1
|
Bastl C, Close CM, Holtz I, Gatin‐Fraudet B, Eis M, Werum M, Konrad S, Kneller L, Roßmann K, Huhn C, Ghosh S, Ast J, Roosen DA, Lehmann M, Haucke V, Reymond L, Hodson DJ, Tinnefeld P, Johnsson K, Glembockyte V, Kilian N, Broichhagen J. A Silicon Rhodamine-fused Glibenclamide to Label and Detect Malaria-infected Red Blood Cells. Chembiochem 2025; 26:e202400628. [PMID: 39996370 PMCID: PMC12002102 DOI: 10.1002/cbic.202400628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The malaria parasite Plasmodium falciparum affects the lives of millions of people worldwide every year. The detection of replicating parasites within human red blood cells is of paramount importance, requiring appropriate diagnostic tools. Herein, we design and apply a silicon rhodamine-fused glibenclamide (SiR-glib). We first test this far-red fluorescent, fluorogenic and endoplasmic reticulum-targeting sulfonylurea in mammalian cells and pancreatic islets, before characterizing its labeling performance in red blood cells infected with the asexual developmental stages of Plasmodium falciparum. We further combine SiR-glib with a portable smartphone-based microscope to easily and rapidly identify parasitized red blood cells, providing proof of principle for diagnostic use in rural endemic areas without major healthcare facilities.
Collapse
Affiliation(s)
- Claudia Bastl
- Centre for Infectious DiseasesParasitology Heidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Cindy M. Close
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
| | - Ingo Holtz
- Centre for Infectious DiseasesParasitology Heidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Blaise Gatin‐Fraudet
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Mareike Eis
- Centre for Infectious DiseasesParasitology Heidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Michelle Werum
- Centre for Infectious DiseasesParasitology Heidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Smilla Konrad
- Centre for Infectious DiseasesParasitology Heidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Laura Kneller
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Christiane Huhn
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Souvik Ghosh
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR)and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
| | - Dorien A. Roosen
- Department of Molecular Pharmacology and Cell BiologyLeibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell BiologyLeibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
| | - Luc Reymond
- Laboratory of Protein EngineeringInstitut des Sciences et Ingénierie ChimiquesSciences de BaseÉcole Polytechnique Fédérale LausanneAvenue Forel 21015LausanneSwitzerland
- Present address: Biomolecular Screening FacilityÉcole Polytechnique Fédérale LausanneAvenue Forel 21015LausanneSwitzerland
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR)and Centre of Membrane Proteins and Receptors (COMPARE)University of BirminghamBirminghamUK
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)NIHR Oxford Biomedical Research CentreChurchill HospitalRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
| | - Kai Johnsson
- Laboratory of Protein EngineeringInstitut des Sciences et Ingénierie ChimiquesSciences de BaseÉcole Polytechnique Fédérale LausanneAvenue Forel 21015LausanneSwitzerland
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 5–1381377MunichGermany
- Single Molecule SensingMax Planck Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
| | - Nicole Kilian
- Department of Biological SciencesCalifornia State University, ChicoUSA, 400 W. First St.ChicoCA95929–515USA
- Department of Medical BiochemistryFaculty of Basic Medical SciencesDelta State UniversityP.M.B. 1AbrakaDelta StateNigeria
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle-Straße 1013125BerlinGermany
- Laboratory of Protein EngineeringInstitut des Sciences et Ingénierie ChimiquesSciences de BaseÉcole Polytechnique Fédérale LausanneAvenue Forel 21015LausanneSwitzerland
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
| |
Collapse
|
2
|
Gbedande K, Ibitokou SA, Endrino MJD, Yap GS, Brown MG, Stephens R. Heightened innate immune state induced by viral vector leads to enhanced response to challenge and prolongs malaria vaccine protection. iScience 2024; 27:111468. [PMID: 39758993 PMCID: PMC11697717 DOI: 10.1016/j.isci.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
Cytomegalovirus is a promising vaccine vector; however, mechanisms promoting CD4 T cell responses to challenge, by CMV as a vector, are unknown. The ability of MCMV to prolong immunity generated by short-lived malaria vaccine was tested. MCMV provided non-specific protection to challenge with Plasmodium and increased interleukin-12 (IL-12) and CD8α+ dendritic cell (DC) numbers through prolonged MCMV-dependent interferon gamma (IFN-γ) production. This late innate response to MCMV increased IL-12 upon challenge and increased the polyclonal CD4 effector T cell response to Plasmodium, protecting in an IL-12-dependent manner. Although Plasmodium-vaccine-induced protection decayed by d200, MCMV restored protection through IFN-γ. Mechanistically, protection depended on MCMV-induced-IFN-γ increasing CD8α+ DCs and IL-12p40. MCMV expressing a Plasmodium epitope increased parasite-specific CD4 effector and effector memory T cells persisting after malaria vaccination, both phenotypes reported to protect. Overall, enhanced innate cell status, a mechanism of heterologous protection by MCMV, led to a stronger T cell response to challenge.
