1
|
Brown PA. Transcriptomic signatures of atheroresistance in the human atrium and ventricle highlight potential candidates for targeted atherosclerosis therapeutics. Biochem Biophys Rep 2025; 42:102007. [PMID: 40248137 PMCID: PMC12004712 DOI: 10.1016/j.bbrep.2025.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Atherosclerosis risk is not uniform throughout the cardiovascular system. This study therefore aimed to compare the transcriptomes of atheroresistant human atrium and ventricle with atheroprone coronary arteries to identify transcriptomic signatures of atheroresistance and potential targets for atherosclerosis therapeutics. Using publicly available gene read counts, differentially expressed genes between the atrium, ventricle, and coronary artery were identified for each contrast and validated against the Swiss Institute of Bioinformatics' Bgee database. Over-representation analysis and active-subnetwork-oriented enrichment assessment then identified enriched terms, which were grouped into endothelial dysfunction-related processes. Potential biological significance was further explored with pathway analysis. Among 21474 features, 12656 differentially expressed genes were identified across the three contrasts and associated with 1215 enriched terms. There were 315 down-regulated and 133 up-regulated genes associated with endothelial dysfunction-related processes across the contrasts, including immune modulators, cell adhesion molecules, and lipid metabolism- and coagulation-related molecules. Differentially expressed genes were associated with six down-regulated Kyoto Encyclopedia of Genes and Genomes pathways, related to immune cell and associated endothelium functions. Review of regulated genes associated with endothelial dysfunction-related processes and included in these pathways, indicate immune cell-associated B cell scaffold protein with ankyrin repeats 1, as well as arterial endothelial cell-associated vascular cell adhesion molecule 1 and cadherin 5, as potential atherosclerosis targets.
Collapse
Affiliation(s)
- Paul A. Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
2
|
Lee J, Jin BR, Cho J. Spatiotemporal regulation of neutrophil heterogeneity in health and disease. Hum Mol Genet 2025:ddaf008. [PMID: 40287830 DOI: 10.1093/hmg/ddaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 04/29/2025] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are indispensable for innate immunity. They are short-lived, terminally differentiated cells. However, mounting evidence indicates that neutrophils are heterogeneous in health and disease: they are young or aged in a steady state, while their heterogeneity becomes more diverse in disease conditions, such as cancer, sepsis, and thromboinflammation. Although the presence of distinct neutrophil subsets is well recognized, it is not fully understood how neutrophils have functional and phenotypic heterogeneity and what mechanisms control it. This review will focus on our current understanding of the molecular basis for neutrophil heterogeneity in pathophysiological conditions. In addition, we will discuss the possibility of targeting a specific subset of neutrophils to attenuate inflammation and tissue damage without compromising innate immune responses.
Collapse
Affiliation(s)
- Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Ning M, Lu D, Liang D, Ren PG. Single-cell RNA sequencing advances in revealing the development and progression of MASH: the identifications and interactions of non-parenchymal cells. Front Mol Biosci 2025; 12:1513993. [PMID: 40201243 PMCID: PMC11976672 DOI: 10.3389/fmolb.2025.1513993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
Developing drugs for the treatment of Metabolic Associated Steatohepatitis (MASH) has always been a significant challenge. Researchers have been dedicated to exploring drugs and therapeutic strategies to alleviate disease progression, but treatments remain limited. This is partly due to the complexity of the pathophysiological processes, and inadequate knowledge of the cellular and molecular mechanisms in MASH. Especially, the liver non-parenchymal cells (NPCs) like Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells which play critical roles in live function, immune responses, fibrosis and disease progression. Deciphering how these cells function in MASH, would help understand the pathophysiological processes and find potential drug targets. In recent years, new technologies have been developed for single-cell transcriptomic sequencing, making cell-specific transcriptome profiling a reality in healthy and diseased livers. In this review, we discussed how the use of single-cell transcriptomic sequencing provided us with an in-depth understanding of the heterogeneous, cellular interactions among non-parenchymal cells and tried to highlight recent discoveries in MASH by this technology. It is hoped that the summarized features and markers of various subclusters in this review could provide a technical reference for further experiments and a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Meng Ning
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Donghui Lu
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dong Liang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Lee J, Balzraine B, Schweizer A, Kuzmanova V, Gwack Y, Razani B, Lee JM, Mosher DF, Cho J. Neutrophil CRACR2A Promotes Neutrophil Recruitment in Sterile Inflammation and Ischemic Stroke. Circulation 2025; 151:696-715. [PMID: 39601147 PMCID: PMC11893261 DOI: 10.1161/circulationaha.124.070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Ca2+ release-activated Ca2+ channel regulator 2A (CRACR2A) has been linked to immunodeficiency attributable to T-cell dysfunction in humans. We discovered that neutrophil CRACR2A promotes neutrophil adhesive and migratory functions by facilitating Ca2+ mobilization and β2 integrin activation. METHODS Myeloid-specific Cracr2a conditional knockout mice and intravital microscopy were used to investigate the physiologic role of neutrophil Cracr2a in neutrophil recruitment in vascular inflammation. Cracr2a-deficient neutrophils or dHL-60 (differentiated human promyelocytic leukemia) cells and Cracr2a-derived peptides were used in flow cytometry, immunoprecipitation, cytosolic Ca2+ mobilization, and flow chamber assays to elucidate the molecular mechanism. Four-dimensional confocal intravital microscopy of mice after focal brain ischemia and single neutrophil behavioral analysis demonstrated the pathologic role of neutrophil Cracr2a in brain damage. RESULTS Compared with wild-type control mice, Cracr2a conditional knockout mice exhibited significantly reduced adhesion, crawling, and transmigration of neutrophils on ear and cremaster venules in tumor necrosis factor-α-induced sterile inflammation. Neutrophil Cracr2a rapidly interacts with Stim1 (stromal interaction molecule 1) after agonist stimulation and facilitates Ca2+ mobilization, increasing the ligand-binding function of β2 integrin. Our findings in Cracr2a-deficient mouse neutrophils are recapitulated in dHL-60 cells, in which CRACR2A is deleted by CRISPR/Cas9. Furthermore, overexpression of CRACR2A in CRACR2A KO dHL-60 cells restores normal function. Using a series of peptides covering the coiled-coil region of Cracr2a, we identified a palmitoylated 20-mer that blocks Stim1-Cracr2a interaction. Treating neutrophils with this 20-mer inhibits Ca2+ mobilization and β2 integrin activation after agonist stimulation, reducing neutrophil recruitment to an activated endothelial cell monolayer under venous shear stress and to ear venules in tumor necrosis factor-α-challenged mice. Cerebral 4-dimensional intravital microscopy of mice after focal brain ischemia revealed that neutrophil Cracr2a enhances the emergence of highly migratory neutrophils by increasing the surface level of αMβ2 integrin, thereby facilitating neutrophil infiltration into brain tissue and exacerbating brain injury. CONCLUSIONS Our results demonstrate that neutrophil CRACR2A promotes neutrophil recruitment to sites of sterile inflammation, such as ischemic stroke. Blocking the STIM1-CRACR2A interaction may be a novel therapeutic strategy to mitigate inflammation and consequent tissue injury.
Collapse
Affiliation(s)
- Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brett Balzraine
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexis Schweizer
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Vasilisa Kuzmanova
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA 15213
- Pittsburgh VA Medical Center, Pittsburgh, PA 15240
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
5
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
6
|
Dong Q, Dong M, Liu X, Zhou J, Wu S, Liu Z, Niu W, Liu T. Salivary adenoid cystic carcinoma-derived α2,6-sialylated extracellular vesicles increase vascular permeability by triggering ER-stress in endothelial cells and promote lung metastasis. Cancer Lett 2024; 611:217407. [PMID: 39710056 DOI: 10.1016/j.canlet.2024.217407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Salivary adenoid cystic carcinoma (SACC) tends to metastasize to the lungs in the early stages of the disease. Factors secreted by the primary tumor can induce the formation of a supportive microenvironment in distant organs prior to metastasis, a process known as pre-metastatic niche (PMN) formation. Extracellular vesicles (EVs) participate in PMN formation. In this study, α2,6-sialylation of EVs derived from SACC cells with high metastatic potential increased vascular permeability, thereby facilitating tumor metastasis to the lungs. Mechanistic studies indicated that EV α2,6-sialylation triggers protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)-dependent activation of endoplasmic reticulum (ER) stress in the endothelium, leading to the disruption of vascular endothelial cadherin membrane expression. Sialidase or an ER stress inhibitor rescued vascular permeability induced by SACC EVs, which decreased the number of SACC cells extravasating into the lungs both in vitro and in vivo. This study identified a critical role of α2,6-sialylation of SACC EVs in lung metastasis. The findings indicate that EV α2,6-sialylation-induced ER stress in endothelial cells might be a therapeutic target for preventing SACC lung metastasis.
