1
|
Wedemeyer SA, Jones NE, Raza IGA, Green FM, Xiao Y, Semwal MK, Garza AK, Archuleta KS, Wimberly KL, Venables T, Holländer GA, Griffith AV. Paracrine FGF21 dynamically modulates mTOR signaling to regulate thymus function across the lifespan. NATURE AGING 2025; 5:588-606. [PMID: 39972173 PMCID: PMC12003089 DOI: 10.1038/s43587-024-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Consequences of age-associated thymic atrophy include declining T-cell responsiveness to pathogens and vaccines and diminished T-cell self-tolerance. Cortical thymic epithelial cells (cTECs) are primary targets of thymic aging, and recent studies suggested that their maintenance requires mTOR signaling downstream of medullary TEC (mTEC)-derived growth factors. Here, to test this hypothesis, we generated a knock-in mouse model in which FGF21 and mCherry are expressed by most mTECs. We find that mTEC-derived FGF21 promotes temporally distinct patterns of mTORC1 and mTORC2 signaling in cTECs, promotes thymus and individual cTEC growth and maintenance, increases T-cell responsiveness to viral infection, and diminishes indicators of peripheral autoimmunity in older mice. The effects of FGF21 overexpression on thymus size and mTOR signaling were abrogated by treatment with the mTOR inhibitor rapamycin. These results reveal a mechanism by which paracrine FGF21 signaling regulates thymus size and function throughout the lifespan, as well as potential therapeutic targets for improving T-cell function and tolerance in aging.
Collapse
Affiliation(s)
- Sarah A Wedemeyer
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas E Jones
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Freedom M Green
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Manpreet K Semwal
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Math and Science, Our Lady of the Lake University, San Antonio, TX, USA
| | - Aaron K Garza
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kahealani S Archuleta
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kymberly L Wimberly
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas Venables
- Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Georg A Holländer
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital, Basel, Switzerland
- Developmental Immunology, Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ann V Griffith
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Shi C, Tian Z, Yan J, Zhang M, Sukhumalchandra P, Chang E, Yang G, You J, Cui M, Shi Q, Kerros C, Philips A, Qiao N, Torikai H, Patchametla S, Sergeeva A, St John L, He H, Wiederschain D, Lee BH, Paulus GLC, Zha D, Molldrem J, Alatrash G. Immunotherapy targeting a leader sequence cathepsin G-derived peptide. Leukemia 2025; 39:888-898. [PMID: 39939820 PMCID: PMC11976275 DOI: 10.1038/s41375-025-02520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025]
Abstract
Myeloid azurophil granules provide a rich source of intracellular leukemia antigens. Cathepsin G (CG) is a serine protease that has higher expression in acute myeloid leukemia (AML) blasts in comparison to normal myeloid progenitors. Based on the unique biology of HLA-A*0201 (HLA-A2), in which presentation of leader sequence (LS)-derived peptides is favored, we focused on the LS-CG-derived peptide CG1 (FLLPTGAEA). We previously detected CG1/HLA-A2 complexes on the surface of primary HLA-A2+ AML blasts and cell lines, and immunity targeting CG1/HLA-A2 in leukemia patients. T cell receptor (TCR)-mimic (m) antibodies are immunotherapeutic antibodies that target peptide-HLA (pHLA) complexes. Here we report on the engineering, preclinical efficacy, and safety evaluation of a novel CG1/HLA-A2-targeting, T cell-engager, bispecific antibody (CG1/A2xCD3). CG1/A2xCD3 showed high binding affinity to CG1/HLA-A2 monomers, CD3-Fc fusion protein, and to AML and T cells, with potent killing of HLA-A2+ primary AML and cell lines in vitro and in vivo. This correlated with both tumor- and CG1/A2xCD3-dependent T cell activation and cytokine secretion. Lastly, CG1/A2xCD3 had no activity against normal bone marrow. Together, these results support the targeting of LS-derived peptides and the continued clinical development of CG1/A2xCD3 in the setting of AML.