Collapse
Affiliation(s)
- Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - Samad A. Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Mark Joseph D. Endrino
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - George S. Yap
- Center for Immunity and Inflammation, and Department of Medicine, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - Michael G. Brown
- Department of Medicine, Division of Nephrology, and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Ziliotto M, Ellwanger JH, Kulmann-Leal B, Pontillo A, Chies JAB. Role of C-C chemokine receptor type 5 in pathogenesis of malaria and its severe forms. Int J Immunogenet 2024; 51:369-379. [PMID: 39449652 DOI: 10.1111/iji.12700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Malaria is a mosquito-borne disease caused by Plasmodium parasites, responsible for a significant impact on public health in several tropical and sub-tropical countries. The majority of infection cases are classified as uncomplicated malaria, causing mild symptoms such as fever and headache. However, the disease may progress to severe malaria and death if the infection is not properly treated. Furthermore, malaria poses a major concern for children, pregnant women and immunosuppressed individuals. Exacerbated inflammation is characteristic of severe malaria cases. The C-C chemokine receptor type 5 (CCR5) is an important molecule for leukocyte migration and regulation of inflammation. Although widely known as an HIV-1 co-receptor, CCR5 also affects the susceptibility and progression of autoimmune and inflammatory diseases. There is evidence supporting the participation of CCR5 in malaria manifestations, with the evaluation of CCR5 gene expression levels suggested as a marker to monitor malaria severity. Certain genetic variants in the CCR5 gene affect CCR5 expression, potentially altering CCR5-mediated inflammatory responses during malaria infection. However, the complex influences of CCR5 on malaria remain underexplored. Therefore, this review examines and updates the role of CCR5 in various contexts of malaria infection, including uncomplicated malaria, Plasmodium/HIV co-infection, pregnancy and severe (cerebral) malaria.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Zirimenya L, Natukunda A, Nassuuna J, Kabagenyi J, Nkurunungi G, Elliott AM, Webb EL. The Effect of Malaria on Responses to Unrelated Vaccines in Animals and Humans: A Systematic Review and Meta-Analysis. Parasite Immunol 2024; 46:e13067. [PMID: 39439428 DOI: 10.1111/pim.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Vaccine efficacy varies globally, often showing reduced immune responses in low- and middle-income countries, possibly due to the immunomodulatory effects of parasitic infections like malaria. This systematic review evaluates the impact of malaria on immune responses to unrelated vaccines in humans and animals. We systematically searched five databases-MEDLINE, Web of Science, Global Health, Scopus and Embase-up to 5th December 2023. Eligible studies compared immune responses to WHO-approved vaccines between malaria-infected and uninfected groups, or between antimalarial-treated and untreated groups. Meta-analysis was performed using random-effects models with standardised mean differences (SMDs) as summary statistics. The study is registered with PROSPERO (CRD42022298053). Twenty-four articles (17 human, 7 animal) met the inclusion criteria, with 13 human articles contributing data for the meta-analysis. Significant heterogeneity was observed. Vaccine responses were higher in malaria uninfected individuals (SMD 0.34, 95% CI 0.07 to 0.60, I2 = 87.15%) with weaker differences between antimalarial-treated and untreated groups (SMD 0.07, 95% CI -0.01 to 0.16, I2 = 85.01%). The overall SMD for malaria uninfected/treated vs. infected/untreated was 0.15, 95% CI 0.05-0.26, I2 = 90.91. Narrative analysis suggested malaria's adverse impact on vaccine responses in animals. Malaria infection may impair vaccines responses; with preventive treatment of malaria partially reversing these effects, highlighting the need for targeted public health interventions.
Collapse
Affiliation(s)
- Ludoviko Zirimenya
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Agnes Natukunda
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Joyce Kabagenyi
- School of Infection and Immunity, University of Glasgow, Glasgow, Scotland
| | - Gyaviira Nkurunungi
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Focus Area, Vaccine Research Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily L Webb
- International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Cherayil BJ, Jain N. From Womb to World: Exploring the Immunological Connections between Mother and Child. Immunohorizons 2024; 8:552-562. [PMID: 39172025 PMCID: PMC11374749 DOI: 10.4049/immunohorizons.2400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Mother and child are immunologically interconnected by mechanisms that we are only beginning to understand. During pregnancy, multiple molecular and cellular factors of maternal origin are transferred across the placenta and influence the development and function of the fetal and newborn immune system. Altered maternal immune states arising from pregnancy-associated infections or immunizations have the potential to program offspring immune function in ways that may have long-term health consequences. In this study, we review current literature on the impact of prenatal infection and vaccination on the developing immune system, highlight knowledge gaps, and look to the horizon to envision maternal interventions that could benefit both the mother and her child.
