1
|
Yang Y, Li S, To KKW, Zhu S, Wang F, Fu L. Tumor-associated macrophages remodel the suppressive tumor immune microenvironment and targeted therapy for immunotherapy. J Exp Clin Cancer Res 2025; 44:145. [PMID: 40380196 DOI: 10.1186/s13046-025-03377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/19/2025] Open
Abstract
Despite the significant advances in the development of immune checkpoint inhibitors (ICI), primary and acquired ICI resistance remains the primary impediment to effective cancer immunotherapy. Residing in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a pivotal role in tumor progression by regulating diverse signaling pathways. Notably, accumulating evidence has confirmed that TAMs interplay with various cellular components within the TME directly or indirectly to maintain the dynamic balance of the M1/M2 ratio and shape an immunosuppressive TME, consequently conferring immune evasion and immunotherapy tolerance. Detailed investigation of the communication network around TAMs could provide potential molecular targets and optimize ICI therapies. In this review, we systematically summarize the latest advances in understanding the origin and functional plasticity of TAMs, with a focus on the key signaling pathways driving macrophage polarization and the diverse stimuli that regulate this dynamic process. Moreover, we elaborate on the intricate interplay between TAMs and other cellular constituents within the TME, that is driving tumor initiation, progression and immune evasion, exploring novel targets for cancer immunotherapy. We further discuss current challenges and future research directions, emphasizing the need to decode TAM-TME interactions and translate preclinical findings into clinical breakthroughs. In conclusion, while TAM-targeted therapies hold significant promise for enhancing immunotherapy outcomes, addressing key challenges-such as TAM heterogeneity, context-dependent plasticity, and therapeutic resistance-remains critical to achieving optimal clinical efficacy.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Sijia Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Xie J, Chen Q, Li L, Liu J. Overexpression of SERPINA3 inhibits castration-resistant prostate cancer progression by enhancing M1 macrophage recruitment via CXCL2 upregulation. Braz J Med Biol Res 2025; 58:e14445. [PMID: 40367014 PMCID: PMC12068766 DOI: 10.1590/1414-431x2025e14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/19/2025] [Indexed: 05/16/2025] Open
Abstract
The primary objective of the present study was to identify differentially expressed genes (DEGs) associated with castration-resistant prostate cancer (CRPC) to verify the potential mechanism of CRPC progression. DEGs from CRPC datasets were filtered with a P<0.05 and Spearman correlation coefficient ≥0.3. Serpin peptidase inhibitor, clade A member 3 (SERPINA3), was uniquely present in three CRPC datasets, and its low expression in CRPC was confirmed in cell lines and tissues. Colony formation, transwell assays, and subcutaneous tumor formation experiments in mice demonstrated that overexpression of SERPINA3 may significantly inhibit the proliferation and invasion of PC3 cells. Mechanistic studies revealed that, in prostate cancer (PCa), SERPINA3 can activate the interleukin (IL)-17 and tumor necrosis factor (TNF)α signaling pathways by promoting the expression of CXC chemokine ligand 2 (CXCL2), thereby increasing the recruitment of M1 macrophages into the tumor microenvironment and inhibiting the progression of PCa. The current results indicated that the expression of SERPINA3 may be negatively correlated with CRPC, and it could promote the M1 polarization of macrophages and inhibit the progression of CRPC by increasing the expression of CXCL2.
Collapse
Affiliation(s)
- Jianbing Xie
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Qiren Chen
- Department of Breast Surgery, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Lixian Li
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinyu Liu
- Department of Urology, Affiliated Hospital of Putian University, Putian, Fujian, China
| |
Collapse
|
3
|
Shi R, Zhuang X, Liu T, Yao SN, Xue FS. The Role of NLRP3 Inflammasome in Oral Squamous Cell Carcinoma. J Inflamm Res 2025; 18:5601-5609. [PMID: 40303006 PMCID: PMC12039833 DOI: 10.2147/jir.s512770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck. More and more evidence emphasizes the importance of inflammation in the progression of OSCC. The main signaling pathway of acute and chronic inflammation consists of the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Objective This review focuses on the role of NLRP3 immune kinase body and giving a contribution to the development of new treatment strategies against OSCC. Conclusion The NLRP3 inflammasome plays a vital role in the pathogenesis and development of OSCC and may serve as a promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Rui Shi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University 266600, Qingdao, 266555, People’s Republic of China
- School of Stomatology of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Xuan Zhuang
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Tong Liu
- The Affiliated Tai’an City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Song-nan Yao
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Feng-shan Xue
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| |
Collapse
|
4
|
Luo Q, Teschendorff AE. Cell-type-specific subtyping of epigenomes improves prognostic stratification of cancer. Genome Med 2025; 17:34. [PMID: 40181447 PMCID: PMC11967111 DOI: 10.1186/s13073-025-01453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Most molecular classifications of cancer are based on bulk-tissue profiles that measure an average over many distinct cell types. As such, cancer subtypes inferred from transcriptomic or epigenetic data are strongly influenced by cell-type composition and do not necessarily reflect subtypes defined by cell-type-specific cancer-associated alterations, which could lead to suboptimal cancer classifications. METHODS To address this problem, we here propose the novel concept of cell-type-specific combinatorial clustering (CELTYC), which aims to group cancer samples by the molecular alterations they display in specific cell types. We illustrate this concept in the context of DNA methylation data of liver and kidney cancer, deriving in each case novel cancer subtypes and assessing their prognostic relevance against current state-of-the-art prognostic models. RESULTS In both liver and kidney cancer, we reveal improved cell-type-specific prognostic models, not discoverable using standard methods. In the case of kidney cancer, we show how combinatorial indexing of epithelial and immune-cell clusters define improved prognostic models driven by synergy of high mitotic age and altered cytokine signaling. We validate the improved prognostic models in independent datasets and identify underlying cytokine-immune-cell signatures driving poor outcome. CONCLUSIONS In summary, cell-type-specific combinatorial clustering is a valuable strategy to help dissect and improve current prognostic classifications of cancer in terms of the underlying cell-type-specific epigenetic and transcriptomic alterations.
Collapse
Affiliation(s)
- Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Ma Z, Zhang J, Li Z, Zhu Y, Han X, Lei L, Cheng K, Liu W. Interleukin-1β Inhibits Ovarian Cancer Cell Proliferation and Metastasis Through the MAPK/MMP12 Pathway. Int J Mol Sci 2025; 26:3287. [PMID: 40244135 PMCID: PMC11989259 DOI: 10.3390/ijms26073287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Epithelial ovarian cancer (EOC) is a gynecological tumor with high mortality. Despite aggressive treatment, survival rates for patients with advanced EOC are low, and more effective methods of diagnosis and treatment are urgently needed. Inflammation and cancer are strongly associated; however, the mechanisms that mediate this relationship are not fully understood. In this study, we found that the expression of interleukin-1β (IL-1β), a proinflammatory cytokine, increased in an ovarian cancer tissue microarray (TMA) and inhibited A2780 and SKOV3 cell viability and metastasis. Recombinant IL-1β protein and the overexpression of IL-1β decreased the proliferation and metastasis of ovarian cancer cells. IL-1β deficiency promoted proliferation and metastasis. Moreover, transcriptome sequencing revealed that IL-1β downregulates the expression of matrix metalloproteinase 12 (MMP12). The signaling pathway involving MAPK/AP-1/MMP12 is involved in IL-1β-regulated ovarian cancer progression. Overall, we found that the proinflammatory cytokine IL-1β inhibits ovarian cancer cell viability and metastasis. These findings provided deeper insights into inflammation and cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.M.); (J.Z.); (Z.L.); (Y.Z.); (X.H.); (L.L.); (K.C.)
