in an enhanced lethality of these mice. This phenotype was associated with an increased STAT1 activation during Salmonella infection. Cell death, barrier breakdown and systemic infection were abrogated by an additional deletion of STAT1 in Casp8ΔIEC mice. In the absence of epithelial STAT1, loss of epithelial cells was abolished which was accompanied by a reduced Caspase-8 activation. Mechanistically, we demonstrate that epithelial STAT1 acts upstream of Caspase-8-dependent as well as -independent cell death and thus might play a major role at the crossroad of several central cell death pathways in the intestinal epithelium. In summary, we uncovered that transcriptional control of STAT1 is an essential host response mechanism that is required for the maintenance of intestinal barrier function and host survival.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Laura Schickedanz
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Mircea T Chiriac
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
22
|
Lin JY, Weng KF, Chang CK, Gong YN, Huang GJ, Lee HL, Chen YC, Huang CC, Lu JY, Huang PN, Chiang HJ, Chen CM, Shih SR. Enterovirus A71 Induces Neurological Diseases and Dynamic Variants in Oral Infection of Human SCARB2-Transgenic Weaned Mice. J Virol 2021; 95:e0089721. [PMID: 34379497 PMCID: PMC8513470 DOI: 10.1128/jvi.00897-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Enterovirus A71 (EV-A71) and many members of the Picornaviridae family are neurotropic pathogens of global concern. These viruses are primarily transmitted through the fecal-oral route, and thus suitable animal models of oral infection are needed to investigate viral pathogenesis. An animal model of oral infection was developed using transgenic mice expressing human SCARB2 (hSCARB2 Tg), murine-adapted EV-A71/MP4 virus, and EV-A71/MP4 virus with an engineered nanoluciferase gene that allows imaging of viral replication and spread in infected mice. Next-generation sequencing of EV-A71 genomes in the tissues and organs of infected mice was also performed. Oral inoculation of EV-A71/MP4 or nanoluciferase-carrying MP4 virus stably induced neurological symptoms and death in infected 21-day-old weaned mice. In vivo bioluminescence imaging of infected mice and tissue immunostaining of viral antigens indicated that orally inoculated virus can spread to the central nervous system (CNS) and other tissues. Next-generating sequencing further identified diverse mutations in viral genomes that can potentially contribute to viral pathogenesis. This study presents an EV-A71 oral infection murine model that efficiently infects weaned mice and allows tracking of viral spread, features that can facilitate research into viral pathogenesis and neuroinvasion via the natural route of infection. IMPORTANCE Enterovirus A71 (EV-A71), a positive-strand RNA virus of the Picornaviridae, poses a persistent global public health problem. EV-A71 is primarily transmitted through the fecal-oral route, and thus suitable animal models of oral infection are needed to investigate viral pathogenesis. We present an animal model of EV-A71 infection that enables the natural route of oral infection in weaned and nonimmunocompromised 21-day-old hSCARB2 transgenic mice. Our results demonstrate that severe disease and death could be stably induced, and viral invasion of the CNS could be replicated in this model, similar to severe real-world EV-A71 infections. We also developed a nanoluciferase-containing EV-A71 virus that can be used with this animal model to track viral spread after oral infection in real time. Such a model offers several advantages over existing animal models and can facilitate future research into viral spread, tissue tropism, and viral pathogenesis, all pressing issues that remain unaddressed for EV-A71 infections.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kuo-Feng Weng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chih-Kuang Chang
- Department of Laboratory Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Hui-Lan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yen-Cheng Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chien-Chih Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Jia-Ying Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Che-Min Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
23
|
Stolzer I, Dressel A, Chiriac MT, Neurath MF, Günther C. An IFN-STAT Axis Augments Tissue Damage and Inflammation in a Mouse Model of Crohn's Disease. Front Med (Lausanne) 2021; 8:644244. [PMID: 34141714 PMCID: PMC8205542 DOI: 10.3389/fmed.2021.644244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Blocking interferon-function by therapeutic intervention of the JAK-STAT-axis is a novel promising treatment option for inflammatory bowel disease (IBD). Although JAK inhibitors have proven efficacy in patients with active ulcerative colitis (UC), they failed to induce clinical remission in patients with Crohn's disease (CD). This finding strongly implicates a differential contribution of JAK signaling in both entities. Here, we dissected the contribution of different STAT members downstream of JAK to inflammation and barrier dysfunction in a mouse model of Crohn's disease like ileitis and colitis (Casp8ΔIEC mice). Deletion of STAT1 in Casp8ΔIEC mice was associated with reduced cell death and a partial rescue of Paneth cell function in the small intestine. Likewise, organoids derived from the small intestine of these mice were less sensitive to cell death triggered by IBD-key cytokines such as TNFα or IFNs. Further functional in vitro and in vivo analyses revealed the impairment of MLKL-mediated necrosis as a result of deficient STAT1 function, which was in turn associated with improved cell survival. However, a decrease in inflammatory cell death was still associated with mild inflammation in the small intestine. The impact of STAT1 signaling on gastrointestinal inflammation dependent on the localization of inflammation, as STAT1 is essential for intestinal epithelial cell death regulation in the small intestine, whereas it is not the key factor for intestinal epithelial cell death in the context of colitis. Of note, additional deletion of STAT2 was not sufficient to restore Paneth cell function but strongly ameliorated ileitis. In summary, we provide here compelling molecular evidence that STAT1 and STAT2, both contribute to intestinal homeostasis, but have non-redundant functions. Our results further demonstrate that STATs individually affect the distinct pathophysiology of inflammation in the ileum and colon, respectively, which might explain the diverse outcome of JAK inhibitors on inflammatory bowel diseases.