Collapse
Affiliation(s)
- Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Center for Computational and Integrative Biology, Mass General Brigham, Boston, MA
| |
Collapse
|
7
|
Tijani MK, Saleh BH, Lugaajju A, Danielsson L, Persson KEM. Acquisition of anti-phosphatidylserine IgM and IgG antibodies by infants and their mothers over time in Uganda. Front Immunol 2024; 15:1416669. [PMID: 39131160 PMCID: PMC11310174 DOI: 10.3389/fimmu.2024.1416669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.
Collapse
Affiliation(s)
- Muyideen Kolapo Tijani
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bandar Hassan Saleh
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Microbiology and Immunology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lena Danielsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina E. M. Persson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
8
|
Holla P, Bhardwaj J, Tran TM. Mature beyond their years: young children who escape detection of parasitemia despite living in settings of intense malaria transmission. Biochem Soc Trans 2024; 52:1025-1034. [PMID: 38752830 PMCID: PMC11209762 DOI: 10.1042/bst20230401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Despite having the highest risk of progressing to severe disease due to lack of acquired immunity, the youngest children living in areas of highly intense malaria transmission have long been observed to be infected at lower rates than older children. Whether this observation is due to reduced exposure to infectious mosquito bites from behavioral and biological factors, maternally transferred immunity, genetic factors, or enhanced innate immunity in the young child has intrigued malaria researchers for over half a century. Recent evidence suggests that maternally transferred immunity may be limited to early infancy and that the young child's own immune system may contribute to control of malarial symptoms early in life and prior to the development of more effective adaptive immunity. Prospective studies of active and passive detection of Plasmodium falciparum blood-stage infections have identified young children (<5 years old) who remain uninfected through a defined surveillance period despite living in settings of highly intense malaria transmission. Yet, little is known about the potential immunological basis for this 'aparasitemic' phenotype. In this review, we summarize the observational evidence for this phenotype in field studies and examine potential reasons why these children escape detection of parasitemia, covering factors that are either extrinsic or intrinsic to their developing immune system. We discuss the challenges of distinguishing malaria protection from lack of malaria exposure in field studies. We also identify gaps in our knowledge regarding cellular immunity in the youngest age group and propose directions that researchers may take to address these gaps.
Collapse
Affiliation(s)
- Prasida Holla
- Ryan White Center for Global Health and Pediatric Infectious Diseases, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Tuan M. Tran
- Ryan White Center for Global Health and Pediatric Infectious Diseases, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| |
Collapse
|
9
|
López-Guzmán C, García AM, Ramirez JD, Aliaga TT, Fernández-Moya A, Kemmerling U, Vásquez AM. Plasmodium falciparum alters the trophoblastic barrier and stroma villi organization of human placental villi explants. Malar J 2024; 23:130. [PMID: 38693572 PMCID: PMC11064279 DOI: 10.1186/s12936-024-04960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The sequestration of Plasmodium falciparum infected erythrocytes in the placenta, and the resulting inflammatory response affects maternal and child health. Despite existing information, little is known about the direct impact of P. falciparum on the placental barrier formed by trophoblast and villous stroma. This study aimed to assess placental tissue damage caused by P. falciparum in human placental explants (HPEs). METHODS HPEs from chorionic villi obtained of human term placentas (n = 9) from normal pregnancies were exposed to P. falciparum-infected erythrocytes (IE) for 24 h. HPEs were embedded in paraffin blocks and used to study tissue damage through histopathological and histochemical analysis and apoptosis using TUNEL staining. Culture supernatants were collected to measure cytokine and angiogenic factors and to determine LDH activity as a marker of cytotoxicity. A subset of archived human term placenta paraffin-embedded blocks from pregnant women with malaria were used to confirm ex vivo findings. RESULTS Plasmodium falciparum-IE significantly damages the trophoblast layer and the villous stroma of the chorionic villi. The increased LDH activity and pathological findings such as syncytial knots, fibrin deposits, infarction, trophoblast detachment, and collagen disorganization supported these findings. The specific damage to the trophoblast and the thickening of the subjacent basal lamina were more pronounced in the ex vivo infection. In contrast, apoptosis was higher in the in vivo infection. This disparity could be attributed to the duration of exposure to the infection, which significantly varied between individuals naturally exposed over time and the 24-h exposure in the ex vivo HPE model. CONCLUSION Exposure to P. falciparum-IE induces a detachment of the syncytiotrophoblast, disorganization of the stroma villi, and an increase in apoptosis, alterations that may be associated with adverse results such as intrauterine growth restriction and low birth weight.