Collapse
MESH Headings
- Humans
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Immunotherapy/methods
- Mice
- Cathepsin G/immunology
- Cathepsin G/chemistry
- HLA-A2 Antigen/immunology
- Peptides/immunology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Protein Sorting Signals
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chunhua Shi
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ze Tian
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yan
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mao Zhang
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pariya Sukhumalchandra
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Chang
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Yang
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junping You
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meng Cui
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Shi
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Celine Kerros
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Philips
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Na Qiao
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroki Torikai
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sathvik Patchametla
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Sergeeva
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa St John
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen He
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Dongxing Zha
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Molldrem
- Oncology Research for Biologics and Immunotherapy Translation (ORBIT), University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gheath Alatrash
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
4
|
Ruiz Ortega M, Pogorelyy MV, Minervina AA, Thomas PG, Mora T, Walczak AM. Learning predictive signatures of HLA type from T-cell repertoires. PLoS Comput Biol 2025; 21:e1012724. [PMID: 39761303 PMCID: PMC11737854 DOI: 10.1371/journal.pcbi.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 01/16/2025] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
T cells recognize a wide range of pathogens using surface receptors that interact directly with peptides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.TCRs, associated with a specific HLA allele, exhibit sequence similarities that suggest prior antigen exposure. Immune repertoire sequencing has produced large numbers of datasets, however the HLA type of the corresponding donors is rarely available. Using our TCR-HLA associations, we trained a computational model to predict the HLA type of individuals from their TCR repertoire alone. We propose an iterative procedure to refine this model by using data from large cohorts of untyped individuals, by recursively typing them using the model itself. The resulting model shows good predictive performance, even for relatively rare HLA alleles.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| | - Mikhail V. Pogorelyy
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anastasia A. Minervina
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul G. Thomas
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL Université, Sorbonne Université, and Université Paris-Cité, Paris, France
| |
Collapse
|
5
|
Zhao J, Hu R, Lai KC, Zhang Z, Lai L. Recombinant FOXN1 fusion protein increases T cell generation in old mice. Front Immunol 2024; 15:1423488. [PMID: 39072332 PMCID: PMC11272594 DOI: 10.3389/fimmu.2024.1423488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing murine FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produced a rFOXN1 fusion protein containing the N-terminal of CCR9, human FOXN1 and a protein transduction domain. When injected intravenously into 14-month-old mice, the rFOXN1 fusion protein enters the thymus and TECs, and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in older adults.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Jallah BP, Kuypers DRJ. Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction. Drugs Aging 2024; 41:219-238. [PMID: 38386164 DOI: 10.1007/s40266-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 02/23/2024]
Abstract
The number of older individuals receiving a kidney transplant as replacement therapy has significantly increased in the past decades and this increase is expected to continue. Older patients have a lower rate of acute rejection but an increased incidence of death with a functioning graft. Several factors, including an increased incidence of infections, post-transplant malignancy and cardiovascular comorbidity and mortality, contribute to this increased risk. Notwithstanding, kidney transplantation is still the best form of kidney replacement therapy in all patients with chronic kidney disease, including in older individuals. The best form of immunosuppression and the optimal dose of these medications in older recipients remains a topic of discussion. Pharmacological studies have usually excluded older patients and when included, patients were highly selected and their numbers insignificant to draw a reasonable conclusion. The reduced incidence of acute rejection in older recipients has largely been attributed to immunosenescence. Immunosenescence refers to the aging of the innate and adaptive immunity, accumulating in phenotypic and functional changes. These changes influences the response of the immune system to new challenges. In older individuals, immunosenescence is associated with increased susceptibility to infectious pathogens, a decreased response after vaccinations, increased risk of malignancies and cardiovascular morbidity and mortality. Chronic kidney disease is associated with premature immunosenescent changes, and these are independent of aging. The immunosenescent state is associated with low-grade sterile inflammation termed inflammaging. This chronic low-grade inflammation triggers a compensatory immunosuppressive state to avoid further tissue damage, leaving older individuals with chronic kidney disease in an immune-impaired state before kidney transplantation. Immunosuppression after transplantation may further enhance progression of this immunosenescent state. This review covers the role of immunosenescence in older kidney transplant recipients and it details present knowledge of the changes in chronic kidney disease and after transplantation. The impact of immunosuppression on the progression and complications of an immunosenescent state are discussed, and the future direction of a possible clinical implementation of immunosenescence to individualize/reduce immunosuppression in older recipients is laid out.
Collapse
Affiliation(s)
- Borefore P Jallah
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Ortega MR, Pogorelyy MV, Minervina AA, Thomas PG, Walczak AM, Mora T. Learning predictive signatures of HLA type from T-cell repertoires. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577228. [PMID: 38352609 PMCID: PMC10862754 DOI: 10.1101/2024.01.25.577228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
T cells recognize a wide range of pathogens using surface receptors that interact directly with pep-tides presented on major histocompatibility complexes (MHC) encoded by the HLA loci in humans. Understanding the association between T cell receptors (TCR) and HLA alleles is an important step towards predicting TCR-antigen specificity from sequences. Here we analyze the TCR alpha and beta repertoires of large cohorts of HLA-typed donors to systematically infer such associations, by looking for overrepresentation of TCRs in individuals with a common allele.TCRs, associated with a specific HLA allele, exhibit sequence similarities that suggest prior antigen exposure. Immune repertoire sequencing has produced large numbers of datasets, however the HLA type of the corresponding donors is rarely available. Using our TCR-HLA associations, we trained a computational model to predict the HLA type of individuals from their TCR repertoire alone. We propose an iterative procedure to refine this model by using data from large cohorts of untyped individuals, by recursively typing them using the model itself. The resulting model shows good predictive performance, even for relatively rare HLA alleles.
Collapse
|
8
|
Nevo S, Frenkel N, Kadouri N, Gome T, Rosenthal N, Givony T, Avin A, Peligero Cruz C, Kedmi M, Lindzen M, Ben Dor S, Damari G, Porat Z, Haffner-Krausz R, Keren-Shaul H, Yarden Y, Munitz A, Leshkowitz D, Goldfarb Y, Abramson J. Tuft cells and fibroblasts promote thymus regeneration through ILC2-mediated type 2 immune response. Sci Immunol 2024; 9:eabq6930. [PMID: 38215193 DOI: 10.1126/sciimmunol.abq6930] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.
