1
|
Zhao H, Sun J, Wu Y, Zhang J, Shen C. Promotion of skin wound healing using hypoimmunogenic epidermal cell sheets. Regen Ther 2023; 24:245-255. [PMID: 37534237 PMCID: PMC10393516 DOI: 10.1016/j.reth.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Objective The physiological process of wound healing is dynamic, continuous, and intricate. Nowadays, full-thickness burn wounds are treated by autologous skin transplantation. Unfortunately, when substantial burns develop, there are fewer donor sites accessible, making it difficult to satisfy the requirement for large-scale skin transplants and increasing the risk of patient mortality. This study investigated the possibility of using a newly created hypoimmunogenic epidermal cell sheet to heal skin wounds. Methods Transfection with lentivirus was used to generate Keratinocytes (KCs) that overexpress Indoleamine 2,3-Dioxygenase (IDO). Western blotting and quantitative polymerase chain reaction were used to measure IDO levels. To evaluate the function of IDO+ keratinocytes, CCK-8 and Transwell assays were performed. In cell sheet induction media, KCs and Fibroblasts (FBs) were cultured to yield epidermal cell sheets. The full-thickness skin excisions of BALB/c mice were transplanted with epidermal cell sheets. To assess the tumorigenicity of IDO+ keratinocytes, BALB/c nude mouse xenograft models were also used. CD3 and CD31 immunofluorescence labeling of wound tissue on day 12 to identify T lymphocyte infiltration and capillary development. ELISA measurement of IL-1 and TNF-α concentrations. Results IDO + keratinocytes dramatically enhanced the expression levels of IDO mRNA and protein, as well as the amount of kynurenine in the conditioned media of IDO+ keratinocytes, compared to the Control and NC groups. CD8+ T cell apoptosis was considerably greater in the IDO group than in the Control and NC groups. Nevertheless, the proliferation and migratory capabilities of IDO+ keratinocytes were not substantially different from those of the Control and NC groups. In vitro cultivation of the hypoimmunogenic epidermal cell sheet was effective. In vivo transplantation experiments demonstrated that IDO+ epidermal cell sheets can effectively promote wound healing without tumorigenicity, and IDO+ epidermal cell sheets may promote wound healing by decreasing the expression levels of inflammatory factors (TNF and IL-1) in wound tissue, decreasing CD3+ T lymphocytes, and increasing infiltration and new capillaries in wound tissue. Conclusion In this study, we successfully constructed the hypoimmunogenic epidermal cell sheet and demonstrated that the hypoimmunogenic epidermal cell sheet could accelerate wound healing.
Collapse
Affiliation(s)
- Hongqing Zhao
- Nanbu County People's Hospital, Nanchong City, Sichuan Province, 637300, China
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou 121001, Liaoning Province, China
| | - Jiachen Sun
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou 121001, Liaoning Province, China
| | - Yating Wu
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou 121001, Liaoning Province, China
| | - Junbo Zhang
- Jinzhou Medical University, No.82 Songpo Road, Guta District, Jinzhou 121001, Liaoning Province, China
| | - Chuan'an Shen
- Department of Burn Surgery, Fourth Medical Center, PLA General Hospital, No 51 Fucheng Road, Haidian District, Beijing 100089, China
| |
Collapse
|
2
|
Keratinocytes Regulate the Threshold of Inflammation by Inhibiting T Cell Effector Functions. Cells 2021; 10:cells10071606. [PMID: 34206914 PMCID: PMC8306889 DOI: 10.3390/cells10071606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Whilst the importance of keratinocytes as a first-line defense has been widely investigated, little is known about their interactions with non-resident immune cells. In this study, the impact of human keratinocytes on T cell effector functions was analyzed in an antigen-specific in vitro model of allergic contact dermatitis (ACD) to nickel sulfate. Keratinocytes partially inhibited T cell proliferation and cytokine production. This effect was dependent on the keratinocyte/T cell ratio and was partially reversible by increasing the number of autologous dendritic cells. The inhibition of T cell proliferation by keratinocytes was independent of the T cell subtype and antigen presentation by different professional antigen-presenting cells. Autologous and heterologous keratinocytes showed comparable effects, while the fixation of keratinocytes with paraformaldehyde abrogated the immunosuppressive effect. The separation of keratinocytes and T cells by a transwell chamber, as well as a cell-free keratinocyte supernatant, inhibited T cell effector functions to the same amount as directly co-cultured keratinocytes, thus proving that soluble factor/s account for the observed suppressive effects. In conclusion, keratinocytes critically control the threshold of inflammatory processes in the skin by inhibiting T cell proliferation and cytokine production.
Collapse
|
3
|
Investigating the effects of IDO1, PTGS2, and TGF-β1 overexpression on immunomodulatory properties of hTERT-MSCs and their extracellular vesicles. Sci Rep 2021; 11:7825. [PMID: 33837229 PMCID: PMC8035148 DOI: 10.1038/s41598-021-87153-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) is out of the question. Yet, recent drawbacks have resulted in a strategic shift towards the application of MSC-derived cell-free products such as extracellular vesicles (EVs). Recent reports revealed that functional properties of MSCs, including EV secretion patterns, correlate with microenvironmental cues. These findings highlight the urgent need for defining the optimal circumstances for EV preparation. Considering the limitations of primary cells, we employed immortalized cells as an alternative source to prepare therapeutically sufficient EV numbers. Herein, the effects of different conditional environments are explored on human TERT-immortalized MSCs (hTERT-MSCs). The latter were transduced to overexpress IDO1, PTGS2, and TGF-β1 transgenes either alone or in combination, and their immunomodulatory properties were analyzed thereafter. Likewise, EVs derived from these various MSCs were extensively characterized. hTERT-MSCs-IDO1 exerted superior inhibitory effects on lymphocytes, significantly more than hTERT-MSCs-IFN-γ. As such, IDO1 overexpression promoted the immunomodulatory properties of such enriched EVs. Considering the limitations of cell therapy like tumor formation and possible immune responses in the host, the results presented herein might be considered as a feasible model for the induction of immunomodulation in off-the-shelf and cell-free therapeutics, especially for autoimmune diseases.
