1
|
Bahl A, Pandey S, Rakshit R, Kant S, Tripathi D. Infection-induced trained immunity: a twist in paradigm of innate host defense and generation of immunological memory. Infect Immun 2025; 93:e0047224. [PMID: 39655962 PMCID: PMC11784091 DOI: 10.1128/iai.00472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
In contrast to adaptive immunity, which relies on memory T and B cells for long-term pathogen-specific responses, trained immunity involves the enhancement of innate immune responses through cellular reprogramming. Experimental evidence from animal models and human studies supports the concept of trained immunity and its potential therapeutic applications in the development of personalized medicine. However, there remains a huge gap in understanding the mechanisms, identifying specific microbial triggers responsible for the induction of trained immunity. This underscores the importance of investigating the potential role of trained immunity in redefining host defense and highlights future research directions. This minireview will provide a comprehensive summary of the new paradigm of trained immunity or innate memory pathways. It will shed light on infection-induced pathways through non-specific stimulation within macrophages and natural killer cells, which will be further elaborated in multiple disease perspectives caused by infectious agents such as bacteria, fungi, and viruses. The article further elaborates on the biochemical and cellular basis of trained immunity and its impact on disease status during recurrent exposures. The review concludes with a perspective segment discussing potential therapeutic benefits, limitations, and future challenges in this area of study. The review also sheds light upon potential risks involved in the induction of trained immunity.
Collapse
Affiliation(s)
- Aayush Bahl
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, Delhi, India
| | - Roopshali Rakshit
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sashi Kant
- Bacterial Pathogenesis, Boehringer Ingelheim Animal Health USA Inc, Ames, Iowa, USA
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Jacobs MME, Maas RJF, Jonkman I, Negishi Y, Tielemans Zamora W, Yanginlar C, van Heck J, Matzaraki V, Martens JHA, Baltissen M, Vermeulen M, Morla-Folch J, Ranzenigo A, Wang W, Umali M, Ochando J, van der Vlag J, Hilbrands LB, Joosten LAB, Netea MG, Mulder WJM, van Leent MMT, Mhlanga MM, Teunissen AJP, Rother N, Duivenvoorden R. Trained immunity is regulated by T cell-induced CD40-TRAF6 signaling. Cell Rep 2024; 43:114664. [PMID: 39178113 PMCID: PMC11536040 DOI: 10.1016/j.celrep.2024.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Maaike M E Jacobs
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne J F Maas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem Tielemans Zamora
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cansu Yanginlar
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julia van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ranzenigo
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Umali
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Xiang Y, Liu S, Wan S, Chen Q, Song Y, Feng G, Zhang X, Bai L, Zhu Y. Interleukin-1 increases SERPINE1 expression in human granulosa-lutein cell via P50/P52 signaling pathways. Mol Cell Endocrinol 2024; 591:112274. [PMID: 38777211 DOI: 10.1016/j.mce.2024.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
It has been reported that immune factors are associated with the occurrence of polycystic ovary syndrome (PCOS). Interleukin-1 (IL-1) is a member of the interleukin family that widely participates in the regulation of the inflammatory response in the immune system. In addition, it has been reported that aberrant IL-1 accumulation in serum is associated with the occurrence of PCOS. However, little is known about how IL-1 participates in the pathogenesis of PCOS. In the present study, we demonstrated that the immune microenvironment was altered in follicular fluid from PCOS patients and that the expression levels of two IL-1 cytokines, IL-1α and IL-1β were increased. Transcriptome analysis revealed that IL-1α and IL-1β treatment induced primary human granulosa-lutein (hGL) cell inflammatory response and increased the expression of serpin family E member 1 (SERPINE1). Mechanistically, we demonstrated that IL-1α and IL-1β upregulated SERPINE1 expression through IL-1R1-mediated activation of downstream P50 and P52 signaling pathways in human granulosa cells. Our study highlighted the role of immune state changes in the occurrence of PCOS and provided new insight into the treatment of patients with IL-1-induced ovarian function disorders.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Shuangying Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Qingqing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Yang Song
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130015, China
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|
4
|
Li H, Niu L, Wang J, Chang Q, Zhang S, Wang J, Zeng J, Gao M, Ge J. Strategy against super-resistant bacteria: Curdlan-induced trained immunity combined with multi-epitope subunit vaccine. Int J Biol Macromol 2024; 280:135663. [PMID: 39284466 DOI: 10.1016/j.ijbiomac.2024.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is rapidly spreading worldwide, emerging as a leading cause of bacterial infections in healthcare and community settings. This poses serious risks to human health. The shortage of novel antibiotics and the absence of effective vaccines make MRSA particularly challenging to treat. Existing vaccine development strategies often fail to provide early protection against infections, highlighting the urgent need for solutions. Herein, we propose a novel strategy combining trained immunity with a multi-epitope subunit vaccine to combat MRSA infections. We comprehensively evaluated the trained immune phenotypes induced by β-glucan from barley and curdlan. Macrophages trained with curdlan exhibited a more balanced inflammatory response compared to β-glucan from barley, expressing higher levels of IL-1β, IFN-β, TGF-β, and CCL2 upon secondary stimulation. Furthermore, curdlan-induced trained immunity rapidly provided excellent protection against S. aureus infection in mice. RNA-sequencing analysis revealed that curdlan modulates the Wnt signaling pathway in macrophages, resolves inflammation, and promotes tissue repair. When combined with one or two doses of S. aureus multivalent epitope antigen against MRSA infection, curdlan-induced trained immunity enhanced early protection and promoted recovery. Our study demonstrates the feasibility of combining trained immunity with vaccine protection against MRSA, providing a strategy against multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Hai Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lingdi Niu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqing Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingru Chang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuhe Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiankai Zeng
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Quintana‐Castanedo L, Sánchez‐Ramón S, Maseda R, Illera N, Pérez‐Conde I, Molero‐Luis M, Butta N, Arias‐Salgado EG, Monzón‐Manzano E, Zuluaga P, Martínez‐Santamaría L, Fernández‐Arquero M, Llames SG, Meana Á, de Lucas R, del Río M, Vicente Á, Escámez MJ, Sacedón R. Unveiling the value of C-reactive protein as a severity biomarker and the IL4/IL13 pathway as a therapeutic target in recessive dystrophic epidermolysis bullosa: A multiparametric cross-sectional study. Exp Dermatol 2024; 33:e15146. [PMID: 39075828 PMCID: PMC11605501 DOI: 10.1111/exd.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) experience numerous complications, which are exacerbated by inflammatory dysregulation and infection. Understanding the immunological mechanisms is crucial for selecting medications that balance inflammation control and immunocompetence. In this cross-sectional study, aiming to identify potential immunotherapeutic targets and inflammatory biomarkers, we delved into the interrelationship between clinical severity and systemic inflammatory parameters in a representative RDEB cohort. Encompassing 84 patients aged 1-67 and spanning all three Epidermolysis Bullosa Disease Activity and Scarring Index (EBDASI) severity categories, we analysed the interrelationship of infection history, standard inflammatory markers, systemic cytokines and Ig levels to elucidate their roles in RDEB pathophysiology. Our findings identify C-reactive protein as an excellent biomarker for disease severity in RDEB. A type 2 inflammatory profile prevails among moderate and severe RDEB patients, correlating with dysregulated circulating IgA and IgG. These results underscore the IL4/IL13 pathways as potential evidence-based therapeutic targets. Moreover, the complete inflammatory scenario aligns with Staphylococcus aureus virulence mechanisms. Concurrently, abnormalities in IgG, IgE and IgM levels suggest an immunodeficiency state in a substantial number of the cohort's patients. Our results provide new insights into the interplay of infection and immunological factors in the pathogenesis of RDEB.
Collapse
Affiliation(s)
- Lucía Quintana‐Castanedo
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
- Department of DermatologyMarqués de Valdecilla University HospitalSantanderSpain
| | - Silvia Sánchez‐Ramón
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Rocío Maseda
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Nuria Illera
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Isabel Pérez‐Conde
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | | | - Nora Butta
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena G. Arias‐Salgado
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena Monzón‐Manzano
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Pilar Zuluaga
- Department of Statistics and Operations ResearchFaculty of MedicineMadridSpain
| | - Lucía Martínez‐Santamaría
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Miguel Fernández‐Arquero
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Sara G. Llames
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
| | - Álvaro Meana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Raúl de Lucas
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Marcela del Río
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - María José Escámez
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| |
Collapse
|
6
|
Gutierrez-Camacho JR, Avila-Carrasco L, Gamón-Madrid A, Muñoz-Torres JR, Murillo-Ruiz-Esparza A, Garza-Veloz I, Trejo-Ortiz PM, Mollinedo-Montaño FE, Araujo-Espino R, Rodriguez-Sanchez IP, Delgado-Enciso I, Martinez-Fierro ML. Evaluation of the Effect of Influenza Vaccine on the Development of Symptoms in SARS-CoV-2 Infection and Outcome in Patients Hospitalized due to COVID-19. Vaccines (Basel) 2024; 12:765. [PMID: 39066403 PMCID: PMC11281370 DOI: 10.3390/vaccines12070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND COVID-19 is an infectious disease caused by SARS-CoV-2. It is unclear whether influenza vaccination reduces the severity of disease symptoms. Previous studies have suggested a beneficial effect of influenza vaccination on the severity of COVID-19. The aim of this study was to evaluate the possible protective effect of the influenza vaccine on the occurrence of SARS-CoV-2 infection symptoms and prognosis in patients hospitalized with COVID-19. METHODS This was a retrospective cohort study of patients who tested positive for SARS-CoV-2, identified by quantitative real-time polymerase chain reaction. Chi-square tests, Kaplan-Meier analysis, and multivariate analysis were performed to assess the association between influenza vaccination and the presence of symptoms in hospitalized patients with COVID-19 and their outcome. RESULTS In this study, 1712 patients received positive laboratory tests for SARS-CoV-2; influenza vaccination was a protective factor against the presence of characteristic COVID-19 symptoms such as polypnea, anosmia, dysgeusia, and fever (p < 0.001). Influenza-vaccinated patients had fewer days of hospitalization (p = 0.029). CONCLUSIONS The findings of this study support that influenza vaccination is associated with a decrease in the number of symptoms in patients hospitalized due to COVID-19, with fewer days of hospitalization, but not with the outcome of disease.