Collapse
Affiliation(s)
- Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Frenkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Rosenthal
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Avin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Peligero Cruz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Merav Kedmi
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben Dor
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | | | - Hadas Keren-Shaul
- Genomics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Munitz
- Department of Microbiology and Clinical Immunology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Karagöz IK, Kaya M, Rückert R, Bozman N, Kaya V, Bayram H, Yıldırım M. A bioinformatic analysis: Previous allergen exposure may support anti- SARS-CoV-2 immune response. Comput Biol Chem 2023; 107:107961. [PMID: 37788543 DOI: 10.1016/j.compbiolchem.2023.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
COVID-19, caused by infection with the SARS-CoV-2 has become a global health problem due to significant mortality rates; the exact pathophysiological mechanism remains uncertain. Articles reporting patient data are quite heterogeneous and have several limitations. Surviving patients develop a CD4 and CD8 T-cell response to the virus SARS-CoV-2 during COVID-19. Interestingly, pre-existing virus-reactive T-cells have been found in patients that were not infected before, suggesting some form of cross-reactivity or immunological mimicry. To better understand this phenomenon, we performed a bioinformatic study, which was aimed to identify antigenic structures that may explain the presence of such "reactive" T-cells, which may support or modulate the immune response to SARS-CoV-2 infections. Seven different common environmental allergen epitopes identical to the SARS-CoV-2 S-protein were identified that share affinity to 8 MHCI-specific epitope regions. Pollen showed the greatest similarity with the S protein epitope. In the epitope similarity analysis between the S protein and MHC-II / T helper epitopes, the highest similarity was determined for mites. When S-protein that stimulates B cells and identical epitope antigens are examined, the most common allergens were hornbeam and wheat. The high epitope similarity observed for the allergens examined and S protein epitopes suggest that these allergens may be a reason for pre-existing SARS-CoV-2 - reactive T-cells in previously non-infected subjects and such a previous exposure may affect the course of the disease in COVID-19 infection. It remains to be determined whether such a previous existence of SARS-CoV-2 reactive cells can support the clearance of the virus or if they, in contrast, may even aggravate the disease course. (Table 4, Ref 54).
Collapse
Affiliation(s)
- Isıl Kutluturk Karagöz
- Umraniye Trn. And Rch. Hospital, Division of Ophthalmology, Istanbul, Turkey; Yıldız Technical University, Bioengineering Department, Istanbul, Turkey.
| | | | | | - Nazli Bozman
- Gaziantep University Arts and Science Faculty Department of Biology, Gaziantep, Turkey
| | - Vildan Kaya
- Medstar Antalya Hospital, Division of Radiation Oncology, Antalya, Turkey
| | - Halim Bayram
- Dr. Ersin Arslan Trn. And Rch Hospital, Division of Infection Diseases, Gaziantep, Turkey
| | - Mustafa Yıldırım
- Sanko University, School of Medicine, Internal Diseases, Division of Oncology, Gaziantep, Turkey
| |
Collapse
|
10
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
11
|
Zhao J, Zhang Z, Lai KC, Lai L. Administration of recombinant FOXN1 protein attenuates Alzheimer's pathology in mice. Brain Behav Immun 2023; 113:341-352. [PMID: 37541395 PMCID: PMC10528256 DOI: 10.1016/j.bbi.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older adults and characterized by progressive loss of memory and cognitive functions that are associated with amyloid-beta (Aβ) plaques and neurofibrillary tangles. Immune cells play an important role in the clearance of Aβ deposits and neurofibrillary tangles. T cells are the major component of the immune system. The thymus is the primary organ for T cell generation. T cell development in the thymus depends on thymic epithelial cells (TECs). However, TECs undergo both qualitative and quantitative loss over time. We have previously reported that a recombinant (r) protein containing FOXN1 and a protein transduction domain can increase the number of TECs and subsequently increases the number of T cells in mice. In this study we determined the ability of rFOXN1 to affect cognitive performance and AD pathology in mice. METHODS Aged 3xTg-AD and APP/PS1 AD mice were injected with rFOXN1 or control protein. Cognitive performance, AD pathology, the thymic microenvironment and immune cells were then analyzed. RESULTS Administration of rFOXN1 into AD mice improves cognitive performance and reduces Aβ plaque load and phosphorylated tau in the brain. This is related to rejuvenating the aged thymic microenvironment, which results in enhanced T cell generation in the thymus, leading to increased number of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the brain, and the macrophage phagocytosis of Aβ are enhanced in rFOXN1-treated AD mice. CONCLUSIONS Our results suggest that rFOXN1 protein has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
12
|
Zúñiga TM, Baker FL, Smith KA, Batatinha H, Lau B, Burgess SC, Gustafson MP, Katsanis E, Simpson RJ. Clonal Kinetics and Single-Cell Transcriptional Profiles of T Cells Mobilized to Blood by Acute Exercise. Med Sci Sports Exerc 2023; 55:991-1002. [PMID: 36719647 DOI: 10.1249/mss.0000000000003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Acute exercise redistributes large numbers of memory T cells, which may contribute to enhanced immune surveillance in regular exercisers. It is not known, however, if acute exercise promotes a broad or oligoclonal T-cell receptor (TCR) repertoire or evokes transcriptomic changes in "exercise-responsive" T-cell clones. METHODS Healthy volunteers completed a graded bout of cycling exercise up to 80% V̇O 2max . DNA was extracted from peripheral blood mononuclear cells collected at rest, during exercise (EX), and 1 h after (+1H) exercise, and processed for deep TCR-β chain sequencing and tandem single-cell RNA sequencing. RESULTS The number of unique clones and unique rearrangements was decreased at EX compared with rest ( P < 0.01) and +1H ( P < 0.01). Productive clonality was increased compared with rest ( P < 0.05) and +1H ( P < 0.05), whereas Shannon's Index was decreased compared with rest ( P < 0.05) and +1H ( P < 0.05). The top 10 rearrangements in the repertoire were increased at EX compared with rest ( P < 0.05) and +1H ( P < 0.05). Cross-referencing TCR-β sequences with a public database (VDJdb) revealed that exercise increased the number of clones specific for the most prevalent motifs, including Epstein-Barr virus, cytomegalovirus, and influenza A. We identified 633 unique exercise-responsive T-cell clones that were mobilized and/or egressed in response to exercise. Among these clones, there was an upregulation in genes related to cell death, cytotoxicity, and activation ( P < 0.05). CONCLUSIONS Acute exercise promotes an oligoclonal T-cell repertoire by preferentially mobilizing the most dominant clones, several of which are specific to known viral antigens and display differentially expressed genes indicative of cytotoxicity, activation, and apoptosis.