Collapse
Affiliation(s)
- Iris Stolzer
- Medizinische Klinik 1, Universitäts-Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Dressel
- Medizinische Klinik 1, Universitäts-Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mircea T Chiriac
- Medizinische Klinik 1, Universitäts-Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Medizinische Klinik 1, Universitäts-Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Universitäts-Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Medizinische Klinik 1, Universitäts-Klinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med 2021; 53:750-760. [PMID: 33953323 PMCID: PMC8099704 DOI: 10.1038/s12276-021-00592-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), the current pandemic disease, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Type I and III interferons (IFNs) are innate cytokines that are important in the first-line defense against viruses. Similar to many other viruses, SARS-CoV-2 has evolved mechanisms for evading the antiviral effects of type I and III IFNs at multiple levels, including the induction of IFN expression and cellular responses to IFNs. In this review, we describe the innate sensing mechanisms of SARS-CoV-2 and the mechanisms used by SARS-CoV-2 to evade type I and III IFN responses. We also discuss contradictory reports regarding impaired and robust type I IFN responses in patients with severe COVID-19. Finally, we discuss how delayed but exaggerated type I IFN responses can exacerbate inflammation and contribute to the severe progression of COVID-19. Extensive studies into how SARS-CoV-2 manipulates the immune system and influences the activity of host proteins are needed to improve treatments for COVID-19. SARS-CoV-2 evades or blocks elements of the immune system, including the antiviral activity of type I and type III interferons (IFN). You-Me Kim and Eui-Cheol Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed understanding of how SARS-CoV-2 inhibits IFN responses. In infected cells, SARS-CoV-2 proteins use diverse methods to inhibit host IFN pathways, but type I IFN responses are still triggered in non-infected immune cells. The researchers believe this may explain the delayed but exaggerated type I IFN responses that contribute to the hyper-inflammation seen in critically ill patients. They call for further investigations into IFN and inflammatory responses in SARS-CoV-2 infection.
Collapse
|
25
|
Cai Y, Xu B, Zhou F, Wu J, Li S, Zheng Q, Li Y, Li X, Gao F, Dong S, Liu R. Si-Ni-San ameliorates chronic colitis by modulating type I interferons-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153495. [PMID: 33611210 DOI: 10.1016/j.phymed.2021.153495] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic relapsing inflammatory disease that markedly elevates the risk of colon cancers and results in disability. The disrupted immune homeostasis has been recognized as a predominant player in the pathogenesis of UC. However, the overall remission rate of current therapies based on immunoregulation is still unsatisfactory. Si-Ni-San (SNS) has been found effective in relieving UC through thousands of years of clinical practice, yet the specific mechanisms of the protective effect of SNS were not fully elucidated. PURPOSE We aim to investigate the therapeutic effects of SNS against the development of chronic colitis and the underlying mechanisms. METHODS We established a DSS-induced chronic experimental colitis mouse model to evaluate the effect of SNS. RNA-sequencing, bioinformatic analysis, and in vitro studies were performed to investigate the underlying mechanisms. RESULTS Our data demonstrated that SNS significantly ameliorated chronic experimental colitis via inhibiting the expression of genes associated with inflammatory responses. Interestingly, SNS significantly suppressed DSS-induced type I interferon (IFN) responses instead of directly downregulating the production of pro-inflammatory cytokines, such as Il-6. In vitro study further found that SNS selectively inhibited STING and RIG-I pathway-induced type I IFN responses by modulating TBK1- and IRF3-dependent signaling transduction. SNS also suppressed the expression of IFN-stimulated genes by directly inhibiting STAT1 and STAT2 activation. CONCLUSION Our study not only provides novel insights into the pathogenic role of type I IFN responses in colitis but also suggested that SNS or bioactive compounds derived from SNS may serve as novel therapeutic strategies for the treatment of UC via interfering type I IFN-mediated inflammation.
Collapse
Affiliation(s)
- Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
26
|
Xu B, Tang B, Wei J. Role of STAT1 in the resistance of HBV to IFN-α. Exp Ther Med 2021; 21:550. [PMID: 33850522 PMCID: PMC8027746 DOI: 10.3892/etm.2021.9982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The objective of the present study was to explore the mechanism of hepatitis B virus (HBV) resistance to interferon (IFN), and the role of signal transducer and activator of transcription 1 (STAT1). HepG2.2.15 cells were stimulated with a long-term (6-24 weeks) low-dose interferon (IFN)α-2b (10-70 IU/ml), so as to construct and screen a HepG2.2.15 cell model resistant to IFNα-2b. The changes of STAT1 and other proteins in the JAK-STAT signaling pathway, before and after drug resistance, were compared. The phosphorylation of STAT1 in HepG2.2.15 cells resistant to IFNα-2b was significantly decreased, and the expression level of 2',5'-oligoadenylate synthetase 1 was downregulated. Decreased phosphorylation of STAT1 in the JAK-STAT signaling pathway a contributor to the development of resistance to IFN-α in HBV.