Collapse
Affiliation(s)
- Jose Roberto Gutierrez-Camacho
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Lorena Avila-Carrasco
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Araceli Gamón-Madrid
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Jose Ramon Muñoz-Torres
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | | | - Idalia Garza-Veloz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Perla M. Trejo-Ortiz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Fabiana E. Mollinedo-Montaño
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Roxana Araujo-Espino
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| | - Iram P. Rodriguez-Sanchez
- Laboratorio de Fisiologia Molecular y Estructural, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, San Nicolas de Los Garza 66450, Mexico;
| | - Ivan Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, Cancerology State Institute, IMSS-Bienestar, University of Colima, Colima 28040, Mexico;
| | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (A.G.-M.); (J.R.M.-T.); (I.G.-V.); (P.M.T.-O.); (F.E.M.-M.); (R.A.-E.)
| |
Collapse
|
7
|
Gao Y, Liu ZZ, Zhang JB, Zhou CK, Zhang JG, Lin XQ, Yin Q, Chen W, Yang YJ. Dihydroartemisinin is an inhibitor of trained immunity through Akt/mTOR/HIF1α signaling pathway. Exp Cell Res 2024; 438:114052. [PMID: 38636651 DOI: 10.1016/j.yexcr.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Trained immunity is mechanistically defined as the metabolically and epigenetically mediated long-term functional adaptation of the innate immune system, characterized by a heightened response to a secondary stimulation. Given appropriate activation, trained immunity represents an attractive anti-infective therapeutic target. Nevertheless, excessive immune response and subsequent inflammatory cascades may contribute to pathological tissue damage, indicating that the negative impacts of trained immunity appear to be significant. In this study, we show that innate immune responses such as the production of extracellular traps, pro-inflammatory cytokines, and autophagy-related proteins were markedly augmented in trained BMDMs. Furthermore, heat-killed C. albicans priming promotes the activation of the AIM2 inflammasome, and AIM2-/- mice exhibit impaired memory response induced by heat-killed C. albicans. Therefore, we establish that the AIM2 inflammasome is involved in trained immunity and emerges as a promising therapeutic target for potentially deleterious effects. Dihydroartemisinin can inhibit the memory response induced by heat-killed C. albicans through modulation of mTOR signaling and the AIM2 inflammasome. The findings suggest that dihydroartemisinin can reduce the induction of trained immunity by heat-killed C. albicans in C57BL/6 mice. Dihydroartemisinin is one such therapeutic intervention that has the potential to treat of diseases characterized by excessive trained immunity.
Collapse
Affiliation(s)
- Yu Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cheng-Kai Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qi Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Guillamot M, Subudhi I, Paraskevopoulou V, Prystupa A, Sidhu I, Yeaton A, Laskou M, Hannemann C, Donahoe C, Wiseman D, Aifantis I, Naik S, Weinstock A. Interferon-sensitized hematopoietic progenitors dynamically alter organismal immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590828. [PMID: 38712060 PMCID: PMC11071608 DOI: 10.1101/2024.04.24.590828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Inflammation has enduring impacts on organismal immunity. However, the precise mechanisms by which tissue-restricted inflammation conditions systemic responses are poorly understood. Here, we leveraged a highly compartmentalized model of skin inflammation and identified a surprising type I interferon (IFN)- mediated activation of hematopoietic stem/progenitor cells (HSPCs) that results in profound changes to systemic host responses. Post-inflamed mice were protected from atherosclerosis and had worse outcomes following influenza virus infection. This IFN-mediated HSPC modulation was dependent on IFNAR signaling and could be recapitulated with the administration of recombinant IFNα. Importantly, the transfer of post-inflamed HSPCs was sufficient to transmit the immune suppression phenotype. IFN modulation of HSPCs was rooted both in long-term changes in chromatin accessibility and the emergence of an IFN- responsive functional state from multiple progenitor populations. Collectively, our data reveal the profound and enduring effect of transient inflammation and more specifically type I IFN signaling and set the stage for a more nuanced understanding of HSPC functional modulation by peripheral immune signals.
Collapse
|
9
|
Liu G, Ma N, Cheng K, Feng Q, Ma X, Yue Y, Li Y, Zhang T, Gao X, Liang J, Zhang L, Wang X, Ren Z, Fu YX, Zhao X, Nie G. Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity. NATURE NANOTECHNOLOGY 2024; 19:387-398. [PMID: 38052943 DOI: 10.1038/s41565-023-01553-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
Trained immunity enhances the responsiveness of immune cells to subsequent infections or vaccinations. Here we demonstrate that pre-vaccination with bacteria-derived outer-membrane vesicles, which contain large amounts of pathogen-associated molecular patterns, can be used to potentiate, and enhance, tumour vaccination by trained immunity. Intraperitoneal administration of these outer-membrane vesicles to mice activates inflammasome signalling pathways and induces interleukin-1β secretion. The elevated interleukin-1β increases the generation of antigen-presenting cell progenitors. This results in increased immune response when tumour antigens are delivered, and increases tumour-antigen-specific T-cell activation. This trained immunity increased protection from tumour challenge in two distinct cancer models.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | | | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Lian X, Li Y, Wang W, Zuo J, Yu T, Wang L, Song L. The Modification of H3K4me3 Enhanced the Expression of CgTLR3 in Hemocytes to Increase CgIL17-1 Production in the Immune Priming of Crassostrea gigas. Int J Mol Sci 2024; 25:1036. [PMID: 38256110 PMCID: PMC10816183 DOI: 10.3390/ijms25021036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.
Collapse
Affiliation(s)
- Xingye Lian
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- School of Life Science, Liaoning Normal University, Dalian 116029, China; (X.L.); (Y.L.)
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Jiajun Zuo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Tianqi Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; (W.W.); (J.Z.); (T.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
11
|
Fok ET, Moorlag SJCFM, Negishi Y, Groh LA, Dos Santos JC, Gräwe C, Monge VV, Craenmehr DDD, van Roosmalen M, da Cunha Jolvino DP, Migliorini LB, Neto AS, Severino P, Vermeulen M, Joosten LAB, Netea MG, Fanucchi S, Mhlanga MM. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. Nat Genet 2024; 56:85-99. [PMID: 38092881 DOI: 10.1038/s41588-023-01598-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1β (IL-1β) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1β. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1β expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1β and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.
Collapse
Affiliation(s)
- Ezio T Fok
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Lemba Therapeutics, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | | | | | | | - David Pablo da Cunha Jolvino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Zarezadeh Mehrabadi A, Shahba F, Khorramdelazad H, Aghamohammadi N, Karimi M, Bagherzadeh K, Khoshmirsafa M, Massoumi R, Falak R. Interleukin-1 receptor accessory protein (IL-1RAP): A magic bullet candidate for immunotherapy of human malignancies. Crit Rev Oncol Hematol 2024; 193:104200. [PMID: 37981104 DOI: 10.1016/j.critrevonc.2023.104200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faezeh Shahba
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohammadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Liang J, Zhu F, Cheng K, Ma N, Ma X, Feng Q, Xu C, Gao X, Wang X, Shi J, Zhao X, Nie G. Outer Membrane Vesicle-Based Nanohybrids Target Tumor-Associated Macrophages to Enhance Trained Immunity-Related Vaccine-Generated Antitumor Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306158. [PMID: 37643537 DOI: 10.1002/adma.202306158] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Trained immunity refers to the innate immune system building memory-like features in response to subsequent infections and vaccinations. Compared with classical tumor vaccines, trained immunity-related vaccines (TIrV) are independent of tumor-specific antigens. Bacterial outer membrane vesicles (OMVs) contain an abundance of PAMPs and have the potential to act as TIrV-inducer, but face challenges in endotoxin tolerance, systemic delivery, long-term training, and trained tumor-associated macrophage (TAM)-mediated antitumor phagocytosis. Here, an OMV-based TIrV is developed, OMV nanohybrids (OMV-SIRPα@CaP/GM-CSF) for exerting vaccine-enhanced antitumor activity. In the bone marrow, GM-CSF-assisted OMVs train bone marrow progenitor cells and monocytes, which are inherited by TAMs. In tumor tissues, SIRPα-Fc-assisted OMVs trigger TAM-mediated phagocytosis. This TIrV can be identified by metabolic and epigenetic rewiring using transposase-accessible chromatin (ATAC) and transcriptome sequencing. Furthermore, it is found that the TIrV-mediated antitumor mechanism in the MC38 tumor model (TAM-hot and T cell-cold) is trained immunity and activated T cell response, whereas in the B16-F10 tumor model (T cell-hot and TAM-cold) is primarily mediated by trained immunity. This study not only develops and identifies OMV-based TIrV, but also investigates the trained immunity signatures and therapeutic mechanisms, providing a basis for further vaccination strategies.