| |
Collapse
|
6
|
Guo H, Liu C, Wu K, Li Y, Zhang Z, Chen F. Single-cell RNA sequencing reveals an IL1R2+Treg subset driving immunosuppressive microenvironment in HNSCC. Cancer Immunol Immunother 2025; 74:159. [PMID: 40131478 PMCID: PMC11936857 DOI: 10.1007/s00262-025-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Regulatory T cells (Tregs) play an immunosuppressive role in tumor microenvironment (TME) in various of cancer types. However, how different Treg subsets influence and effect on head and neck squamous cell carcinoma (HNSCC) remain unclear. Here, using single-cell RNA sequencing (scRNA-seq), we identified an IL1R2+Treg subset which promoted the progression of HNSCC. Via tissue microassay (TMA) and enzyme-linked immunosorbent assay (ELISA), we verified the clinical diagnostic value of the IL1R2+Treg and soluble IL1R2 (sIL1R2). In addition, we constructed tumor-bearing mouse models to explore the antitumor effects of combined targeting IL1R2 and CTLA4. For mechanism, we found IL-1β promoted the expression of IL1R2 and CTLA4 in Tregs, and upregulated CTLA4 though NR4A1 translocation. These results revealed that IL1R2+Treg and serum IL1R2 level had potential diagnostic and prognostic value of HNSCC and combined targeting of IL1R2 and CTLA4 might be an effective strategy to inhibit tumor progression.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol 2025; 42:108. [PMID: 40087196 DOI: 10.1007/s12032-025-02675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The tumor microenvironment (TME) contains tumor cells, surrounding cells, and secreted factors. It provides a favorable environment for the maintenance of cancer stem cells (CSCs), the spread of cancer cells to metastatic sites, angiogenesis, and apoptosis, as well as the growth, proliferation, invasion, and drug resistance of cancer cells. Cancer cells rely on the activation of oncogenes, inactivation of tumor suppressors, and the support of a normal stroma for their growth, proliferation, and survival, all of which are provided by the TME. The TME is characterized by the presence of various cells, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD8 + cytotoxic T cells (CTLs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), endothelial cells, adipocytes, and neuroendocrine (NE) cells. The high expression of inflammatory cytokines, angiogenic factors, and anti-apoptotic factors, as well as drug resistance mechanisms in the TME, contributes to the poor therapeutic efficacy of anticancer drugs and tumor progression. Hence, this review describes the mechanisms through which the TME is involved in apoptosis, angiogenesis, metastasis, and drug resistance in tumor cells.
Collapse
Affiliation(s)
- Yanhong Xiao
- Harbin Medical University Cancer Hospital, Harbin, 150006, Heilongjiang Province, China
| | - Mahan Hassani
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
9
|
Chen SY, Kung HC, Espinoza B, Washington I, Chen K, Mu K, Zlomke H, Loycano M, Wang R, Burns WR, Fu J, Zheng L. Distinct response to IL-1β blockade in liver- and lung-specific metastasis mouse models of pancreatic cancer with heterogeneous tumor microenvironments. Exp Hematol Oncol 2025; 14:13. [PMID: 39948655 PMCID: PMC11823153 DOI: 10.1186/s40164-025-00607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a heterogeneous tumor microenvironment (TME). The mechanism by which this heterogeneity confers resistance against immunotherapy remains unclear. Interleukin- 1β (IL-1β) is a proinflammatory cytokine that regulates heterogeneous cancer associated fibroblast (CAF) phenotype and promotes an immunosuppressive TME. Anti-IL-1β monoclonal antibody significantly enhanced the anti-tumor activity of anti-PD-1 in a preclinical model of PDAC. However, clinical trials have shown limited activity of the anti-IL-1β and anti-PD-1 combination. Therefore, we hypothesize that anti-tumor immune response to the combination of anti-IL-1β and anti-PD-1 antibodies is context-dependent and would be affected by the TME heterogeneity in PDAC. METHODS Liver- and lung-specific metastasis mouse models of PDAC were used to investigate the antitumor activity of anti-IL-1β and anti-PD-1 antibodies alone or in combination by ultrasound examination and survival analysis. Their effects on the TME heterogeneity were assessed by flow cytometry and single nuclear RNA sequencing. RESULTS The combination of anti-IL-1β and anti-PD-1 antibodies does not slow primary tumor growth but prolongs overall survival and reduces lung metastasis rates in a PDAC orthotopic murine model with lung metastasis tropism. In contrast, combination therapy slows primary tumor growth and prolongs survival, but does not reduce liver metastasis rates in a PDAC murine orthotopic model with liver metastasis tropism. Flow cytometry analysis showed that the combination of anti-IL-1β and anti-PD-1 antibodies restores T cell activation negated by the monotherapies. Mechanistically, in the PDAC model with lung metastasis tropism, but not in the model with liver metastasis tropism, combination treatment reverses an increased trend of immunosuppressive myeloid cells as a result of monotherapy. Single-nuclear RNA sequencing analysis of both organ-specific tumor models demonstrated that anti-IL-1β treatment altered infiltration and function of CAF and immune cells differently. Furthermore, anti-IL-1β treatment modulated cytokine/chemokine ligand-receptor-receptor interactions in the models with different organ-specific metastasis distinctly. CONCLUSION This study reveals the differential responses of organ-specific metastasis mouse models of PDAC with distinct TMEs to anti-IL-1β and anti-PD-1 treatments, suggesting that treatment response is context-dependent and affected by TME heterogeneity.
Collapse
Affiliation(s)
- Sophia Y Chen
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng-Chung Kung
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Birginia Espinoza
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - India Washington
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Chen
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaiyi Mu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Zlomke
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Loycano
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rulin Wang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Burns
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan Fu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Mays Cancer Center, University of Texas, 7979 Wurzbach Road, MC8026, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Mantoani PTS, Micheli DC, Jammal MP, Vieira JH, Michelin MA, Ferreira CGX, Silva HN, Murta EFC, Nomelini RS. High-Grade Cervical Intraepithelial Neoplasia: Impact of Colposcopic Lesion Area on Systemic Immune Responses. Int J Womens Health 2025; 17:345-353. [PMID: 39959756 PMCID: PMC11827493 DOI: 10.2147/ijwh.s503028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Background The progression of high-grade cervical intraepithelial neoplasia (CIN) and cervical cancer is accompanied by a reduction in the immune response. The objectives of the study were to determine whether colposcopic lesion area is associated with serum levels of cytokines IL (interleukin) -1, IL-6, IL-8, IL-10, IL-12 and TNF-α in precursor lesions of cervical cancer. Methods The study population comprised patients with high-grade squamous intraepithelial lesion who had undergone colposcopy, cervical biopsy, and measurements of serum cytokines by ELISA (Enzyme-Linked Immunosorbent Assay). Genotyping for HPV (human papillomavirus) 16, 18, 45 and 52 was performed by PCR (Polymerase Chain Reaction). ROC (Receiver Operating Characteristic) curves were calculated to determine whether there existed a cut-off value for serum cytokines in patients with colposcopic lesion area smaller vs larger than 1 cm2. For cytokines with significant results, these cut-off values were used to perform the multivariable analysis. Results There were 71 patients with CIN 2/3. ROC curves were calculated to verify a cut-off value for serum cytokine levels that could be used to distinguish between lesion areas <1 cm2 vs ≥1 cm2. Values with statistical significance were IL-1 >13.3 pg/mL and IL-12 ≤349.6 pg/mL. In the multivariable analysis, the independent variables associated with colposcopic lesion area greater than 1cm2 were IL-1>13.3 pg/mL and IL-12 ≤349.6 pg/mL [OR (95% CI) = 10.10 (1.50-67.96); OR (95% CI)=10.70 (1.17-97.45), respectively]. Conclusion Although CIN 2/3 is a local uterine cervix lesion, there is a systemic immunological response. Our results are unprecedented and could be the target of new important studies in public health and cervical cancer prevention.