Collapse
|
4
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018; 75:3663-3681. [PMID: 30027295 PMCID: PMC11105268 DOI: 10.1007/s00018-018-2880-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.
Collapse
Affiliation(s)
- David M Dolivo
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Sara A Larson
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Tanja Dominko
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
6
|
Abstract
SIGNIFICANCE The nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and NADP+/reduced NADP+ (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD+-consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. CRITICAL ISSUES The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. FUTURE DIRECTIONS Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD+ precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
7
|
Xie Z, Zhang M, Xiong W, Wan HY, Zhao XC, Xie T, Lei H, Lin ZC, Luo DS, Liang XL, Chen YH. Immunotolerant indoleamine-2,3-dioxygenase is increased in condyloma acuminata. Br J Dermatol 2017; 177:809-817. [PMID: 28132413 DOI: 10.1111/bjd.15356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND The tryptophan-depleting enzyme indoleamine-2,3-dioxygenase (IDO) is critical for the regulation of immunotolerance and plays an important role in immune-associated skin diseases. OBJECTIVES To analyse the level of IDO in condyloma acuminata (CA) and its role in this condition. METHODS IDO expression was assessed in the skin and peripheral blood of healthy controls and patients with CA. To assess the role of skin IDO in immunity, the ability of isolated epidermal cells to metabolize tryptophan and the influence on polyclonal T-cell mitogen (PHA)-stimulated T-cell proliferation were explored. RESULTS IDO median fluorescence intensities in peripheral blood mononuclear cells from patients with CA were similar to those from healthy controls. Immunohistochemistry showed that IDO+ cells were rare in normal skin and the control skin of patients with CA, but were greatly accumulated in wart tissue. Most fluorescence signals of IDO+ cells did not overlap with those of CD1a+ Langerhans cells. Human papillomavirus (HPV) DNA probe in situ hybridization showed a large number of IDO+ cells in the HPV- site. Keratinocytes in the skin of healthy controls and the circumcised skin of patients with CA could minimally transform tryptophan into kynurenine, but IDO-competent epidermal cells from warts could transform tryptophan. In addition, these IDO-competent epidermal cells could inhibit PHA-stimulated T-cell proliferation. The addition of an IDO inhibitor, 1-methyl-d-tryptophan, restored the inhibited T-cell proliferation. CONCLUSIONS Abnormally localized high IDO expression might be involved in the formation of a local immunotolerant microenvironment.
Collapse
Affiliation(s)
- Z Xie
- Department of Dermatology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - M Zhang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - W Xiong
- Division of Urology and Transplantation, Department of Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - H Y Wan
- Department of Dermatology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - X C Zhao
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Nanfang Medical University, Guangzhou, China
| | - T Xie
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Hospital, Guangzhou, China
| | - H Lei
- Department of Dermatology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Z C Lin
- Department of Dermatology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - D S Luo
- Department of Dermatology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - X L Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Y H Chen
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
8
|
Salimi Elizei S, Poormasjedi-Meibod MS, Li Y, Baradar Jalili R, Ghahary A. Effects of kynurenine on CD3+ and macrophages in wound healing. Wound Repair Regen 2015; 23:90-7. [PMID: 25532592 DOI: 10.1111/wrr.12252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023]
Abstract
As prolongation of the inflammation phase in a healing process frequently leads to wound impairment, here we queried whether kynurenine (Kyn) could modulate this phase of wound healing. To address this, a protein microarray, quantitative polymerase chain reaction (qPCR), flow cytometry for immune cells and immune cell proliferation in the presence and absence of Kyn were conducted and compared. The result of a protein microarray revealed that the expression of 12 pro-inflammatory cytokines and chemokines was modulated in Kyn-treated mouse splenocytes as compared with those of control. These findings were then evaluated by conducting a qPCR for the gene expression of these factors and showed a significant reduction in the gene expression of majority of these cytokines and chemokines (interleukin [IL]-2, IL-17, C-X-C motif chemokine ligand [CXCL] 10, CXCL1, C-C motif ligand [CCL] 12, CXCL9, CCL4, CXCL2, and CCL5) in response to Kyn treatment. To test the anti-inflammatory effect of Kyn in an animal model, dorsal surface wounds were generated in a mouse model and wounds received daily topical application of either nothing (control), dermal cream (second control), or Kyn cream using uninjured skin tissue as another control. The wounded tissues were harvested on days 3, 6, and 10 postwounding. As anticipated, the results of fluorescence-activated cell sorting analysis revealed that upon wounding, the number of total infiltrated CD3+ cells and macrophages (CD11b+) significantly increased on day 3, peaked on day 6, and reduced on day 10 post-wounding. Interestingly, as compared with those of uninjured and dermal cream alone-treated wounds, Kyn treatment significantly reduced the number of infiltrated CD3+ cells, but not CD11b+ cells, at different time intervals examined. These findings collectively suggest that Kyn, as a small molecule, can potentially be used to overcome the difficulties associated with persistency of inflammation in healing wounds.