Collapse
Affiliation(s)
- Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Chen Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Zeng L, Zhou Y, Xu Q, Huang Z, Song L, Wang Z, Deng L, Wu Y, Liang Y, Liu Z, Gao X, Yi X, He Q, Xia X, Yang H, Zhang X, Yan H, Qin H, Lin S, Yang N, Zhang Y. Dynamic cytokines signature predicts survival outcome from severe Immune-related hepatitis with PD-1/PD-L1 blockade in lung cancer. Lung Cancer 2023; 184:107350. [PMID: 37659241 DOI: 10.1016/j.lungcan.2023.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Immune-related adverse events (irAEs), particularly immune-related hepatitis (IRH) is a potentially serious complication of immune checkpoint inhibitor (ICI) therapy. This retrospective cohort study investigated potential prognostic and predictive biomarkers for IRH. METHOD This study included 37 patients with advanced lung cancer who received ICIs and were divided into two groups: ≥Grade 3 (G3)-IRH group (n = 17) and without irAE (no-irAE) group (n = 20). Blood samples collected at three different time points and pre-treatment tumor biopsy samples were analyzed using multi-omics assays. RESULTS The IL-1B RNA expression was significantly increased (limma, fold = 1.94) in the ≥ G3-IRH group than the no-irAE group. Compared with no-irAE group, ≥G3-IRH group had higher monocyte and eosinophil infiltration and lower macrophage infiltration, particularly macrophage M2. Transcriptomics analyses of pre-treatment tumor samples revealed significant upregulation of various inflammation-related genes in the ≥ G3-IRH group (False discovery rate < 0.05). Moreover, various proinflammatory cytokines and chemokines were significantly lower in the plasma of the ≥ G3-IRH group than in the no-irAE group. Subgroup analyses of the ≥ G3-IRH group revealed that plasma IL-1A was significantly higher among those whose IRH resolved than those who had IRH-related death. Patients who died had a greater increase in immune score and Euclidean distance from the baseline to the seventh day of IRH onset, with a dramatic increase in Euclidean distance after immunosuppression, suggesting overstimulated immune status. CONCLUSION Our study demonstrated the association between IL-1B overexpression and IRH susceptibility. Immune score and Euclidean distance of inflammatory cytokines may provide predictive value on the survival outcome from ≥ G3 IRH.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuling Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yongsheng Wu
- Department of Medical Oncology, Xiang Xiang People's Hospital, Xiangtan 411100, China
| | - Yanchao Liang
- Department of Medical Oncology, Zhuzhou Central Hospital, Zhuzhou 310022, China
| | - Zhentian Liu
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Xuan Gao
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Qiongzhi He
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Haiyan Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shaoding Lin
- Department of Medical Oncology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
15
|
Li Y, Chen Y, Cai G, Ni Q, Geng Y, Wang T, Bao C, Ruan X, Wang H, Sun W. Roles of trained immunity in the pathogenesis of periodontitis. J Periodontal Res 2023; 58:864-873. [PMID: 37424315 DOI: 10.1111/jre.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontitis is a chronic, inflammatory, and destructive disease caused by the imbalance of host immune response and dental biofilm, and has strong epidemiological and pathogenesis correlations with systemic diseases. The immune response in periodontitis involves both innate and adaptive immunity, with numerous immune cells and inflammatory pathways participating in a complex network of interactions. In the past decade, the concept of "trained immunity" has emerged, which highlights the memory characteristics of innate immunity, thus opening up a new avenue of research. There is growing interest in exploring the role of trained immunity in chronic inflammatory and metabolic diseases such as atherosclerosis and diabetes mellitus. Evidence suggests that trained immunity may also regulate the onset and progression of periodontitis, serving as a bridge between periodontitis-related comorbidities. In this review, we summarize concepts related to trained immunity and its development. Furthermore, we present current evidence that endorses the notion of trained immunity in periodontitis and analyze possible roles it may assume regarding periodontitis-associated inflammatory reactions from a cellular perspective. Finally, we discuss various clinical therapeutic strategies for periodontitis and its associated comorbidities that target trained immunity. We hope that more researchers will pay attention to this emerging concept, thereby providing deeper insights into this novel field.
Collapse
Affiliation(s)
- Yingyi Li
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guanhui Cai
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Geng
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ting Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
16
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
17
|
Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C, Pinton P, Patergnani S. The Complex Relationship between Hypoxia Signaling, Mitochondrial Dysfunction and Inflammation in Calcific Aortic Valve Disease: Insights from the Molecular Mechanisms to Therapeutic Approaches. Int J Mol Sci 2023; 24:11105. [PMID: 37446282 DOI: 10.3390/ijms241311105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and multifactorial process that researchers are still making progress to understand its physiopathology as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve replacement represents the only option available for treating CAVS. Insufficient oxygen availability (hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis of CAVS. However, it is deeply intertwined with other major contributors, including sustained inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses and interconnections on the complexity of these impacts in a perspective of better understanding the pathophysiology. These interplays will be examined considering recent studies that shall help us better dissect the molecular mechanism to enable the design and development of potential future therapeutic approaches that can prevent or slow down CAVS processes.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
18
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
19
|
Wan S, Chen Q, Xiang Y, Sang Y, Tang M, Song Y, Feng G, Ye B, Bai L, Zhu Y. Interleukin-1 increases cyclooxygenase-2 expression and prostaglandin E2 production in human granulosa-lutein cell via nuclear factor kappa B/P65 and extracellular signal-regulated kinase 1/2 signaling pathways. Mol Cell Endocrinol 2023; 566-567:111891. [PMID: 36801432 DOI: 10.1016/j.mce.2023.111891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
A multitude of cytokines have been reported to participate in the folliculogenesis process in female. Interleukin-1 (IL-1), belonging to interleukin family, is originally identified as an important immune factor involved in inflammation response. Besides the immunity system, IL-1 is also expressed in reproductive system. However, the role of IL-1 in regulating ovarian follicle function remains to be elucidated. In the current study, using the primary human granulosa-lutein (hGL) and immortalized human granulosa-like tumor cell line (KGN) models, we demonstrated that both IL-1α and IL-1β increased prostaglandin E2 (PGE2) production via upregulating its cyclooxygenase (COX) enzyme COX-2 expression in human granulosa cells. Mechanistically, IL-1α and IL-1β treatment activated nuclear factor kappa B (NF-κB) signaling pathway. Using the specific siRNA to knock down endogenous gene expression, we found that the inhibition of p65 expression abolished IL-1α and IL-1β-induced upregulation of COX-2 expression whereas knockdown of p50 and p52 had no effect. Moreover, our results also showed that IL-1α and IL-1β promoted the nuclear translocation of p65. ChIP assay demonstrated the transcriptional regulation of p65 on COX-2 expression. Additionally, we also found that IL-1α and IL-1β could activate the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The inhibition of ERK1/2 signaling pathway activation reversed IL-1α and IL-1β-induced upregulation of COX-2 expression. Our findings shed light on the cellular and molecular mechanisms by which IL-1 modulates the COX-2 expression through NF-κB/P65 and ERK1/2 signaling pathways in human granulosa cells.
Collapse
Affiliation(s)
- Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Qingqing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Yimiao Sang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Minyue Tang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Yang Song
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Bingru Ye
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310002, China; Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China.
| |
Collapse
|
20
|
Beignon AS, Galeotti C, Menager MM, Schvartz A. Trained immunity as a possible newcomer in autoinflammatory and autoimmune diseases pathophysiology. Front Med (Lausanne) 2023; 9:1085339. [PMID: 36743677 PMCID: PMC9896524 DOI: 10.3389/fmed.2022.1085339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response. Trained immunity is defined by innate immune responses that are faster and stronger to a second stimulus than to the first one, being the same or not. In response to the trained immunity inducer, and through metabolic and epigenetic changes of hematopoietic stem and progenitor cells in the bone marrow that are transmitted to their cellular progeny (peripheral trained immunity), or directly of tissue-resident cells (local innate immunity), innate cells responsiveness and functions upon stimulation are improved in the long-term. Innate immunity can be beneficial, but it could also be detrimental when maladaptive. Here, we discuss how trained immunity could contribute to the physiopathology of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Mickael M. Menager
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Adrien Schvartz
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France,*Correspondence: Adrien Schvartz,
| |
Collapse
|
21
|
Torre C, Boyer L. Effector-Triggered Trained Immunity: An Innate Immune Memory to Microbial Virulence Factors? Toxins (Basel) 2022; 14:toxins14110798. [PMID: 36422972 PMCID: PMC9696518 DOI: 10.3390/toxins14110798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In the last decade, a major dogma in the field of immunology has been called into question by the identification of a cell autonomous innate immune memory. This innate immune memory (also named trained immunity) was found to be mostly carried by innate immune cells and to be characterized by an exacerbated inflammatory response with a heightened expression of proinflammatory cytokines, including TNF-α, IL-6 and IL-1β. Unlike the vast majority of cytokines, IL-1β is produced as a proform (pro-IL-1β) and requires a proteolytic cleavage to exert its biological action. This cleavage takes place mainly within complex molecular platforms named inflammasomes. These platforms are assembled upon both the infectious or sterile activation of NOD-like receptors (NLRs), thereby allowing for the recruitment and activation of caspases and the subsequent maturation of pro-IL-1β into IL-1β. The NLRP3 inflammasome has recently been implicated both in western diet-induced trained immunity, and in the detection of microbial virulence factors (effector-triggered immunity (ETI)). Here, we will attempt to link these two immune processes and provide arguments to hypothesize the existence of trained immunity triggered by microbial virulence factors (effector-triggered trained immunity (ETTI)).