Collapse
Affiliation(s)
- Priscila Thaís Silva Mantoani
- Graduate Program in Gynecology and Obstetrics of the Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Douglas Côbo Micheli
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Millena Prata Jammal
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Julia Hailer Vieira
- Research Institute of Oncology (IPON); Discipline of Immunology; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Márcia Antoniazi Michelin
- Research Institute of Oncology (IPON); Discipline of Immunology; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Caroline Gabriela Xavier Ferreira
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Henrique Nascimento Silva
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Eddie Fernando Candido Murta
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rosekeila Simões Nomelini
- Graduate Program in Gynecology and Obstetrics of the Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- Laboratory of Applied Sciences for Women (LaCam)/Department of Gynecology and Obstetrics; Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
11
|
Zhang Z, Wang J, Li H, Niu Q, Tao Y, Zhao X, Zeng Z, Dong H. The role of the interleukin family in liver fibrosis. Front Immunol 2025; 16:1497095. [PMID: 39995661 PMCID: PMC11847652 DOI: 10.3389/fimmu.2025.1497095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis represents a wound-healing response to chronic liver injury caused by viral infections, alcohol, and chemicals agents. It is a critical step in the progression from chronic liver disease to cirrhosis and hepatocellular carcinoma. No chemical or biological drugs have been approved for the treatment of liver fibrosis. Relevant studies have demonstrated that effective inhibition of hepatitis B virus (HBV) replication by nucleoside (acid) analogs or polyethylene glycol alpha-interferon can lead to recovery in some patients with hepatitis B liver fibrosis, However, some patients with liver fibrosis do not show improvement, even after achieving a complete serologic and virologic response. A similar situation occurs in patients with hepatitis C-related liver fibrosis. The liver, with its unique anatomical and immunological structure, is the largest immune organ and produces a large number of cytokines in response to external stimuli, which are crucial for the progression of liver fibrosis. cytokines can act either by directly affecting hepatic stellate cells (HSCs) or by indirectly regulating immune target cells. Among these, the interleukin family activates a complex cascade of responses, including cytokines, chemokines, adhesion molecules, and lipid mediators, playing a key role in the initiation and regulation of inflammation, as well as innate and adaptive immunity. In this paper, we systematically summarize recent literature to elucidate the pathogenesis of interleukin-mediated liver fibrosis and explore potential therapeutic targets for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zixin Zhang
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujing Tao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijian Zeng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijian Dong
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2025; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
13
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
14
|
Lee Y, English EL, Schwartzmann CM, Liu Y, Krueger JM. Sleep loss-induced oncogenic pathways are mediated via the neuron-specific interleukin-1 receptor accessory protein (AcPb). Brain Behav Immun 2025; 123:411-421. [PMID: 39343106 PMCID: PMC11624092 DOI: 10.1016/j.bbi.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Interleukin-1β (IL1), a pleiotropic cytokine, is involved in sleep regulation, tumor ontogeny, and immune responses. IL1 receptor adaptor proteins, including the IL1 receptor accessory protein (AcP), and its neuron-specific isoform, AcPb, are required for IL1 signaling. The AcPb isoform is resultant from alternate splicing of the AcP transcript. Our previous studies using AcPb null (AcPb-/-) mice characterized its participation in sleep regulation and emergent neuronal/glial network properties. Here, we investigated the impact of acute sleep disruption (SD) on brain cancer-related pathways in wild-type (WT) and AcPb-/- mice, employing RNA sequencing methods. In WT mice, SD increased AcPb mRNA levels, but not AcP mRNA, confirming prior similar work in rats. Transcriptome and pathway enrichment analyses demonstrated significant alterations in cancer, immune, and viral disease-related pathways in WT mice after SD, which were attenuated in AcPb-/- mice including multiple upregulated Src phosphorylation-signaling-dependent genes associated with cancer progression and metastasis. Our RNAseq findings, were analyzed within the context of The Cancer Genome Atlas Program (TCGA) data base; revealing an upregulation of sleep- and cancer-linked genes (e.g., IL-17B, IL-17RA, LCN2) across various tumors, including brain tumors, compared to normal tissues. Sleep-linked factors, identified through TCGA analyses, significantly impact patient prognosis and survival, particularly in low-grade glioma (LGG) and glioblastoma multiforme (GBM) patients. Overall, our findings suggest that SD promotes a pro-tumor environment through AcPb-modulated pathways.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA; Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA.
| | - Erika L English
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Catherine M Schwartzmann
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; Genomics Core, Washington State University, Spokane, WA, USA
| | - James M Krueger
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA; Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
15
|
Mukherjee AK, Dutta S, Singh A, Sharma S, Roy SS, Sengupta A, Chatterjee M, Vinayagamurthy S, Bagri S, Khanna D, Verma M, Soni D, Budharaja A, Bhisade SK, Anand V, Perwez A, George N, Faruq M, Gupta I, Sabarinathan R, Chowdhury S. Telomere length sensitive regulation of interleukin receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment. eLife 2024; 13:RP95106. [PMID: 39728924 PMCID: PMC11677240 DOI: 10.7554/elife.95106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subhajit Dutta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ankita Singh
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Megha Chatterjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Divya Khanna
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Dristhi Soni
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | | | - Vivek Anand
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Ahmad Perwez
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Nija George
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Mohammed Faruq
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | - Radhakrishnan Sabarinathan
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of Biosciences, Ashoka UniversitySonepatIndia
| |
Collapse
|
16
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
17
|
Istanbuly S, Matetić A, Bang V, Sharma K, Golwala H, Kheiri B, Osman M, Swamy P, Bharadwaj A, Mamas MA. Outcomes of 1.3 million patients undergoing percutaneous coronary intervention according to the presence of cancer and atrial fibrillation: a retrospective study. Croat Med J 2024; 65:405-416. [PMID: 39492450 PMCID: PMC11568383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024] Open
Abstract
AIM To evaluate outcomes after percutaneous coronary intervention (PCI) in patients with cancer and atrial fibrillation (AF). METHODS Data of all adult discharges undergoing PCI between October 2015 and December 2018 were obtained from the National Inpatient Sample (NIS) database. Adjusted odds ratios (aOR) of adverse complications were calculated using binominal logistic regression. RESULTS 1387320 patients were detected, out of which 15.4% had AF but no cancer, 1.9% had cancer but no AF, and 0.6% had both cancer and AF. Compared with cancer patients without AF, those with AF had a greater aOR of mortality (aOR 1.20, 95%CI 1.08-1.33), major adverse cardiac and cerebrovascular events (MACCE) (aOR 1.18, 95%CI 1.07-1.29), and bleeding (aOR 1.23, 95%CI 1.08-1.39). However, the risk of ischemic stroke was similar between the two groups. Patients with solid cancer and AF had a higher aOR for all outcomes, including mortality (aOR 1.28, 95%CI 1.09-1.50), MACCE (aOR 1.37, 95%CI 1.19-1.57), ischemic stroke (aOR 1.48, 95%CI 1.10-1.99), and bleeding (aOR 1.66, 95%CI 1.39-1.98) compared with the solid cancer group without AF. In patients with hematological cancer, AF was associated only with significantly increased risk of mortality (aOR 1.40, 95%CI 1.16-1.70) and MACCE (aOR 1.26, 95%CI 1.06-1.49). CONCLUSIONS The presence of AF in solid cancer patients increases the risk of mortality, MACCE, stroke, and major bleeding, while in the setting of hematological cancer it is only associated with a higher risk of mortality and MACCE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mamas A Mamas
- Mamas A. Mamas, Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent, United Kingdom,
| |
Collapse
|
18
|
Kerneur C, Foucher E, Guillén Casas J, Colazet M, Le KS, Fullana M, Bergot E, Audemard C, Drapeau M, Louche P, Gorvel L, Rouvière MS, Boucherit N, Audebert S, Magrini E, Carnevale S, de Gassart A, Madakamutil L, Mantovani A, Garlanda C, Agaugué S, Cano CE, Olive D. BTN2A1 targeting reprograms M2-like macrophages and TAMs via SYK and MAPK signaling. Cell Rep 2024; 43:114773. [PMID: 39325623 DOI: 10.1016/j.celrep.2024.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/05/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs), often adopting an immunosuppressive M2-like phenotype, correlate with unfavorable cancer outcomes. Our investigation unveiled elevated expression of the butyrophilin (BTN)2A1 in M2-like TAMs across diverse cancer types. We developed anti-BTN2A1 monoclonal antibodies (mAbs), and notably, one clone demonstrated a robust inhibitory effect on M2-like macrophage differentiation, inducing a shift toward an M1-like phenotype both in vitro and ex vivo in TAMs from patients with cancer. Macrophages treated with this anti-BTN2A1 mAb exhibited enhanced support for T cell proliferation and interferon-gamma (IFNγ) secretion. Mechanistically, BTN2A1 engagement induced spleen tyrosine kinase (SYK) recruitment, leading to sequential SYK and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of SYK or ERK phosphorylation abolished M2 reprogramming upon BTN2A1 engagement. Our findings, derived from an analysis of macrophages from healthy donors and human tumors, underscore the pivotal role of BTN2A1 in immunosuppressive macrophage differentiation and function, offering potential applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France; Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Etienne Foucher
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Magali Colazet
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Kieu-Suong Le
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Elise Bergot
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Marion Drapeau
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Pauline Louche
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Marie-Sarah Rouvière
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Nicolas Boucherit
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Stéphane Audebert
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Elena Magrini
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy
| | | | - Aude de Gassart
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | | | - Alberto Mantovani
- IRCCS, Humanitas Research Hospital, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; William Harvey Research Institute, Queen Mary University, London EC1M 6BQ, UK
| | | | - Sophie Agaugué
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France
| | - Carla E Cano
- ImCheck Therapeutics, R&D Department, 13009 Marseille, France.