Collapse
MESH Headings
- Humans
- T-Lymphocytes
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Epstein-Barr Virus Infections/metabolism
- Leukocytes, Mononuclear/metabolism
- Herpesvirus 4, Human/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Clone Cells/metabolism
- Exercise
Collapse
Affiliation(s)
- Tiffany M Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | - Forrest L Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | - Kyle A Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | | | - Branden Lau
- The University of Arizona Genetics Core, The University of Arizona, Tucson, AZ
| | | | | | | | | |
Collapse
|
13
|
Zhao J, Zhang Z, Lai KC, Lai L. Recombinant FOXN1 fusion protein increases T cell generation in aged mice. RESEARCH SQUARE 2023:rs.3.rs-2557067. [PMID: 36798162 PMCID: PMC9934747 DOI: 10.21203/rs.3.rs-2557067/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Although the thymus continues to export T cells throughout life, it undergoes a profound involution/atrophy with age, resulting in decreased numbers of T cells in the older adult, which has direct etiological linkages with many diseases. T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produce a rFOXN1 fusion protein containing the N-terminal of CCR9, FOXN1 and a protein transduction domain. Results We show here that, when injected intravenously into aged mice, the rFOXN1 fusion protein migrates into the thymus and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Conclusions Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in the older adult.
Collapse
|
14
|
Jiang LP, Zhu T, Tang K, Wu Y, Fu M, Ji JZ, Mi QY, Ge PX, Zhao XH, Tai T, Xie HG. Enhanced metabolic activation of and platelet response to clopidogrel in T cell-deficient mice through induction of Cyp2c and Cyp3a and inhibition of Ces1. J Thromb Haemost 2023; 21:1322-1335. [PMID: 36738827 DOI: 10.1016/j.jtha.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND T cells and platelets reciprocally coordinate mutual functions through crosstalk or interaction. However, it is not known whether metabolic activation of and platelet response to clopidogrel could be changed if T cells were deficient or impaired in some cases and, if any, how it would work. OBJECTIVES The objective of this study was to dissect the potential changes in platelet responses to and metabolic activation of clopidogrel in the case of T cell deficiency and to elucidate their mechanisms involved. METHODS BALB/c athymic nude mice or euthymic mice (controls) pretreated with cyclosporine A (CsA), thymosin α1 (Tα1), or their combination were used to investigate the changes in ADP-induced platelet activation and aggregation, systemic exposure of clopidogrel and its metabolites, and mRNA/protein expression and activity levels of clopidogrel-metabolizing enzymes in the liver, respectively. RESULTS Nude mice exhibited significantly enhanced antiplatelet effects of clopidogrel due to increased formation of clopidogrel active metabolite in the liver, where the enzyme activity levels of Cyp2c and Cyp3a were significantly elevated compared with control mice. Furthermore, the effects of CsA pretreatment on the metabolism of clopidogrel in euthymic mice were identical to those seen in athymic mice. As expected, concomitant use of Tα1 reversed all the observed effects of CsA on clopidogrel metabolism and relevant metabolic enzymes. CONCLUSIONS T cell deficiency or suppression enhances the antiplatelet effects of clopidogrel due to the boosted metabolic activation of clopidogrel in the liver through a dramatic induction of Cyp2c and Cyp3a in mice, suggesting that the metabolism of substrate drugs of Cyp2c and Cyp3a may be enhanced by T cell impairment.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Zhu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ke Tang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Wu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Fu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng-Xin Ge
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Hong Zhao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, China.