Collapse
|
22
|
Mu D, Yang J, Jiang Y, Wang Z, Chen W, Huang J, Zhang Y, Liu Q, Yang D. Single-Cell Transcriptomic Analysis Reveals Neutrophil as Orchestrator during β-Glucan–Induced Trained Immunity in a Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2022; 209:783-795. [DOI: 10.4049/jimmunol.2200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/05/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Trained immunity defines long-term memory of innate immunity based on transcriptional, epigenetic, and metabolic modifications of myeloid cells, which are characterized by elevated proinflammatory responses toward homologous or heterologous secondary stimuli in mammals. However, the evidence of trained immunity-associated immune cells and its molecular mechanism in teleost fish remains largely unknown. In this study, we established a trained immunity activation model in turbot (Scophthalmus maximus) and found that administration with β-glucan induces protection against a bacterial infection. Through single-cell RNA sequencing to annotate 14 clusters of innate and adaptive immune cells, as well as two clusters of blood cells, from head kidney and spleen, respectively, we characterized that neutrophil displays cardinal features of trained immunity by analyzing the expression abundance of trained immunity database–related genes at the single-cell level. Subsequently, through establishing an in vivo training and in vitro neutrophil challenge model, we found that the trained neutrophils exhibit a significant elevation of the IL-1R signaling pathway after Edwardsiella piscicida infection. Furthermore, inhibition of neutrophil’s IL-1R signaling pathway through anakinra treatment impaired the heightened production of reactive oxygen, nitrogen species, lactate, as well as the neutrophil extracellular traps formation and bacterial killing ability. Taken together, these findings characterized neutrophil as the orchestrator to express features of trained immunity, and revealed that the IL-1R signaling pathway plays a critical role in induction of trained immunity for bacterial clearance in teleost fish.
Collapse
Affiliation(s)
- Di Mu
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin Yang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Jiang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuang Wang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weijie Chen
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianchang Huang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- †Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qin Liu
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- ‡Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; and
- §Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Dahai Yang
- *State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- §Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
23
|
Yadav P, Trehanpati N, Maiwall R, Sehgal R, Singh R, Islam M, Jagdish RK, Vijayaraghavan R, Maheshwari D, Bhat S, Kale P, Kumar A, Baweja S, Kumar G, Ramakrishna G, Sarin SK. Soluble factors and suppressive monocytes can predict early development of sepsis in acute-on-chronic liver failure. Hepatol Commun 2022; 6:2105-2120. [PMID: 35502507 PMCID: PMC9315131 DOI: 10.1002/hep4.1949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 01/08/2023] Open
Abstract
Patients with acute-on-chronic liver failure (ACLF) have a high probability of developing systemic inflammation and sepsis due to immune dysregulation. Fifty-nine patients with ACLF (12 without and 19 with systemic inflammation, and 28 with sepsis) were serially monitored for clinical and immunological changes at baseline, 6 hours, 24 hours, day 3, and day 7 following hospitalization. Ten healthy controls were also included. At all time points, soluble plasma factors and monocyte functions were studied. Patients with ACLF and systemic inflammation showed higher interleukin (IL)-6, vascular endothelial growth factor-a, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1β than patients with no systemic inflammation. Patients with ACLF with sepsis had raised (p < 0.001) levels of IL-1Ra, IL-18, and triggering receptor expressed on myeloid cells 1 (TREM1) compared to patients with ACLF-systemic inflammation. Five of the 19 (26.3%) patients with systemic inflammation developed sepsis within 48-72 hours with a rapid rise in plasma levels of IL-1Ra (1203-35,000 pg/ml), IL-18 (48-114 pg/ml), and TREM1 (1273-4865 pg/ml). Monocytes of patients with ACLF with systemic inflammation and sepsis showed reduced human leukocyte antigen-DR but increased programmed death ligand 1 (PD-L1) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) (p < 0.04) expression with increased ETosis by monocytes at baseline and until day 7. Conclusion: High and rising levels of plasma IL-1Ra, IL-18, TREM1 soluble factors, and increased suppressive monocytes (PDL1+ve , TIM3+ve ) at baseline can stratify patients with ACLF at high risk of developing sepsis within 48-72 hours of hospitalization.
Collapse
Affiliation(s)
- Pushpa Yadav
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Nirupama Trehanpati
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Rakhi Maiwall
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Rashi Sehgal
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Ravinder Singh
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Mojahidul Islam
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Rakesh Kumar Jagdish
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Rajan Vijayaraghavan
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Deepanshu Maheshwari
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Sadam Bhat
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Pratibha Kale
- 80402Department of MicrobiologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Anupam Kumar
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Sukriti Baweja
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Guresh Kumar
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Gayatri Ramakrishna
- Laboratory of Molecular ImmunologyDepartment of Molecular and Cellular MedicineInstitute of Liver and Biliary Sciences New DelhiNew DelhiIndia
| | - Shiv K Sarin
- 80402Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| |
Collapse
|
24
|
Huijser E, van Helden-Meeuwsen CG, Grashof DGB, Tarn JR, Brkic Z, Huisman JMA, Wahadat MJ, van de Werken HJG, Lopes AP, van Roon JAG, van Daele PLA, Kamphuis S, Ng WF, Bekkering S, Joosten LAB, Dik WA, Versnel MA. Trained Immunity in Primary Sjögren's Syndrome: Linking Type I Interferons to a Pro-Atherogenic Phenotype. Front Immunol 2022; 13:840751. [PMID: 35860283 PMCID: PMC9289449 DOI: 10.3389/fimmu.2022.840751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Trained immunity - or innate immune memory - can be described as the long-term reprogramming of innate immune cells towards a hyperresponsive state which involves intracellular metabolic changes. Trained immunity has been linked to atherosclerosis. A subgroup of patients with primary Sjögren's syndrome (pSS) exhibits systemic type I interferon (IFN) pathway activation, indicating innate immune hyperactivation. Here, we studied the link between type I IFNs and trained immunity in an in vitro monocytic cell model and peripheral blood mononuclear cells (PBMCs) from pSS patients. Methods The training stimuli heat killed Candida albicans, muramyl dipeptide, IFNβ, and patient serum were added to THP-1 cells for 24 hours, after which the cells were washed, rested for 48 hours and subsequently re-stimulated with LPS, Pam3Cys, poly I:C, IFNβ or oxLDL for 4-24 hours. PBMCs from pSS patients and healthy controls were stimulated with LPS, Pam3Cys, poly I:C or IFNβ for 0.5-24 hours. Results Training with IFNβ induced elevated production of pro-atherogenic cytokines IL-6, TNFα and CCL2, differential cholesterol- and glycolysis-related gene expression, and increased glucose consumption and oxLDL uptake upon re-stimulation. Type I IFN production was increased in Candida albicans- and IFNβ-trained cells after LPS re-stimulation, but was reduced after poly I:C re-stimulation. Training with muramyl dipeptide and IFNβ, but not Candida albicans, affected the IFN-stimulated gene expression response to IFNβ re-stimulation. PBMCs from pSS patients consumed more glucose compared with healthy control PBMCs and tended to produce more TNFα and type I IFNs upon LPS stimulation, but less type I IFNs upon poly I:C stimulation. Conclusions Type I IFN is a trainer inducing a trained immunity phenotype with pro-atherogenic properties in monocytes. Conversely, trained immunity also affects the production of type I IFNs and transcriptional response to type I IFN receptor re-stimulation. The phenotype of pSS PBMCs is consistent with trained immunity. This connection between type I IFN, trained immunity and cholesterol metabolism may have important implications for pSS and the pathogenesis of (subclinical) atherosclerosis in these patients.
Collapse
Affiliation(s)
- Erika Huijser
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Dwin G. B. Grashof
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica R. Tarn
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Zana Brkic
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Josje M. A. Huisman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M. Javad Wahadat
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Harmen J. G. van de Werken
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ana P. Lopes
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joel A. G. van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Paul L. A. van Daele
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sylvia Kamphuis
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wan-Fai Ng
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- NIHR Newcastle Biomedical Research Centre, Newcastle, United Kingdom
- NIHR Newcastle Clinical Research Facility, Newcastle, United Kingdom
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, Netherlands
- Radboud Center for Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, Netherlands
- Radboud Center for Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Willem A. Dik
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
25
|
Zahalka S, Starkl P, Watzenboeck ML, Farhat A, Radhouani M, Deckert F, Hladik A, Lakovits K, Oberndorfer F, Lassnig C, Strobl B, Klavins K, Matsushita M, Sanin DE, Grzes KM, Pearce EJ, Gorki AD, Knapp S. Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol 2022; 15:896-907. [PMID: 35856089 PMCID: PMC9385480 DOI: 10.1038/s41385-022-00528-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.
Collapse
Affiliation(s)
- Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin L Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mariem Radhouani
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Deckert
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of General Chemical Engineering, Riga Technical University, Riga, Latvia
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Eislmayr K, Bestehorn A, Morelli L, Borroni M, Walle LV, Lamkanfi M, Kovarik P. Nonredundancy of IL-1α and IL-1β is defined by distinct regulation of tissues orchestrating resistance versus tolerance to infection. SCIENCE ADVANCES 2022; 8:eabj7293. [PMID: 35235356 PMCID: PMC8890706 DOI: 10.1126/sciadv.abj7293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/05/2022] [Indexed: 06/08/2023]
Abstract
Interleukin-1α (IL-1α) and IL-1β are inflammatory cytokines with important roles in health and disease. They trigger the same receptor and elicit comparable cellular responses but, for poorly understood reasons, are not redundant in vivo. Here, we decoupled IL-1α and IL-1β functions that drive protective responses against invasive infection with group A Streptococcus. IL-1β was essential for pathogen clearance, hence resistance to infection, by inducing granulocyte colony-stimulating factor at the infection site and establishing emergency granulopoiesis. In contrast, IL-1α governed reprogramming of liver metabolic pathways associated with tolerance to infection. The IL-1α-dominated hepatic regulation corresponded to high IL-1α levels in the liver during infection. Conversely, IL-1β was critical for the regulation of the spleen transcriptome, which correlated with ample IL-1β expression in this tissue. The results identify distinct and organ-specific roles of IL-1α versus IL-1β and implicate spatial restriction of their expression and bioavailability during infection as the underlying mechanism.