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France.
| |
Collapse
|
19
|
Ji H, Lan Y, Xing P, Wang Z, Zhong X, Tang W, Wei Q, Chen H, Liu B, Guo H. IL-18, a therapeutic target for immunotherapy boosting, promotes temozolomide chemoresistance via the PI3K/AKT pathway in glioma. J Transl Med 2024; 22:951. [PMID: 39434175 PMCID: PMC11492732 DOI: 10.1186/s12967-024-05755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Interleukin-18, a member of the interleukin - 1 family of cytokines, is upregulated in glioma. However, its effects on glioma remain unclear. This study aimed to explore the role and underlying mechanisms of interleukin-18 expression in glioma. Here, we demonstrated that interleukin-18 enhanced resistance to temozolomide by increasing proliferation and inhibiting apoptosis in cultured glioma cells. Further in vivo studies revealed that interleukin-18 promoted temozolomide resistance in BALB/c nude mice bearing tumor. Mechanical exploration indicated that interleukin-18 stimulation could activate the PI3K/AKT signaling pathway in glioma cells, and PI3K inhibition could reduce the temozolomide resistance promoted by interleukin-18. We found that interleukin-18 upregulated CD274 expression in glioma, revealing its potential effects on the microenvironment. Furthermore, we established a tumor xenograft model and explored the therapeutic efficacy of anti-interleukin-18 monoclonal antibody. Targeting interleukin-18 prolonged survival and attenuated CD274 expression in the mice bearing tumor. Combined treatment with anti-interleukin-18 and anti-PD-1 monoclonal antibody showed better efficacy in suppressing tumor growth than either treatment alone in mice bearing tumor. Collectively, these data present that interleukin-18 promotes temozolomide chemoresistance in glioma cells via PI3K/Akt activation and establishes an immunosuppressive milieu by modulating CD274. This study highlights the therapeutic value of interleukin-18 in glioma.
Collapse
Affiliation(s)
- Huangyi Ji
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Pengpeng Xing
- ZhiXin High School, No. 152, ZhiXin South Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenhui Tang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Quantang Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hongbin Chen
- The Second Clinical School, Southern Medical University, Guangzhou, 510515, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-Oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
20
|
Zhang H, Zong R, Wu H, Jiang J, Liu C, Liu S. Transcription factor ASCL1 targets SLC6A13 to inhibit the progression of hepatocellular carcinoma via the glycine-inflammasome signaling. BIOMOLECULES & BIOMEDICINE 2024; 24:1606-1619. [PMID: 38780447 PMCID: PMC11496862 DOI: 10.17305/bb.2024.10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, typically arises from chronic liver conditions such as hepatitis, cirrhosis, or other chronic liver diseases, and is characterized by its aggressive nature and poor prognosis. The purpose of this research was to clarify the function of achaete-scute family bHLH transcription factor 1 (ASCL1) and solute carrier family 6 member 13 (SLC6A13) in influencing tumor cell behavior, inflammatory responses, and the regulation of inflammasomes. We analyzed the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database, as well as in the GSE14520 and GSE67764 datasets, to identify the expression changes of SLC6A13 in liver cancer. The prognostic significance of SLC6A13 in LIHC was assessed through Kaplan-Meier survival curve analysis. Transcriptional regulation of SLC6A13 by ASCL1 was explored using the Joint Annotation of the Human Genome and other species by the Systematic Pipeline for the Annotation of Regulatory Regions (JASPAR) database and dual-luciferase assays. In vitro experiments investigated the impact of ASCL1 and SLC6A13 overexpression on HCC cell growth. Additionally, the effects of ethanol treatment and glycine modulation on the inflammatory response in HCC cell lines were evaluated. HCC samples showed reduced levels of SLC6A13, which correlates with a better prognosis for liver metastases. Elevated SLC6A13 expression correlated with improved overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-specific survival (DSS). ASCL1 upregulated SLC6A13 and inhibited proliferation, migration, and invasion of HCC cells. Ethanol induced the production of inflammatory cytokines, which was enhanced by overexpression of SLC6A13 but counteracted by glycine. This study highlighted elevated expression of SLC6A13 in LIHC which has been correlated with improved OS, PFS, RFS, and DSS. Overexpression of SLC6A13 and ASCL1 in HCC cells enhanced inflammasome activation, which was exacerbated by ethanol and attenuated by glycine.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Ruiqing Zong
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Huiqi Wu
- Department of Intensive Care Medicine, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| | - Jun Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuanyong Liu
- Department of Medical Services, The First Hospital Affiliated to Naval Medical University, Yangpu District, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, The Third Hospital Affiliated to Naval Medical University, Jiading District, Shanghai, China
| |
Collapse
|
21
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
22
|
Zhang Z, Su J, Xue J, Xiao L, Hong L, Cai G, Gu T. The Research Progress of DNA Methylation in the Development and Function of the Porcine Placenta. Int J Mol Sci 2024; 25:10687. [PMID: 39409016 PMCID: PMC11476760 DOI: 10.3390/ijms251910687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The pig is the most widely consumed domestic animal in China, providing over half of the meat supply in food markets. For livestock, a key economic trait is the reproductive performance, which is significantly influenced by placental development. The placenta, a temporary fetal organ, is crucial for establishing maternal-fetal communication and supporting fetal growth throughout pregnancy. DNA methylation is an epigenetic modification that can regulate the gene expression by recruiting proteins involved in gene silencing or preventing transcription factor binding. To enhance our understanding of the molecular mechanisms underlying DNA methylation in porcine placental development, this review summarizes the structure and function of the porcine placenta and the role of DNA methylation in placental development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiawei Su
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiaming Xue
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
- Guangdong Provincial Key Laboratory of Agri-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Han J, Wang J, Wang Q, Li Y, Li T, Zhang J, Sun H. Clinical values of preoperative red blood cell distribution width and platelet parameters in patients with papillary thyroid carcinoma. Oncol Lett 2024; 28:460. [PMID: 39119231 PMCID: PMC11307553 DOI: 10.3892/ol.2024.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The prevalence of thyroid carcinoma is increasing, and papillary thyroid carcinoma (PTC) is the most frequent subtype. More and more attention is being concentrated on the association between inflammation indicators and malignant tumors. The aim of the present study was to analyze whether the preoperative red blood cell distribution width (RDW) and platelet parameters, including mean platelet volume (MPV) and platelet distribution width (PDW), can be applied to distinguish between patients with PTC or papillary thyroid microcarcinoma (PTMC) and healthy controls, and to explore the associations with clinicopathological characteristics. The study retrospectively compared the RDW, MPV and PDW values of 780 patients with PTC or PTMC against a healthy control group. Receiver operating characteristic (ROC) curves were conducted to determine diagnostic accuracy. Furthermore, the clinicopathological features of the patients with PTC or PTMC were compared between higher and lower platelet parameter groups based on the RDW, MPV and PDW values. Significantly higher preoperative RDW, MPV and PDW values were found in patients with PTC or PTMC compared with those of the healthy group. ROC curve analysis showed that the area under the curve (AUC) plus 95% confidence interval (95% CI) values of RDW, MPV and PDW were 0.808 (0.780-0.835), 0.771 (0.743-0.799) and 0.711 (0.681-0.742), respectively. When RDW and MPV were combined together, the AUC (95% CI) value was enhanced to 0.858 (0.835-0.881) for the patients with PTC. For the patients with PTMC, RDW, MPV and PDW had AUC (95% CI) values of 0.812 (0.783-0.840), 0.779 (0.749-0.808) and 0.718 (0.685-0.751), respectively. When RDW and MPV were combined together, the AUC (95% CI) value was enhanced to 0.858 (0.835-0.881). A higher RDW was significantly associated with being female, deeper tumor infiltration, and normal FT3 and FT4 levels. A higher PDW was significantly associated with elevated thyrotropin receptor antibody levels. In conclusion, as convenient and available inflammation indicators, RDW, PDW and MPV have diagnostic ability and can distinguish between patients with PTC or PTMC and healthy controls. In addition, the combined application of RDW and MPV can improve the diagnostic power. The values of RDW and MPV were associated with clinicopathological characteristics. To the best of our knowledge, this is the first study to prove the usefulness of preoperative RDW combined with MPV in diagnosing patients with PTC or PTMC.