Collapse
Affiliation(s)
- Qi Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xue Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Jiasheng Zhou
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ziyao Liu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
7
|
Bertollo AG, Dalazen JB, Cassol JV, Hellmann MB, Mota TL, Ignácio ZM, Bagatini MD. Melatonin's Impact on Cytokine Storm and Modulation of Purinergic Receptors for COVID-19 Prognosis: A Mental Health Perspective. J Mol Neurosci 2024; 74:113. [PMID: 39636363 DOI: 10.1007/s12031-024-02292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
In 2019, coronavirus disease 2019 (COVID-19) started a global health crisis and was associated with high rates of depression and anxiety. Both mental disorders and COVID-19 exhibit similarities in pathophysiology, characterized by immune system overactivation, involvement of the purinergic system, and oxidative stress, besides additional factors and systems likely contributing to the complexities of these conditions. The purinergic system contributes to the disease-influenced immune response, an essential strategy for controlling pathophysiological effects. In this context, the hormone melatonin emerges as a substance that can modulate the purinergic system and contribute positively to the pathophysiology of SARS-CoV-2 infection and associated mental disorders. Melatonin is a hormone that regulates the body's circadian rhythms, plays an essential role in regulating sleep and mood, and modulates the purinergic system. Recent studies suggest melatonin's anti-inflammatory and antioxidant properties may benefit COVID-19. This review explores melatonin's impact on inflammatory cytokine storm in COVID-19 through purinergic system modulation.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Bortolanza Dalazen
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Joana Vitória Cassol
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Mariélly Braun Hellmann
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Tiago Libério Mota
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Zuleide Maria Ignácio
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
8
|
Xie BL, Bie YL, Song BC, Liu MW, Yang L, Liu J, Shi DZ, Zhao FH. Zedoarondiol inhibits monocyte adhesion and expression of VCAM and ICAM in endothelial cells induced by oxidative stress. Nat Prod Res 2024:1-7. [PMID: 39381963 DOI: 10.1080/14786419.2024.2413430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Zedoarondiol, a newly discovered compound derived from the roots of zedoary turmeric, a traditional Chinese herb, has demonstrated potential in reducing inflammation of the vascular endothelium and safeguarding it from harm. Nonetheless, the precise mechanism underlying these effects remains to be elucidated. In this study, we established a model of HUVEC injury induced by hydrogen peroxide. We observed whether Zedoarondiol could reduce the adhesion and transendothelial migration (TEM) of inflammatory cells by inhibiting the expression of VCAM-1 and ICAM-1 in HUVECs. The research findings indicate that utilising Zedoarondiol resulted in a significant reduction in the adhesion rate of THP1 cells to HUVECs, leading to a more condensed cytoskeletal structure. Moreover, Zedoarondiol demonstrated a decrease in NF-κBβ-Ser536 phosphorylation levels in H2O2-stimulated human umbilical vein endothelial cells, resulting in a hindered capacity to bind to target genes like ICAM-1 and VCAM-1, This findings may provide a new pharmacological basis and scientific evidence for Zedoarondiol to slow the atherosclerosis progression by maintaining endothelial function.
Collapse
Affiliation(s)
- Bei-Li Xie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Long Bie
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo-Ce Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming-Wang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Fu-Hai Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
9
|
Ma H, Chen R, Han N, Ge H, Li S, Wang Y, Yan X, Du C, Gao Y, Zhang G, Chang M. Association Between Blood-Brain Barrier Disruption and Stroke-Associated Pneumonia in Acute Ischemic Stroke Patients After Endovascular Therapy: A Retrospective Cohort Study. Clin Interv Aging 2024; 19:1611-1628. [PMID: 39372167 PMCID: PMC11453164 DOI: 10.2147/cia.s475887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Stroke, particularly due to large vessel occlusion (LVO), is a major cause of mortality and disability globally. Endovascular therapy (ET) significantly improves outcomes for acute ischemic stroke (AIS) patients, but complications such as stroke-associated pneumonia (SAP) increase mortality and healthcare costs. This study investigates the association between blood-brain barrier (BBB) disruption and the increased risk of SAP and explores the relationship between BBB disruption and medium-term functional outcomes. Methods The retrospective cohort study was performed on AIS patients enrolled between January 2019 to February 2023 who underwent ET. Patients were divided into two groups: BBB disruption and without BBB disruption. Multiple logistic regression model was conducted to measure the association between BBB disruption and SAP. Mediation analysis was used to estimate the potential mediation effects on the associations of BBB disruption with SAP. A restricted cubic spline (RCS) regression model was used to further outline the connection between the highest CT value of hyperattenuated lesions areas and the risk of SAP. Results The study included 254 patients who underwent endovascular therapy, with 155 patients in the BBB disruption group (exposure) and 99 patients in the without BBB disruption group (control). Multiple logistic regression analysis revealed a significantly increased risk of SAP in patients with BBB disruption (OR = 2.337, 95% CI: 1.118-4.990, p = 0.025). Furthermore, mediation analysis suggested that this association may be partly due to malignant cerebral oedema and haemorrhagic transformation. The study found an inverse L-shaped dose-response relationship between the maximum CT values of BBB disruption areas and the incidence of SAP. SAP partially mediated the association between BBB disruption and 3-month poor functional outcome. Conclusion BBB disruption are a potential risk factor for SAP. BBB disruption may affect short- and medium-term prognosis of patients after ET in part through SAP.
Collapse
Affiliation(s)
- Haojun Ma
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Neurological Intensive Care Unit, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Rui Chen
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Nannan Han
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Neurological Intensive Care Unit, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Hanming Ge
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Shilin Li
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Yanfei Wang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Xudong Yan
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Neurological Intensive Care Unit, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Chengxue Du
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Neurological Intensive Care Unit, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Yanjun Gao
- Department of Radiology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Gejuan Zhang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Neurological Intensive Care Unit, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| | - Mingze Chang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
- Neurological Intensive Care Unit, The Affiliated Hospital of Northwest University, Xi’an No.3 hospital, Xi’an, People’s Republic of China
| |
Collapse
|
10
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 PMCID: PMC11906189 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Sterling JK, Rajesh A, Droho S, Gong J, Wang AL, Voigt AP, Brookins CE, Lavine JA. Retinal perivascular macrophages regulate immune cell infiltration during neuroinflammation in mouse models of ocular disease. J Clin Invest 2024; 134:e180904. [PMID: 39207852 PMCID: PMC11473146 DOI: 10.1172/jci180904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The blood-retina barrier (BRB), which is disrupted in diabetic retinopathy (DR) and uveitis, is an important anatomical characteristic of the retina, regulating nutrient, waste, water, protein, and immune cell flux. The BRB is composed of endothelial cell tight junctions, pericytes, astrocyte end feet, a collagen basement membrane, and perivascular macrophages. Despite the importance of the BRB, retinal perivascular macrophage function remains unknown. We found that retinal perivascular macrophages resided on postcapillary venules in the superficial vascular plexus and expressed MHC class II. Using single-cell RNA-Seq, we found that perivascular macrophages expressed a prochemotactic transcriptome and identified platelet factor 4 (Pf4, also known as CXCL4) as a perivascular macrophage marker. We used Pf4Cre mice to specifically deplete perivascular macrophages. To model retinal inflammation, we performed intraocular CCL2 injections. Ly6C+ monocytes crossed the BRB proximal to perivascular macrophages. Depletion of perivascular macrophages severely hampered Ly6C+ monocyte infiltration. These data suggest that retinal perivascular macrophages orchestrate immune cell migration across the BRB, with implications for inflammatory ocular diseases including DR and uveitis.
Collapse
Affiliation(s)
- Jacob K. Sterling
- Department of Medicine, Feinberg School of Medicine
- Physician Scientist Track Program, Internal Medicine Residency, and
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amrita Rajesh
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joyce Gong
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew L. Wang
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew P. Voigt
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C. Elysse Brookins
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Liaqat I, Hilska I, Saario M, Jakobsson E, Crivaro M, Peränen J, Vaahtomeri K. Spatially targeted chemokine exocytosis guides transmigration at lymphatic endothelial multicellular junctions. EMBO J 2024; 43:3141-3174. [PMID: 38877304 PMCID: PMC11294460 DOI: 10.1038/s44318-024-00129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.