Collapse
Affiliation(s)
- Kevin Eislmayr
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Annika Bestehorn
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Luisa Morelli
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Martina Borroni
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Lieselotte Vande Walle
- Laboratory of Medical Immunology, Department of Internal Medicine and Pediatrics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Pediatrics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| |
Collapse
|
27
|
Frühbeck G, Gómez-Ambrosi J, Ramírez B, Mentxaka A, Rodríguez A, Becerril S, Reina G, Valentí V, Moncada R, Silva C, Catalán V. Increased Levels of Interleukin-36 in Obesity and Type 2 Diabetes Fuel Adipose Tissue Inflammation by Inducing Its Own Expression and Release by Adipocytes and Macrophages. Front Immunol 2022; 13:832185. [PMID: 35222417 PMCID: PMC8863603 DOI: 10.3389/fimmu.2022.832185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 02/03/2023] Open
Abstract
Interleukin (IL)-36 is a recently described cytokine with well-known functions in the regulation of multiple inflammatory diseases. Since no data exists on how this cytokine regulates adipose tissue (AT) homeostasis, we aimed to explore the function of a specific isoform, IL-36γ, an agonist, in human obesity and obesity-associated type 2 diabetes as well as in AT inflammation and fibrosis. Plasma IL-36γ was measured in 91 participants in a case-control study and the effect of weight loss was evaluated in 31 patients with severe obesity undergoing bariatric surgery. Gene expression levels of IL36G and its receptor were analyzed in relevant human metabolic tissues. The effect of inflammatory factors and IL-36γ was determined in vitro in human adipocytes and macrophages. We found, for the first time, that the increased (P<0.05) circulating levels of IL-36γ in patients with obesity decreased (P<0.001) after weight and fat loss achieved by Roux-en-Y gastric bypass and that gene expression levels of IL36G were upregulated in the visceral AT (P<0.05) and in the peripheral blood mononuclear cells (P<0.01) from patients with obesity. We also demonstrated increased (P<0.05) expression levels of Il36g in the epididymal AT from diet-induced obese mice. IL36G was significantly enhanced (P<0.001) by LPS in human adipocytes and monocyte-derived macrophages, while no changes were found after the incubation with anti-inflammatory cytokines. The addition of IL-36γ for 24 h strongly induced (P<0.01) its own expression as well as key inflammatory and chemoattractant factors with no changes in genes associated with fibrosis. Furthermore, adipocyte-conditioned media obtained from patients with obesity increased (P<0.01) the release of IL-36γ and the expression (P<0.05) of cathepsin G (CTSG) in monocyte-derived macrophages. These findings provide, for the first time, evidence about the properties of IL-36γ in the regulation of AT-chronic inflammation, emerging as a link between AT biology and the obesity-associated comorbidities.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain,*Correspondence: Victoria Catalán, ; Gema Frühbeck,
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Mentxaka
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gabriel Reina
- Department of Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victor Valentí
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain,*Correspondence: Victoria Catalán, ; Gema Frühbeck,
| |
Collapse
|
28
|
Badii M, Gaal O, Popp RA, Crisan TO, Joosten LAB. Trained immunity and inflammation in rheumatic diseases. Joint Bone Spine 2022; 89:105364. [DOI: 10.1016/j.jbspin.2022.105364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
|
29
|
Herman A, Herman AP. Could Candida Overgrowth Be Involved in the Pathophysiology of Autism? J Clin Med 2022; 11:442. [PMID: 35054136 PMCID: PMC8778531 DOI: 10.3390/jcm11020442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of this review is to summarize the current acquiredknowledge of Candida overgrowth in the intestine as a possible etiology of autism spectrum disorder (ASD). The influence of Candida sp. on the immune system, brain, and behavior of children with ASD isdescribed. The benefits of interventions such as a carbohydrates-exclusion diet, probiotic supplementation, antifungal agents, fecal microbiota transplantation (FMT), and microbiota transfer therapy (MTT) will be also discussed. Our literature query showed that the results of most studies do not fully support the hypothesis that Candida overgrowth is correlated with gastrointestinal (GI) problems and contributes to autism behavioral symptoms occurrence. On the one hand, it was reported that the modulation of microbiota composition in the gut may decrease Candida overgrowth, help reduce GI problems and autism symptoms. On the other hand, studies on humans suggesting the beneficial effects of a sugar-free diet, probiotic supplementation, FMT and MTT treatment in ASD are limited and inconclusive. Due to the increasing prevalence of ASD, studies on the etiology of this disorder are extremely needed and valuable. However, to elucidate the possible involvement of Candida in the pathophysiology of ASD, more reliable and well-designed research is certainly required.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Bitwy Warszawskiej 20 18, 19 Street, 02-366 Warsaw, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland;
| |
Collapse
|
30
|
Abstract
Interleukin-1 (IL-1) is a key player in the immune response to pathogens due to its role in promoting inflammation and recruiting immune cells to the site of infection. In tuberculosis (TB), tight regulation of IL-1 responses is critical to ensure host resistance to infection while preventing immune pathology. In the mouse model of Mycobacterium tuberculosis infection, both IL-1 absence and overproduction result in exacerbated disease and mortality. In humans, several polymorphisms in the IL1B gene have been associated with increased susceptibility to TB. Importantly, M. tuberculosis itself has evolved several strategies to manipulate and regulate host IL-1 responses for its own benefit. Given all this, IL-1 appears as a promising target for host-directed therapies in TB. However, for that to succeed, more detailed knowledge on the biology and mechanisms of action of IL-1 in vivo, together with a deep understanding of how host-M. tuberculosis interactions modulate IL-1, is required. Here, we discuss the most recent advances in the biology and therapeutic potential of IL-1 in TB as well as the outstanding questions that remain to be answered.
Collapse
|
31
|
Wu D, Poholek CH, Majumder S, Liu Q, Revu SK, Mohib K, Rothstein DM, McGeachy MJ. IL-17-dependent fibroblastic reticular cell training boosts tissue protective mucosal immunity through IL-10-producing B cells. Sci Immunol 2021; 6:eaao3669. [PMID: 34919443 PMCID: PMC8818277 DOI: 10.1126/sciimmunol.aao3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prior experience of pathogen-associated stimuli reduces morbidity and mortality to newly encountered infections through innate immune training, which can be enhanced by childhood vaccination. Fibroblastic reticular cells (FRCs) are stromal cells in lymphoid organs that support lymphocyte localization and survival and modulate adaptive immune responses. IL-17 signaling is important for FRC metabolism and proliferation during inflammatory responses. Here, we show that FRC-intrinsic IL-17 signaling was required for protective antibody-mediated immunity to the gut bacterial pathogen Citrobacter rodentium. We asked whether prior activation of FRC through nonspecific inflammatory “training” of the gut would alter subsequent immune response to C. rodentium. Inflammatory training increased the number of activated FRC in mesenteric LN (MLN) and enhanced the antibody response to C. rodentium in an IL-17–dependent manner. FRC demonstrated cardinal features of innate immune training, including increased epigenetic markers of activation and increased metabolic response to infection. Enhanced responses were still evident 6 weeks after training. The kinetics of bacterial infection were not changed by inflammatory training, but colon inflammation was paradoxically reduced. Mechanistically, IL-10 production by activated B cells was required for colon protective effects of inflammatory training. Enhancing tissue protective B cell responses thus led to increased production of antibody and IL-10, allowing clearance of infection with reduced tissue inflammation. These data identify a new mode of immune training through FRC to modulate future adaptive responses and better preserve host health.
Collapse
Affiliation(s)
- Dongwen Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Catherine H Poholek
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh PA, USA
| | - Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Qixing Liu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- School of Medicine, Tsinghua University Beijing, China
| | - Shankar K Revu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
32
|
IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 2021; 150:155773. [PMID: 34844039 DOI: 10.1016/j.cyto.2021.155773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.