Collapse
Affiliation(s)
- Sanam Salimi Elizei
- BC Professional Fire Fighters' Burn and Wound Healing Research Laboratory, Division of Plastic Surgery, Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
9
|
Gene therapy modalities in lung transplantation. Transpl Immunol 2014; 31:165-72. [DOI: 10.1016/j.trim.2014.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/16/2014] [Accepted: 08/17/2014] [Indexed: 01/17/2023]
|
10
|
Beswick EJ, Johnson JR, Saada JI, Humen M, House J, Dann S, Qiu S, Brasier AR, Powell DW, Reyes VE, Pinchuk IV. TLR4 activation enhances the PD-L1-mediated tolerogenic capacity of colonic CD90+ stromal cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:2218-29. [PMID: 25070848 DOI: 10.4049/jimmunol.1203441] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signaling via programmed death ligand-1 (PD-L1) and PD-L2 is crucial for maintaining peripheral tolerance. CD90(+) myofibroblasts/fibroblasts (CMFs) are major programmed cell death-1 (PD-1) ligand-expressing cells in normal human colonic mucosa. CMFs suppress activated CD4(+) T cell proliferation via PD-1 ligands. It is not known whether signaling through TLRs contribute to the regulation PD-1 ligands on CMFs upon colonic mucosal tolerance. In this study, we demonstrated that stimulation of TLR4 on human CMFs upregulates PD-L1, but not PD-L2, and reinforces CMF-mediated suppression of CD4(+) T cell proliferation and IFN-γ production. TLR4-mediated upregulation of PD-L1 on CMFs involved NF-κB pathways and was JAK2 and MyD88 dependent. MyD88-dependent stimulation of TLR1/2 and TLR5 also upregulated PD-L1 expression on CMFs in culture. PD-L1 expression was drastically decreased in vivo in the colonic mucosa of mice devoid of MyD88. Induction of MyD88 deficiency in CMFs in fibroblast-specific MyD88 conditional knockout mice resulted in a strong increase in a mucosal IFN-γ expression concomitantly with the abrogation of PD-L1 expression in CMFs under homeostasis and epithelial injury induced by dextran sodium sulfate. Together, these data suggest that MyD88-dependent TLR stimulation of CMFs in the normal colonic mucosa may reinforce these cells' anti-inflammatory capacity and thus contribute to the maintenance of mucosal tolerance.
Collapse
Affiliation(s)
- Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
| | - Jameel R Johnson
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Jamal I Saada
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Martin Humen
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Jenifer House
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Sara Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Don W Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Victor E Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
11
|
Li Y, Kilani RT, Rahmani-Neishaboor E, Jalili RB, Ghahary A. Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Invest Dermatol 2013; 134:643-650. [PMID: 23877570 DOI: 10.1038/jid.2013.303] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that the formation of hypertrophic scarring on the wounds of a rabbit ear fibrotic model was significantly reduced by grafting a bilayer skin substitute expressing indoleamine 2,3-dioxygenase (IDO). Here, we hypothesize that the improved healing quality is due to extracellular matrix modulatory effect of IDO-mediated tryptophan metabolites. To test this hypothesis, a series of in vitro and in vivo experiments were conducted and the findings revealed a significant increase in the expression of matrix metalloproteinase 1 (MMP-1) in fibroblasts either transduced with human IDO gene or cultured with conditioned media obtained from IDO-expressing cells. Consistent with this finding, kynurenine (Kyn) treatment markedly increased the levels of MMP-1 and MMP-3 expression through activation of the MEK (mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase)-ERK1/2 MAPK signaling pathway. On the other hand, Kyn significantly suppressed the expression of type I collagen in fibroblasts as compared with that of control. To test the anti-fibrogenic effect of Kyn in an in vivo model, rabbit ear fibrotic wounds were topically treated with cream containing 50 μg Kyn per l00 μl of cream per wound. The result showed a marked improvement in scar formation relative to the controls. These findings collectively suggest that Kyn can potentially be used as an anti-fibrogenic agent for treating hypertrophic scarring.
Collapse
Affiliation(s)
- Yunyuan Li
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruhangiz T Kilani
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elham Rahmani-Neishaboor
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza B Jalili
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, BC Professional Burn and Wound Healing Research Laboratory, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Moon JS, Cheong NR, Yang SY, Kim IS, Chung HJ, Jeong YW, Park JC, Kim MS, Kim SH, Ko HM. Lipopolysaccharide-induced indoleamine 2,3-dioxygenase expression in the periodontal ligament. J Periodontal Res 2013; 48:733-9. [PMID: 23488665 DOI: 10.1111/jre.12063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-oxidizing enzyme with immune-inhibitory effects. The aim of this study was to investigate the expression of IDO by lipopolysaccharide (LPS), a component of gram-negative bacteria, in human periodontal ligament (PDL) cells. MATERIAL AND METHODS Human PDL cells and gingival fibroblasts (GFs) were prepared from explants of human PDLs and from gingival tissues of clinically healthy donors, respectively. Real-time RT-PCR, western blotting and the IDO enzyme assay were performed to determine the expression of IDO following LPS treatment of cells. LPS was injected into mice tail veins to evaluate the effects of LPS in vivo in the maxillary first molar. Immunofluorescence staining and histological analysis were followed to localize IDO in mouse PDL. RESULTS The level of expression of IDO mRNA in primary human PDL cells after LPS treatment was increased in a dose-dependent manner, reaching a peak 8 h after LPS treatment. The expression and activities of IDO protein were significantly increased in comparison with those of the control. In addition, the increased production of kynurenine in culture medium was observed 72 h after LPS treatment. In the immunofluorescence findings, stronger immunoreactivities were shown in PDL than in gingival tissues in the maxillae. In accordance with the immunofluorescence findings, LPS treatment induced a strong up-regulation of IDO mRNA in human PDL cells, whereas human GFs showed only a weak response to LPS. CONCLUSION These results clearly show that IDO was induced by LPS in primary human PDL cells, suggesting that PDL might be involved in the regulation of oral inflammatory disease.