Collapse
Affiliation(s)
- Inam Liaqat
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Ida Hilska
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Maria Saario
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emma Jakobsson
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Marko Crivaro
- Light Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
13
|
Khoury M, Guo Q, Furuta K, Correia C, Meroueh C, Kim Lee HS, Warasnhe K, Valenzuela-Pérez L, Mazar AP, Kim I, Noh YK, Holmes H, Romero MF, Sussman CR, Pavelko KD, Islam S, Bamidele AO, Hirsova P, Li H, Ibrahim SH. Glycogen synthase kinase 3 activity enhances liver inflammation in MASH. JHEP Rep 2024; 6:101073. [PMID: 38882600 PMCID: PMC11179260 DOI: 10.1016/j.jhepr.2024.101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by excessive circulating toxic lipids, hepatic steatosis, and liver inflammation. Monocyte adhesion to liver sinusoidal endothelial cells (LSECs) and transendothelial migration (TEM) are crucial in the inflammatory process. Under lipotoxic stress, LSECs develop a proinflammatory phenotype known as endotheliopathy. However, mediators of endotheliopathy remain unclear. Methods Primary mouse LSECs isolated from C57BL/6J mice fed chow or MASH-inducing diets rich in fat, fructose, and cholesterol (FFC) were subjected to multi-omics profiling. Mice with established MASH resulting from a choline-deficient high-fat diet (CDHFD) or FFC diet were also treated with two structurally distinct GSK3 inhibitors (LY2090314 and elraglusib [9-ING-41]). Results Integrated pathway analysis of the mouse LSEC proteome and transcriptome indicated that leukocyte TEM and focal adhesion were the major pathways altered in MASH. Kinome profiling of the LSEC phosphoproteome identified glycogen synthase kinase (GSK)-3β as the major kinase hub in MASH. GSK3β-activating phosphorylation was increased in primary human LSECs treated with the toxic lipid palmitate and in human MASH. Palmitate upregulated the expression of C-X-C motif chemokine ligand 2, intracellular adhesion molecule 1, and phosphorylated focal adhesion kinase, via a GSK3-dependent mechanism. Congruently, the adhesive and transendothelial migratory capacities of primary human neutrophils and THP-1 monocytes through the LSEC monolayer under lipotoxic stress were reduced by GSK3 inhibition. Treatment with the GSK3 inhibitors LY2090314 and elraglusib ameliorated liver inflammation, injury, and fibrosis in FFC- and CDHFD-fed mice, respectively. Immunophenotyping using cytometry by mass cytometry by time of flight of intrahepatic leukocytes from CDHFD-fed mice treated with elraglusib showed reduced infiltration of proinflammatory monocyte-derived macrophages and monocyte-derived dendritic cells. Conclusion GSK3 inhibition attenuates lipotoxicity-induced LSEC endotheliopathy and could serve as a potential therapeutic strategy for treating human MASH. Impact and Implications LSECs under lipotoxic stress in MASH develop a proinflammatory phenotype known as endotheliopathy, with obscure mediators and functional outcomes. The current study identified GSK3 as the major driver of LSEC endotheliopathy, examined its pathogenic role in myeloid cell-associated liver inflammation, and defined the therapeutic efficacy of pharmacological GSK3 inhibitors in murine MASH. This study provides preclinical data for the future investigation of GSK3 pharmacological inhibitors in human MASH. The results of this study are important to hepatologists, vascular biologists, and investigators studying the mechanisms of inflammatory liver disease and MASH, as well as those interested in drug development.
Collapse
Affiliation(s)
- Mireille Khoury
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qianqian Guo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Kunimaro Furuta
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Cristina Correia
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Chady Meroueh
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hyun Se Kim Lee
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Khaled Warasnhe
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Iljung Kim
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Heather Holmes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael F. Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | - Shahidul Islam
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adebowale O. Bamidele
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Petra Hirsova
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Bloomfield CL, Gong J, Droho S, Makinde HM, Gurra MG, Stumpf CH, Kharel A, Gadhvi G, Winter DR, Cui W, Cuda CM, Lavine JA. Retinal microglia express more MHC class I and promote greater T-cell-driven inflammation than brain microglia. Front Immunol 2024; 15:1399989. [PMID: 38799448 PMCID: PMC11116593 DOI: 10.3389/fimmu.2024.1399989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Macrophage function is determined by microenvironment and origin. Brain and retinal microglia are both derived from yolk sac progenitors, yet their microenvironments differ. Utilizing single-cell RNA sequencing (scRNA-seq) data from mice, we tested the hypothesis that retinal and brain microglia exhibit distinct transcriptional profiles due to their unique microenvironments. Methods Eyes and brains from 2-4 month wildtype mice were combined (20 eyes; 3 brains) to yield one biologically diverse sample per organ. Each tissue was digested into single cell suspensions, enriched for immune cells, and sorted for scRNA-seq. Analysis was performed in Seurat v3 including clustering, integration, and differential expression. Multi-parameter flow cytometry was used for validation of scRNA-seq results. Lymphocytic choriomeningitis virus (LCMV) Clone 13, which produces a systemic, chronic, and neurotropic infection, was used to validate scRNA-seq and flow cytometry results in vivo. Results Cluster analysis of integrated gene expression data from eye and brain identified 6 Tmem119 + P2ry12 + microglial clusters. Differential expression analysis revealed that eye microglia were enriched for more pro-inflammatory processes including antigen processing via MHC class I (14.0-fold, H2-D1 and H2-K1) and positive regulation of T-cell immunity (8.4-fold) compared to brain microglia. Multi-parameter flow cytometry confirmed that retinal microglia expressed 3.2-fold greater H2-Db and 263.3-fold more H2-Kb than brain microglia. On Day 13 and 29 after LCMV infection, CD8+ T-cell density was greater in the retina than the brain. Discussion Our data demonstrate that the microenvironment of retina and brain differs, resulting in microglia-specific gene expression changes. Specifically, retinal microglia express greater MHC class I by scRNA-seq and multi-parameter flow cytometry, resulting in a possibly enhanced capability to stimulate CD8+ T-cell inflammation during LCMV infection. These results may explain tissue-specific differences between retina and brain during systemic viral infections and CD8+ T-cell driven autoimmune disease.
Collapse
Affiliation(s)
- Christina L. Bloomfield
- Department of Medicine, University of Illinois College of Medicine, Rockford, IL, United States
| | - Joyce Gong
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hadijat M. Makinde
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Miranda G. Gurra
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Cecilia H. Stumpf
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Arjun Kharel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gaurav Gadhvi
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Deborah R. Winter
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Hernandez C, Gorska AM, Eugenin E. Mechanisms of HIV-mediated blood-brain barrier compromise and leukocyte transmigration under the current antiretroviral era. iScience 2024; 27:109236. [PMID: 38487019 PMCID: PMC10937838 DOI: 10.1016/j.isci.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
HIV-associated neurological compromise is observed in more than half of all people with HIV (PWH), even under antiretroviral therapy (ART). The mechanism has been associated with the early transmigration of HIV-infected monocytes across the BBB in a CCL2 and HIV replication-dependent manner. However, the mechanisms of chronic brain damage are unknown. We demonstrate that all PWH under ART have elevated circulating ATP levels that correlate with the onset of cognitive impairment even in the absence of a circulating virus. Serum ATP levels found in PWH with the most severe neurocognitive impairment trigger the transcellular migration of HIV-infected leukocytes across the BBB in a JAM-A and LFA-1-dependent manner. We propose that targeting transcellular leukocyte transmigration could reduce or prevent the devastating consequences of HIV within the brains of PWH under ART.
Collapse
Affiliation(s)
- Cristian Hernandez
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Anna Maria Gorska
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Eliseo Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
16
|
Zeng Q, Oliva VM, Moro MÁ, Scheiermann C. Circadian Effects on Vascular Immunopathologies. Circ Res 2024; 134:791-809. [PMID: 38484032 PMCID: PMC11867806 DOI: 10.1161/circresaha.123.323619] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction. Circadian rhythms impact both the immune and vascular facets of these interactions, primarily through the regulation of chemoattractant and adhesion molecules on immune and endothelial cells. Misaligned light conditions disrupt this rhythm, generally exacerbating atherosclerosis and infarction. In cardiovascular diseases, distinct circadian clock genes, while functioning as part of an integrated circadian system, can have proinflammatory or anti-inflammatory effects on these immune-vascular interactions. Here, we discuss the mechanisms and relevance of circadian rhythms in vascular immunopathologies.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - Valeria Maria Oliva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.Á.M.)
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
- Geneva Center for Inflammation Research, Switzerland (C.S.)
- Translational Research Centre in Oncohaematology, Geneva, Switzerland (C.S.)