Collapse
Affiliation(s)
- Bingfa Xu
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Bo Tang
- Department of Pharmacy, Huainan First People's Hospital, Huainan, Anhui 232007, P.R. China
| | - Jiajia Wei
- Department of Pharmacy, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
27
|
Wottawa F, Bordoni D, Baran N, Rosenstiel P, Aden K. The role of cGAS/STING in intestinal immunity. Eur J Immunol 2021; 51:785-797. [PMID: 33577080 DOI: 10.1002/eji.202048777] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/30/2020] [Accepted: 02/10/2021] [Indexed: 01/07/2023]
Abstract
The gastrointestinal tract is a highly complex microenvironment under constant interaction with potentially harmful pathogens. Inflammatory bowel disease (IBD) is an archetypical inflammatory disease, in which the intestinal epithelium, defective autophagy, endoplasmic reticulum stress and dysbiosis play a key role. Although no risk-mediating gene variants of STING (TMEM173) have been identified so far, several seminal findings have elucidated a novel understanding of STING in the context of acute and chronic inflammation. STING, an endoplasmic reticulum resident adaptor protein binding cyclic dinucleotides, is a main inducer of type I interferons and canonically involved in antiviral and antibacterial immunity. Recent research has shed light on additional features of STING signaling involved in regulating the microbiota, facilitating autophagy, cell death or ER stress. Importantly, an increasing amount of studies suggests a considerable overlap of IBD pathophysiology and features of STING signaling. Since compelling evidence shows dysregulated type I IFNs in IBD, it is prompting to speculate on the hypothetical role of cGAS/STING/type I IFN signaling in IBD. Here, we summarize recent findings about the origin and function of STING signaling in the gastrointestinal tract and evolve the hypothesis that disturbed STING signaling might be profoundly interconnected with the pathophysiology of IBD.
Collapse
Affiliation(s)
- Felix Wottawa
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dora Bordoni
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Internal Medicine I., Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
28
|
Stolzer I, Ruder B, Neurath MF, Günther C. Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. Int J Med Microbiol 2021; 311:151491. [PMID: 33662871 DOI: 10.1016/j.ijmm.2021.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
29
|
Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021; 47:254-273. [PMID: 33576711 DOI: 10.1080/1040841x.2021.1876631] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pramod Kumar
- Ministry of Health and Family Welfare, Government of India, Indian Council of Medical Research, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Goyal
- Department of Medicine, Pt. BD Sharma Post-graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
30
|
Fryer AL, Abdullah A, Taylor JM, Crack PJ. The Complexity of the cGAS-STING Pathway in CNS Pathologies. Front Neurosci 2021; 15:621501. [PMID: 33633536 PMCID: PMC7900568 DOI: 10.3389/fnins.2021.621501] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation driven by type-I interferons in the CNS is well established to exacerbate the progression of many CNS pathologies both acute and chronic. The role of adaptor protein Stimulator of Interferon Genes (STING) is increasingly appreciated to instigate type-I IFN-mediated neuroinflammation. As an upstream regulator of type-I IFNs, STING modulation presents a novel therapeutic opportunity to mediate inflammation in the CNS. This review will detail the current knowledge of protective and detrimental STING activity in acute and chronic CNS pathologies and the current therapeutic avenues being explored.
Collapse
Affiliation(s)
- Amelia L Fryer
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Amar Abdullah
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Juliet M Taylor
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Peter J Crack
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Li J, Jin K, Li M, Mathy NW, Gong AY, Deng S, Martins GA, Sun M, Strauss-Soukup JK, Chen XM. A host cell long noncoding RNA NR_033736 regulates type I interferon-mediated gene transcription and modulates intestinal epithelial anti-Cryptosporidium defense. PLoS Pathog 2021; 17:e1009241. [PMID: 33481946 PMCID: PMC7857606 DOI: 10.1371/journal.ppat.1009241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/03/2021] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
The gastrointestinal epithelium guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the type I IFN signal pathway. Epithelial cells along the epithelium provide the front line of host defense against pathogen infection in the gastrointestinal tract. Increasing evidence supports the regulatory potential of long noncoding RNAs (lncRNAs) in immune defense but their role in regulating intestinal epithelial antimicrobial responses is still unclear. Cryptosporidium, a protozoan parasite that infects intestinal epithelial cells, is an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children in developing countries. Recent advances in Cryptosporidium research have revealed a strong type I IFN response in infected intestinal epithelial cells. We previously identified a panel of host cell lncRNAs that are upregulated in murine intestinal epithelial cells following microbial challenge. One of these lncRNAs, NR_033736, is upregulated in intestinal epithelial cells following Cryptosporidium infection and displays a significant suppressive effect on type I IFN-controlled gene transcription in infected host cells. NR_033736 can be assembled into the ISGF3 complex and suppresses type I IFN-mediated gene transcription. Interestingly, upregulation of NR_033736 itself is triggered by the type I IFN signaling. Moreover, NR_033736 modulates epithelial anti-Cryptosporidium defense. Our data suggest that upregulation of NR_033736 provides negative feedback regulation of type I IFN signaling through suppression of type I IFN-controlled gene transcription, and consequently, contributing to fine-tuning of epithelial innate defense against microbial infection.