Collapse
|
33
|
Esmaeilzadeh A, Bahmaie N, Nouri E, Hajkazemi MJ, Zareh Rafie M. Immunobiological Properties and Clinical Applications of Interleukin-38 for Immune-Mediated Disorders: A Systematic Review Study. Int J Mol Sci 2021; 22:12552. [PMID: 34830435 PMCID: PMC8625918 DOI: 10.3390/ijms222212552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Exponential growth in the usage of "cytokines" (as seroimmunobiomarkers) has facilitated more accurate prognosis, early diagnosis, novel, and efficient immunotherapeutics. Numerous studies have reported immunopathophysiological and immunopathological processes of interleukin-38 (IL-38). Therefore, in this systematic review article, the authors aimed to present an updated comprehensive overview on the immunobiological mechanisms, diagnostic, and immune gene-based therapeutic potentials of IL-38. According to our inclusion and exclusion criteria, a total of 216 articles were collected from several search engines and databases from the January 2012 to July 2021 time interval by using six main keywords. Physiologic or pathologic microenvironments, optimal dosage, and involved receptors affect the functionalities of IL-38. Alterations in serum levels of IL-38 play a major role in the immunopathogenesis of a wide array of immune-mediated disorders. IL-38 shows anti-inflammatory activities by reduction or inhibition of pro-inflammatory cytokines, supporting the therapeutic aspects of IL-38 in inflammatory autoimmune diseases. According to the importance of pre-clinical studies, it seems that manipulation of the immune system by immunomodulatory properties of IL-38 can increase the accuracy of diagnosis, and decipher optimal clinical outcomes. To promote our knowledge, more collaboration is highly recommended among laboratory scientists, internal/infectious diseases specialists, oncologists, immunologists, diseases-specific biomarkers scientists, and basic medical researchers.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Immunotherapy Research & Technology Group, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Nazila Bahmaie
- Department of Allergy and Immunology, Faculty of Medicine, Graduate School of Health Science, Near East University (NEU), Nicosia 99138, Cyprus;
- Pediatric Ward, Department of Allergy and Immunology, Near East University affiliated Hospital, Nicosia 99138, Cyprus
- Serology and Immunology Ward, Clinical Diagnosis Laboratory, Private Baskent Hospital, Nicosia 99138, Cyprus
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Elham Nouri
- School of Paramedicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
- Shahid Beheshti University Affiliated Hospital, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Mohammad Javad Hajkazemi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| | - Maryam Zareh Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| |
Collapse
|
34
|
Théroude C, Reverte M, Heinonen T, Ciarlo E, Schrijver IT, Antonakos N, Maillard N, Pralong F, Le Roy D, Roger T. Trained Immunity Confers Prolonged Protection From Listeriosis. Front Immunol 2021; 12:723393. [PMID: 34603295 PMCID: PMC8484647 DOI: 10.3389/fimmu.2021.723393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Trained immunity refers to the ability of the innate immune system exposed to a first challenge to provide an enhanced response to a secondary homologous or heterologous challenge. We reported that training induced with β-glucan one week before infection confers protection against a broad-spectrum of lethal bacterial infections. Whether this protection persists over time is unknown. To tackle this question, we analyzed the immune status and the response to Listeria monocytogenes (L. monocytogenes) of mice trained 9 weeks before analysis. The induction of trained immunity increased bone marrow myelopoiesis and blood counts of Ly6Chigh inflammatory monocytes and polymorphonuclear neutrophils (PMNs). Ex vivo, whole blood, PMNs and monocytes from trained mice produced increased levels of cytokines in response to microbial products and limited the growth of L. monocytogenes. In vivo, following challenge with L. monocytogenes, peripheral blood leukocytes were massively depleted in control mice but largely preserved in trained mice. PMNs were reduced also in the spleen from control mice, and increased in the spleen of trained mice. In transwell experiments, PMNs from trained mice showed increased spontaneous migration and CXCL2/MIP2α-induced chemotaxis, suggesting that training promotes the migration of PMNs in peripheral organs targeted by L. monocytogenes. Trained PMNs and monocytes had higher glycolytic activity and mitochondrial respiration than control cells when exposed to L. monocytogenes. Bacterial burden and dissemination in blood, spleen and liver as well as systemic cytokines and inflammation (multiplex bead assay and bioluminescence imaging) were reduced in trained mice. In full agreement with these results, mice trained 9 weeks before infection were powerfully protected from lethal listeriosis. Altogether, these data suggest that training increases the generation and the antimicrobial activity of PMNs and monocytes, which may confer prolonged protection from lethal bacterial infection.
Collapse
Affiliation(s)
- Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Marta Reverte
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Irene T Schrijver
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nikolaos Antonakos
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nicolas Maillard
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Florian Pralong
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
35
|
Debisarun PA, Gössling KL, Bulut O, Kilic G, Zoodsma M, Liu Z, Oldenburg M, Rüchel N, Zhang B, Xu CJ, Struycken P, Koeken VACM, Domínguez-Andrés J, Moorlag SJCFM, Taks E, Ostermann PN, Müller L, Schaal H, Adams O, Borkhardt A, ten Oever J, van Crevel R, Li Y, Netea MG. Induction of trained immunity by influenza vaccination - impact on COVID-19. PLoS Pathog 2021; 17:e1009928. [PMID: 34695164 PMCID: PMC8568262 DOI: 10.1371/journal.ppat.1009928] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.
Collapse
Affiliation(s)
- Priya A. Debisarun
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Katharina L. Gössling
- Department for Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Ozlem Bulut
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gizem Kilic
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn Zoodsma
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Zhaoli Liu
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Marina Oldenburg
- Department for Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Nadine Rüchel
- Department for Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Patrick Struycken
- Department of Occupational Health & Safety, and Environmental Service, Radboud University Medical Center, Nijmegen, Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Esther Taks
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Philipp N. Ostermann
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Arndt Borkhardt
- Department for Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University Duesseldorf, Dusseldorf, Germany
| | - Jaap ten Oever
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yang Li
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
36
|
Edgar L, Akbar N, Braithwaite AT, Krausgruber T, Gallart-Ayala H, Bailey J, Corbin AL, Khoyratty TE, Chai JT, Alkhalil M, Rendeiro AF, Ziberna K, Arya R, Cahill TJ, Bock C, Laurencikiene J, Crabtree MJ, Lemieux ME, Riksen NP, Netea MG, Wheelock CE, Channon KM, Rydén M, Udalova IA, Carnicer R, Choudhury RP. Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation 2021; 144:961-982. [PMID: 34255973 PMCID: PMC8448412 DOI: 10.1161/circulationaha.120.046464] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.
Collapse
Affiliation(s)
- Laurienne Edgar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Adam T. Braithwaite
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
| | - Héctor Gallart-Ayala
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.)
- Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden
| | - Jade Bailey
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Alastair L. Corbin
- The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
| | - Tariq E. Khoyratty
- The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
| | - Joshua T. Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Mohammad Alkhalil
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
| | - Klemen Ziberna
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Ritu Arya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Thomas J. Cahill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (C.B.)
| | - Jurga Laurencikiene
- Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | | | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany (M.G.N.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.)
- Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Mikael Rydén
- Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
| | - Irina A. Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| |
Collapse
|
37
|
Suzich JB, Cuddy SR, Baidas H, Dochnal S, Ke E, Schinlever AR, Babnis A, Boutell C, Cliffe AR. PML-NB-dependent type I interferon memory results in a restricted form of HSV latency. EMBO Rep 2021; 22:e52547. [PMID: 34197022 PMCID: PMC8419685 DOI: 10.15252/embr.202152547] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus (HSV) establishes latent infection in long-lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML-NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV-1 genomes colocalize with PML-NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN-treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.
Collapse
Affiliation(s)
- Jon B Suzich
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sean R Cuddy
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Hiam Baidas
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Sara Dochnal
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Austin R Schinlever
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Aleksandra Babnis
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Chris Boutell
- MRC‐University of Glasgow Centre for Virus Research (CVR)GlasgowUK
| | - Anna R Cliffe
- Department of Microbiology, Immunology and Cancer BiologyUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
38
|
Angelidou A, Diray-Arce J, Conti MG, Netea MG, Blok BA, Liu M, Sanchez-Schmitz G, Ozonoff A, van Haren SD, Levy O. Human Newborn Monocytes Demonstrate Distinct BCG-Induced Primary and Trained Innate Cytokine Production and Metabolic Activation In Vitro. Front Immunol 2021; 12:674334. [PMID: 34326836 PMCID: PMC8315003 DOI: 10.3389/fimmu.2021.674334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background Newborns exhibit distinct immune responses and are at high risk of infection. Neonatal immunization with BCG, the live attenuated vaccine against tuberculosis (TB), is associated with broad protection against a range of unrelated pathogens, possibly reflecting vaccine-induced training of innate immune cells ("innate memory"). However, little is known regarding the impact of age on BCG-induced innate responses. Objective Establish an age-specific human monocyte in vitro training platform to characterize and compare BCG-induced primary and memory cytokine responses and immunometabolic shifts. Design/Methods Human neonatal and adult CD33-selected monocytes were stimulated for 24h with RPMI (control) or BCG (Danish strain) in 10% autologous serum, washed and cultured for 5 additional days, prior to re-stimulation with the TLR4 agonist LPS for another 24h. Supernatants were collected at Day 1 (D1) to measure primary innate responses and at Day 7 (D7) to assess memory innate responses by ELISA and multiplex cytokine and chemokine assays. Lactate, a signature metabolite increased during trained immunity, was measured by colorimetric assay. Results Cytokine production by human monocytes differed significantly by age at D1 (primary, BCG 1:750 and 1:100 vol/vol, p<0.0001) and D7 (innate memory response, BCG 1:100 vol/vol, p<0.05). Compared to RPMI control, newborn monocytes demonstrated greater TNF (1:100, 1:10 vol/vol, p<0.01) and IL-12p40 (1:100 vol/vol, p<0.05) production than adult monocytes (1:100, p<0.05). At D7, while BCG-trained adult monocytes, as previously reported, demonstrated enhanced LPS-induced TNF production, BCG-trained newborn monocytes demonstrated tolerization, as evidenced by significantly diminished subsequent LPS-induced TNF (RPMI vs. BCG 1:10, p <0.01), IL-10 and CCL5 production (p<0.05). With the exception of IL-1RA production by newborn monocytes, BCG-induced monocyte production of D1 cytokines/chemokines was inversely correlated with D7 LPS-induced TNF in both age groups (p<0.0001). Compared to BCG-trained adult monocytes, newborn monocytes demonstrated markedly impaired BCG-induced production of lactate, a metabolite implicated in immune training in adults. Conclusions BCG-induced human monocyte primary- and memory-innate cytokine responses were age-dependent and accompanied by distinct immunometabolic shifts that impact both glycolysis and training. Our results suggest that immune ontogeny may shape innate responses to live attenuated vaccines, suggesting age-specific approaches to leverage innate training for broad protection against infection.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maria-Giulia Conti
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Bastiaan A. Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark Liu
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| |
Collapse
|
39
|
Benhadou F, Dirix V, Domont F, Willaert F, Van Praet A, Locht C, Mascart F, Corbière V. Tuberculosis Risk Stratification of Psoriatic Patients Before Anti-TNF-α Treatment. Front Immunol 2021; 12:672894. [PMID: 34149708 PMCID: PMC8209474 DOI: 10.3389/fimmu.2021.672894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a skin inflammatory condition for which significant progress has been made in its management by the use of targeted biological drugs. Detection of latent M. tuberculosis infection (LTBI) is mandatory before starting biotherapy that is associated with reactivation risk. Together with evaluation of TB risk factors and chest radiographs, tuberculin skin tests (TST) and/or blood interferon-γ-release assays (IGRA), like the QuantiFERON (QFT), are usually performed to diagnose M. tuberculosis infection. Using this approach, 14/49 psoriatic patients prospectively included in this study were identified as LTBI (14 TST+, induration size ≥ 10mm, 8 QFT+), and 7/14 received prophylactic anti-TB treatment, the other 7 reporting past-treatment. As the specificity and sensitivity of these tests were challenged, we evaluated the added value of an IGRA in response to a mycobacterial antigen associated with latency, the heparin-binding haemagglutinin (HBHA). All but one TST+ patient had a positive HBHA-IGRA, indicating higher sensitivity than the QFT. The HBHA-IGRA was also positive for 12/35 TST-QFT- patients. Measurement for 15 psoriatic patients (12 with HBHA-IGRA+) of 8 chemokines in addition to IFN-γ revealed a broad array of HBHA-induced chemokines for TST+QFT- and TST-QFT- patients, compared to a more restricted pattern for TST+QFT+ patients. This allowed us to define subgroups within psoriatic patients characterized by different immune responses to M. tuberculosis antigens that may be associated to different risk levels of reactivation of the infection. This approach may help in prioritizing patients who should receive prophylactic anti-TB treatment before starting biotherapies in order to reduce their number.