Collapse
Affiliation(s)
- J S Moon
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, 2nd stage Brain Korea, Medical Research Center for Biomineralization Disorders, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yun CS, Choi YG, Jeong MY, Lee JH, Lim S. Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts. J Nat Med 2012; 67:576-89. [PMID: 23086154 DOI: 10.1007/s11418-012-0714-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/03/2012] [Indexed: 12/16/2022]
Abstract
Moutan Cortex Radicis (MCR), the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), is found in the traditional Chinese medicinal formulae which were used to treat periodontal diseases. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs). A genome-wide expression GeneChip was used for the gene array analysis, and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis was also performed to confirm the gene expression. It was shown that 42 of the 643 genes up-regulated by LPS, when compared to the control, were down-regulated by the MCR treatment. Of these 42 genes, the inflammation and immune response-related genes were especially noted, which indicates that MCR inhibits the induction of inflammation by LPS stimulation. In addition, 33 of the 519 genes down-regulated by LPS, when compared to the control, were up-regulated by the MCR treatment. The expression patterns of some representative genes by real-time RT-PCR correlated with those of the genes shown in the microarray. In addition, the MCR extract contained paeonol and paeoniflorin, which are known to have the anti-inflammatory effect as the major phenolic components of MCR. This study showed that the MCR extract could comprehensively inhibit a wide variety of activations of inflammation-related genes, which may be due to paeonol and paeoniflorin. It is, thus, suggested that MCR may be applied to alleviate the inflammation of periodontal diseases.
Collapse
Affiliation(s)
- Cheol-Sang Yun
- Department of Basic Oriental Medical Science, College of Oriental Medicine, Kyung Hee University, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Mechanism underlying defective interferon gamma-induced IDO expression in non-obese diabetic mouse fibroblasts. PLoS One 2012; 7:e37747. [PMID: 22662207 PMCID: PMC3360620 DOI: 10.1371/journal.pone.0037747] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/26/2012] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) can locally suppress T cell-mediated immune responses. It has been shown that defective self-tolerance in early prediabetic female non-obese diabetic (NOD) mice can be attributed to the impaired interferon-gamma (IFN-γ)- induced IDO expression in dendritic cells of these animals. As IFN-γ can induce IDO in both dendritic cells and fibroblasts, we asked the question of whether there exists a similar defect in IFN-γ-induced IDO expression in NOD mice dermal fibroblasts. To this end, we examined the effect of IFN-γ on expression of IDO and its enzymatic activity in NOD dermal fibroblasts. The results showed that fibroblasts from either prediabetic (8 wks of age) female or male, and diabetic female or male (12 and 24 wks of age respectively) NOD mice failed to express IDO in response to IFN-γ treatment. To find underlying mechanisms, we scrutinized the IFN- γ signaling pathway and investigated expression of other IFN-γ-modulated factors including major histocompatibility complex class I (MHC-I) and type I collagen (COL-I). The findings revealed a defect of signal transducer and activator of transcription 1 (STAT1) phosphorylation in NOD cells relative to that of controls. Furthermore, we found an increase in MHC-I and suppression of COL-I expression in fibroblasts from both NOD and control mice following IFN-γ treatment; indicating that the impaired response to IFN-γ in NOD fibroblasts is specific to IDO gene. Finally, we showed that an IFN-γ-independent IDO expression pathway i.e. lipopolysaccharide (LPS)-mediated-c-Jun kinase is operative in NOD mice fibroblast. In conclusion, the findings of this study for the first time indicate that IFN-γ fails to induce IDO expression in NOD dermal fibroblasts; this may partially be due to defective STAT1 phosphorylation in IFN-γ-induced-IDO signaling pathway.
Collapse
|
15
|
Sun X, Gong ZJ, Wang ZW, Li T, Zhang JY, Sun HC, Liu S, Huang L, Huang C, Peng ZH. IDO-competent-DCs induced by IFN-γ attenuate acute rejection in rat liver transplantation. J Clin Immunol 2012; 32:837-47. [PMID: 22454246 DOI: 10.1007/s10875-012-9681-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/24/2012] [Indexed: 11/25/2022]
Abstract
PURPOSE We established a stable rat model of liver transplantation using Sprague-Dawley rats and Wistar rats in order to investigate the role of the IDO gene in acute rejection after rat liver transplantation. METHODS IDO gene expression and IDO enzyme activity were quantified in liver syngeneic grafts and allografts using microdialysis-HPLC. Liver allografts were evaluated for IDO expression by histopathology. We measured liver function-related biomarkers in liver allografts which were re-infused with untreated or IFN-γ-treated dendritic cells (DCs). RESULTS We found a significant increase in IDO gene expression and IDO enzyme activity in liver allografts compared the sham and syngeneic graft groups. There was a significant correlation between the number of IDO-positive cells and severity of acute rejection. IDO gene expression and enzyme activity was upregulated in the IFN-γ-treated DC group within 7 days after transplantation compared to the untreated DC group and survival rates were significantly improved. CONCLUSIONS Our results suggested that IDO gene expression correlates with the severity of acute rejection and that IFN-γ-induced IDO-positive DCs may attenuate acute rejection and catalyze local tryptophan metabolism via IDO enzyme expression, leading to immune tolerance after liver transplantation.