Collapse
Affiliation(s)
- Jingying Han
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yuan Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tian Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jian Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hui Sun
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
24
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
25
|
Tsoupras A, Adamantidi T, Finos MA, Philippopoulos A, Detopoulou P, Tsopoki I, Kynatidou M, Demopoulos CA. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. FRONT BIOSCI-LANDMRK 2024; 29:345. [PMID: 39473406 DOI: 10.31083/j.fbl2910345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis. In parallel, new evidence suggests that PAF and its signaling also interact with several inflammation-related cancer treatments by inducing an antitumor immune response or, conversely, promoting tumor recurrence. Within this review article, the current knowledge and future perspectives of the implication of PAF and its signaling in all these important aspects of cancer are thoroughly re-assessed. The potential beneficial role of PAF-inhibitors and natural or synthetic modulators of PAF-metabolism against tumors, tumor progression and metastasis are evaluated. Emphasis is given to natural and synthetic molecules with dual anti-PAF and anti-cancer activities (Bio-DAPAC-tives), with proven evidence of their antitumor potency through clinical trials, as well as on metal-based anti-inflammatory mediators that constitute a new class of potent inhibitors. The way these compounds may promote anti-tumor effects and modulate the inflammatory cellular actions and immune responses is also discussed. Limitations and future perspectives on targeting of PAF, its metabolism and receptor, including PAF-related inflammatory signaling, as part(s) of anti-tumor strategies that involve inflammation and immune response(s) for an improved outcome, are also evaluated.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Marios Argyrios Finos
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Athanassios Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Ifigeneia Tsopoki
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Maria Kynatidou
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
26
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
27
|
Rashid M, Ramezani M, Molavi O, Ghesmati Z, Baradaran B, Sabzichi M, Ramezani F. Targeting hypoxia-inducible factor 1 alpha augments synergistic effects of chemo/immunotherapy via modulating tumor microenvironment in a breast cancer mouse model. BIOIMPACTS : BI 2024; 15:30424. [PMID: 40256236 PMCID: PMC12008255 DOI: 10.34172/bi.30424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 04/22/2025]
Abstract
Introduction The immunosuppressive context of the tumor microenvironment (TME) is a significant hurdle in breast cancer (BC) treatment. Combinational therapies targeting cancer core signaling pathways involved in the induction of TME immunosuppressive milieu have emerged as a potent strategy to overcome immunosuppression in TME and enhance patient therapeutic outcomes. This study presents compelling evidence that targeting hypoxia-inducible-factor-1 alpha (Hif-1α) alongside chemotherapy and immune-inducing factors leads to substantial anticancer effects through modulation of TME. Methods Chitosan (Cs)/Hif-1alpha siRNA nano-complex was synthesized by siRNA adsorption methods. Nanoparticles were fully characterized using dynamic light scattering and scanning electron microscope. Cs/Hif-1α siRNA cytotoxicity was measured by MTT assay. The anticancer effects of the combinational therapy were assessed in BALB/c bearing 4T1 tumors. qPCR and western blotting were applied to assess the expression of some key genes and proteins involved in the induction of immunosuppression in TME. Results Hif-1α siRNA was successfully loaded in chitosan nanoparticles. Hif-1α siRNA nanocomplexes significantly inhibited the expression of Hif-1α. Triple combination therapy (Paclitaxel (Ptx) + Imiquimod (Imq) + Cs/Hif-1α siRNA) inhibited tumor growth and downregulated cancer progression genes while upregulating cellular-immune-related cytokines. Mice without Cs/Hif-1α siRNA treatments revealed fewer cancer inhibitory effects and more TME immunosuppressive factors. These results suggest that the inhibition of Hif-1α effects synergize with Ptx and Imq to inhibit cancer progression more significantly than other combinational treatments. Conclusion Combining Hif-1α siRNA with Ptx and Imq is promising as a multimodality treatment. It has the potential to attenuate TME inhibitory effects and significantly enhance the immune system's ability to combat tumor cell growth, offering an inspiration of hope in the fight against BC.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Ramezani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Qu Y, Gao N, Zhang S, Gao L, He B, Wang C, Gong C, Shi Q, Li Z, Yang S, Xiao Y. Role of N6-methyladenosine RNA modification in cancer. MedComm (Beijing) 2024; 5:e715. [PMID: 39252821 PMCID: PMC11381670 DOI: 10.1002/mco2.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells. Previous studies have shown that m6A is pivotal in diverse diseases especially cancer. m6A corelates with the initiation, progression, resistance, invasion, and metastasis of cancer. However, despite these insights, a comprehensive understanding of its specific roles and mechanisms within the complex landscape of cancer is still elusive. This review begins by outlining the key regulatory proteins of m6A modification and their posttranslational modifications (PTMs), as well as the role in chromatin accessibility and transcriptional activity within cancer cells. Additionally, it highlights that m6A modifications impact cancer progression by modulating programmed cell death mechanisms and affecting the tumor microenvironment through various cancer-associated immune cells. Furthermore, the review discusses how microorganisms can induce enduring epigenetic changes and oncogenic effect in microorganism-associated cancers by altering m6A modifications. Last, it delves into the role of m6A modification in cancer immunotherapy, encompassing RNA therapy, immune checkpoint blockade, cytokine therapy, adoptive cell transfer therapy, and direct targeting of m6A regulators. Overall, this review clarifies the multifaceted role of m6A modification in cancer and explores targeted therapies aimed at manipulating m6A modification, aiming to advance cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Yi Qu
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Nannan Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shengwei Zhang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Limin Gao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Bing He
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chao Wang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Chunli Gong
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Qiuyue Shi
- Department of Gastroenterology the First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhibin Li
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Shiming Yang
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| | - Yufeng Xiao
- Department of Gastroenterology Xinqiao Hospital Army Medical University Chongqing China
| |
Collapse
|
29
|
O'Hare M, Guidon AC. Peripheral nervous system immune-related adverse events due to checkpoint inhibition. Nat Rev Neurol 2024; 20:509-525. [PMID: 39122934 DOI: 10.1038/s41582-024-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy and are increasingly used to treat a wide range of oncological conditions, with dramatic benefits for many patients. Unfortunately, the resulting increase in T cell effector function often results in immune-related adverse events (irAEs), which can involve any organ system, including the central nervous system (CNS) and peripheral nervous system (PNS). Neurological irAEs involve the PNS in two-thirds of affected patients. Muscle involvement (immune-related myopathy) is the most common PNS irAE and can be associated with neuromuscular junction involvement. Immune-related peripheral neuropathy most commonly takes the form of polyradiculoneuropathy or cranial neuropathies. Immune-related myopathy (with or without neuromuscular junction involvement) often occurs along with immune-related myocarditis, and this overlap syndrome is associated with substantially increased mortality. This Review focuses on PNS adverse events associated with immune checkpoint inhibition. Underlying pathophysiological mechanisms are discussed, including antigen homology between self and tumour, epitope spreading and activation of pre-existing autoreactive T cells. An overview of current approaches to clinical management is provided, including cytokine-directed therapies that aim to decouple anticancer immunity from autoimmunity and emerging treatments for patients with severe (life-threatening) presentations.