Collapse
Affiliation(s)
- Farida Benhadou
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Fanny Domont
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Fabienne Willaert
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| |
Collapse
|
40
|
Increased Pulmonary Pneumococcal Clearance after Resolution of H9N2 Avian Influenza Virus Infection in Mice. Infect Immun 2021; 89:IAI.00062-21. [PMID: 33722928 PMCID: PMC8316151 DOI: 10.1128/iai.00062-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
H9N2 avian influenza virus has been continuously circulating among poultry and can infect mammals, indicating that this virus is a potential pandemic strain. During influenza pandemics, secondary bacterial (particularly pneumococcal) pneumonia usually contributes to excessive mortality. In the present study, we observed the dynamic effect of H9N2 virus infection on host defense against secondary pneumococcal infection in mice. BALB/c mice were intranasally inoculated with 1.2 × 105 PFU of H9N2 virus followed by 1 × 106 CFU of Streptococcus pneumoniae at 7, 14, or 28 days post-H9N2 infection (dpi). The bacterial load, histopathology, body weight, and survival were assessed after pneumococcal infection. Our results showed that H9N2 virus infection had no significant impact on host resistance to secondary pneumococcal infection at 7 dpi. However, H9N2 virus infection increased pulmonary pneumococcal clearance and reduced pneumococcal pneumonia-induced morbidity after secondary pneumococcal infection at 14 or 28 dpi, as reflected by significantly decreased bacterial loads, markedly alleviated pulmonary histopathological changes, and significantly reduced weight loss in mice infected with H9N2 virus followed by S. pneumoniae compared with mice infected only with S. pneumoniae. Further, the significantly decreased bacterial loads were observed when mice were previously infected with a high dose (1.2 × 106 PFU) of H9N2 virus. Also, similar to the results obtained in BALB/c mice, improvement in pulmonary pneumococcal clearance was observed in C57BL/6 mice. Overall, our results showed that pulmonary pneumococcal clearance is improved after resolution of H9N2 virus infection in mice.
Collapse
|
41
|
Mortensen SB, Hansen ABE, Mogensen TH, Jakobsen MA, Beck HC, Harvald EB, Lambertsen KL, Johansen IS, Andersen DC. PYRIN inflammasome activation abrogates IL1Ra expression providing a new mechanism underlying FMF pathogenesis. Arthritis Rheumatol 2021; 73:2116-2126. [PMID: 33913256 DOI: 10.1002/art.41770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Aberrant PYRIN inflammasome activity triggers FMF pathogenesis but the exact mechanism remains elusive and an obstacle to efficient treatment. Herein, we sought to identify PYRIN inflammasome specific mechanisms to improve FMF treatment and diagnostics in the future. METHODS PYRIN-specific protein secretion was assessed by proteome analysis in U937 derived macrophages, and specific findings were confirmed in PYRIN inflammasome activated monocytes from healthy blood donors (HD) and FMF patients, stratified by MEFV genotype categories corresponding to a suspected increasing FMF disease severity. RESULTS Proteome data revealed differential secretion pattern of IL1Rα from PYRIN and NLRP3 activated U937 derived macrophages, which was verified by ELISA and qPCR. Moreover, PYRIN activation significantly reduced IL1RN mRNA expression (p<0.001) and IL1Rα secretion (p<0.01) in healthy donor- and FMF monocytes, respectively. Independent of MEFV genotype, unstimulated FMF monocytes from colchicine treated patients secreted lower amounts of IL1Rα as compared to healthy donors (p<0.05) and displayed decreased ratios of IL1Rα/IL1β (p<0.05), suggesting a reduced anti-inflammatory capacity. CONCLUSION Our data show an inherent lack of IL-1 receptor antagonist expression specific to PYRIN inflammasome activation, providing a new mechanism underlying FMF pathogenesis. The reduced IL1Rα levels in FMF monocytes suggest a diminished anti-inflammatory capacity potentially leaving FMF patient monocytes more sensitive to pro-inflammatory stimuli, regardless of being in colchicine therapy. Thus, considering the potential clinical consequence of reduced monocyte IL1Rα secretion in FMF patients, we suggest further investigations into IL1Rα dynamics and its potential implications for FMF treatment in the future.
Collapse
Affiliation(s)
- Sussi B Mortensen
- Research Unit for Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, 5000, Denmark.,Dept. of Clinical Research, University of Southern Denmark, Odense, 5000, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense, 5000, Denmark
| | - Ann-Brit E Hansen
- Dept. of Infectious Diseases, Copenhagen University Hospital, Hvidovre, 2650, Denmark
| | - Trine H Mogensen
- Dept. of Infectious Diseases, Aarhus University Hospital, Aarhus, 8000, Denmark.,Dept. of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Marianne A Jakobsen
- Dept. of Clinical Research, University of Southern Denmark, Odense, 5000, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense, 5000, Denmark
| | - Hans C Beck
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, 5000, Denmark
| | - Eva B Harvald
- Dept. of Clinical Research, University of Southern Denmark, Odense, 5000, Denmark.,Laboratory of Molecular and Cellular Cardiology/Dept. of Clinical Biochemistry and Pharmacology; Odense University Hospital, Odense, 5000, Denmark
| | - Kate L Lambertsen
- Dept. of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, 5000, Denmark.,Dept. of Neurology, Odense University Hospital, Odense, 5000, Denmark
| | - Isik S Johansen
- Research Unit for Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, 5000, Denmark.,Dept. of Clinical Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Ditte C Andersen
- Dept. of Clinical Research, University of Southern Denmark, Odense, 5000, Denmark.,Laboratory of Molecular and Cellular Cardiology/Dept. of Clinical Biochemistry and Pharmacology; Odense University Hospital, Odense, 5000, Denmark
| |
Collapse
|
42
|
Kiani AA, Elyasi H, Ghoreyshi S, Nouri N, Safarzadeh A, Nafari A. Study on hypoxia-inducible factor and its roles in immune system. Immunol Med 2021; 44:223-236. [PMID: 33896415 DOI: 10.1080/25785826.2021.1910187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hypoxia-Inducible Factor-1 (HIF-1) is a dimeric protein complex that plays a significant role in responding to low oxygen or hypoxia concentrations. Chronic inflammation is one of the immune system responses and can increase HIF expression in involved tissues through lowering the oxygen and hypoxia. The HIF factor has many critical roles in immunity, and thus, we reviewed the crucial roles of this factor in the immune system. The results showed various key roles on the immune system, including physical defenses, innate immune (neutrophils apoptosis, macrophages) and inflammatory responses (pyrexia and local heat, iron access, etc.), upregulation in response to microbial infections, cytokines expression (IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, TNF, etc.), drug targeting, etc. The HIF roles in the acquired immune system include: enhance the adaptation of cells (dendritic cells) to new conditions and triggering the signal pathways. The findings of the present review demonstrated that the HIF has important roles in the immune system, including physical defense, innate immune as well as acquired immunity; therefore, it may be considered as a potent drug targeting several diseases such as cancers, infectious diseases, etc.