| |
Collapse
|
15
|
Zhao J, Wang X, He Y, Xu P, Lai L, Chung Y, Pan X. The Role of T Cells in Alzheimer's Disease Pathogenesis. Crit Rev Immunol 2023; 43:15-23. [PMID: 37943150 DOI: 10.1615/critrevimmunol.2023050145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory decline and cognitive impairment, which is related to hallmark protein aggregates, amyloid-β (Аβ) plaques and neurofibrillary tangles; the latter are accumulated with hyperphosphorylated Tau protein. Immune cells play an important role in AD pathogenesis. Although the role of T cells in AD remains controversial, studies have shown that T cell deficiency is associated with increased AD pathology. In contrast, transplantation of T cells reduces AD pathology. T cells can help B cells generate anti-Аβ antibody to neutralize the toxin of Аβ and hyperphosphorylated Tau. T cells also activate macrophages to phagocytose misfolded proteins including Аβ and Tau. Recent data have also shown that AD animals have a damaged thymic microenvironment, especially thymic epithelial cells (TECs), resulting in decreased T cell numbers, which contribute to AD pathology. Therefore, regulation of T cell regeneration, for example by rejuvenating the thymic microenvironment, has the potential to be used in the treatment of AD.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China; ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangdong, 510515, China
| | - Xiaofang Wang
- ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China; ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT 06030, USA
| | - Yusheng He
- ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - Younggie Chung
- ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China; ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT 06030, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangdong, 510515, China
| |
Collapse
|
16
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Aging leads to decline in bone mass and quality starting at age 30 in humans. All mammals undergo a basal age-dependent decline in bone mass. Osteoporosis is characterized by low bone mass and changes in bone microarchitecture that increases the risk of fracture. About a third of men over the age of 50 years are osteoporotic because they have higher than basal bone loss. In women, there is an additional acute decrement in bone mass, atop the basal rate, associated with loss of ovarian function (menopause) causing osteoporosis in about half of the women. Both genetics and environmental factors such as smoking, chronic infections, diet, microbiome, and metabolic disease can modulate basal age-dependent bone loss and eventual osteoporosis. Here, we review recent studies on the etiology of age-dependent decline in bone mass and propose a mechanism that integrates both genetic and environmental factors. RECENT FINDINGS Recent findings support that aging and menopause dysregulate the immune system leading to sterile low-grade inflammation. Both animal models and human studies demonstrate that certain kinds of inflammation, in both men and women, mediate bone loss. Senolytics, meant to block a wide array of age-induced effects by preventing cellular senescence, have been shown to improve bone mass in aged mice. Based on a synthesis of the recent data, we propose that aging activates long-lived tissue resident memory T-cells to become senescent and proinflammatory, leading to bone loss. Targeting this population may represent a promising osteoporosis therapy. Emerging data indicates that there are several mechanisms that lead to sterile low-grade chronic inflammation, inflammaging, that cause age- and estrogen-loss dependent osteoporosis in men and women.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., DRC605, St. Louis, MO, 63104, USA.
| | - Deborah Veis
- Division of Bone and Mineral Diseases and Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
18
|
Zhuo Y, Yang X, Shuai P, Yang L, Wen X, Zhong X, Yang S, Xu S, Liu Y, Zhang Z. Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood. Front Immunol 2022; 13:916430. [PMID: 36159829 PMCID: PMC9493076 DOI: 10.3389/fimmu.2022.916430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The adaptive immune system plays an important role in defending against different kinds of diseases, including infection and cancer. There has been a longtime need for a simple method to quantitatively evaluate the potency of adaptive immunity in our bodies. The tremendously diversified T-cell receptor (TCR) repertoires are the foundation of the adaptive immune system. In this study, we analyzed the expressed TCRβ repertoires in the peripheral blood of 582 healthy donors and 60 cancer patients. The TCR repertoire in each individual is different, with different usages of TCR Vβ and Jβ genes. Importantly, the TCR diversity and clonality change along with age and disease situation. Most elder individuals and cancer patients have elevated numbers of large TCRβ clones and reduced numbers of shared common clones, and thus, they have very low TCR diversity index (D50) values. These results reveal the alteration of the expressed TCRβ repertoire with aging and oncogenesis, and thus, we hypothesize that the TCR diversity and clonality in the peripheral blood might be used to evaluate and compare the adaptive immunities among different individuals in clinical practice.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangliang Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueping Wen
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Xuemei Zhong
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shihan Yang
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shaoxian Xu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| | - Zhixin Zhang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| |
Collapse
|
19
|
Kashatnikova DA, Khadzhieva MB, Kolobkov DS, Belopolskaya OB, Smelaya TV, Gracheva AS, Kalinina EV, Larin SS, Kuzovlev AN, Salnikova LE. Pneumonia and Related Conditions in Critically Ill Patients—Insights from Basic and Experimental Studies. Int J Mol Sci 2022; 23:ijms23179896. [PMID: 36077293 PMCID: PMC9456259 DOI: 10.3390/ijms23179896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pneumonia is an acute infectious disease with high morbidity and mortality rates. Pneumonia’s development, severity and outcome depend on age, comorbidities and the host immune response. In this study, we combined theoretical and experimental investigations to characterize pneumonia and its comorbidities as well as to assess the host immune response measured by TREC/KREC levels in patients with pneumonia. The theoretical study was carried out using the Columbia Open Health Data (COHD) resource, which provides access to clinical concept prevalence and co-occurrence from electronic health records. The experimental study included TREC/KREC assays in young adults (18–40 years) with community-acquired (CAP) (n = 164) or nosocomial (NP) (n = 99) pneumonia and healthy controls (n = 170). Co-occurring rates between pneumonia, sepsis, acute respiratory distress syndrome (ARDS) and some other related conditions common in intensive care units were the top among 4170, 3382 and 963 comorbidities in pneumonia, sepsis and ARDS, respectively. CAP patients had higher TREC levels, while NP patients had lower TREC/KREC levels compared to controls. Low TREC and KREC levels were predictive for the development of NP, ARDS, sepsis and lethal outcome (AUCTREC in the range 0.71–0.82, AUCKREC in the range 0.67–0.74). TREC/KREC analysis can be considered as a potential prognostic test in patients with pneumonia.