Collapse
Affiliation(s)
- Carolina López-Guzmán
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia
| | - Ana María García
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia
| | - Juan Diego Ramirez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia
| | - Trinidad Torres Aliaga
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alejandro Fernández-Moya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ana María Vásquez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59 Torre 1, Laboratorio 610, Medellín, Colombia.
- Escuela de Microbiología, Universidad de Antioquia, Calle 67 # 53-108, Bloque 5, Oficina 5-135, Medellín, Colombia.
| |
Collapse
|
10
|
Laufer MK, Mungwira RG, Divala TH. Malaria prevention: advancing clinical trials to policy. THE LANCET. INFECTIOUS DISEASES 2024; 24:439-440. [PMID: 38224707 PMCID: PMC11058061 DOI: 10.1016/s1473-3099(23)00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Affiliation(s)
- Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
11
|
Natama HM, Moncunill G, Vidal M, Rouamba T, Aguilar R, Santano R, Rovira-Vallbona E, Jiménez A, Somé MA, Sorgho H, Valéa I, Coulibaly-Traoré M, Coppel RL, Cavanagh D, Chitnis CE, Beeson JG, Angov E, Dutta S, Gamain B, Izquierdo L, Mens PF, Schallig HDFH, Tinto H, Rosanas-Urgell A, Dobaño C. Associations between prenatal malaria exposure, maternal antibodies at birth, and malaria susceptibility during the first year of life in Burkina Faso. Infect Immun 2023; 91:e0026823. [PMID: 37754682 PMCID: PMC10580994 DOI: 10.1128/iai.00268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.
Collapse
Affiliation(s)
- Hamtandi Magloire Natama
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Gemma Moncunill
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Marta Vidal
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Toussaint Rouamba
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Ruth Aguilar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Santano
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Eduard Rovira-Vallbona
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - M. Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Maminata Coulibaly-Traoré
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Ross L. Coppel
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - David Cavanagh
- Centre for Immunity, Infection & Evolution, Institute of Immunology & Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chetan E. Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, Paris, France
| | | | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | | | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Petra F. Mens
- Academic Medical Centre at the University of Amsterdam, Amsterdam, the Netherlands
| | | | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Direction Régionale du Centre-Ouest, Nanoro, Burkina Faso
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Carlota Dobaño
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
12
|
Li H, Yang S, Zeng K, Guo J, Wu J, Jiang H, Xie Y, Hu Z, Lu J, Yang J, Su XZ, Cui J, Yu X. SHIP1 modulates antimalarial immunity by bridging the crosstalk between type I IFN signaling and autophagy. mBio 2023; 14:e0351222. [PMID: 37366613 PMCID: PMC10470592 DOI: 10.1128/mbio.03512-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Stringent control of the type I interferon (IFN-I) signaling is critical for host immune defense against infectious diseases, yet the molecular mechanisms that regulate this pathway remain elusive. Here, we show that Src homology 2 containing inositol phosphatase 1 (SHIP1) suppresses IFN-I signaling by promoting IRF3 degradation during malaria infection. Genetic ablation of Ship1 in mice leads to high levels of IFN-I and confers resistance to Plasmodium yoelii nigeriensis (P.y.) N67 infection. Mechanistically, SHIP1 promotes the selective autophagic degradation of IRF3 by enhancing K63-linked ubiquitination of IRF3 at lysine 313, which serves as a recognition signal for NDP52-mediated selective autophagic degradation. In addition, SHIP1 is downregulated by IFN-I-induced miR-155-5p upon P.y. N67 infection and severs as a feedback loop of the signaling crosstalk. This study reveals a regulatory mechanism between IFN-I signaling and autophagy, and verifies SHIP1 can be a potential target for therapeutic intervention against malaria and other infectious diseases. IMPORTANCE Malaria remains a serious disease affecting millions of people worldwide. Malaria parasite infection triggers tightly controlled type I interferon (IFN-I) signaling that plays a critical role in host innate immunity; however, the molecular mechanisms underlying the immune responses are still elusive. Here, we discover a host gene [Src homology 2-containing inositol phosphatase 1 (SHIP1)] that can regulate IFN-I signaling by modulating NDP52-mediated selective autophagic degradation of IRF3 and significantly affect parasitemia and resistance of Plasmodium-infected mice. This study identifies SHIP1 as a potential target for immunotherapies in malaria and highlights the crosstalk between IFN-I signaling and autophagy in preventing related infectious diseases. SHIP1 functions as a negative regulator during malaria infection by targeting IRF3 for autophagic degradation.