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Germany (C.S.)
| |
Collapse
|
17
|
Carvalho TP, Toledo FAO, Bautista DFA, Silva MF, Oliveira JBS, Lima PA, Costa FB, Ribeiro NQ, Lee JY, Birbrair A, Paixão TA, Tsolis RM, Santos RL. Pericytes modulate endothelial inflammatory response during bacterial infection. mBio 2024; 15:e0325223. [PMID: 38289074 PMCID: PMC10936204 DOI: 10.1128/mbio.03252-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
Pericytes are located around blood vessels, in close contact with endothelial cells. We discovered that pericytes dampen pro-inflammatory endothelial cell responses. Endothelial cells co-cultured with pericytes had markedly reduced expression of adhesion molecules (PECAM-1 and ICAM-1) and proinflammatory cytokines (CCL-2 and IL-6) in response to bacterial stimuli (Brucella ovis, Listeria monocytogenes, or Escherichia coli lipopolysaccharide). Pericyte-depleted mice intraperitoneally inoculated with either B. ovis, a stealthy pathogen that does not trigger detectable inflammation, or Listeria monocytogenes, developed peritonitis. Further, during Citrobacter rodentium infection, pericyte-depleted mice developed severe intestinal inflammation, which was not evident in control mice. The anti-inflammatory effect of pericytes required connexin 43, as either chemical inhibition or silencing of connexin 43 abrogated pericyte-mediated suppression of endothelial inflammatory responses. Our results define a mechanism by which pericytes modulate inflammation during infection, which shifts our understanding of pericyte biology: from a structural cell to a pro-active player in modulating inflammation. IMPORTANCE A previously unknown mechanism by which pericytes modulate inflammation was discovered. The absence of pericytes or blocking interaction between pericytes and endothelium through connexin 43 results in stronger inflammation, which shifts our understanding of pericyte biology, from a structural cell to a player in controlling inflammation.
Collapse
Affiliation(s)
- Thaynara P. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Frank A. O. Toledo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego F. A. Bautista
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique F. Silva
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jefferson B. S. Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pâmela A. Lima
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabíola B. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noelly Q. Ribeiro
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jee-Yon Lee
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Alexander Birbrair
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Reneé M. Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| |
Collapse
|
18
|
Wang Z, Guo Y, Zhang Y, Wu L, Wang L, Lin Q, Wan B. An Intriguing Structural Modification in Neutrophil Migration Across Blood Vessels to Inflammatory Sites: Progress in the Core Mechanisms. Cell Biochem Biophys 2024; 82:67-75. [PMID: 37962751 DOI: 10.1007/s12013-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The role and function of neutrophils are well known, but we still have incomplete understanding of the mechanisms by which neutrophils migrate from blood vessels to inflammatory sites. Neutrophil migration is a complex process that involves several distinct steps. To resist the blood flow and maintain their rolling, neutrophils employ tether and sling formation. They also polarize and form pseudopods and uropods, guided by hierarchical chemotactic agents that enable precise directional movement. Meanwhile, chemotactic agents secreted by neutrophils, such as CXCL1, CXCL8, LTB4, and C5a, can recruit more neutrophils and amplify their response. In the context of diapedesis neutrophils traverse the endothelial cells via two pathways: the transmigratory cup and the lateral border recycling department. These structures aid in overcoming the narrow pore size of the endothelial barrier, resulting in more efficient transmembrane migration. Interestingly, neutrophils exhibit a preference for the paracellular pathway over the transcellular pathway, likely due to the former's lower resistance. In this review, we will delve into the intricate process of neutrophil migration by focusing on critical structures that underpins this process.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yufang Guo
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yulei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
19
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
He J, Cao Y, Zhu Q, Wang X, Cheng G, Wang Q, He R, Lu H, Weng Y, Mao G, Bao Y, Wang J, Liu X, Han F, Shi P, Shen XZ. Renal macrophages monitor and remove particles from urine to prevent tubule obstruction. Immunity 2024; 57:106-123.e7. [PMID: 38159573 DOI: 10.1016/j.immuni.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin β1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.
Collapse
Affiliation(s)
- Jian He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinge Wang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo Cheng
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rukun He
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoran Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
| | - Yuancheng Weng
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Badaut J, Ghersi-Egea JF, Thorne RG, Konsman JP. Blood-brain borders: a proposal to address limitations of historical blood-brain barrier terminology. Fluids Barriers CNS 2024; 21:3. [PMID: 38183042 PMCID: PMC10770911 DOI: 10.1186/s12987-023-00478-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 01/07/2024] Open
Abstract
Many neuroscientists use the term Blood-Brain Barrier (BBB) to emphasize restrictiveness, often equating or reducing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortunate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstructive barriers to transport. Although the term blood-brain interface is an excellent descriptor that does not convey the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try to appeal to well-chosen metaphors. Recent evidence reviewed here indicates that blood-brain interfaces are more than selective semi-permeable membranes in that they display many dynamic processes and complex mechanisms for communication. They are thus more like 'geopolitical borders'. Furthermore, some authors working on blood-brain interface-relevant issues have started to use the word border, for example in border-associated macrophages. Therefore, we suggest adopting the term Blood-Brain Border to better communicate the flexibility of and movement across blood-brain interfaces.
Collapse
Affiliation(s)
- Jerome Badaut
- Brain Molecular Imaging Lab, UMR 5536, CNRS, RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Jean-François Ghersi-Egea
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR 5292, Lyon-1 University, Bron, France.
| | - Robert G Thorne
- Denali Therapeutics, Inc, 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.
| | - Jan Pieter Konsman
- UMR 5164, CNRS, ImmunoConcEpT, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
22
|
Liu H, Deng L, Guo Y, Liu H, Chen B, Zhang J, Ran J, Yin G, Xie Q. Comprehensive transcriptomic analysis and machine learning reveal unique gene expression profiles in patients with immune-mediated necrotizing myopathy. J Gene Med 2024; 26:e3598. [PMID: 37743820 DOI: 10.1002/jgm.3598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Immune-mediated necrotizing myopathy (IMNM) is an autoimmune myopathy characterized by severe proximal weakness and muscle fiber necrosis, yet its pathogenesis remains unclear. So far, there are few bioinformatics studies on underlying pathogenic genes and infiltrating immune cell profiles of IMNM. Therefore, we aimed to characterize differentially expressed genes (DEGs) and infiltrating cells in IMNM muscle biopsy specimens, which may be useful for elucidating the pathogenesis of IMNM. METHODS Three datasets (GSE39454, GSE48280 and GSE128470) of gene expression profiling related to IMNM were obtained from the Gene Expression Omnibus database. Data were normalized, and DEG analysis was performed using the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using clusterProfiler. The CIBERSORT algorithm was performed to identify infiltrating cells. Machine learning algorithm and gene set enrichment analysis (GSEA) were performed to find distinctive gene signatures and the underlying signaling pathways of IMNM. RESULTS DEG analysis identified upregulated and downregulated in IMNM muscle compared to the gene expression levels of other groups. GO and KEGG analysis showed that the pathogenesis of IMNM was notable for the under-representation of pathways that were important in dermatomyositis and inclusion body myositis. Three immune cells (M2 macrophages, resting dendritic cells and resting natural killer cells) with differential infiltration and five key genes (NDUFAF7, POLR2J, CD99, ARF5 and SKAP2) in patients with IMNM were identified through the CIBERSORT and machine learning algorithm. The GSEA results revealed that the key genes were remarkably enriched in diverse immunological and muscle metabolism-related pathways. CONCLUSIONS We comprehensively explored immunological landscape of IMNM, which is indicative for the research of IMNM pathogenesis.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Deng
- National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu, China
| | - Yixue Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhou M, Su P, Liang J, Xiong T. Research progress on the roles of neurovascular unit in stroke-induced immunosuppression. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:662-672. [PMID: 37899404 PMCID: PMC10630064 DOI: 10.3724/zdxbyxb-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
A complex pathophysiological mechanism is involved in brain injury following cerebral infarction. The neurovascular unit (NVU) is a complex multi-cellular structure consisting of neurons, endothelial cells, pericyte, astrocyte, microglia and extracellular matrix, etc. The dyshomeostasis of NVU directly participates in the regulation of inflammatory immune process. The components of NVU promote inflammatory overreaction and synergize with the overactivation of autonomic nervous system to initiate stroke-induced immunodepression (SIID). SIID can alleviate the damage caused by inflammation, however, it also makes stroke patients more susceptible to infection, leading to systemic damage. This article reviews the mechanism of SIID and the roles of NVU in SIID, to provide a perspective for reperfusion, prognosis and immunomodulatory therapy of cerebral infarction.