Collapse
Affiliation(s)
- Darya A. Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maryam B. Khadzhieva
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olesya B. Belopolskaya
- The Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tamara V. Smelaya
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Alesya S. Gracheva
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Ekaterina V. Kalinina
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Sergey S. Larin
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
| | - Artem N. Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Lyubov E. Salnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117198, Russia
- Correspondence:
| |
Collapse
|
20
|
Gaballa A, Arruda LCM, Uhlin M. Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Front Immunol 2022; 13:971709. [PMID: 36105821 PMCID: PMC9465162 DOI: 10.3389/fimmu.2022.971709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative platform for several hematological diseases. Despite its therapeutic benefits, the profound immunodeficiency associated with the transplant procedure remains a major challenge that renders patients vulnerable to several complications. Today, It is well established that a rapid and efficient immune reconstitution, particularly of the T cell compartment is pivotal to both a short-term and a long-term favorable outcome. T cells expressing a TCR heterodimer comprised of gamma (γ) and delta (δ) chains have received particular attention in allo-HCT setting, as a large body of evidence has indicated that γδ T cells can exert favorable potent anti-tumor effects without inducing severe graft versus host disease (GVHD). However, despite their potential role in allo-HCT, studies investigating their detailed reconstitution in patients after allo-HCT are scarce. In this review we aim to shed lights on the current literature and understanding of γδ T cell reconstitution kinetics as well as the different transplant-related factors that may influence γδ reconstitution in allo-HCT. Furthermore, we will present data from available reports supporting a role of γδ cells and their subsets in patient outcome. Finally, we discuss the current and future strategies to develop γδ cell-based therapies to exploit the full immunotherapeutic potential of γδ cells in HCT setting.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Lucas C. M. Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Gulla S, Reddy MC, Reddy VC, Chitta S, Bhanoori M, Lomada D. Role of thymus in health and disease. Int Rev Immunol 2022; 42:347-363. [PMID: 35593192 DOI: 10.1080/08830185.2022.2064461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023]
Abstract
The thymus is a primary lymphoid organ, essential for the development of T-cells that will protect from invading pathogens, immune disorders, and cancer. The thymus decreases in size and cellularity with age referred to as thymus involution or atrophy. This involution causes decreased T-cell development and decreased naive T-cell emigration to the periphery, increased proportion of memory T cells, and a restricted, altered T-cell receptor (TCR) repertoire. The changes in composition and function of the circulating T cell pool as a result of thymic involution led to increased susceptibility to infectious diseases including the recent COVID and a higher risk for autoimmune disorders and cancers. Thymic involution consisting of both structural and functional loss of the thymus has a deleterious effect on T cell development, T cell selection, and tolerance. The mechanisms which act on the structural (cortex and medulla) matrix of the thymus, the gradual accumulation of genetic mutations, and altered gene expressions may lead to immunosenescence as a result of thymus involution. Understanding the molecular mechanisms behind thymic involution is critical for identifying diagnostic biomarkers and targets for treatment help to develop strategies to mitigate thymic involution-associated complications. This review is focused on the consequences of thymic involution in infections, immune disorders, and diseases, identifying potential checkpoints and potential approaches to sustain or restore the function of the thymus particularly in elderly and immune-compromised individuals.
Collapse
Affiliation(s)
- Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vajra C Reddy
- Katuri Medical College and Hospital, Chinnakondrupadu, Guntur, India
| | | | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
22
|
Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 2022; 127:214-232. [PMID: 33641685 PMCID: PMC8047403 DOI: 10.1017/s0007114521000738] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haematopoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system malfunction has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesion molecules and tight junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency both weakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous problems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even prevent infection, and the transition from mild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis with COVID-19 and registered studies in progress are listed.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| |
Collapse
|
23
|
Wang X, Tang M, Ge J, Jiang W, Li Z, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. Effects of intrauterine and lactational exposure to lanthanum nitrate on BALB/c offspring mice: Developmental immunotoxicity and self-recovery. Toxicol Lett 2022; 362:17-25. [DOI: 10.1016/j.toxlet.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
|
24
|
ISASHIKI Y, OHASHI Y, IMATAKE S, BAAKHTARI M, RAMAH A, KIDA T, YANAGITA T, YASUDA M. Studies on the immune status of calves with chronic inflammation and thymus atrophy. J Vet Med Sci 2022; 84:734-742. [PMID: 35400674 PMCID: PMC9246677 DOI: 10.1292/jvms.22-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thymus is a primary lymphoid organ where the primary T cell repertoire is generated.