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiayin Guo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Doratt BM, Sureshchandra S, True H, Rincon M, Marshall N, Messaoudi I. Mild/Asymptomatic Maternal SARS-CoV-2 Infection Leads to Immune Paralysis in Fetal Circulation and Immune Dysregulation in Fetal-Placental Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540233. [PMID: 37214938 PMCID: PMC10197637 DOI: 10.1101/2023.05.10.540233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Few studies have addressed the impact of maternal mild/asymptomatic SARS-CoV-2 infection on the developing neonatal immune system. In this study, we analyzed umbilical cord blood and placental chorionic villi from newborns of unvaccinated mothers with mild/asymptomatic SARSCoV-2 infection during pregnancy using flow cytometry, single-cell transcriptomics, and functional assays. Despite the lack of vertical transmission, levels of inflammatory mediators were altered in cord blood. Maternal infection was also associated with increased memory T, B cells, and non-classical monocytes as well as increased activation. However, ex vivo responses to stimulation were attenuated. Finally, within the placental villi, we report an expansion of fetal Hofbauer cells and infiltrating maternal macrophages and rewiring towards a heightened inflammatory state. In contrast to cord blood monocytes, placental myeloid cells were primed for heightened antiviral responses. Taken together, this study highlights dysregulated fetal immune cell responses in response to mild maternal SARS-CoV-2 infection during pregnancy.
Collapse
Affiliation(s)
- Brianna M. Doratt
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine CA 92697
- Institute for Immunology, University of California, Irvine CA 92697
| | - Heather True
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington KY 40536
| | - Monica Rincon
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland OR 97239
| | - Nicole Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland OR 97239
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington KY 40536
| |
Collapse
|
14
|
Okek EJ, Ocan M, Obondo SJ, Kiyimba A, Arinaitwe E, Nankabirwa J, Ssewanyana I, Kamya MR. Effects of anti-malarial prophylaxes on maternal transfer of Immunoglobulin-G (IgG) and association to immunity against Plasmodium falciparum infections among children in a Ugandan birth cohort. PLoS One 2023; 18:e0277789. [PMID: 36812236 PMCID: PMC9946240 DOI: 10.1371/journal.pone.0277789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/10/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The in-utero transfer of malaria specific IgG to the fetus in Plasmodium falciparum infected pregnant women potentially plays a role in provision of immune protection against malaria in the first birth year. However, the effect of Intermittent Prophylactic Treatment in Pregnancy (IPTp) and placental malaria on the extent of in-utero antibody transfer in malaria endemic regions like Uganda remain unknown. The aim of this study was thus to establish the effect of IPTp on in-utero transfer of malaria specific IgG to the fetus and the associated immune protection against malaria in the first birth year of children born to mothers who had P. falciparum infection during pregnancy in Uganda. METHODS We screened a total of 637 cord blood samples from a double blinded randomized clinical trial on Sulfadoxine-Pyrimethamine (SP) and Dihydroartemisinin-Piperaquine (DP) IPTp in a Ugandan birth cohort; study conducted from Busia, Eastern Uganda. Luminex assay was used to measure the cord levels of IgG sub-types (IgG1, IgG2, IgG3 and IgG4) against 15 different P. falciparum specific antigens, with tetanus toxoid (t.t) as a control antigen. Man-Whitney U test (non-parametric) in STATA (ver15) was used in statistical analysis of the samples. In addition, Multivariate cox regression analysis was used to determine the effect of maternal transfer of IgG on the incidence of malaria in the first birth year of children under study. RESULTS Mothers on SP expressed higher levels of cord IgG4 against erythrocyte binding antigens (EBA140, EBA175 and EBA181) (p<0.05). Placental malaria did not affect cord levels of IgG sub-types against selected P. falciparum specific antigens (p>0.05). Children who expressed higher levels (75th percentile) of total IgG against the six key P. falciparum antigens (Pf SEA, Rh4.2, AMA1, GLURP, Etramp5Ag1 and EBA 175) had higher risk of malaria in the first birth year; AHRs: 1.092, 95% CI: 1.02-1.17 (Rh4.2); 1.32, 95% CI: 1.00-1.74 (PfSEA); 1.21, 95%CI: 0.97-1.52 (Etramp5Ag1); 1.25, 95%CI: 0.98-1.60 (AMA1); 1.83, 95%CI: 1.15-2.93 (GLURP) (GLURP), and 1.35,; 95%CI: 1.03-1.78 (EBA175). Children born to mothers categorized as poorest had the highest risk of malaria infections in the first birth year (AHR: 1.79, 95% CI: 1.31-2.4). Children born to mothers who had malaria infections during gestation had higher risk of getting malaria in the first birth year (AHR 1.30; 95%CI: 0.97-1.7). CONCLUSION Malaria prophylaxis in pregnant mothers using either DP or SP does not affect expression of antibodies against P. falciparum specific antigens in the cord blood. Poverty and malaria infections during pregnancy are key risk factors of malaria infections in the first birth year of growth of children. Antibodies against P. falciparum specific antigens does not protect against parasitemia and malaria infections in the first birth year of children born in malaria endemic areas.