Collapse
Affiliation(s)
- Meabh O'Hare
- Brigham and Women's Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
| | - Amanda C Guidon
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Boos D, Chuang TD, Abbasi A, Luzzi A, Khorram O. The immune landscape of uterine fibroids as determined by mass cytometry. F&S SCIENCE 2024; 5:272-282. [PMID: 38925276 PMCID: PMC11404535 DOI: 10.1016/j.xfss.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To study the differences in immune cell profiles in uterine fibroids (Fibs) and matched myometrium (Myo). DESIGN Observational study. SETTING Laboratory study. PATIENT(S) The study included tissue that was collected from 10 pairs of Fib and matched Myo from women, not on hormonal medications, undergoing hysterectomy and myomectomy. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Differences in immune cell and cytokine composition between Fib and matched Myo. RESULT(S) The mass cytometry analysis indicated that Fibs had a significantly higher number of natural killer (NK) cells, total macrophages, M2 macrophages, and conventional dendritic cells when compared with matched Myo from the same patient. In contrast, Fibs had significantly fewer CD3 and CD4 T cells when compared with Myo. The mass cytometry analysis results did not show any significant difference in the number of resting mast cells. Immunoflurorescent and immunohistochemical imaging confirmed the cytometry by time of flight results, showing a significantly higher number of NK cells, tryptase-positive mast cells indicative of mast cell activation, total macrophages, and M2 cells in Fibs and a significantly lower number of CD3 and CD4 T cells. The cytokine assay revealed significantly increased levels of human interferon α2, interleukin (IL)-1α, and platelet-derived growth factor AA and significantly lower levels of macrophage colony-stimulating factor and IL-1 receptor antagonist in Fib. CONCLUSION(S) Our results show significant differences in immune cell populations and cytokine levels between Fib and Myo. These differences could account for the increased inflammation in fib and a potential mechanism by which these tumors evade the immune system. These findings provide a foundation for further studies exploring the role of immune cells in Fib development.
Collapse
Affiliation(s)
- Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Asghar Abbasi
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Anna Luzzi
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, California.
| |
Collapse
|
32
|
Bidan N, Dunsmore G, Ugrinic M, Bied M, Moreira M, Deloménie C, Ginhoux F, Blériot C, de la Fuente M, Mura S. Multicellular tumor spheroid model to study the multifaceted role of tumor-associated macrophages in PDAC. Drug Deliv Transl Res 2024; 14:2085-2099. [PMID: 38062286 DOI: 10.1007/s13346-023-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 06/27/2024]
Abstract
While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.
Collapse
Affiliation(s)
- Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - Martina Ugrinic
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Mathilde Bied
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Marco Moreira
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Claudine Deloménie
- Inserm US31, CNRS UAR3679, Ingénierie Et Plateformes Au Service de L'Innovation Thérapeutique (UMS-IPSIT), Université Paris-Saclay, 91400, Orsay, France
| | | | - Camille Blériot
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
- CNRS UMR8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela SERGAS, 15706, Santiago de Compostela, Spain
- Biomedical Research Networking Center On Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies SL, 15782, Santiago de Compostela, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
33
|
Zhang Y, Liu K, Guo M, Yang Y, Zhang H. Negative regulator IL-1 receptor 2 (IL-1R2) and its roles in immune regulation of autoimmune diseases. Int Immunopharmacol 2024; 136:112400. [PMID: 38850793 DOI: 10.1016/j.intimp.2024.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The decoy receptor interleukin 1 receptor 2 (IL-1R2), also known as CD121b, has different forms: membrane-bound (mIL-1R2), soluble secreted (ssIL-1R2), shedded (shIL-1R2), intracellular domain (IL-1R2ICD). The different forms of IL-1R2 exert not exactly similar functions. IL-1R2 can not only participate in the regulation of inflammatory response by competing with IL-1R1 to bind IL-1 and IL-1RAP, but also regulate IL-1 maturation and cell activation, promote cell survival, participate in IL-1-dependent internalization, and even have biological activity as a transcriptional cofactor. In this review, we provide a detailed description of the biological characteristics of IL-1R2 and discuss the expression and unique role of IL-1R2 in different immune cells. Importantly, we summarize the role of IL-1R2 in immune regulation from different autoimmune diseases, hoping to provide a new direction for in-depth studies of pathogenesis and therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Yiying Yang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; Postdoctoral Research Station of Biology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
34
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
35
|
Hu X, Xie S, Yi X, Ouyang Y, Zhao W, Yang Z, Zhang Z, Wang L, Huang X, Peng M, Yu F. Bidirectional Mendelian Randomization of Causal Relationship between Inflammatory Cytokines and Different Pathological Types of Lung Cancer. J Cancer 2024; 15:4969-4984. [PMID: 39132165 PMCID: PMC11310887 DOI: 10.7150/jca.98301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024] Open
Abstract
Prior research has proposed a potential association between lung cancer and inflammatory cytokines, yet the specific causal relationship remains unclear, especially across various lung cancer pathologies. This study utilized bidirectional Mendelian randomization (MR) to explore these causal connections, unveiling novel insights. Our research revealed distinctive inflammatory cytokine profiles for each subtype of lung cancer and identified potential biomarkers that could refine diagnostic and therapeutic approaches. We applied two-sample Mendelian randomization, leveraging genetic variance data from three extensive genome-wide association studies (GWAS) focusing on different lung cancer types (lung adenocarcinoma: 1590 cases and 314,193 controls of healthy individuals of European descent; lung squamous cell carcinoma: 1510 cases and 314,193 controls of European ancestry; small cell lung cancer: 717 cases and 314,193 controls of European ancestry). A separate GWAS summary on inflammatory cytokines from 8,293 healthy participants was also included. The inverse variance weighting method was utilized to examine causal relationships, with robustness confirmed through multiple sensitivity analyses, including MR-Egger, weighted median, and MR-PRESSO. Our analysis revealed that elevated levels of IL_1RA were associated with an increased risk of lung adenocarcinoma (OR: 1.29, 95% CI: 1.02-1.64, p = 0.031), while higher MCP_1_MCAF levels correlated with a decreased risk of lung squamous cell carcinoma (OR: 0.77, 95% CI: 0.61-0.98, p = 0.031). Furthermore, IL_10, IL_13, and TRAIL levels were positively associated with lung squamous cell carcinoma risk (IL_10: OR: 1.27, 95% CI: 1.06-1.53, p = 0.012; IL_13: OR: 1.15, 95% CI: 1.06-1.53, p = 0.036; TRAIL: OR: 1.15, 95% CI: 1.06-1.53, p = 0.043). No association was found between inflammatory cytokine levels and small cell lung cancer development, whereas SDF_1A and B-NGF were linked to an increased risk of this cancer type (SDF_1A: OR: 1.13, 95% CI: 1.05-1.21, p = 0.001; B-NGF: OR: 1.13, 95% CI: 1.01-1.27, p = 0.029). No significant relationship was observed between the 41 circulating inflammatory cytokines and lung adenocarcinoma or squamous cell carcinoma development. Our findings indicate distinct associations between specific inflammatory cytokines and different types of lung cancer. Elevated IL_1RA levels are a risk marker for lung adenocarcinoma, whereas higher MCP_1_MCAF levels appear protective against lung squamous cell carcinoma. Conversely, elevated levels of IL_10, IL_13, and TRAIL are linked with an increased risk of lung squamous cell carcinoma. The relationships of SDF_1A and B-NGF with small-cell lung cancer highlight the complexity of inflammatory markers in cancer development. This study provides a nuanced understanding of the role of inflammatory cytokines in lung cancer, underscoring their potential in refining diagnosis and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Muyun Peng
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410000, China
| |
Collapse
|
36
|
Ding Y, Yi J, Shan Y, Gu J, Sun Z, Lin J. Low expression of interleukin-1 receptor antagonist correlates with poor prognosis via promoting proliferation and migration and inhibiting apoptosis in oral squamous cell carcinoma. Cytokine 2024; 179:156595. [PMID: 38581865 DOI: 10.1016/j.cyto.2024.156595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Biomarkers are biochemical indicators that can identify changes in the structure or function of systems, organs, or cells and can be used to monitor a wide range of biological processes, including cancer. Interleukin-1 receptor antagonist (IL1RA) is an important inflammatory suppressor gene and tumor biomarker. The goal of this study was to investigate the expression of IL1RA, its probable carcinogenic activity, and its diagnostic targets in oral squamous cell carcinoma (OSCC). RESULTS We discovered that IL1RA was expressed at a low level in OSCC tumor tissues compared to normal epithelial tissues and that the expression declined gradually from epithelial hyperplasia through dysplasia to carcinoma in situ and invasive OSCC. Low IL1RA expression was associated not only with poor survival but also with various clinicopathological markers such as increased infiltration, recurrence, and fatalities. Following cellular phenotyping investigations in OSCC cells overexpressing IL1RA, we discovered that recovering IL1RA expression decreased OSCC cell proliferation, migration, and increased apoptosis. CONCLUSIONS In summary, our investigation highlighted the possible involvement of low-expression IL1RA in OSCC cells in promoting invasive as well as metastatic and inhibiting apoptosis, as well as the efficacy of IL1RA-focused monitoring in the early detection and treatment of OSCC.