Thymus atrophy is induced by various conditions, including infectious diseases,
glucocorticoid treatment, and poor breeding management. Cattle with thymus atrophy tend to
exhibit weak calf syndrome, a condition in which approximately half of neonates die
shortly after birth. Calves with thymus atrophy that survive the first month typically
contract chronic inflammatory diseases. In this study, we analyzed the populations of the
peripheral blood mononuclear cells and thymocytes in calves with thymus atrophy. In
addition, we evaluated polarization of master gene and cytokine mRNA expression in
peripheral blood CD4+ cells in the calves. The population of
CD4+CD8+ cells in thymus of the calves with thymus atrophy was
lower than that of control calves. IL10 mRNA expression in peripheral
blood CD4+ cells of calves with thymus atrophy was significantly lower than
that of control calves. TBX21 mRNA expression in peripheral
CD4+ cells of thymus atrophy calves was tended to be higher than that of the
control group. In addition, FOXP3 mRNA expression in peripheral
CD4+ cells of the thymus atrophy calves was tended to be lower than that of
the control calves. Thymus atrophy calves exhibited chronic inflammatory disease leading,
in severe situations, to conditions such as pneumonia with caseous necrosis. These severe
inflammatory responses likely are due to decreases in IL10 mRNA
expression, impairing control of macrophages, one of the main cell fractions of natural
immunity.
Collapse
Affiliation(s)
- Yumi ISASHIKI
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Yuki OHASHI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Shoichiro IMATAKE
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Mahmoud BAAKHTARI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Amany RAMAH
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Tetsuo KIDA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Tenya YANAGITA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Masahiro YASUDA
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| |
Collapse
|
25
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK, Ali N. Calorie restriction modulates neuro-immune system differently in young and aged rats. Int Immunopharmacol 2021; 100:108141. [PMID: 34536745 DOI: 10.1016/j.intimp.2021.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/02/2023]
Abstract
Aging weakens and deregulates the immune system and plays an impact on the central nervous system (CNS). A crosstalk in between the CNS-mediated immune system and the body's overall innate immunity is often found to increase and subsequently accelerate neurodegeneration and behavioural impairment during aging. Dietary calorie restriction (CR) is found to be a beneficial non-invasive anti-aging therapy as it shows rejuvenation of stress response, brain functions and behaviour during aging. The present investigation deals with the consequence of CR diet supplementation for two different duration (one and two consecutive months) on aging-related alteration of the immune response in male albino Wistar rats at the level of (a) lymphocyte viability, proliferation, cytotoxicity, and DNA fragmentation in blood, spleen, and thymus and (b) cytokines (IL-6, IL-10, and TNF-α) in blood, spleen, thymus and different brain-regions to understand the effect of CR diet on neuroimmune system. The results depict that CR diet consumption for consecutive one and two months by the aged (18 and 24 months) rats significantly attenuated the aging-related (a) decrease of blood, splenic and thymic lymphocyte viability, proliferative activity, cytotoxicity, and IL-10 level and (b) increase of (i) blood, splenic and thymic DNA fragmentation and (ii) IL-6 and TNF-α level in those tissues and also in different brain regions. Unlike older rats, in young (4 months) rats, the consumption of CR diet under similar conditions affected those above-mentioned immune parameters reversibly and adversely. This study concludes that (a) aging significantly (p < 0.01) deregulates the above-mentioned immune parameters, (b) consecutive consumption of CR diet for one and two months is (i) beneficial (p < 0.05) to the aging-related immune system [lymphocyte viability, lymphocyte proliferation, cytotoxicity, pro (IL-6 and TNF-α)- and anti (IL-10)-inflammatory cytokines], but (ii) adverse (p < 0.05) to the immune parameters of the young rats, and (c) consumption of CR diet for consecutive two months is more potent (p < 0.05) than that due to one month.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India; Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700 032, India
| |
Collapse
|
26
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Zhang Q, Liang Z, Zhang J, Lei T, Dong X, Su H, Chen Y, Zhang Z, Tan L, Zhao Y. Sirt6 Regulates the Development of Medullary Thymic Epithelial Cells and Contributes to the Establishment of Central Immune Tolerance. Front Cell Dev Biol 2021; 9:655552. [PMID: 33869219 PMCID: PMC8044826 DOI: 10.3389/fcell.2021.655552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Although some advances have been made in understanding the molecular regulation of mTEC development, the role of epigenetic regulators in the development and maturation of mTEC is poorly understood. Here, using the TEC-specific Sirt6 knockout mice, we found the deacetylase Sirtuin 6 (Sirt6) is essential for the development of functionally competent mTECs. First of all, TEC-specific Sirt6 deletion dramatically reduces the mTEC compartment, which is caused by reduced DNA replication and subsequent impaired proliferation ability of Sirt6-deficient mTECs. Secondly, Sirt6 deficiency specifically accelerates the differentiation of mTECs from CD80–Aire– immature population to CD80+Aire– intermediate mature population by promoting the expression of Spib. Finally, Sirt6 ablation in TECs markedly interferes the proper expression of tissue-restricted antigens (TRAs) and impairs the development of thymocytes and nTreg cells. In addition, TEC conditional knockout of Sirt6 results in severe autoimmune disease manifested by reduced body weight, the infiltration of lymphocytes and the presence of autoantibodies. Collectively, this study reveals that the expression of epigenetic regulator Sirt6 in TECs is crucial for the development and differentiation of mTECs, which highlights the importance of Sirt6 in the establishment of central immune tolerance.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tong Lei