Collapse
Affiliation(s)
- Juan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Kehua Jin
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Biochemistry, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Min Li
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Nicholas W. Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Gislaine A. Martins
- Department of Medicine and Biomedical Sciences, Research Division of Immunology Cedars-Sinai Medical Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Mingfei Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Juliane K. Strauss-Soukup
- Department of Chemistry, Creighton University College of Arts and Sciences, Omaha, NE, United States of America
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- * E-mail: ,
| |
Collapse
|
32
|
Gessani S, Belardelli F. Type I Interferons as Joint Regulators of Tumor Growth and Obesity. Cancers (Basel) 2021; 13:cancers13020196. [PMID: 33430520 PMCID: PMC7827047 DOI: 10.3390/cancers13020196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The escalating global epidemic of overweight and obesity is a major public health and economic problem, as excess body weight represents a significant risk factor for several chronic diseases including cancer. Despite the strong scientific evidence for a link between obesity and cancer, the mechanisms involved in this interplay have not yet been fully understood. The aim of this review is to evaluate the role of type I interferons, a family of antiviral cytokines with key roles in the regulation of both obesity and cancer, highlighting how the dysregulation of the interferon system can differently affect these pathological conditions. Abstract Type I interferons (IFN-I) are antiviral cytokines endowed with multiple biological actions, including antitumor activity. Studies in mouse models and cancer patients support the concept that endogenous IFN-I play important roles in the control of tumor development and growth as well as in response to several chemotherapy/radiotherapy treatments. While IFN-I signatures in the tumor microenvironment are often considered as biomarkers for a good prognostic response to antitumor therapies, prolonged IFN-I signaling can lead to immune dysfunction, thereby promoting pathogen or tumor persistence, thus revealing the “Janus face” of these cytokines in cancer control, likely depending on timing, tissue microenvironment and cumulative levels of IFN-I signals. Likewise, IFN-I exhibit different and even opposite effects on obesity, a pathologic condition linked to cancer development and growth. As an example, evidence obtained in mouse models shows that localized expression of IFN-I in the adipose tissue results in inhibition of diet–induced obesity, while hyper-production of these cytokines by specialized cells such as plasmacytoid dendritic cells in the same tissue, can induce systemic inflammatory responses leading to obesity. Further studies in mouse models and humans should reveal the mechanisms by which IFN-I can regulate both tumor growth and obesity and to understand the role of factors such as genetic background, diet and microbioma in shaping the production and action of these cytokines under physiological and pathological conditions.
Collapse
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (S.G.); (F.B.)
| | - Filippo Belardelli
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
- Correspondence: (S.G.); (F.B.)
| |
Collapse
|
33
|
Mavragani CP, Nezos A, Dovrolis N, Andreou NP, Legaki E, Sechi LA, Bamias G, Gazouli M. Type I and II Interferon Signatures Can Predict the Response to Anti-TNF Agents in Inflammatory Bowel Disease Patients: Involvement of the Microbiota. Inflamm Bowel Dis 2020; 26:1543-1553. [PMID: 32812029 DOI: 10.1093/ibd/izaa216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anti-TNF agents have been a cornerstone of IBD therapy; however, response to treatment has been variable, and clinically applicable biomarkers are urgently needed. We hypothesized that the type I and type II interferon (IFN) signatures may be a confounding factor for response to antitumor necrosis factor (TNF) treatment via interactions with the host and its gut microbiota. METHODS Peripheral blood from 30 IBD patients and 10 healthy controls was subjected to real-time quantitative real-time polymerase chain reaction for type I and type II IFN genes (IFNGs), both at baseline and after treatment with anti-TNF. Correlation between IFN signatures and microbiota composition was also determined for a subgroup of patients and controls. RESULTS At baseline, type I IFN score was significantly higher in IBD patients (P = 0.04 vs controls). Responders to subsequent anti-TNF treatment had significantly lower baseline scores for both type I and II IFN signatures (P < 0.005 vs nonresponders for both comparisons). During treatment with anti-TNF, the expression of type I and II IFNGs was significantly elevated in responders and decreased in nonresponders. In addition, changes in IFN signatures correlated to specific alterations in the abundance of several microbial taxa of the gut microbiome. CONCLUSIONS Baseline expression of type I and II IFN signatures and their kinetics during anti-TNF administration significantly correlate to treatment responses in IBD patients. Peripheral blood IFN signatures may serve as clinically meaningful biomarkers for the identification of subgroups of patients with favorable response to anti-TNF treatment. Additionally, the distinct synergies between different IFN types and microbiota might help drive therapeutic intervention.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giorgos Bamias
- GI-Unit, 3rd Academic Department of Internal Medicine, Sotiria Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Kayama H, Tani H, Kitada S, Opasawatchai A, Okumura R, Motooka D, Nakamura S, Takeda K. BATF2 prevents T-cell-mediated intestinal inflammation through regulation of the IL-23/IL-17 pathway. Int Immunol 2020; 31:371-383. [PMID: 30753547 PMCID: PMC6528702 DOI: 10.1093/intimm/dxz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Inappropriate activation of the IL-23 signaling pathway causes chronic inflammation through the induction of immunopathological Th17 cells in several tissues including the intestine, whereas adequate Th17 responses are essential for host defense against harmful organisms. In the intestinal lamina propria, IL-23 is primarily produced by innate myeloid cells including dendritic cells (DCs) and macrophages (Mϕs). However, the molecular mechanisms underlying the regulation of IL-23 production by these cells remains poorly understood. In this study, we demonstrated that BATF2 regulates intestinal homeostasis by inhibiting IL-23-driven T-cell responses. Batf2 was highly expressed in intestinal innate myeloid subsets, such as monocytes, CD11b+ CD64+ Mϕs and CD103+ DCs. Batf2-/- mice spontaneously developed colitis and ileitis with altered microbiota composition. In this context, IL-23, but not TNF-α and IL-10, was produced in high quantities by intestinal CD11b+ CD64+ Mϕs from Batf2-/- mice compared with wild-type mice. Moreover, increased numbers of IFN-γ+, IL-17+ and IFN-γ+ IL-17+ CD4+ T cells, but not IL-10+ CD4+ T cells, accumulated in the colons and small intestines of Batf2-/- mice. In addition, RORγt-expressing innate lymphoid cells were increased in Batf2-/- mice. Batf2-/-Rag2-/- mice showed a reduction in intestinal inflammation present in Batf2-/- mice. Furthermore, the high numbers of intestinal IL-17+ and IFN-γ+ IL-17+ CD4+ T cells were markedly reduced in Batf2-/- mice when introducing Il23a deficiency, which was associated with the abrogation of intestinal inflammation. These results indicated that BATF2 in innate myeloid cells is a key molecule for the suppression of IL-23/IL-17 pathway-mediated adaptive intestinal pathology.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Haruka Tani
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Shoko Kitada
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Anunya Opasawatchai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Andreou NP, Legaki E, Gazouli M. Inflammatory bowel disease pathobiology: the role of the interferon signature. Ann Gastroenterol 2020; 33:125-133. [PMID: 32127733 PMCID: PMC7049232 DOI: 10.20524/aog.2020.0457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is still unclear, but includes both inflammatory and autoimmune reactions. Current methodological approaches could better elucidate the cytokine pathways and the genetics involved in the etiopathogenesis of this disease. Interferons (IFNs) are cytokines that play a key role in autoimmune/inflammatory disorders because of their pro- and anti-inflammatory properties as well as their immunoregulatory functions. An increased expression of IFN-regulated genes, widely known as an IFN signature, has been reported in blood and tissue from patients with autoimmune disorders. In this review, we present the function as well as the clinical and therapeutic potential of the IFN signature. Current data demonstrate that the IFN signature can be used as a biomarker that defines disease activity in autoimmune diseases, although this has not been thoroughly studied in IBD. Consequently, further investigation of the IFN signature in IBD would be essential for a better understanding of its actions.