Collapse
Affiliation(s)
- Erick Jacob Okek
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, Malaria Research Training Program, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Moses Ocan
- Department of Medicine, Malaria Research Training Program, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sande James Obondo
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Anthony Kiyimba
- San Francisco Infectious Disease Research Collaboration, Makerere University-University of California, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Department of Medicine, Malaria Research Training Program, College of Health Sciences, Makerere University, Kampala, Uganda
- San Francisco Infectious Disease Research Collaboration, Makerere University-University of California, Kampala, Uganda
| | - Joaniter Nankabirwa
- Department of Medicine, Malaria Research Training Program, College of Health Sciences, Makerere University, Kampala, Uganda
- San Francisco Infectious Disease Research Collaboration, Makerere University-University of California, Kampala, Uganda
| | - Isaac Ssewanyana
- San Francisco Infectious Disease Research Collaboration, Makerere University-University of California, Kampala, Uganda
- Central Public Health Laboratories, Ministry of Health, Kampala, Uganda
| | - Moses Robert Kamya
- Department of Medicine, Malaria Research Training Program, College of Health Sciences, Makerere University, Kampala, Uganda
- San Francisco Infectious Disease Research Collaboration, Makerere University-University of California, Kampala, Uganda
| |
Collapse
|
15
|
Sánchez KE, Spencer LM. Pregnancy-associated malaria: Effects of cytokine and chemokine expression. Travel Med Infect Dis 2022; 47:102282. [DOI: 10.1016/j.tmaid.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022]
|
16
|
Ma L, Papadopoulou M, Taton M, Genco F, Marchant A, Meroni V, Vermijlen D. Effector Vγ9Vδ2 T cell response to congenital Toxoplasma gondii infection. JCI Insight 2021; 6:e138066. [PMID: 34255746 PMCID: PMC8409983 DOI: 10.1172/jci.insight.138066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
A major γδ T cell population in human adult blood are the Vγ9Vδ2 T cells that are activated and expanded in a TCR-dependent manner by microbe-derived and endogenously derived phosphorylated prenyl metabolites (phosphoantigens). Vγ9Vδ2 T cells are also abundant in human fetal peripheral blood, but compared with their adult counterparts they have a distinct developmental origin, are hyporesponsive toward in vitro phosphoantigen exposure, and do not possess a cytotoxic effector phenotype. In order to obtain insight into the role of Vγ9Vδ2 T cells in the human fetus, we investigated their response to in utero infection with the phosphoantigen-producing parasite Toxoplasma gondii (T. gondii). Vγ9Vδ2 T cells expanded strongly when faced with congenital T. gondii infection, which was associated with differentiation toward potent cytotoxic effector cells. The Vγ9Vδ2 T cell expansion in utero resulted in a fetal footprint with public germline-encoded clonotypes in the Vγ9Vδ2 TCR repertoire 2 months after birth. Overall, our data indicate that the human fetus, from early gestation onward, possesses public Vγ9Vδ2 T cells that acquire effector functions following parasite infections.