Collapse
Affiliation(s)
- Xing Sun
- Department of Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Application of an indoleamine 2,3-dioxygenase-expressing skin substitute improves scar formation in a fibrotic animal model. J Invest Dermatol 2012; 132:1501-5. [PMID: 22297642 DOI: 10.1038/jid.2011.467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Li Y, Kilani RT, Hartwell R, Ghahary A. MAP kinase mediates silica-induced fibrotic nodule formation and collagen accumulation in fibroblasts. J Cell Physiol 2011; 227:328-38. [DOI: 10.1002/jcp.22739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs 2011; 30:1361-70. [DOI: 10.1007/s10637-011-9700-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/02/2011] [Indexed: 11/26/2022]
|
19
|
Forouzandeh F, Jalili RB, Hartwell RV, Allan SE, Boyce S, Supp D, Ghahary A. Local expression of indoleamine 2,3-dioxygenase suppresses T-cell-mediated rejection of an engineered bilayer skin substitute. Wound Repair Regen 2010; 18:614-23. [DOI: 10.1111/j.1524-475x.2010.00635.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Jalili RB, Forouzandeh F, Rezakhanlou AM, Hartwell R, Medina A, Warnock GL, Larijani B, Ghahary A. Local expression of indoleamine 2,3 dioxygenase in syngeneic fibroblasts significantly prolongs survival of an engineered three-dimensional islet allograft. Diabetes 2010; 59:2219-27. [PMID: 20522587 PMCID: PMC2927944 DOI: 10.2337/db09-1560] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The requirement of systemic immunosuppression after islet transplantation is of significant concern and a major drawback to clinical islet transplantation. Here, we introduce a novel composite three-dimensional islet graft equipped with a local immunosuppressive system that prevents islet allograft rejection without systemic antirejection agents. In this composite graft, expression of indoleamine 2,3 dioxygenase (IDO), a tryptophan-degrading enzyme, in syngeneic fibroblasts provides a low-tryptophan microenvironment within which T-cells cannot proliferate and infiltrate islets. RESEARCH DESIGN AND METHODS Composite three-dimensional islet grafts were engineered by embedding allogeneic mouse islets and adenoviral-transduced IDO-expressing syngeneic fibroblasts within collagen gel matrix. These grafts were then transplanted into renal subcapsular space of streptozotocin diabetic immunocompetent mice. The viability, function, and criteria for graft take were then determined in the graft recipient mice. RESULTS IDO-expressing grafts survived significantly longer than controls (41.2 +/- 1.64 vs. 12.9 +/- 0.73 days; P < 0.001) without administration of systemic immunesuppressive agents. Local expression of IDO suppressed effector T-cells at the graft site, induced a Th2 immune response shift, generated an anti-inflammatory cytokine profile, delayed alloantibody production, and increased number of regulatory T-cells in draining lymph nodes, which resulted in antigen-specific impairment of T-cell priming. CONCLUSIONS Local IDO expression prevents cellular and humoral alloimmune responses against islets and significantly prolongs islet allograft survival without systemic antirejection treatments. This promising finding proves the potent local immunosuppressive activity of IDO in islet allografts and sets the stage for development of a long-lasting nonrejectable islet allograft using stable IDO induction in bystander fibroblasts.
Collapse
Affiliation(s)
- Reza B. Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Endocrinology and Metabolism Research Center, Medical Sciences, University of Tehran, Tehran, Iran
| | - Farshad Forouzandeh
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Ryan Hartwell
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abelardo Medina
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Medical Sciences, University of Tehran, Tehran, Iran
| | - Aziz Ghahary
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Aziz Ghahary,
| |
Collapse
|
21
|
Jürgens B, Raberger J, Fuchs D, Heitger A. Indoleamine 2,3-dioxygenase in human hematopoietic stem cell transplantation. Int J Tryptophan Res 2010; 3:77-90. [PMID: 22084590 PMCID: PMC3195242 DOI: 10.4137/ijtr.s4076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent years tryptophan metabolism and its rate limiting enzyme indoleamine 2,3-dioxygenase (IDO) have attracted increasing attention for their potential to modulate immune responses including the regulation of transplantation tolerance. The focus of this review is to discuss some features of IDO activity which particularly relate to hematopoietic stem cell transplantation (HSCT). HSCT invariably involves the establishment of some degree of a donor-derived immune system in the recipient. Thus, the outstanding feature of tolerance in HSCT is that in this type of transplantation it is not rejection, which causes the most severe problems to HSCT recipients, but the reverse, graft-versus-host (GvH) directed immune responses. We will discuss the peculiar role of IDO activity and accelerated tryptophan metabolism at the interface between immune activation and immune suppression and delineate from theoretical and experimental evidence the potential significance of IDO in mediating tolerance in HSCT. Finally, we will examine therapeutic options for exploitation of IDO activity in the generation of allo-antigen-specific tolerance, i.e. avoiding allo-reactivity while maintaining immunocompetence, in HSCT.
Collapse
Affiliation(s)
- Birgit Jürgens
- Children's Cancer Research Institute, Division Transplantation Immunology, Zimmermannplatz 10, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Habibi D, Jalili RB, Forouzandeh F, Ong CJ, Ghahary A. High expression of IMPACT protein promotes resistance to indoleamine 2,3-dioxygenase-induced cell death. J Cell Physiol 2010; 225:196-205. [DOI: 10.1002/jcp.22220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Cappellesso-Fleury S, Puissant-Lubrano B, Apoil PA, Titeux M, Winterton P, Casteilla L, Bourin P, Blancher A. Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells. J Clin Immunol 2010; 30:607-19. [PMID: 20405178 DOI: 10.1007/s10875-010-9415-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/23/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells share immunosuppressive capacities, suggesting that the latter could be a general property of stromal cells. METHODS To check this hypothesis, we compared human BM-MSC and fibroblasts for their in vitro multi-potentiality, expandability and their immunomodulatory properties under normalized optimized culture conditions. RESULTS We report that, unlike BM-MSCs, fibroblasts cannot differentiate in vitro into adipocytes and osteoblasts and differ from BM-MSCs by the expression of membrane CD106, CD10 and CD26 and by the expression of collagen VII mRNA. Like BM-MSCs, fibroblasts are unable to provoke in vitro allogeneic reactions, but strongly suppress lymphocyte proliferation induced by allogeneic mixed lymphocyte culture (MLC) or mitogens. We show that fibroblasts' immunosuppressive capacity is independent from prostaglandin E2, IL-10 and the tryptophan catabolising enzyme indoleamine 2,3-dioxygenase and is not abrogated after the depletion of CD8+ T lymphocytes, NK cells and monocytes. CONCLUSION Finally, fibroblasts and BM-MSCs act at an early stage through blockage of lymphocyte activation, as demonstrated by down-regulation of GZMB (granzyme B) and IL2RA (CD25) expression.