Collapse
Affiliation(s)
- Nicolaos-Panagiotis Andreou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Langevin C, Levraud JP, Boudinot P. Fish antiviral tripartite motif (TRIM) proteins. FISH & SHELLFISH IMMUNOLOGY 2019; 86:724-733. [PMID: 30550990 DOI: 10.1016/j.fsi.2018.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Tripartite motif (TRIM) family or RBCC proteins comprises characteristic zinc-binding domains (a RING (R), a B-box type 1 (B1) and a B-box type 2 (B2)) and coiled-coil (CC) domain followed by a C-terminus variable domain. There are about 80 different TRIM proteins in human, but more than 200 in zebrafish with several large gene expansions (ftr >70 genes; btr >30 genes; trim35 > 30 genes). Repertoires of trim genes in fish are variable across fishes, but they have been remarkably diversified independently in a number of species. In mammals, TRIM proteins are involved in antiviral immunity through an astonishing diversity of mechanisms, from direct viral restriction to modulation of immune signaling and more recently autophagy. In fish, the antiviral role of TRIM proteins remains poorly understood. In zebrafish, fish specific TRIMs so called fintrims show a signature of positive selection in the C terminus SPRY domain, reminding features of mammalian antiviral trims such as TRIM5. Expression studies show that a number of trim genes, including many fintrims, can be induced during viral infections, and may play a role in antiviral defence. Some of them trigger antiviral activity in vitro against DNA and RNA viruses, such as FTR83 that also up-regulates the expression of type I IFN in zebrafish larvae. The tissue distribution of TRIM expression suggests that they may be involved in the regionalization of antiviral immunity, providing a particular protection to sensitive areas exposed to invading pathogens.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France.
| | - Jean-Pierre Levraud
- Institut Pasteur, Macrophages et Développement de l'Immunité, Paris, France; Centre National de la Recherche Scientifique, UMR3738, Paris, France
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
37
|
Yitbarek A, Weese JS, Alkie TN, Parkinson J, Sharif S. Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens. FEMS Microbiol Ecol 2019; 94:4705883. [PMID: 29228270 DOI: 10.1093/femsec/fix165] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
The impact of low pathogenic influenza viruses such as subtype H9N2, which infect the respiratory and the gastrointestinal tracts of chickens, on microbial composition are not known. Twenty-day-old specific pathogen-free chickens were assigned to two treatment groups, control (uninfected) and H9N2-infected (challenged via the oral-nasal route). Fecal genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were sequenced using the Illumina Miseq® platform. Sequences were curated using Mothur as described in the MiSeq SOP. Infection of chickens with H9N2 resulted in an increase in phylum Proteobacteria, and differential enrichment with the genera Vampirovibrio, Pseudoflavonifractor, Ruminococcus, Clostridium cluster XIVb and Isobaculum while control chickens were differentially enriched with genera Novosphingobium, Sphingomonas, Bradyrhizobium and Bifidobacterium. Analysis of pre- and post-H9N2 infection of the same chickens showed that, before infection, the fecal microbiota was characterized by Lachnospiracea and Ruminococcaceae family and the genera Clostridium sensu stricto, Roseburia and Lachnospiraceae incertae sedis. However, post-H9N2 infection, class Deltaproteobacteria, orders Clostridiales and Bacteroidiales and the genus Alistipes were differentially enriched. Findings from the current study show that influenza virus infection in chickens results in the shift of the gut microbiota, and the disruption of the host-microbial homeostasis in the gut might be one of the mechanisms by which influenza virus infection is established in chickens.