Collapse
Affiliation(s)
- Ling Ma
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Taton
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valeria Meroni
- IRCCS San Matteo Polyclinic, Pavia, Italy.,Molecular Medicine Department, University of Pavia, Italy
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
17
|
Gómez A, Pernía B, Zamora L, Spencer LM. Effect of Plasmodium berghei infection on fetuses in pregnant BALB/c mice at two periods of pregnancy. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malaria is a disease caused by a protozoan of the genus Plasmodium in humans and vertebrates. It has a high morbidity and mortality rate, especially in pregnant women living in countries with high transmission rates. Murine models have been an excellent tool to evaluate the effects of malarial infection in the mother-fetus relationship. For this reason, we evaluated the effect of malarial infection on fetal development at the beginning and middle of the gestational period in BALB/c mice infected with Plasmodium berghei ANKA. Our results show that malarial infection at the beginning of pregnancy markedly affects the development of the fetus in size, weight, and development of its limbs so that the control of the pregnant mother is relevant at the beginning of gestation
Collapse
Affiliation(s)
- Andreina Gómez
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas
| | - Beatriz Pernía
- University of Guayaquil, Faculty of Natural Sciences, Av. Raúl Gómez Lince s/n y Av. Juan Tanca Marengo, Guayaquil, Ecuador
| | - Lizbeth Zamora
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Lilian M. Spencer
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas
| |
Collapse
|
18
|
Piccioni MG, Del Negro V, Vena F, Capone C, Merlino L, Moore JM, Giancotti A, Porpora MG, Brunelli R. Diagnosis & management of imported malaria in pregnant women in non-endemic countries. Indian J Med Res 2021; 152:449-455. [PMID: 33707386 PMCID: PMC8157900 DOI: 10.4103/ijmr.ijmr_851_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Malaria in pregnancy is an important cause of maternal and foetal morbidity and is a potentially life-threatening infection. With ever-growing global exchanges, imported malaria in pregnancy is becoming an issue of concern in non-endemic countries where women, because of low immunity, have higher risk of severe diseases and death. Malaria in pregnancy is a dangerous condition which can be associated with important consequences for both mother and child such as stillbirth, low birth weight, maternal anaemia. In non-endemic-countries it is more frequent in its severe form which can lead to maternal death if not treated adequately. Specific anti-malarial interventions such as the use of repellents and insecticide treated bed nets in addition to chemoprophylaxis should be used by pregnant women if they are travelling to endemic areas. In cases of confirmed infection, specific treatment regimens vary according to gestational age and the presence of complications. Malaria should be considered a global health problem, increasingly involving western countries. Clinicians all over the world need to be prepared for this emerging disease both in terms of prevention and therapy.
Collapse
Affiliation(s)
- Maria Grazia Piccioni
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Del Negro
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Flaminia Vena
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carmela Capone
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Merlino
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - James Matthaus Moore
- Department of Uro-Gynaecology, Gynaecology Oncology, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Antonella Giancotti
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Porpora
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Brunelli
- Department of Gynecological, Obstetrical & Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Gies S, Roberts SA, Diallo S, Lompo OM, Tinto H, Brabin BJ. Risk of malaria in young children after periconceptional iron supplementation. MATERNAL AND CHILD NUTRITION 2020; 17:e13106. [PMID: 33236840 PMCID: PMC7988873 DOI: 10.1111/mcn.13106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023]
Abstract
This study in Burkina Faso investigated whether offspring of young mothers who had received weekly periconceptional iron supplementation in a randomised controlled trial were at increased risk of malaria. A child safety survey was undertaken in the peak month of malaria transmission towards the end of the trial to assess child iron biomarkers, nutritional status, anaemia and malaria outcomes. Antenatal iron biomarkers, preterm birth, fetal growth restriction and placental pathology for malaria and chorioamnionitis were assessed. Data were available for 180 babies surviving to the time of the survey when their median age was 9 months. Prevalence of maternal iron deficiency in the last trimester based on low body iron stores was 16%. Prevalence of active placental malaria infection was 24.8%, past infection 59% and chorioamnionitis 55.6%. Babies of iron supplemented women had lower median gestational age. Four out of five children ≥ 6 months were iron deficient, and 98% were anaemic. At 4 months malaria prevalence was 45%. Child iron biomarkers, anaemia and malaria outcomes did not differ by trial arm. Factors associated with childhood parasitaemia were third trimester C-reactive protein level (OR 2.1; 95% CI 1.1-3.9), active placental malaria (OR 5.8; 1.0-32.5, P = 0.042) and child body iron stores (OR 1.13; 1.04-1.23, P = 0.002). Chorioamnionitis was associated with reduced risk of child parasitaemia (OR 0.4; 0.1-1.0, P = 0.038). Periconceptional iron supplementation of young women did not alter body iron stores of their children. Higher child body iron stores and placental malaria increased risk of childhood parasitaemia.