Collapse
Affiliation(s)
- Yujie Ding
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yi
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yufei Shan
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaqi Gu
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhida Sun
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jie Lin
- Jiangsu Health Development Research Center, Nanjing, Jiangsu, China.
| |
Collapse
|
37
|
Műzes G, Sipos F. Inflammasomes Are Influenced by Epigenetic and Autophagy Mechanisms in Colorectal Cancer Signaling. Int J Mol Sci 2024; 25:6167. [PMID: 38892354 PMCID: PMC11173330 DOI: 10.3390/ijms25116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammasomes contribute to colorectal cancer signaling by primarily inducing inflammation in the surrounding tumor microenvironment. Its role in inflammation is receiving increasing attention, as inflammation has a protumor effect in addition to inducing tissue damage. The inflammasome's function is complex and controlled by several layers of regulation. Epigenetic processes impact the functioning or manifestation of genes that are involved in the control of inflammasomes or the subsequent signaling cascades. Researchers have intensively studied the significance of epigenetic mechanisms in regulation, as they encompass several potential therapeutic targets. The regulatory interactions between the inflammasome and autophagy are intricate, exhibiting both advantageous and harmful consequences. The regulatory aspects between the two entities also encompass several therapeutic targets. The relationship between the activation of the inflammasome, autophagy, and epigenetic alterations in CRC is complex and involves several interrelated pathways. This article provides a brief summary of the newest studies on how epigenetics and autophagy control the inflammasome, with a special focus on their role in colorectal cancer. Based on the latest findings, we also provide an overview of the latest therapeutic ideas for this complex network.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
38
|
Gigante L, Gaudillière-Le Dain G, Bertaut A, Truntzer C, Ghiringhelli F. Interleukin-1α as a Potential Prognostic Biomarker in Pancreatic Cancer. Biomedicines 2024; 12:1216. [PMID: 38927423 PMCID: PMC11200603 DOI: 10.3390/biomedicines12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE We assessed the prognostic role of pro-inflammatory cytokines of the IL-1 superfamily in patients with pancreatic cancer. METHODS This retrospective study was performed using two independent cohorts of patients with pancreatic cancer: the International Cancer Genome Consortium (ICGC, N = 267) cohort and The Cancer Genome Atlas (TCGA, N = 178) cohort. Univariate Cox regressions were used to identify prognosis-related pro-inflammatory cytokines of the IL-1 superfamily. Cytokines associated with outcome were included in a multivariate Cox model with relevant clinicopathological variables to identify prognostic biomarkers. RESULTS IL-1α was the only pro-inflammatory cytokine of the IL-1 superfamily that was significantly associated with prognosis in both cohorts. In the training cohort (ICGC), the decile of patients with the lowest IL1A expression had better overall survival (HR = 1.99 [1.01-3.93], p = 0.05) and better relapse-free survival (HR = 1.85 [1.02-3.34], p = 0.04) than the group with the highest IL1A expression. The validation cohort (TCGA) confirmed these results: the decile with the lowest IL1A expression had better overall survival (HR = 3.00 [1.14-7.90], p = 0.03) and a lower risk of progression (HR = 3.11 [1.24-7.80], p = 0.01). CONCLUSIONS IL1A is an independent prognostic marker and could be considered a potential therapeutic target in pancreatic cancer patients.
Collapse
Affiliation(s)
- Leonardo Gigante
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Gwladys Gaudillière-Le Dain
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Aurélie Bertaut
- Biostatistics and Methodology Unit, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000 Dijon, France
| |
Collapse
|
39
|
Wang J, Lou Y, Wang S, Zhang Z, You J, Zhu Y, Yao Y, Hao Y, Liu P, Xu LX. IFNγ at the early stage induced after cryo-thermal therapy maintains CD4 + Th1-prone differentiation, leading to long-term antitumor immunity. Front Immunol 2024; 15:1345046. [PMID: 38827732 PMCID: PMC11140566 DOI: 10.3389/fimmu.2024.1345046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1β generation, and thereby further amplifying Th1 response. Discussion Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
41
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
42
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Boraschi D, Penton-Rol G, Amodu O, Blomberg MT. Editorial: Women in cytokines and soluble mediators in immunity. Front Immunol 2024; 15:1395165. [PMID: 38550586 PMCID: PMC10973138 DOI: 10.3389/fimmu.2024.1395165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Diana Boraschi
- Laboratory Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giselle Penton-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
- Department of Physiological Sciences, Professor of Immunology at the Latin American School of Medicine (ELAM), Havana, Cuba
| | - Olukemi Amodu
- Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marita Troye Blomberg
- Department Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
44
|
Hou CY, Hsieh CC, Hung YC, Hsu CC, Hsieh CW, Yu SH, Cheng KC. Evaluation of the amelioration effect of Ganoderma formosanum extract on delaying PM2.5 damage to lung macrophages. Mol Nutr Food Res 2024; 68:e2300667. [PMID: 38282089 DOI: 10.1002/mnfr.202300667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Indexed: 01/30/2024]
Abstract
SCOPE Particulate matter (PM) contains toxic organic matter and heavy metals that enter the entire body through blood flow and may cause mortality. Ganoderma formosanum mycelium, a valuable traditional Chinese medicine that has been used since ancient times, contains various active ingredients that can effectively impede inflammatory responses on murine alveolar macrophages induced by PM particles. METHODS AND RESULTS An experimental study assessing the effect of G. formosanum mycelium extract's water fraction (WA) on PM-exposed murine alveolar macrophages using ROS measurement shows that WA reduces intracellular ROS by 12% and increases cell viability by 16% when induced by PM particles. According to RNA-Sequencing, western blotting, and real-time qPCR are conducted to analyze the metabolic pathway. The WA reduces the protein ratio in p-NF-κB/NF-κB by 18% and decreases the expression of inflammatory genes, including IL-1β by 38%, IL-6 by 29%, and TNF-α by 19%. Finally, the identification of seven types of anti-inflammatory compounds in the WA fraction is achieved through UHPLC-ESI-Orbitrap-Elite-MS/MS analysis. These compounds include anti-inflammatory compounds, namely thiamine, adenosine 5'-monophosphate, pipecolic acid, L-pyroglutamic acid, acetyl-L-carnitine, D-mannitol, and L-malic acid. CONCLUSIONS The study suggests that the WA has the potential to alleviate the PM -induced damage in alveolar macrophages, demonstrating its anti-inflammatory properties.