Collapse
Affiliation(s)
- Mengqin Zhou
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China.
| | - Peng Su
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Jingyan Liang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
24
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
25
|
Kubick N, Lazarczyk M, Strzałkowska N, Charuta A, Horbańczuk JO, Sacharczuk M, Mickael ME. Factors regulating the differences in frequency of infiltration of Th17 and Treg of the blood-brain barrier. Immunogenetics 2023; 75:417-423. [PMID: 37430007 DOI: 10.1007/s00251-023-01310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023]
Abstract
Controlling CD4+ immune cell infiltration of the brain is a leading aim in designing therapeutic strategies for a range of neuropathological disorders such as multiple sclerosis, Alzheimer's disease, and depression. CD4+ T cells are a highly heterogeneous and reprogrammable family, which includes various distinctive cell types such as Th17, Th1, and Treg cells. Interestingly Th17 and Treg cells share a related transcriptomic profile, where the TGFβ-SMADS pathway plays a fundamental role in regulating the differentiation of both of these cell types. However, Th17 could be highly pathogenic and was shown to promote inflammation in various neuropathological disorders. Conversely, Treg is anti-inflammatory and is known to inhibit Th17. It could be noticed that Th17 frequencies of infiltration of the blood-brain barrier in various neurological disorders are significantly upregulated. However, Treg infiltration numbers are significantly low. The reasons behind these contradicting observations are still unknown. In this perspective, we propose that the difference in the T-cell receptor repertoire diversity, diapedesis pathways, chemokine expression, and mechanical properties of these two cell types could be contributing to answering this intriguing question.
Collapse
Affiliation(s)
- Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Marzena Lazarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Nina Strzałkowska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Anna Charuta
- Institute of Health, Siedlce University of Natural Sciences and Humanities, Ul. Konarskiego 2, 08-110, Siedlce, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A, Jastrzębiec, 05-552, Magdalenka, Poland.
- Department of Pharmacodynamics, Faculty of Pharmacy, Warsaw Medical University, L Banacha 1, 02-697, Warsaw, Poland.
| | - Michel Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Ul. Postepu 36A, Jastrzębiec, 05-552, Magdalenka, Poland.
| |
Collapse
|
26
|
Grönloh MLB, Arts JJG, Mahlandt EK, Nolte MA, Goedhart J, van Buul JD. Primary adhered neutrophils increase JNK1-MARCKSL1-mediated filopodia to promote secondary neutrophil transmigration. iScience 2023; 26:107406. [PMID: 37559902 PMCID: PMC10407253 DOI: 10.1016/j.isci.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
During inflammation, leukocytes extravasate the vasculature to areas of inflammation in a process termed transendothelial migration. Previous research has shown that transendothelial migration hotspots exist, areas in the vasculature that are preferred by leukocytes to cross. Several factors that contribute to hotspot-mediated transmigration have been proposed already, but whether one leukocyte transmigration hotspot can be used subsequently by a second wave of leukocytes and thereby can increase the efficiency of leukocyte transmigration is not well understood. Here, we show that primary neutrophil adhesion to the endothelium triggers endothelial transmigration hotspots, allowing secondary neutrophils to cross the endothelium more efficiently. Mechanistically, we show that primary neutrophil adhesion increases the number of endothelial apical filopodia, resulting in an increase in the number of adherent secondary neutrophils. Using fluorescence resonance energy transfer (FRET)-based biosensors, we found that neutrophil adhesion did not trigger the activity of the small GTPase Cdc42. We used kinase translocation reporters to study the activity of mitogen-activated protein (MAP) kinases and Akt in endothelial cells on a single-cell level with a high temporal resolution during the process of leukocyte transmigration and found that c-Jun N-terminal kinase (JNK) is rapidly activated upon neutrophil adhesion, whereas extracellular regulated kinase (ERK), p38, and Akt are not. Additionally, we show that short-term chemical inhibition of endothelial JNK successfully prevents the adhesion of neutrophils to the endothelium. Furthermore, we show that neutrophil-induced endothelial JNK1 but not JNK2 increases the formation of filopodia and thereby the adhesion of secondary neutrophils. JNK1 needs its downstream substrate MARCKSL1 to trigger additional apical filopodia and consequently neutrophil adhesion. Overall, our data show that primary neutrophils can trigger the endothelial transmigration hotspot by activating JNK1 and MARCKSL1 to induce filopodia that trigger more neutrophils to transmigrate at the endothelial hotspot area.
Collapse
Affiliation(s)
- Max Laurens Bastiaan Grönloh
- Vascular Biology Lab, Medical Biochemistry Department at Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Janine Johanna Geertruida Arts
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Eike Karin Mahlandt
- Vascular Biology Lab, Medical Biochemistry Department at Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| | - Martijn A. Nolte
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Joachim Goedhart
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap Diederik van Buul
- Vascular Biology Lab, Medical Biochemistry Department at Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Hermans D, Rodriguez-Mogeda C, Kemps H, Bronckaers A, de Vries HE, Broux B. Nectins and Nectin-like molecules drive vascular development and barrier function. Angiogenesis 2023; 26:349-362. [PMID: 36867287 DOI: 10.1007/s10456-023-09871-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.
Collapse
Affiliation(s)
- Doryssa Hermans
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Carla Rodriguez-Mogeda
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hannelore Kemps
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- KU Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Helga E de Vries
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bieke Broux
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium.
| |
Collapse
|
28
|
Kim J, Mooren OL, Onken MD, Cooper JA. Septin and actin contributions to endothelial cell-cell junctions and monolayer integrity. Cytoskeleton (Hoboken) 2023; 80:228-241. [PMID: 36205643 PMCID: PMC10079785 DOI: 10.1002/cm.21732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
Septins in endothelial cells (ECs) have important roles supporting the integrity of the endothelial monolayer. Cell-cell junctions in EC monolayers are highly dynamic, with continuous retractions and protrusions. Depletion of septins in ECs leads to disruption of cell-cell junctions, which are composed of VE-cadherin and other junctional proteins. In EC monolayers, septins are concentrated at the plasma membrane at sites of cell-cell contact, in curved- and scallop-shaped patterns. These membrane-associated septin accumulations are located in regions of positive membrane curvature, and those regions are often associated with and immediately adjacent to actin-rich protrusions with negative membrane curvature. EC septins associate directly with plasma membrane lipids, based on findings with site-specific mutations of septins in ECs, which is consistent with biochemical and cell biological studies in other systems. Loss of septins leads to disruption of the EC monolayer, and gaps form between cells. The number and breadth of cell-cell contacts and junctions decreases, and the number and frequency of retractions, ruffles, and protrusions at cell edges also decreases. In addition, loss of septins leads to decreased amounts of F-actin at the cortical membrane, along with increased amounts of F-actin in stress fibers of the cytoplasm. Endothelial monolayer disruption from loss of septins is also associated with decreased transendothelial electric resistance (TEER) and increased levels of transendothelial migration (TEM) by immune and cancer cells, owing to the gaps in the monolayer. A current working model is that assembly of septin filaments at regions of positive membrane curvature contributes to a mechanical footing or base for actin-based protrusive forces generated at adjoining regions of the membrane. Specific molecular interactions between the septin and actin components of the cytoskeleton may also be important contributors. Regulators of actin assembly may promote and support the assembly of septin filaments at the membrane, as part of a molecular feedback loop between the assembly of septin and actin filaments.
Collapse
Affiliation(s)
- Joanna Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
29
|
Mahdinia E, Shokri N, Taheri AT, Asgharzadeh S, Elahimanesh M, Najafi M. Cellular crosstalk in atherosclerotic plaque microenvironment. Cell Commun Signal 2023; 21:125. [PMID: 37254185 DOI: 10.1186/s12964-023-01153-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Atherosclerosis is an underlying pathology of many vascular diseases as a result of cellular, structural and molecular dysfunctions within the sub-endothelial space. This review deals with the events involved in the formation, growth and remodeling of plaque, including the cell recruitment, cell polarization, and cell fat droplets. It also describes cross talking between endothelial cells, macrophages, and vascular smooth muscle cells, as well as the cellular pathways involved in plaque development in the plaque microenvironment. Finally, it describes the plaque structural components and the role of factors involved in the rupture and erosion of plaques in the vessel. Video Abstract.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Asgharzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ghazvin University of Medical Sciences, Ghazvin, Iran
| | - Mohammad Elahimanesh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Zhou R, Li J, Chen Z, Wang R, Shen Y, Zhang R, Zhou F, Zhang Y. Pathological hemodynamic changes and leukocyte transmigration disrupt the blood-spinal cord barrier after spinal cord injury. J Neuroinflammation 2023; 20:118. [PMID: 37210532 DOI: 10.1186/s12974-023-02787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/21/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Blood-spinal cord barrier (BSCB) disruption is a key event after spinal cord injury (SCI), which permits unfavorable blood-derived substances to enter the neural tissue and exacerbates secondary injury. However, limited mechanical impact is usually followed by a large-scale BSCB disruption in SCI. How the BSCB disruption is propagated along the spinal cord in the acute period of SCI remains unclear. Thus, strategies for appropriate clinical treatment are lacking. METHODS A SCI contusion mouse model was established in wild-type and LysM-YFP transgenic mice. In vivo two-photon imaging and complementary studies, including immunostaining, capillary western blotting, and whole-tissue clearing, were performed to monitor BSCB disruption and verify relevant injury mechanisms. Clinically applied target temperature management (TTM) to reduce the core body temperature was tested for the efficacy of attenuating BSCB disruption. RESULTS Barrier leakage was detected in the contusion epicenter within several minutes and then gradually spread to more distant regions. Membrane expression of the main tight junction proteins remained unaltered at four hours post-injury. Many junctional gaps emerged in paracellular tight junctions at the small vessels from multiple spinal cord segments at 15 min post-injury. A previously unnoticed pathological hemodynamic change was observed in the venous system, which likely facilitated gap formation and barrier leakage by exerting abnormal physical force on the BSCB. Leukocytes were quickly initiated to transverse through the BSCB within 30 min post-SCI, actively facilitating gap formation and barrier leakage. Inducing leukocyte transmigration generated gap formation and barrier leakage. Furthermore, pharmacological alleviation of pathological hemodynamic changes or leukocyte transmigration reduced gap formation and barrier leakage. TTM had very little protective effects on the BSCB in the early period of SCI other than partially alleviating leukocyte infiltration. CONCLUSIONS Our data show that BSCB disruption in the early period of SCI is a secondary change, which is indicated by widespread gap formation in tight junctions. Pathological hemodynamic changes and leukocyte transmigration contribute to gap formation, which could advance our understanding of BSCB disruption and provide new clues for potential treatment strategies. Ultimately, TTM is inadequate to protect the BSCB in early SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Junzhao Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Hubei, Wuhan, 430060, People's Republic of China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China.