Collapse
|
24
|
Highly efficient stable expression of indoleamine 2,3 dioxygenase gene in primary fibroblasts. Biol Proced Online 2010; 12:107-112. [PMID: 21406070 PMCID: PMC3055793 DOI: 10.1007/s12575-010-9028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 02/20/2010] [Indexed: 11/29/2022] Open
Abstract
Indoleamine 2,3 dioxygenase (IDO) is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold) in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.
Collapse
|
25
|
Hou W, Li S, Wu Y, Du X, Yuan F. Inhibition of indoleamine 2, 3-dioxygenase-mediated tryptophan catabolism accelerates crescentic glomerulonephritis. Clin Exp Immunol 2009; 156:363-72. [PMID: 19302241 DOI: 10.1111/j.1365-2249.2009.03902.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunomodulatory enzyme indoleamine 2, 3-dioxygenase (IDO) is one of the initial and rate-limiting enzymes involved in the catabolism of the essential amino acid tryptophan. Via catalysing tryptophan degradation, IDO suppresses adaptive T cell-mediated immunity and plays an important role in various forms of immune tolerance. Its role in T helper type 1 (Th1)-directed, cell-mediated crescentic glomerulonephritis (GN) is still unclear. Therefore, we investigated the activity and role of IDO in crescentic GN using a model of nephrotoxic serum nephritis (NTN), and IDO activity was inhibited by 1-methyl-tryptophan (1-MT) in vivo. Our results showed that activity of IDO, as determined by high performance liquid chromatography analysis of the kynurenine/tryptophan ratio, was increased markedly in the serum and renal tissue of NTN mice, and immunohistochemistry revealed that expression of IDO was up-regulated significantly in glomeruli and renal tubular epithelial cells during NTN. Treatment with 1-MT resulted in significantly exacerbated kidney disease with increased glomerular crescent formation, accumulation of CD4(+)T cells and macrophages in renal tissue, and augmented renal injury compared with phosphate-buffered saline-treated NTN mice, which was associated with enhanced Th1 responses and intrarenal cellular proliferation. These findings suggest that the development of NTN was regulated negatively by increased IDO activity, and IDO might play an important role in the pathogenesis of crescentic GN.
Collapse
Affiliation(s)
- Weiping Hou
- Department of Nephrology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | | | | | | | | |
Collapse
|
26
|
Jalili RB, Forouzandeh F, Moeenrezakhanlou A, Rayat GR, Rajotte RV, Uludag H, Ghahary A. Mouse pancreatic islets are resistant to indoleamine 2,3 dioxygenase-induced general control nonderepressible-2 kinase stress pathway and maintain normal viability and function. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:196-205. [PMID: 19074614 DOI: 10.2353/ajpath.2009.080539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Islet transplantation is a promising treatment for diabetes. However, it faces several challenges including requirement of systemic immunosuppression. Indoleamine 2,3-dioxygenase (IDO), a tryptophan degrading enzyme, is a potent immunomodulatory factor. Local expression of IDO in bystander fibroblasts suppresses islet allogeneic immune response in vitro. The aim of the present study was to investigate the impact of IDO on viability and function of mouse islets embedded within IDO-expressing fibroblast-populated collagen scaffold. Mouse islets were embedded within collagen matrix populated with IDO adenovector-transduced or control fibroblasts. Proliferation, insulin content, glucose responsiveness, and activation of general control nonderepressible-2 kinase stress-responsive pathway were then measured in IDO-exposed islets. In vivo viabilities of composite islet grafts were also tested in a syngeneic diabetic animal model. No reduction in islet cells proliferation was detected in both IDO-expressing and control composites compared to the baseline rates. Islet functional studies showed normal insulin content and secretion in both preparations. In contrast to lymphocytes, general control nonderepressible-2 kinase pathway was not activated in islets cocultured with IDO-expressing fibroblasts. When transplanted to diabetic mice, syngeneic IDO-expressing composite islet grafts were functional up to 100 days tested. These findings collectively confirm normal viability and functionality of islets cocultured with IDO-expressing cells and indicate the feasibility of development of a functional nonrejectable islet graft.
Collapse
Affiliation(s)
- Reza B Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Pinchuk IV, Saada JI, Beswick EJ, Boya G, Qiu SM, Mifflin RC, Raju GS, Reyes VE, Powell DW. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology 2008; 135:1228-1237, 1237.e1-2. [PMID: 18760278 PMCID: PMC2584612 DOI: 10.1053/j.gastro.2008.07.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 06/13/2008] [Accepted: 07/03/2008] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS A prominent role for inhibitory molecules PD-L1 and PD-L2 in peripheral tolerance has been proposed. However, the phenotype and function of PD-L-expressing cells in human gut remains unclear. Recent studies suggest that colonic myofibroblasts (CMFs) and fibroblasts are important in the switch from acute inflammation to adaptive immunity. In the normal human colon, CMFs represent a distinct population of major histocompatibility complex class II(+) cells involved in the regulation of mucosal CD4(+) T-cell responses. METHODS PD-L1 and PD-L2 expression on human CMFs was determined using Western blot, fluorescence-activated cell sorter analysis and confocal microscopy. Lymphoproliferation assays and cytokine enzyme-linked immunosorbent assays were used to evaluate the role of B7 costimulators expressed by CMFs with regard to the regulation of preactivated T-helper cell responses. RESULTS We demonstrate here the expression of PD-L1/2 molecules by normal human CMF and fibroblasts in situ and in culture. Both molecules support suppressive functions of CMFs in the regulation of activated CD4(+) T-helper cell proliferative responses; blocking this interaction reverses the suppressive effect of CMFs on T-cell proliferation and leads to increased production of the major T-cell growth factor, interleukin (IL)-2. PD-L1/2-mediated CMF suppressive functions are mainly due to the inhibition of IL-2 production, because supplementation of the coculture media with exogenous IL-2 led to partial recovery of activated T-cell proliferation. CONCLUSIONS Our data suggest that stromal myofibroblasts and fibroblasts may limit T-helper cell proliferative activity in the gut and, thus, might play a prominent role in mucosal intestinal tolerance.