Collapse
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Yin-Ci Hung
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
45
|
Huo M, Wang T, Li M, Li N, Chen S, Xiu L, Yu X, Liu H, Zhong G. Gansui Banxia decoction modulates immune-inflammatory homeostasis to ameliorate malignant ascites in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155246. [PMID: 38262142 DOI: 10.1016/j.phymed.2023.155246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/08/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND "Gansui Banxia decoction" (GBD) is a classical traditional Chinese medicine formula for treating abnormal accumulation of fluid, such as malignant ascites (MA). Although GBD has shown definite water-expelling effects, its exact underlying mechanism has not been elucidated. PURPOSE This study aimed to investigate the drug effects of GBD on MA rats and its underlying mechanisms. METHODS The main chemical composition was determined by ultra-high performance liquid chromatography. The drug effects of GBD was evaluated in the established cancer cell-induced MA rat model. The symptoms were analyzed, and biological samples were collected for detecting immune and inflammation-related indicators by enzyme-linked immunosorbent assays, western blot, and flow cytometry. RESULTS GBD increased urine discharge, decreased ascites production, and alleviated cachexia. After GBD treatment, the expression of TLR4, MyD88, and NF-кB and the release of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were reduced. In addition, GBD increased G1 phase arrest and inhibit excessive proliferation of cells in bone marrow while alleviating G1 phase arrest and increasing proliferation of cells in the thymus. Correspondingly, the development and maturation of T cells also changed. GBD increased the proportion of mature T-cells (CD4+CD8- and CD4-CD8+ single-positive (SP) T-cells), and decrease the proportion of immature cells (CD4+CD8+ double-positive (DP) T-cells and CD4-CD8- double-negative (DN) T-cells) in the blood or tumor microenvironment (TME, the ascites microenvironment). Finally, we further analysis of immune cell subsets, GBD decreased the proportion of immunosuppressive T-cells in the blood (CD4+CD25+Foxp3+T-cells) and TME (CD8+CD25+Foxp3+T-cells), and increased the proportion of anti-tumor immune cells (CD8+CD28+T-cells and NK cells) in the TME. CONCLUSION These findings indicated that the drug effects of GBD were attributed to regulating the immune-inflammatory homeostasis, thereby mitigating the destruction of cancer cells and reducing the generation of ascites, which provided theoretical support for the clinical rational application and extended the scientific connotation of "water-expelling" of GBD.
Collapse
Affiliation(s)
- Min Huo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Muyun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China
| | - Na Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China
| | - Shaohong Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China
| | - Linlin Xiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China
| | - Haiyan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China.
| | - Gansheng Zhong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine Liangxiang Campus, No. 11, Bei San Huan Dong Lu, Liangxiang Higher Education Park, Fangshan District 102488, Chaoyang, Beijing 100029, China.
| |
Collapse
|
46
|
Fontvieille A, Parent-Roberge H, Fülöp T, Pavic M, Riesco E. The Mechanisms Underlying the Beneficial Impact of Aerobic Training on Cancer-Related Fatigue: A Conceptual Review. Cancers (Basel) 2024; 16:990. [PMID: 38473351 DOI: 10.3390/cancers16050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer-related fatigue (CRF) is a prevalent and persistent issue affecting cancer patients, with a broad impact on their quality of life even years after treatment completion. The precise mechanisms underlying CRF remain elusive, yet its multifaceted nature involves emotional, physical, and cognitive dimensions. The absence of effective medical treatments has prompted researchers to explore integrative models for potential insights. Notably, physical exercise emerges as a promising strategy for managing CRF and related symptoms, as studies showed a reduction in CRF ranging from 19% to 40%. Current recommendations highlight aerobic training at moderate intensity as beneficial, although questions about a dose-response relationship and the importance of exercise intensity persist. Despite the positive impact of exercise on CRF, the underlying mechanisms remain elusive. This review aims to provide a theoretical model explaining how aerobic exercise may alleviate CRF. Focusing on acute exercise effects, this review delves into the potential influence on peripheral and neural inflammation, immune function dysregulation, and neuroendocrine system disruptions. The objective is to enhance our understanding of the intricate relationship between exercise and CRF, ultimately paving the way for tailored interventions and potential pharmacological treatments for individuals unable to engage in physical exercise.
Collapse
Affiliation(s)
- Adeline Fontvieille
- Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Parent-Roberge
- Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| | - Tamás Fülöp
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - Michel Pavic
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
- Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - Eléonor Riesco
- Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
47
|
Abdul-Rahman T, Ghosh S, Badar SM, Nazir A, Bamigbade GB, Aji N, Roy P, Kachani H, Garg N, Lawal L, Bliss ZSB, Wireko AA, Atallah O, Adebusoye FT, Teslyk T, Sikora K, Horbas V. The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res 2024; 29:124. [PMID: 38360737 PMCID: PMC10868116 DOI: 10.1186/s40001-024-01711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Tumor progression and eradication have long piqued the scientific community's interest. Recent discoveries about the role of chemokines and cytokines in these processes have fueled renewed interest in related research. These roles are frequently viewed as contentious due to their ability to both suppress and promote cancer progression. As a result, this review critically appraised existing literature to discuss the unique roles of cytokines and chemokines in the tumor microenvironment, as well as the existing challenges and future opportunities for exploiting these roles to develop novel and targeted treatments. While these modulatory molecules play an important role in tumor suppression via enhanced cancer-cell identification by cytotoxic effector cells and directly recruiting immunological effector cells and stromal cells in the TME, we observed that they also promote tumor proliferation. Many cytokines, including GM-CSF, IL-7, IL-12, IL-15, IL-18, and IL-21, have entered clinical trials for people with advanced cancer, while the FDA has approved interferon-alpha and IL-2. Nonetheless, low efficacy and dose-limiting toxicity limit these agents' full potential. Conversely, Chemokines have tremendous potential for increasing cancer immune-cell penetration of the tumor microenvironment and promoting beneficial immunological interactions. When chemokines are combined with cytokines, they activate lymphocytes, producing IL-2, CD80, and IL-12, all of which have a strong anticancer effect. This phenomenon opens the door to the development of effective anticancer combination therapies, such as therapies that can reverse cancer escape, and chemotaxis of immunosuppressive cells like Tregs, MDSCs, and TAMs.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine.
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Sarah M Badar
- The University of the West of Scotland, Lanarkshire, UK
| | | | - Gafar Babatunde Bamigbade
- Department of Food Science and Technology, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Narjiss Aji
- McGill University, Faculty of Medicine and Health Sciences, Montreal, Canada
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Camden, NJ, 08084, USA
| | - Lukman Lawal
- Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Zarah Sophia Blake Bliss
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan, Mexico
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Tetiana Teslyk
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Kateryna Sikora
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Viktoriia Horbas
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| |
Collapse
|
48
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
49
|
Yang Z, He H, He G, Zeng C, Hu Q. Investigating Causal Effects of Hematologic Traits on Lung Cancer: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2024; 33:96-105. [PMID: 37909945 DOI: 10.1158/1055-9965.epi-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Observational studies have suggested blood cell counts may act as predictors of cancer. It is not known whether these hematologic traits are causally associated with lung cancer. METHODS Two-sample bidirectional univariable Mendelian randomization (MR) and multivariable MR (MVMR) were performed to investigate the causal association between hematologic traits and the overall risk of lung cancer and three histologic subtypes [lung adenocarcinoma, squamous cell lung cancer, and small cell lung cancer (SCLC)]. The instrumental variables of 23 hematologic traits were strictly selected from large-scale genome-wide association studies. Inverse-variance weighted method and five extra methods were used to obtain robust causal estimates. RESULTS We found evidence that genetically influenced higher hematocrit [OR, 0.845; 95% confidence interval (CI), 0.783-0.913; P = 1.68 × 10-5] and hemoglobin concentration (OR, 0.868; 95% CI, 0.804-0.938; P = 3.20 × 10-4) and reticulocyte count (OR, 0.923; 95% CI, 0.872-0.976; P = 5.19 × 10-3) decreased lung carcinoma risk, especially in ever smokers. MVMR further identified hematocrit independently of smoking as an independent predictor. Subgroup analysis showed that a higher plateletcrit level increased the risk of small cell lung carcinoma (OR, 1.288; 95% CI, 1.126-1.474; P = 2.25 × 10-4). CONCLUSIONS Genetically driven higher levels of reticulocyte count and hematocrit decreased lung cancer risk. Higher plateletcrit had an adverse effect on SCLC. Hematologic traits may act as low-cost factors for lung cancer risk stratification. IMPACT Further studies are required to elucidate the potential mechanisms underlying the dysregulation of homeostasis related to hematologic traits, such as subclinical inflammation.
Collapse
Affiliation(s)
- Zhanghuan Yang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chudai Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
50
|
Zarezadeh Mehrabadi A, Shahba F, Khorramdelazad H, Aghamohammadi N, Karimi M, Bagherzadeh K, Khoshmirsafa M, Massoumi R, Falak R. Interleukin-1 receptor accessory protein (IL-1RAP): A magic bullet candidate for immunotherapy of human malignancies. Crit Rev Oncol Hematol 2024; 193:104200. [PMID: 37981104 DOI: 10.1016/j.critrevonc.2023.104200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faezeh Shahba
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohammadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|