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China.
| |
Collapse
|
31
|
Afshar Y, Ma F, Quach A, Jeong A, Sunshine HL, Freitas V, Jami-Alahmadi Y, Helaers R, Li X, Pellegrini M, Wohlschlegel JA, Romanoski CE, Vikkula M, Iruela-Arispe ML. Transcriptional drifts associated with environmental changes in endothelial cells. eLife 2023; 12:e81370. [PMID: 36971339 PMCID: PMC10168696 DOI: 10.7554/elife.81370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| | - Feyiang Ma
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Austin Quach
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Anhyo Jeong
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
| | - Hannah L Sunshine
- Department of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Vanessa Freitas
- Departament of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao PauloLos AngelesUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
- WELBIO department, WEL Research InstituteWavreBelgium
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
32
|
Azcutia V, Kelm M, Fink D, Cummings RD, Nusrat A, Parkos CA, Brazil JC. Sialylation regulates neutrophil transepithelial migration, CD11b/CD18 activation, and intestinal mucosal inflammatory function. JCI Insight 2023; 8:e167151. [PMID: 36719745 PMCID: PMC10077474 DOI: 10.1172/jci.insight.167151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in clearing invading microbes and promoting tissue repair following infection/injury. However, dysregulated PMN trafficking and associated tissue damage is pathognomonic of numerous inflammatory mucosal diseases. The final step in PMN influx into mucosal lined organs (including the lungs, kidneys, skin, and gut) involves transepithelial migration (TEpM). The β2-integrin CD11b/CD18 plays an important role in mediating PMN intestinal trafficking, with recent studies highlighting that terminal fucose and GlcNAc glycans on CD11b/CD18 can be targeted to reduce TEpM. However, the role of the most abundant terminal glycan, sialic acid (Sia), in regulating PMN epithelial influx and mucosal inflammatory function is not well understood. Here we demonstrate that inhibiting sialidase-mediated removal of α2-3-linked Sia from CD11b/CD18 inhibits PMN migration across intestinal epithelium in vitro and in vivo. Sialylation was also found to regulate critical PMN inflammatory effector functions, including degranulation and superoxide release. Finally, we demonstrate that sialidase inhibition reduces bacterial peptide-mediated CD11b/CD18 activation in PMN and blocks downstream intracellular signaling mediated by spleen tyrosine kinase (Syk) and p38 MAPK. These findings suggest that sialylated glycans on CD11b/CD18 represent potentially novel targets for ameliorating PMN-mediated tissue destruction in inflammatory mucosal diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kelm
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dylan Fink
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Wen X, Ye X, Yang X, Jiang R, Qian C, Wang X. The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clin Transl Oncol 2023; 25:620-632. [PMID: 36376701 DOI: 10.1007/s12094-022-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Different types of cells that are involved in tumor immunity play a significant part in antitumor therapy. The intestinal microbiota consist of the trillions of diverse microorganisms that inhabit the gastrointestinal tract. Recently, much emphasis has been paid to the link between these symbionts and colorectal cancer (CRC). This association might be anything from oncogenesis and cancer development to resistance or susceptibility to chemotherapeutic medicines. Cancer patients have a significantly different microbial composition in their guts compared to healthy persons. The microbiome may play a role in the development and development of cancer through the modulation of tumor immunosurveillance, as shown by these studies; however, the specific processes underlying this role are still poorly understood. This review focuses on the relationship between the intestinal bacterial microbiota and immune cells to determine how the commensal microbiome influences the initiation and development of CRC.
Collapse
Affiliation(s)
- Xiaozi Wen
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xufang Ye
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejun Yang
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rujin Jiang
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyan Qian
- Linping Campus of the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
34
|
Chlastáková A, Kaščáková B, Kotál J, Langhansová H, Kotsyfakis M, Kutá Smatanová I, Tirloni L, Chmelař J. Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules. Front Immunol 2023; 14:1116324. [PMID: 36756125 PMCID: PMC9901544 DOI: 10.3389/fimmu.2023.1116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,*Correspondence: Jindřich Chmelař,
| |
Collapse
|
35
|
Grönloh MLB, Arts JJG, Palacios Martínez S, van der Veen AA, Kempers L, van Steen ACI, Roelofs JJTH, Nolte MA, Goedhart J, van Buul JD. Endothelial transmigration hotspots limit vascular leakage through heterogeneous expression of ICAM-1. EMBO Rep 2023; 24:e55483. [PMID: 36382783 PMCID: PMC9827561 DOI: 10.15252/embr.202255483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Upon inflammation, leukocytes leave the circulation by crossing the endothelial monolayer at specific transmigration "hotspot" regions. Although these regions support leukocyte transmigration, their functionality is not clear. We found that endothelial hotspots function to limit vascular leakage during transmigration events. Using the photoconvertible probe mEos4b, we traced back and identified original endothelial transmigration hotspots. Using this method, we show that the heterogeneous distribution of ICAM-1 determines the location of the transmigration hotspot. Interestingly, the loss of ICAM-1 heterogeneity either by CRISPR/Cas9-induced knockout of ICAM-1 or equalizing the distribution of ICAM-1 in all endothelial cells results in the loss of TEM hotspots but not necessarily in reduced TEM events. Functionally, the loss of endothelial hotspots results in increased vascular leakage during TEM. Mechanistically, we demonstrate that the 3 extracellular Ig-like domains of ICAM-1 are crucial for hotspot recognition. However, the intracellular tail of ICAM-1 and the 4th Ig-like dimerization domain are not involved, indicating that intracellular signaling or ICAM-1 dimerization is not required for hotspot recognition. Together, we discovered that hotspots function to limit vascular leakage during inflammation-induced extravasation.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sebastián Palacios Martínez
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Amerens A van der Veen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Lanette Kempers
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Abraham C I van Steen
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular SciencesAmsterdam UMC, University of Amsterdam, Location AMCAmsterdamThe Netherlands
| | - Martijn A Nolte
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
| | - Joachim Goedhart
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamThe Netherlands
- Section Molecular Cytology at Swammerdam Institute for Life Sciences, Leeuwenhoek Centre for Advanced MicroscopyUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
36
|
Zhao Y, Jin H, Lei K, Bai LP, Pan H, Wang C, Zhu X, Tang Y, Guo Z, Cai J, Li T. Oridonin inhibits inflammation of epithelial cells via dual-targeting of CD31 Keap1 to ameliorate acute lung injury. Front Immunol 2023; 14:1163397. [PMID: 37090710 PMCID: PMC10116055 DOI: 10.3389/fimmu.2023.1163397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Introdcution Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of COVID-19 mortality. However, drug delivery to lung tissues is impeded by endothelial cell barriers, limiting the efficacy of existing treatments. A prompt and aggressive treatment strategy is therefore necessary. Methods We assessed the ability of anti-CD31-ORI-NPs to penetrate endothelial cell barriers and specifically accumulate in lung tissues using an animal model. We also compared the efficacy of anti-CD31-ORI-NPs to that of free oridonin in ameliorating acute lung injury and evaluated the cytotoxicity of both treatments on endothelial cells. Results Compared to free ORI, the amount of anti-CD31-ORI-NPs accumulated in lung tissues increase at least three times. Accordingly, anti-CD31-ORI-NPs improve the efficacy three times on suppressing IL-6 and TNF-a secretion, ROS production, eventually ameliorating acute lung injury in animal model. Importantly, anti-CD31-ORI-NPs significantly decrease the cytotoxicity at least two times than free oridonin on endothelial cells. Discussion Our results from this study will not only offer a novel therapeutic strategy with high efficacy and low toxicity, but also provide the rational design of nanomaterials of a potential drug for acute lung injury therapy.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Kawai Lei