Collapse
Affiliation(s)
- Irina V. Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Jamal I. Saada
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Ellen J. Beswick
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gushyalatha Boya
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sumin M. Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Randy C. Mifflin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Gottumukkala S. Raju
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Victor E. Reyes
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Don W. Powell
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
28
|
Mohib K, Wang S, Guan Q, Mellor AL, Sun H, Du C, Jevnikar AM. Indoleamine 2,3-dioxygenase expression promotes renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2008; 295:F226-34. [PMID: 18480171 DOI: 10.1152/ajprenal.00567.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) catabolizes tryptophan to N-formyl kynurenine and has a proapoptotic role in renal tubular epithelial cells (TEC) in response to IFN-gamma and TNF-alpha in vitro. TEC produce abundant amounts of IDO in vitro in response to inflammation but a pathological role for IDO in renal injury remains unknown. We investigated the role of IDO in a mouse model of renal ischemia-reperfusion injury (IRI). IRI was induced by clamping the renal pedicle of C57BL/6 mice for 45 min at 32 degrees C. Here, we demonstrate upregulation of IDO in renal tissue at 2 h after reperfusion which reached maximal levels at 24 h. Inhibition of IDO following IRI prevented the increase in serum creatinine observed in vehicle-treated mice (86.4 +/- 25 micromol/l, n = 11) compared with mice treated with 1-methyl-D-tryptophan, a specific inhibitor of IDO (33.7 +/- 8.7 micromol/l, n = 10, P = 0.031). The role of IDO in renal IRI was further supported by results in IDO-KO mice which maintained normal serum creatinine levels (32.5 +/- 2.0 micromol/l, n = 6) following IRI compared with wild-type mice (123 +/- 30 micromol/l, n = 9, P = 0.008). Our data suggest that attenuation of IDO expression within the kidney may represent a novel strategy to reduce renal injury as a result of ischemia reperfusion.
Collapse
Affiliation(s)
- Kanishka Mohib
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Sandovici M, Deelman LE, de Zeeuw D, van Goor H, Henning RH. Immune modulation and graft protection by gene therapy in kidney transplantation. Eur J Pharmacol 2008; 585:261-9. [DOI: 10.1016/j.ejphar.2008.02.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 01/25/2008] [Accepted: 02/06/2008] [Indexed: 01/20/2023]
|
30
|
Forouzandeh F, Jalili RB, Germain M, Duronio V, Ghahary A. Skin cells, but not T cells, are resistant to indoleamine 2, 3-dioxygenase (IDO) expressed by allogeneic fibroblasts. Wound Repair Regen 2008; 16:379-87. [DOI: 10.1111/j.1524-475x.2008.00377.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
|
32
|
Mohib K, Guan Q, Diao H, Du C, Jevnikar AM. Proapoptotic activity of indoleamine 2,3-dioxygenase expressed in renal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 293:F801-12. [PMID: 17609291 DOI: 10.1152/ajprenal.00044.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure of renal tubular epithelial cells (TEC) to IFN-γ/TNF-α leads to Fas/FasL-mediated self-injury, which contributes to allograft rejection. Indoleamine 2,3-dioxygenase (IDO) converts tryptophan to N-formyl-kynurenine and contributes to immune privilege in tissues by increasing Fas-mediated T cell apoptosis. However, renal expression of IDO and its role in promoting Fas-mediated TEC death have not been examined. IDO expression was analyzed by RT-PCR and Western blot. Apoptosis was measured by fluorescence-activated cell sorting analysis and terminal deoxytransferase-mediated dUTP nick end labeling. We demonstrated that functional IDO is expressed in TEC and is increased by IFN-γ/TNF-α exposure. Increased IDO activity promoted TEC apoptosis, whereas inhibition of IDO by its specific inhibitor 1-methyl-d-tryptophan attenuated IFN-γ/TNF-α-mediated TEC apoptosis and augmented TEC survival. Transgenic expression of IDO resulted in increased TEC apoptosis in the absence of proinflammatory cytokine exposure, supporting a central role for IDO in TEC injury. Inhibition of IDO-mediated TEC death by a caspase-8-specific inhibitor (Z-IETD-FMK), as well as the absence of an IDO effect in Fas-deficient and FasL-deficient TEC, supports a Fas/FasL-dependent, caspase-8-mediated mechanism for IDO-enhanced TEC death. These data suggest that renal IDO expression may be deleterious during renal inflammation, because it enhances TEC self-injury through Fas/FasL interactions. Thus attenuation of IDO may represent a novel strategy to promote kidney function following ischemia and renal allograft rejection.
Collapse
Affiliation(s)
- Kanishka Mohib
- Department of Medicine and Microbiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Mahanonda R, Sa-Ard-Iam N, Montreekachon P, Pimkhaokham A, Yongvanichit K, Fukuda MM, Pichyangkul S. IL-8 and IDO expression by human gingival fibroblasts via TLRs. THE JOURNAL OF IMMUNOLOGY 2007; 178:1151-7. [PMID: 17202379 DOI: 10.4049/jimmunol.178.2.1151] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human gingival fibroblasts (HGFs), a predominant cell type in tooth-supporting structure, are presently recognized for their active role in the innate immune response. They produce a variety of inflammatory cytokines in response to microbial components such as LPS from the key periodontal pathogen, Porphyromonas gingivalis. In this study, we demonstrated that HGFs expressed mRNA of TLRs 1, 2, 3, 4, 5, 6, and 9, but not TLRs 7, 8, and 10. Stimulation of HGFs with highly purified TLR2 ligand (P. gingivalis LPS), TLR3 ligand (poly(I:C)), TLR4 ligand (Escherichia coli LPS), and TLR5 ligand (Salmonella typhimurium flagellin) led to expression of IL-8 and IDO. A potent TLR 9 ligand, CpG oligodeoxynucleotide 2006 had no effect, although HGFs showed a detectable TLR9 mRNA expression. No significant enhancement on IL-8 or IDO expression was observed when HGFs were stimulated with various combinations of TLR ligands. Surprisingly, the TLR9 ligand CpG oligodeoxynucleotide 2006 was able to specifically inhibit poly(I:C)-induced IL-8 and IDO expression. TNF-alpha enhanced TLR ligand-induced IL-8 production in HGFs, whereas IFN-gamma enhanced TLR ligand-induced IDO expression. HGF production of IDO in response to P. gingivalis LPS, IFN-gamma, or the two in combination inhibited T cell proliferation in MLRs. The observed T cell inhibition could be reversed by addition of either 1-methyl-dl-tryptophan or l-tryptophan. Our results suggest an important role of HGFs not only in orchestrating the innate immune response, but also in dampening potentially harmful hyperactive inflammation in periodontal tissue.