Collapse
Affiliation(s)
- Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tamiru Negash Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John Parkinson
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
38
|
Oladunni FS, Sarkar S, Reedy S, Balasuriya UBR, Horohov DW, Chambers TM. Absence of relationship between type-I interferon suppression and neuropathogenicity of EHV-1. Vet Immunol Immunopathol 2019; 197:24-30. [PMID: 29475503 DOI: 10.1016/j.vetimm.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/16/2017] [Accepted: 01/13/2018] [Indexed: 11/17/2022]
Abstract
Equine herpesvirus-1 (EHV-1) infection is an important and highly prevalent disease in equine populations worldwide. Previously we have demonstrated that a neuropathogenic strain of EHV-1, T953, suppresses the host cell's antiviral type-I interferon (IFN) response in vitro. Whether or not this is unique to EHV-1 strains possessing the neuropathogenic genotype has been undetermined. Here, we examined whether there is any direct relationship between neuropathogenic genotype and the induced IFN-β response in equine endothelial cells (EECs) infected with 10 different strains of EHV-1. The extent of virus cell-to-cell spread following infection in EECs was also compared between the neuropathogenic and the non-neuropathogenic genotype of EHV-1. We then compared IFN-β and the total type-I IFN protein suppression between T953, an EHV-1 strain that is neuropathogenic and T445, an EHV-4 strain mainly associated only with respiratory disease. Data from our study revealed no relationship between the neuropathogenic genotype of EHV-1 and the induced IFN-β mRNA by the host cell. Results also indicate no statistically significant difference in plaque sizes of both genotypes of EHV-1 produced in EECs. However, while the T953 strain of EHV-1 was able to suppress IFN-β mRNA and type-I IFN biological activity at 12 h post-infection (hpi), EHV-4 weakly induces both IFN-β mRNA and type-I IFN biological activity. This finding correlated with a statistically significant difference in the mean plaque sizes produced by the two EHV subtypes in EECs. Our data help illuminate how EHV-1, irrespective of its genotype, evades the host cell's innate immune response thereby enabling viral spread to susceptible cells.
Collapse
Affiliation(s)
- Fatai S Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA; Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria.
| | - Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Stephanie Reedy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - David W Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Thomas M Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| |
Collapse
|
39
|
Won HY, Lee JY, Ryu D, Kim HT, Chang SY. The Role of Plasmacytoid Dendritic Cells in Gut Health. Immune Netw 2019; 19:e6. [PMID: 30838161 PMCID: PMC6399095 DOI: 10.4110/in.2019.19.e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/09/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.
Collapse
Affiliation(s)
- Hye-Yeon Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Ju-Young Lee
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Dahye Ryu
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Hyung-Taek Kim
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Sun-Young Chang
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| |
Collapse
|
40
|
Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation. BMC Genomics 2018; 19:504. [PMID: 29954325 PMCID: PMC6027792 DOI: 10.1186/s12864-018-4884-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Radiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness. Results We investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the related mTOR and regulation of EIF4/p70S6K pathways were also significantly underrepresented in the exposures with a neutron component, but not in x-ray radiation. The majority of the changed genes in these pathways belonged to the ribosome biogenesis and translation machinery and included several translation initiation factors (e.g. Eif2ak4, Eif3f), as well as 40S and 60S ribosomal subunits (e.g. Rsp19, Rpl19, Rpl27). Many of the differentially downregulated ribosomal genes (e.g. RPS19, RPS28) have been causally associated with human bone marrow failure syndromes and hematologic malignancies. We also observed downregulation of transfer RNA processes, in the neutron-only exposure (p < 0.005). Ingenuity Pathway Analysis (p < 0.05) of differentially expressed genes predicted significantly suppressed activity of the upstream regulators c-Myc and Mycn, transcription factors known to control ribosome biogenesis. Conclusions We describe the gene expression profile of mouse blood following exposure to mixed field neutron/photon irradiation. We have discovered that pathways related to protein translation are significantly underrepresented in the exposures containing a neutron component. Our results highlight the significance of neutron exposures that even the smallest percentage can have profound biological effects that will affect medical management and treatment decisions in case of a radiological emergency. Electronic supplementary material The online version of this article (10.1186/s12864-018-4884-6) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Zhang Z, He P, Zhou Y, Xie X, Feng S, Sun C. Anti-HBV effect of interferon-thymosin α1 recombinant proteins in transgenic Dunaliella salina in vitro and in vivo. Exp Ther Med 2018; 16:517-522. [PMID: 30112022 PMCID: PMC6090406 DOI: 10.3892/etm.2018.6227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/08/2018] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to investigate the anti-hepatitis B virus (HBV) effect of interferon (IFN)-thymosin α1 (TA1) in a transgenic Dunaliella salina (TDS) system in vitro and in vivo. The toxicity of TDS in the HepG2.2.15 cell line was assessed using an MTT assay. The effect of TDS on the secretion of HBV early antigen (HBeAg) and HBV surface antigen (HBsAg) in culture supernatants was measured using ELISA. In addition, HBV-DNA was analyzed using quantitative polymerase chain reaction. Drug treatment experiments were performed in vivo on ducks congenitally infected with duck HBV (DHBV). The drug was administered once daily for 21 continuous days. Blood was drawn from all ducks prior to treatment, following treatment for 7, 14 and 21 days, and following drug withdrawal for 5 days. Serum DHBV-DNA was determined using quantitative PCR. In addition, the histology of duck liver tissues was assessed using hematoxylin and eosin, and orcein staining. The results demonstrated that TDS suppressed cell viability and HBsAg and HBeAg secretion in HepG2.2.15 cells. Furthermore, the treatment index values for HBsAg and HBeAg following TDS treatment were 2.96 and 3.07 respectively, which were greater than those of the IFN-α treated group. In addition, the DHBV-infected duck model experiments indicated that serum DHBV-DNA levels were significantly decreased in the group of TDS (20 g/kg) following treatment for 7, 14 and 21 days compared with the control group. Following withdrawal of the drug for 5 days, the levels of DHBV-DNA did not relapse in the medium and high dose groups of TDS (10 and 20 g/kg, respectively). Histological analysis of duck liver also demonstrated that TDS and IFN-α treatment alleviated inflammation and HBsAg signals in duck livers. In conclusion, TDS markedly suppresses HBV replication in vitro and in vivo and its anti-HBV effect is greater than that of IFN-α.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ping He