Collapse
Affiliation(s)
- Sabine Gies
- Department of Biomedical Sciences, Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium.,Medical Mission Institute, Wurzburg, Germany
| | - Stephen A Roberts
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Salou Diallo
- Institute for Research in Health Sciences-Clinical Research Unit of Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Olga M Lompo
- Service d'Anatomocytopathologie et de Médicine Légale, Centre Hospitalier Universitaire Yalgado Ouedraogo, Ouagadougou, Burkina Faso
| | - Halidou Tinto
- Institute for Research in Health Sciences-Clinical Research Unit of Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Bernard J Brabin
- Clinical Division, Liverpool School of Tropical Medicine, Liverpool, UK.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Papadopoulou M, Sanchez Sanchez G, Vermijlen D. Innate and adaptive γδ T cells: How, when, and why. Immunol Rev 2020; 298:99-116. [PMID: 33146423 DOI: 10.1111/imr.12926] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
γδ T cells comprise the third cell lineage of lymphocytes that use, like αβ T cells and B cells, V(D)J gene rearrangement with the potential to generate a highly diverse T cell receptor (TCR) repertoire. There is no obvious conservation of γδ T cell subsets (based on TCR repertoire and/or function) between mice and human, leading to the notion that human and mouse γδ T cells are highly different. In this review, we focus on human γδ T cells, building on recent studies using high-throughput sequencing to analyze the TCR repertoire in various settings. We make then the comparison with mouse γδ T cell subsets highlighting the similarities and differences and describe the remarkable changes during lifespan of innate and adaptive γδ T cells. Finally, we propose mechanisms contributing to the generation of innate versus adaptive γδ T cells. We conclude that key elements related to the generation of the γδ TCR repertoire and γδ T cell activation/development are conserved between human and mice, highlighting the similarities between these two species.
Collapse
Affiliation(s)
- Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| |
Collapse
|
21
|
Saito M, Briand V, Min AM, McGready R. Deleterious effects of malaria in pregnancy on the developing fetus: a review on prevention and treatment with antimalarial drugs. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:761-774. [PMID: 32946830 DOI: 10.1016/s2352-4642(20)30099-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022]
Abstract
All malaria infections are harmful to both the pregnant mother and the developing fetus. One in ten maternal deaths in malaria endemic countries are estimated to result from Plasmodium falciparum infection. Malaria is associated with a 3-4 times increased risk of miscarriage and a substantially increased risk of stillbirth. Current treatment and prevention strategies reduce, but do not eliminate, malaria's damaging effects on pregnancy outcomes. Reviewing evidence generated from meta-analyses, systematic reviews, and observational data, the first paper in this Series aims to summarise the adverse effects of malaria in pregnancy on the fetus and how the current drug treatment and prevention strategies can alleviate these effects. Although evidence supports the safety and treatment efficacy of artemisinin-based combination therapies in the first trimester, these therapies have not been recommended by WHO for the treatment of malaria at this stage of pregnancy. Intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine is contraindicated in the first trimester and provides imperfect chemoprevention because of inadequate dosing, poor (few and late) antenatal clinic attendance, increasing antimalarial drug resistance, and decreasing naturally acquired maternal immunity due to the decreased incidence of malaria. Alternative strategies to prevent malaria in pregnancy are needed. The prevention of all malaria infections by providing sustained exposure to effective concentrations of antimalarial drugs is key to reducing the adverse effects of malaria in pregnancy.
Collapse
Affiliation(s)
- Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Valérie Briand
- Infectious Diseases in Lower Income Countries, Research Institute for Sustainable Development, French National Institute of Health and Medical Research, University of Bordeaux, Bordeaux, France
| | - Aung Myat Min
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Abstract
Purpose of Review Placental malaria is the primary mechanism through which malaria in pregnancy causes adverse perinatal outcomes. This review summarizes recent work on the significance, pathogenesis, diagnosis, and prevention of placental malaria. Recent Findings Placental malaria, characterized by the accumulation of Plasmodium-infected red blood cells in the placental intervillous space, leads to adverse perinatal outcomes such as stillbirth, low birth weight, preterm birth, and small-for-gestational-age neonates. Placental inflammatory responses may be primary drivers of these complications. Associated factors contributing to adverse outcomes include maternal gravidity, timing of perinatal infection, and parasite burden. Summary Placental malaria is an important cause of adverse birth outcomes in endemic regions. The main strategy to combat this is intermittent preventative treatment in pregnancy; however, increasing drug resistance threatens the efficacy of this approach. There are studies dissecting the inflammatory response to placental malaria, alternative preventative treatments, and in developing a vaccine for placental malaria.
Collapse
|
23
|
Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria-The role of monocytes. Immunol Rev 2020; 293:8-24. [PMID: 31840836 PMCID: PMC6986449 DOI: 10.1111/imr.12830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines, resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
Collapse
Affiliation(s)
- Katherine R. Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Juliet N. Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
24
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|