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yanqing Tang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zhengyang Guo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Chemistry, Jinan University, Guangzhou, Guangdong, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Ting Li,
| |
Collapse
|
37
|
Achón Buil B, Tackenberg C, Rust R. Editing a gateway for cell therapy across the blood-brain barrier. Brain 2022; 146:823-841. [PMID: 36397727 PMCID: PMC9976985 DOI: 10.1093/brain/awac393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Correspondence to: Ruslan Rust Institute for Regenerative Medicine Wagistrasse 12, 8952 Schlieren Zurich, Switzerland E-mail:
| |
Collapse
|
38
|
Meng J, Zhang J, Fang J, Li M, Ding H, Zhang W, Chen C. Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Res Bull 2022; 190:140-151. [DOI: 10.1016/j.brainresbull.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
39
|
Cognasse F, Hamzeh-Cognasse H, Duchez AC, Shurko N, Eyraud MA, Arthaud CA, Prier A, Heestermans M, Hequet O, Bonneaudeau B, Rochette-Eribon S, Teyssier F, Barlet-Excoffier V, Chavarin P, Legrand D, Richard P, Morel P, Mooney N, Tiberghien P. Inflammatory profile of convalescent plasma to treat COVID: Impact of amotosalen/UVA pathogen reduction technology. Front Immunol 2022; 13:1034379. [PMID: 36275757 PMCID: PMC9585295 DOI: 10.3389/fimmu.2022.1034379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Blood products in therapeutic transfusion are now commonly acknowledged to contain biologically active constituents during the processes of preparation. In the midst of a worldwide COVID-19 pandemic, preliminary evidence suggests that convalescent plasma may lessen the severity of COVID-19 if administered early in the disease, particularly in patients with profound B-cell lymphopenia and prolonged COVID-19 symptoms. This study examined the influence of photochemical Pathogen Reduction Treatment (PRT) using amotosalen‐HCl and UVA light in comparison with untreated control convalescent plasma (n= 72 – paired samples) - cFFP, regarding soluble inflammatory factors: sCD40L, IFN-alpha, IFN-beta, IFN-gamma, IL-1 beta, IL-6, IL-8, IL-10, IL-18, TNF-alpha and ex-vivo inflammatory bioactivity on endothelial cells. We didn’t observe significant modulation of the majority of inflammatory soluble factors (8 of 10 molecules tested) pre- or post-PRT. We noted that IL-8 concentrations were significantly decreased in cFFP with PRT, whereas the IL-18 concentration was increased by PRT. In contrast, endothelial cell release of IL-6 was similar whether cFFP was pre-treated with or without PRT. Expression of CD54 and CD31 in the presence of cFFP were similar to control levels, and both were significant decreased in when cFFP had been pre-treated by PRT. It will be interesting to continue investigations of IL-18 and IL-8, and the physiopathological effect of PRT- treated convalescent plasma and in clinical trials. But overall, it appears that cFFP post-PRT were not excessively pro-inflammatory. Further research, including a careful clinical evaluation of CCP-treated patients, will be required to thoroughly define the clinical relevance of these findings.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
- *Correspondence: Fabrice Cognasse,
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Anne-Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Natalia Shurko
- Institute of Blood Pathology and Transfusion Medicine NAMS (National Academy of Medical Sciences) of Ukraine, Lviv, Ukraine
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Amélie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Marco Heestermans
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Étienne, INSERM (Institut National de la Santé et de la Recherche Médicale), U 1059 Sainbiose, (SAnté INgéniérie BIOlogie St-Etienne), Saint-Étienne, France
| | - Olivier Hequet
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
- CIRI, International Center for Infectiology Research, INSERM (Institut National de la Santé et de la Recherche Médicale) U1111, Université de Lyon, Lyon, France
| | | | | | - Françoise Teyssier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | - Patricia Chavarin
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Dominique Legrand
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France
| | | | - Pascal Morel
- Etablissement Français du Sang, La Plaine St Denis, France
- UMR (Unité mixte de recherche) RIGHT U1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology and Immunotherapy, INSERM (Institut National de la Santé et de la Recherche Médicale) U976, Paris, France
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France
- UMR (Unité mixte de recherche) RIGHT U1098, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| |
Collapse
|
40
|
Manes TD, Wang V, Pober JS. Costimulators expressed on human endothelial cells modulate antigen-dependent recruitment of circulating T lymphocytes. Front Immunol 2022; 13:1016361. [PMID: 36275645 PMCID: PMC9582530 DOI: 10.3389/fimmu.2022.1016361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial cells (ECs) can present antigens to circulating effector memory T cells (TEM) and to regulatory T cells (T regs), triggering antigen-specific extravasation at specific sites where foreign antigens are introduced, e.g. by infection or transplantation. We model human antigen-induced transendothelial migration (TEM) using presentation of superantigen by cultured human dermal microvascular (HDM)ECs to isolated resting human peripheral blood T cell subpopulations or to T effector cells activated in vitro. T cell receptor (TCR)-mediated cytokine synthesis, a common assay of T cell activation by antigen, is modulated by antigen-independent signals provided by various positive or negative costimulator proteins (the latter known as checkpoint inhibitors) expressed by antigen presenting cells, including ECs. We report here that some EC-expressed costimulators also modulate TCR-TEM, but effects differ between TEM and cytokine production and among some T cell types. Blocking EC LFA-3 interactions with TEM CD2 boosts TEM but reduces cytokine production. Blocking EC ICOS-L interactions with TEM CD28 (but not ICOS) reduces both responses but these involve distinct CD28-induced signals. Activated CD4+ T effector cells no longer undergo TCR-TEM. Engagement of T cell CD28 by EC ICOS-L increases TCR-TEM by activated CD8 effectors while engagement of OX40 promotes TCR-TEM by activated CD4 T regs. B7-H3 mostly affects TEM of resting TEM and some checkpoint inhibitors affect cytokine synthesis or TEM depending upon subtype. Our data suggest that blockade or mimicry of costimulators/checkpoint inhibitors in vivo, clinically used to modulate immune responses, may act in part by modulating T cell homing.
Collapse
|
41
|
Ross EC, Hoeve ALT, Saeij JPJ, Barragan A. Toxoplasma effector-induced ICAM-1 expression by infected dendritic cells potentiates transmigration across polarised endothelium. Front Immunol 2022; 13:950914. [PMID: 35990682 PMCID: PMC9381734 DOI: 10.3389/fimmu.2022.950914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii makes use of infected leukocytes for systemic dissemination. Yet, how infection impacts the processes of leukocyte diapedesis has remained unresolved. Here, we addressed the effects of T. gondii infection on the trans-endothelial migration (TEM) of dendritic cells (DCs) across polarised brain endothelial monolayers. We report that upregulated expression of leukocyte ICAM-1 is a feature of the enhanced TEM of parasitised DCs. The secreted parasite effector GRA15 induced an elevated expression of ICAM-1 in infected DCs that was associated with enhanced cell adhesion and TEM. Consequently, gene silencing of Icam-1 in primary DCs or deletion of parasite GRA15 reduced TEM. Further, the parasite effector TgWIP, which impacts the regulation of host actin dynamics, facilitated TEM across polarised endothelium. The data highlight that the concerted action of the secreted effectors GRA15 and TgWIP modulate the leukocyte-endothelial interactions of TEM in a parasite genotype-related fashion to promote dissemination. In addition to the canonical roles of endothelial ICAM-1, this study identifies a previously unappreciated role for leukocyte ICAM-1 in infection-related TEM.