Collapse
Affiliation(s)
- Ali Asghar Kiani
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hossein Elyasi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Shadiyeh Ghoreyshi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Negar Nouri
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Safarzadeh
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Amirhossein Nafari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
43
|
Cavalli G, Tengesdal IW, Gresnigt M, Nemkov T, Arts RJW, Domínguez-Andrés J, Molteni R, Stefanoni D, Cantoni E, Cassina L, Giugliano S, Schraa K, Mills TS, Pietras EM, Eisenmensser EZ, Dagna L, Boletta A, D'Alessandro A, Joosten LAB, Netea MG, Dinarello CA. The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Rep 2021; 35:108955. [PMID: 33826894 DOI: 10.1016/j.celrep.2021.108955] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/08/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Trained immunity (TI) is a de facto innate immune memory program induced in monocytes/macrophages by exposure to pathogens or vaccines, which evolved as protection against infections. TI is characterized by immunometabolic changes and histone post-translational modifications, which enhance production of pro-inflammatory cytokines. As aberrant activation of TI is implicated in inflammatory diseases, tight regulation is critical; however, the mechanisms responsible for this modulation remain elusive. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that curbs inflammation and modulates metabolic pathways. In this study, we show that administration of recombinant IL-37 abrogates the protective effects of TI in vivo, as revealed by reduced host pro-inflammatory responses and survival to disseminated candidiasis. Mechanistically, IL-37 reverses the immunometabolic changes and histone post-translational modifications characteristic of TI in monocytes, thus suppressing cytokine production in response to infection. IL-37 thereby emerges as an inhibitor of TI and as a potential therapeutic target in immune-mediated pathologies.
Collapse
Affiliation(s)
- Giulio Cavalli
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Isak W Tengesdal
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mark Gresnigt
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rob J W Arts
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Raffaella Molteni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Laura Cassina
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Giugliano
- Laboratory of Mucosal Immunology and Microbiota, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Kiki Schraa
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Taylor S Mills
- Division of Hematology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Elan Z Eisenmensser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy; Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Leo A B Joosten
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Temporal dynamics of intradermal cytokine response to tuberculin in Mycobacterium bovis BCG-vaccinated cattle using sampling microneedles. Sci Rep 2021; 11:7074. [PMID: 33782422 PMCID: PMC8007627 DOI: 10.1038/s41598-021-86398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection. To fill this knowledge gap, we applied minimally-invasive sampling microneedles (SMNs) for intradermal sampling of interstitial fluid at the tuberculin skin test sites in Mycobacterium bovis BCG-vaccinated calves and determined the temporal dynamics of a panel of 15 cytokines and chemokines in situ and in the peripheral blood. The results reveal an orchestrated and coordinated cytokine and local chemokine response, identified IL-1RA as a potential soluble biomarker of a positive tuberculin skin response, and confirmed the utility of IFN-γ and IP-10 for bTB detection in blood-based assays. Together, the results highlight the utility of SMNs to identify novel biomarkers and provide mechanistic insights on the intradermal cytokine and chemokine responses associated with the tuberculin skin test in BCG-sensitized cattle.
Collapse
|
45
|
Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D, Netea MG, Roger T. Trained Immunity Confers Broad-Spectrum Protection Against Bacterial Infections. J Infect Dis 2021; 222:1869-1881. [PMID: 31889191 PMCID: PMC7653089 DOI: 10.1093/infdis/jiz692] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background The innate immune system recalls a challenge to adapt to a secondary challenge, a phenomenon called trained immunity. Training involves cellular metabolic, epigenetic and functional reprogramming, but how broadly trained immunity protects from infections is unknown. For the first time, we addressed whether trained immunity provides protection in a large panel of preclinical models of infections. Methods Mice were trained and subjected to systemic infections, peritonitis, enteritis, and pneumonia induced by Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Citrobacter rodentium, and Pseudomonas aeruginosa. Bacteria, cytokines, leukocytes, and hematopoietic precursors were quantified in blood, bone marrow, and organs. The role of monocytes/macrophages, granulocytes, and interleukin 1 signaling was investigated using depletion or blocking approaches. Results Induction of trained immunity protected mice in all preclinical models, including when training and infection were initiated in distant organs. Trained immunity increased bone marrow hematopoietic progenitors, blood Ly6Chigh inflammatory monocytes and granulocytes, and sustained blood antimicrobial responses. Monocytes/macrophages and interleukin 1 signaling were required to protect trained mice from listeriosis. Trained mice were efficiently protected from peritonitis and listeriosis for up to 5 weeks. Conclusions Trained immunity confers broad-spectrum protection against lethal bacterial infections. These observations support the development of trained immunity-based strategies to improve host defenses.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Fatemeh Asgari
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
46
|
Freyne B, Messina NL, Donath S, Germano S, Bonnici R, Gardiner K, Casalaz D, Robins-Browne RM, Netea MG, Flanagan KL, Kollmann T, Curtis N. Neonatal BCG Vaccination Reduces Interferon-γ Responsiveness to Heterologous Pathogens in Infants From a Randomized Controlled Trial. J Infect Dis 2021; 221:1999-2009. [PMID: 31990350 PMCID: PMC7289544 DOI: 10.1093/infdis/jiaa030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background BCG vaccination has beneficial nonspecific (heterologous) effects that protect against nonmycobacterial infections. We have previously reported that BCG vaccination at birth alters in vitro cytokine responses to heterologous stimulants in the neonatal period. This study investigated heterologous responses in 167 infants in the same trial 7 months after randomization. Methods A whole-blood assay was used to interrogate in vitro cytokine responses to heterologous stimulants (killed pathogens) and Toll-like receptor (TLR) ligands. Results Compared to BCG-naive infants, BCG-vaccinated infants had increased production of interferon gamma (IFN-γ) and monokine induced by gamma interferon (MIG) (CXCL9) in response to mycobacterial stimulation and decreased production of IFN-γ in response to heterologous stimulation and TLR ligands. Reduced IFN-γ responses were attributable to a decrease in the proportion of infants who mounted a detectable IFN-γ response. BCG-vaccinated infants also had increased production of MIG (CXCL9) and interleukin-8 (IL-8), and decreased production of IL-10, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, the pattern of which varied by stimulant. IL-1Ra responses following TLR1/2 (Pam3CYSK4) stimulation were increased in BCG-vaccinated infants. Both sex and maternal BCG vaccination status influenced the effect of neonatal BCG vaccination. Conclusions BCG vaccination leads to changes in IFN-γ responsiveness to heterologous stimulation. BCG-induced changes in other cytokine responses to heterologous stimulation vary by pathogen.
Collapse
Affiliation(s)
- Bridget Freyne
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Institute of Infection and Global Health, The University of Liverpool and The Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi
| | - Nicole L Messina
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Susan Donath
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Australia
| | - Susie Germano
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Rhian Bonnici
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Kaya Gardiner
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Dan Casalaz
- Department of Paediatrics, Mercy Hospital for Women, Heidelberg, Australia
| | - Roy M Robins-Browne
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Katie L Flanagan
- University of Tasmania, Launceston, Australia.,Monash University, Clayton, Australia
| | - Toby Kollmann
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Nigel Curtis
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
47
|
Petreski T, Piko N, Ekart R, Hojs R, Bevc S. Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines 2021; 9:182. [PMID: 33670423 PMCID: PMC7917900 DOI: 10.3390/biomedicines9020182] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the major health problems of the modern age. It represents an important public health challenge with an ever-lasting rising prevalence, which reached almost 700 million by the year 2017. Therefore, it is very important to identify patients at risk for CKD development and discover risk factors that cause the progression of the disease. Several studies have tackled this conundrum in recent years, novel markers have been identified, and new insights into the pathogenesis of CKD have been gained. This review summarizes the evidence on markers of inflammation and their role in the development and progression of CKD. It will focus primarily on cytokines, chemokines, and cell adhesion molecules. Nevertheless, further large, multicenter studies are needed to establish the role of these markers and confirm possible treatment options in everyday clinical practice.
Collapse
Affiliation(s)
- Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Nejc Piko
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
48
|
Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 2021; 20:589-610. [PMID: 33976384 PMCID: PMC8112476 DOI: 10.1038/s41573-021-00198-1] [Citation(s) in RCA: 597] [Impact Index Per Article: 149.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk.
Collapse
|
49
|
Verwoolde MB, van den Biggelaar RHGA, de Vries Reilingh G, Arts JAJ, van Baal J, Lammers A, Jansen CA. Innate immune training and metabolic reprogramming in primary monocytes of broiler and laying hens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103811. [PMID: 32750399 DOI: 10.1016/j.dci.2020.103811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Recently, we have reported trained innate immunity in laying chicken monocytes. In the present study, we further investigated trained innate immunity of monocytes in layers and broilers. Monocytes of both breeds isolated from blood were trained in vitro with β-glucan, rec-chicken IL-4 or a combination of both, and restimulated with lipopolysaccharide (LPS), after which inflammation and metabolism-related responses were measured. Training of laying and broiler hen monocytes resulted in increased mRNA levels of IL-1β, iNOS and HIF-1α, but enhanced surface expression of CD40 and NO production was only observed in layers. Our in vitro study demonstrates that monocytes from different genetic backgrounds can be trained. However, the observed differences suggest a differential effect on immune functionality associated with innate training. Whether these differences in immune functions between layers and broilers have effect on disease resistance remains to be elucidated.
Collapse
Affiliation(s)
- Michel B Verwoolde
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands; Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Robin H G A van den Biggelaar
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ger de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Joop A J Arts
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.
| | - Christine A Jansen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
50
|
Yan C, Koda S, Wu J, Zhang BB, Yu Q, Netea MG, Tang RX, Zheng KY. Roles of Trained Immunity in the Pathogenesis of Cholangiopathies: A Therapeutic Target. Hepatology 2020; 72:1838-1850. [PMID: 32463941 DOI: 10.1002/hep.31395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jing Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Experimental Demonstration Center for Basic Medicine Education, Department of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|