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yan Zhou
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xuhua Xie
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuying Feng
- Medical Research Center, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Changyu Sun
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
42
|
Canesso MCC, Lemos L, Neves TC, Marim FM, Castro TBR, Veloso ÉS, Queiroz CP, Ahn J, Santiago HC, Martins FS, Alves-Silva J, Ferreira E, Cara DC, Vieira AT, Barber GN, Oliveira SC, Faria AMC. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunol 2018; 11:820-834. [PMID: 29346345 DOI: 10.1038/mi.2017.88] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
Abstract
STING (stimulator of interferon genes) is a cytosolic sensor for cyclic dinucleotides and also an adaptor molecule for intracellular DNA receptors. Although STING has important functions in the host defense against pathogens and in autoimmune diseases, its physiological relevance in intestinal homeostasis is largely unknown. In this study, we show that STING-/- mice presented defective protective mechanisms of intestinal mucosa, including decreased number of goblet cells, diminished mucus production, and lower levels of secretory IgA, when compared with wild-type (WT) mice. Fecal content and microbiota DNA could activate STING, indicating a role of this molecule in gut. Microbiota composition was altered in STING-/- mice toward a more inflammatory profile, evidencing a reduction in the Allobacolum and Bifidobacterium groups along with increase in Disulfovibrio bacteria. Absence of STING lead to decrease in induced intraepithelial lymphocytes (IEL) and to increase in group 1 innate lymphoid cell (ILC1) as well as ILC3 frequencies and decrease in ILC2 in the colon. Development and function of Foxp3+ and LAP+ regulatory T cells were also compromised in STING-/- mice. Moreover, these mice were highly susceptible to dextran sodium sulfate-induced colitis, T-cell-induced colitis, and enteric Salmonella typhimurium infection when compared with WT animals. Therefore, our results identify an important role of STING in maintaining gut homeostasis and also a protective effect in controlling gut inflammation.
Collapse
Affiliation(s)
- M C C Canesso
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - L Lemos
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T C Neves
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - F M Marim
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T B R Castro
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - É S Veloso
- Department of Pathology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - C P Queiroz
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - H C Santiago
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - F S Martins
- Department of Microbiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J Alves-Silva
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - E Ferreira
- Department of Pathology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - D C Cara
- Department of Morphology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A T Vieira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - G N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - S C Oliveira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A M C Faria
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity. Viruses 2018; 10:v10040146. [PMID: 29570694 PMCID: PMC5923440 DOI: 10.3390/v10040146] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.
Collapse
|
44
|
The TLR9 agonist MGN1703 triggers a potent type I interferon response in the sigmoid colon. Mucosal Immunol 2018; 11:449-461. [PMID: 28766555 PMCID: PMC5796873 DOI: 10.1038/mi.2017.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 02/04/2023]
Abstract
Toll-like receptor 9 (TLR9) agonists are being developed for treatment of colorectal and other cancers, yet the impact of these drugs on human intestines remains unknown. This, together with the fact that there are additional potential indications for TLR9 agonist therapy (e.g., autoimmune and infectious diseases), led us to investigate the impact of MGN1703 (Lefitolimod) on intestinal homeostasis and viral persistence in HIV-positive individuals. Colonic sigmoid biopsies were collected (baseline and week four) from 11 HIV+ individuals on suppressive antiretroviral therapy, who received MGN1703 (60 mg s.c.) twice weekly for 4 weeks in a single-arm, phase 1b/2a study. Within sigmoid mucosa, global transcriptomic analyses revealed 248 modulated genes (false discovery rate<0.05) including many type I interferon (IFN)-stimulated genes. MGN1703 increased the frequencies of cells exhibiting MX1 (P=0.001) and ISG15 (P=0.014) protein expression. No changes were observed in neutrophil infiltration (myeloperoxidase; P=0.97). No systematic effect on fecal microbiota structure was observed (analysis of similarity Global R=-0.105; P=0.929). TLR9 expression at baseline was inversely proportional to the change in integrated HIV DNA during MGN1703 treatment (P=0.020). In conclusion, MGN1703 induced a potent type I IFN response, without a concomitant general inflammatory response, in the intestines.
Collapse
|
45
|
Swiecki M, Miller H, Sesti-Costa R, Cella M, Gilfillan S, Colonna M. Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state. Mucosal Immunol 2017; 10:936-945. [PMID: 27827374 PMCID: PMC5423869 DOI: 10.1038/mi.2016.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) detect viruses initiating antiviral type I interferon responses. The microbiota is known to shape immune responses, but whether it influences pDC homeostasis and/or function is poorly understood. By comparing pDCs in germ-free and specific pathogen-free mice, we found that the microbiota supports homeostatic trafficking by eliciting constitutive levels of the chemokine CCL2 that engages CCR2. Mononuclear phagocytes were required for tonic CCL2 levels. CCL2 was particularly important for trafficking of a CCR2hi subset of pDCs that produced proinflammatory cytokines and was prone to apoptosis. We further demonstrated that CCR2 was also essential for pDC migration during inflammation. Wild-type (WT):Ccr2-/- mixed bone marrow chimeras revealed that CCR2 promotes pDC migration in a cell-intrinsic manner. Overall, we identify a novel role for the microbiota in shaping immunity, which includes induction of CCL2 levels that control homeostatic trafficking of pDCs.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110,Janssen Research & Development LLC, Spring House, PA 19477
| | - Hannah Miller
- Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110
| | - Renata Sesti-Costa
- Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, 425 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
46
|
Fransen F, van Beek AA, Borghuis T, Meijer B, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HF, de Jonge MI, Faas MM, Boekschoten MV, Smidt H, El Aidy S, de Vos P. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity. Front Immunol 2017; 8:754. [PMID: 28713378 PMCID: PMC5491612 DOI: 10.3389/fimmu.2017.00754] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022] Open
Abstract
Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF) animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system.