Collapse
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, United States
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden,*Correspondence: Antonio Barragan,
| |
Collapse
|
42
|
The tension rises in leukocyte extravasation. Blood 2022; 140:165-166. [PMID: 35862093 DOI: 10.1182/blood.2022016596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
|
43
|
Cardoso TC, Rocha MA, Monteiro MMLV, Alves VS, Savio LEB, Silva CLM. The blockage of downstream P2Y 2 receptor signaling inhibits the prostate cancer cell adhesion to endothelial cells. Life Sci 2022; 306:120793. [PMID: 35850244 DOI: 10.1016/j.lfs.2022.120793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
AIMS Prostate cancer is the second most frequently malignancy in men worldwide. Most deaths are caused by metastasis, and tumor cell dissemination involves the interaction with endothelial cells. However, the endothelial cell signaling involved in such interaction is not entirely understood. The tumor microenvironment contains extracellular ATP, an endogenous agonist of the purinergic P2Y2 receptor (P2Y2R). P2Y2R signaling changes endothelial cell phenotype, which may be relevant to cancer pathophysiology. Therefore, we hypothesized that P2Y2R activation could favor the metastatic prostate cancer cells adhesion to endothelial cells. MAIN METHODS For adhesion assays, confluent endothelial cells EA.hy926 were treated with P2Y2R agonists before adding and imaging stained DU-145 cells. Alternatively, fluorescent probes and antibodies were used to determine intracellular endothelial Ca2+, nitric oxide (NO), and flow cytometry assays. KEY FINDINGS Endothelial P2Y2R activation with ATP, UTP, or the selective agonist 2-thio-UTP increased DU-145 cell adhesion to EA.hy926 cells. This effect required endothelial cell Ca2+ mobilization and relied on the endothelial expression of VCAM-1 and ICAM-1. Conversely, inhibiting this proadhesive endothelial phenotype could impair DU-145 cell adhesion. To evaluate this, we chose atorvastatin based on its notable improvement of endothelial cell dysfunction. Atorvastatin blocked UTP-induced DU-145 cell adhesion to endothelial cell monolayer in a NO-dependent manner, unveiling a P2Y2R and NO signaling crosstalk. SIGNIFICANCE Endothelial P2Y2R signaling contributes to the adhesion of metastatic prostate cancer cells suggesting that the downstream signaling blockade by statins could be a putative mechanism to reduce prostate cancer metastasis.
Collapse
Affiliation(s)
- Tassya Cataldi Cardoso
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Marianna Araujo Rocha
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Matheus M L V Monteiro
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Identification of Type-H-like Blood Vessels in a Dynamic and Controlled Model of Osteogenesis in Rabbit Calvarium. MATERIALS 2022; 15:ma15134703. [PMID: 35806828 PMCID: PMC9267487 DOI: 10.3390/ma15134703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Angiogenesis and bone regeneration are closely interconnected processes. Whereas type-H blood vessels are abundantly found in the osteogenic zones during endochondral long bone development, their presence in flat bones’ development involving intramembranous mechanisms remains unclear. Here, we hypothesized that type-H-like capillaries that highly express CD31 and Endomucin (EMCN), may be present at sites of intramembranous bone development and participate in the control of osteogenesis. A rabbit model of calvarial bone augmentation was used in which bone growth was controlled over time (2–4 weeks) using a particulate bone scaffold. The model allowed the visualization of the entire spectrum of stages throughout bone growth in the same sample, i.e., active ossification, osteogenic activity, and controlled inflammation. Using systematic mRNA hybridization, the formation of capillaries subpopulations (CD31–EMCN staining) over time was studied and correlated with the presence of osteogenic precursors (Osterix staining). Type-H-like capillaries strongly expressing CD31 and EMCN were identified and described. Their presence increased gradually from the regenerative zone up to the osteogenic zone, at 2 and 4 weeks. Type-H-like capillaries may thus represent the initial vascular support encountered in flat bones’ development and which organize osteogenic niches.
Collapse
|
45
|
Correia CN, McHugo GP, Browne JA, McLoughlin KE, Nalpas NC, Magee DA, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, MacHugh DE. High-resolution transcriptomics of bovine purified protein derivative-stimulated peripheral blood from cattle infected with Mycobacterium bovis across an experimental time course. Tuberculosis (Edinb) 2022; 136:102235. [DOI: 10.1016/j.tube.2022.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
|
46
|
Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood 2022; 140:171-183. [PMID: 35443048 DOI: 10.1182/blood.2021014614] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
The extravasation of leukocytes is a critical step during inflammation which requires the localized opening of the endothelial barrier. This process is initiated by the close interaction of leukocytes with various adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) on the surface of endothelial cells. Here we reveal that mechanical forces generated by leukocyte-induced clustering of ICAM-1 synergistically with fluid shear stress exerted by the flowing blood increase endothelial plasma membrane tension to activate the mechanosensitive cation channel PIEZO1. This leads to increases in [Ca2+]i and activation of downstream signaling events including phosphorylation of SRC, PYK2 and myosin light chain resulting in opening of the endothelial barrier. Mice with endothelium-specific Piezo1 deficiency show decreased leukocyte extravasation in different inflammation models. Thus, leukocytes and the hemodynamic microenvironment synergize to mechanically activate endothelial PIEZO1 and subsequent downstream signaling to initiate leukocyte diapedesis.
Collapse
|
47
|
Howe KL, Cybulsky M, Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? Front Cardiovasc Med 2022; 9:888390. [PMID: 35498030 PMCID: PMC9051343 DOI: 10.3389/fcvm.2022.888390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke. Cellular communication lies at the core of this process. In this review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel (e.g., extracellular vesicles) modes of endothelial communication with other endothelial cells as well as circulating and vessel wall cells, including monocytes, macrophages, neutrophils, vascular smooth muscle cells and other immune cells, in the context of atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity during atherogenesis suggests that communication strategies are not static. Here, emerging data on transcriptomics in cells during the development of atherosclerosis are considered in the context of how this might inform altered cell-cell communication. Given the unique position of the endothelium as a boundary layer that is activated in regions overlying vascular inflammation and atherosclerotic plaque, there is a potential to exploit the unique features of this group of cells to deliver therapeutics that target the cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but provide discrete messages to each compartment to govern homeostasis and disease. In this light, the potential for endothelial cells to communicate in a directional manner is explored, along with the implications of this concept - from fundamental experimental design to biomarker potential and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Wang Z, Qi F, Luo H, Xu G, Wang D. Inflammatory Microenvironment of Skin Wounds. Front Immunol 2022; 13:789274. [PMID: 35300324 PMCID: PMC8920979 DOI: 10.3389/fimmu.2022.789274] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a dynamic and highly regulated process that can be separated into three overlapping and interdependent phases: inflammation, proliferation, and remodelling. This review focuses on the inflammation stage, as it is the key stage of wound healing and plays a vital role in the local immune response and determines the progression of wound healing. Inflammatory cells, the main effector cells of the inflammatory response, have been widely studied, but little attention has been paid to the immunomodulatory effects of wound healing in non-inflammatory cells and the extracellular matrix. In this review, we attempt to deepen our understanding of the wound-healing microenvironment in the inflammatory stage by focusing on the interactions between cells and the extracellular matrix, as well as their role in regulating the immune response during the inflammatory stage. We hope our findings will provide new ideas for promoting tissue regeneration through immune regulation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Han Luo
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangchao Xu
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
49
|
Fodil S, Arnaud M, Vaganay C, Puissant A, Lengline E, Mooney N, Itzykson R, Zafrani L. Endothelial cells: major players in acute myeloid leukaemia. Blood Rev 2022; 54:100932. [DOI: 10.1016/j.blre.2022.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
50
|
Yu Z, Guo J, Liu Y, Wang M, Liu Z, Gao Y, Huang L. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. J Nanobiotechnology 2022; 20:9. [PMID: 34983554 PMCID: PMC8725360 DOI: 10.1186/s12951-021-01205-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) developed in fibrotic liver does not respond well to immunotherapy, mainly due to the stromal microenvironment and the fibrosis-related immunosuppressive factors. The characteristic of liver sinusoidal endothelial cells (LSECs) in contributing to fibrosis and orchestrating immune response is responsible for the refractory to targeted therapy or immunotherapy of HCC. We aim to seek a new strategy for HCC treatment based on an old drug simvastatin which shows protecting effect on LSEC. METHOD The features of LSECs in mouse fibrotic HCC model and human HCC patients were identified by immunofluorescence and scanning electron microscopy. The effect of simvastatin on LSECs and hepatic stellate cells (HSCs) was examined by immunoblotting, quantitative RT-PCR and RNA-seq. LSEC-targeted delivery of simvastatin was designed using nanotechnology. The anti-HCC effect and toxicity of the nano-drug was evaluated in both intra-hepatic and hemi-splenic inoculated mouse fibrotic HCC model. RESULTS LSEC capillarization is associated with fibrotic HCC progression and poor survival in both murine HCC model and HCC patients. We further found simvastatin restores the quiescence of activated hepatic stellate cells (aHSCs) via stimulation of KLF2-NO signaling in LSECs, and up-regulates the expression of CXCL16 in LSECs. In intrahepatic inoculated fibrotic HCC mouse model, LSEC-targeted nano-delivery of simvastatin not only alleviates LSEC capillarization to regress the stromal microenvironment, but also recruits natural killer T (NKT) cells through CXCL16 to suppress tumor progression. Together with anti-programmed death-1-ligand-1 (anti-PD-L1) antibody, targeted-delivery of simvastatin achieves an improved therapeutic effect in hemi-splenic inoculated advanced-stage HCC model. CONCLUSIONS These findings reveal an immune-based therapeutic mechanism of simvastatin for remodeling immunosuppressive tumor microenvironment, therefore providing a novel strategy in treating HCC.
Collapse
Affiliation(s)
- Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Liver Disease, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhengsheng Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|