Collapse
Affiliation(s)
- Rangsini Mahanonda
- Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Henry Dunant Road, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ryu YH, Kim JC. Expression of Local Immunosuppressive Factor, Indoleamine 2,3-dixygenase, in Human Coreal Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2007. [DOI: 10.3341/jkos.2007.48.8.1126-1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yang Hwan Ryu
- Department of Ophthalmology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jae Chan Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
35
|
|
36
|
Cannon MJ, Pate JL. Indoleamine 2,3-Dioxygenase Participates in the Interferon-gamma-Induced Cell Death Process in Cultured Bovine Luteal Cells1. Biol Reprod 2006; 74:552-9. [PMID: 16319288 DOI: 10.1095/biolreprod.105.042333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon-gamma (IFNG) induces apoptotic cell death in bovine luteal cells, but the pathway(s) involved in this process are not well defined. Evidence supporting the involvement of an IFNG-inducible enzymatic pathway that degrades tryptophan in IFNG-induced death of bovine luteal cells is presented in this study. The IFNG-inducible enzyme indoleamine 2,3-dioxygenase (INDO) catalyzes the first step in a metabolic pathway that degrades tryptophan. In the first experiment, RT-PCR revealed the presence of INDO mRNA in luteal cells treated with IFNG, but not in untreated cells. To determine whether INDO participates in IFNG-induced death of bovine luteal cells, an experiment was performed to test the effect of 1-methyl-D-tryptophan (1-MT), an inhibitor of INDO, on IFNG-induced DNA fragmentation in luteal cells. Single-cell gel electrophoresis and microscopic image analysis revealed that 1-MT inhibited DNA fragmentation induced by IFNG. To determine whether supplementation of cell cultures with additional tryptophan could also protect luteal cells from IFNG-induced DNA fragmentation, luteal cells were cultured in the presence of IFNG, and L-tryptophan was added to cultures to achieve final concentrations that were 5-, 10-, or 25-fold higher than the concentration of L-tryptophan found in nonsupplemented culture medium. Supplementation of IFNG-treated luteal cell cultures with elevated concentrations of tryptophan also prevented IFNG-induced DNA fragmentation. We conclude that INDO participates in IFNG-induced death of bovine luteal cells, through a mechanism that involves degradation of tryptophan, thereby reducing tryptophan concentrations to a point insufficient to meet luteal cells needs.
Collapse
Affiliation(s)
- Matthew J Cannon
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | |
Collapse
|
37
|
Li Y, Tredget EE, Ghaffari A, Lin X, Kilani RT, Ghahary A. Local expression of indoleamine 2,3-dioxygenase protects engraftment of xenogeneic skin substitute. J Invest Dermatol 2006; 126:128-36. [PMID: 16417228 DOI: 10.1038/sj.jid.5700022] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan, an essential amino acid, into kynurenine, has been identified as having a key role in the prevention of the immune rejection of the semi-allogeneic fetus during pregnancy. We have previously demonstrated that IDO expressed in fibroblasts causes bystander CD4(+) T cell damage as well as THP-1 cell damage by apoptosis. As T cells are primarily responsible for graft rejection, here, we asked the question of whether engraftment of IDO-expressing xenogeneic fibroblasts populated in a collagen matrix can be immuno-protected in an animal model. The results show a significant reduction in the number of infiltrated CD3(+) T lymphocytes on days 14 and 28 post-transplantation in the wounds receiving IDO-expressing fibroblasts relative to controls. IDO-expressing human fibroblasts embedded in bovine collagen on wounds in a rat model accelerates wound healing by promoting neovascularization during the early stages and providing protection of the xenograft fibroblasts. Using a co-culture system, we further confirm that IDO can induce angiogenesis through the depletion of tryptophan. These findings suggest that IDO may have an application in promoting the engraftment of skin substitutes and other transplanted organs.
Collapse
Affiliation(s)
- Yunyuan Li
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | | | | | |
Collapse
|
38
|
Munn DH. Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol 2006; 18:220-5. [PMID: 16460921 DOI: 10.1016/j.coi.2006.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/24/2006] [Indexed: 01/12/2023]
Abstract
Tumors create an abnormal state of tolerance toward themselves and their antigens. One mechanism that might contribute to this tolerance is the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO). IDO-expressing antigen-presenting cells are found in tumor-draining lymph nodes, where they can create a tolerogenic microenvironment. IDO can also be expressed within the tumor itself, by tumor cells or host stromal cells, where it can inhibit the effector phase the immune response. Finally, emerging evidence suggests that IDO might also constitute a significant counter-regulatory mechanism, induced by clinically relevant pro-inflammatory signals, such as IFN-gamma, IFN-alpha, CpG oligodeoxynucleotides, and 4-1BB ligation. Strategies to inhibit the IDO pathway may thus assist in breaking tolerance to tumors, and might enhance the efficacy of other immunotherapy strategies by removing unwanted counter-regulation.
Collapse
Affiliation(s)
- David H Munn
- Immunotherapy Center and Department of Pediatrics, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|