Collapse
Affiliation(s)
- Floris Fransen
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A van Beek
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Cell Biology and Immunology Group, Wageningen University, Wageningen, Netherlands
| | - Theo Borghuis
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ben Meijer
- Cell Biology and Immunology Group, Wageningen University, Wageningen, Netherlands
| | - Floor Hugenholtz
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | | - Huub F Savelkoul
- Cell Biology and Immunology Group, Wageningen University, Wageningen, Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marijke M Faas
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mark V Boekschoten
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Hauke Smidt
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Top Institute Food and Nutrition, Wageningen, Netherlands.,Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
47
|
Specific microRNA library of IFN-τ on bovine endometrial epithelial cells. Oncotarget 2017; 8:61487-61498. [PMID: 28977879 PMCID: PMC5617439 DOI: 10.18632/oncotarget.18470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/14/2017] [Indexed: 12/02/2022] Open
Abstract
IFN-τ is specifically secreted by the conceptus in ruminants during early pregnancy, and it plays a vital role in the immunological function of pregnancy. However, its mechanism involving microRNA (miRNA) is still not well understood. Deep sequencing was used to explore the specific miRNA library of IFN-τ on bovine endometrial epithelial cells (bEECs). The results showed that 574 known bovine miRNAs and 109 novel miRNAs were identified. We found 74 differentially expressed miRNAs, including 30 commonly expressed miRNAs in the experiment. Then, qPCR verification of six selected miRNAs showed that they corresponded with the sequencing data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of predicted target genes of differentially expressed miRNAs, including influenza A, herpes simplex infection, antigen processing and presentation, viral myocarditis, TNF signaling pathway, graft-versus-host disease, and allograft rejection. These results may provide important contributions to the immune response during early pregnancy in ruminants, but further studies are need to verify the proposed cellular/immunological effects and role of specific miRNA as biomarkers in vivo.
Collapse
|
48
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
49
|
Kotredes KP, Thomas B, Gamero AM. The Protective Role of Type I Interferons in the Gastrointestinal Tract. Front Immunol 2017; 8:410. [PMID: 28428788 PMCID: PMC5382159 DOI: 10.3389/fimmu.2017.00410] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
The immune system of the gastrointestinal (GI) tract manages the significant task of recognizing and eliminating pathogens while maintaining tolerance of commensal bacteria. Dysregulation of this delicate balance can be detrimental, resulting in severe inflammation, intestinal injury, and cancer. Therefore, mechanisms to relay important signals regulating cell growth and immune reactivity must be in place to support GI homeostasis. Type I interferons (IFN-I) are a family of pleiotropic cytokines, which exert a wide range of biological effects including promotion of both pro- and anti-inflammatory activities. Using animal models of colitis, investigations into the regulation of intestinal epithelium inflammation highlight the role of IFN-I signaling during fine modulation of the immune system. The intestinal epithelium of the gut guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the IFN-I signal-transduction pathway. The current paradigm depicts an IFN-I-induced antiproliferative state in the intestinal epithelium enabling cell differentiation, cell maturation, and proper intestinal barrier function, strongly supporting its role in maintaining baseline immune activity and clearance of damaged epithelia or pathogens. In this review, we will highlight the importance of IFN-I in intestinal homeostasis by discussing its function in inflammation, immunity, and cancer.
Collapse
Affiliation(s)
- Kevin P Kotredes
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - Brianna Thomas
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
50
|
IFN-τ Alleviates Lipopolysaccharide-Induced Inflammation by Suppressing NF-κB and MAPKs Pathway Activation in Mice. Inflammation 2017; 39:1141-50. [PMID: 27052630 DOI: 10.1007/s10753-016-0348-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IFN-τ, which is a type I interferon with low cytotoxicity, is defined as a pregnancy recognition signal in ruminants. Type I interferons have been used as anti-inflammatory agents, but their side effects limit their clinical application. The present study aimed to determine the anti-inflammatory effects of IFN-τ in a lipopolysaccharide-stimulated acute lung injury (ALI) model and in RAW264.7 cells and to confirm the mechanism of action involved. The methods used included histopathology, measuring the lung wet/dry ratio, determining the myeloperoxidase activity, ELISA, qPCR, and western blot. The results revealed that IFN-τ greatly ameliorated the infiltration of inflammatory cells and the expression of TNF-α, IL-1β, and IL-6. Further analysis revealed that IFN-τ down-regulated the expression of TLR-2 and TLR-4 mRNA and the activity of the NF-κB and MAPK pathways both in a lipopolysaccharide-induced ALI model and in RAW264.7 cells. The results demonstrated that IFN-τ suppressed the levels of pro-inflammatory cytokines by inhibiting the phosphorylation of the NF-κB and MAPK pathways. Thus, IFN-τ may be an optimal target for the treatment of inflammatory diseases.
Collapse
|