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Mohanty A, Agnihotri S, Mehta A, Rawal S. COVID-19 and cancer: Sailing through the tides. Pathol Res Pract 2021; 221:153417. [PMID: 33857716 PMCID: PMC7997300 DOI: 10.1016/j.prp.2021.153417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023]
Abstract
The COVID-19 (coronavirus disease) pandemic caused by SARS-CoV-2 with its rapid expansion has led to extraordinary implications in our understanding of viral infections and their management globally. In this current scenario of unusual circumstances and public health emergency, the cancer care per se is facing unprecedented challenges. The peculiarity of the SARS-CoV-2 infections is still being uncovered as the pandemic spreads across the populations than showing signs of its curtailment. The review highlights the significance of idiosyncrasy of the SARS-Cov-2 infection especially putting forth the importance of immunosenescence, both in the COVID-19 specific immune response in the infected lungs of the elderly and in the cancer patients infected with SARS-CoV-2.The focus of the article is directed towards demystifying the unparalleled essence of a proprotein convertase, Furin in the biology of the SARS-Cov-2 infection and its role in facilitating viral transmission through expedited cellular entry into alveolar epithelial cells in COVID-19 infected cancer patients. The risk stratification of the cancer treatment and guidelines shaped up by national and international oncology societies in providing uncompromised patient care during the COVID-19 crisis have also been addressed. The global efforts towards vaccination in developing SARS CoV-2 immunity are also discussed in this article.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India.
| | | | - Anurag Mehta
- Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Sudhir Rawal
- Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| |
Collapse
|
29
|
Kellogg C, Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Hum Vaccin Immunother 2021; 17:638-643. [PMID: 33064620 PMCID: PMC7993178 DOI: 10.1080/21645515.2020.1818519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
The thymus is a largely neglected organ but plays a significant role in the regulation of adaptive immune responses. The effect of aging on the thymus and immune senescence is well established, and the resulting inflammaging is found to be implicated in the development of many chronic diseases including atherosclerosis, hypertension and type 2 diabetes. Both aging and diseases of inflammaging are associated with severe COVID-19 disease, and a dysfunctional thymus may be a predisposing factor. In addition, insults on the thymus during childhood may lead to abnormal thymic function and may explain severe COVID-19 disease among younger individuals; therefore, measurement of thymic function may assist COVID-19 care. Those with poor thymic function may be treated prophylactically with convalescent serum or recombinant antibodies, and they may respond better to high-dose or adjuvanted COVID-19 vaccines. Treatments inducing thymic regeneration may improve patients' overall health and may be incorporated in COVID-19 management.
Collapse
Affiliation(s)
- Caitlyn Kellogg
- University of California, San Diego School of Medicine, San Diego, CA, USA
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| | - Ozlem Equils
- Public Health Education , MiOra Foundation, Los Angeles, CA, USA
| |
Collapse
|
30
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
32
|
Cai ZJ. Hypothalamic aging and hormones. VITAMINS AND HORMONES 2021; 115:15-37. [PMID: 33706947 DOI: 10.1016/bs.vh.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is the heterogeneous changes of hypothalamic functions that determine the chronological sequence of aging in mammals. Recently, it was hypothesized by Cai the decrease in slow-wave sleep (SWS) resulting from skin aging as responsible for the degeneration of hypothalamic suprachiasmatic nucleus (SCN). It was soon hypothesized by the European people in television that the increase in body fat as responsible for the degeneration of male preoptic sexually dimorphic nucleus (SDN-POA), via the aromatase converting testosterone to estradiol as proposed by Cohen. It is the hypothalamic paraventricular nucleus (PVN) that remains unchanged in neuron number during aging for psychological stress. In this chapter, it is briefly reviewed more manifestations of hypothalamic related mammalian aging processes, including (1) the aging of ovary by lipid, estradiol and hypothalamus; (2) the aging of muscle, stomach, intestine, thymus, and the later aging of brain, regulated by growth hormone/insulin-like growth factor 1(GH/IGF1); (3) the cardiovascular hypertension from PVN activation, the bone and other peripheral aging by psychological stress, and that of kidney by vasopressin. It is classified these aging processes by the primary regulation from one of the three hypothalamic nuclei, although still necessary to investigate and supplement their secondary regulation by the hypothalamic nuclei in future. It is the hypothalamic structural changes that shift the functional balance among these three hypothalamic systems toward aging.
Collapse
Affiliation(s)
- Zi-Jian Cai
- CaiFortune Consulting, Suzhou, Jiangsu, PR China.
| |
Collapse
|
33
|
Koguchi-Yoshioka H, Hoffer E, Cheuk S, Matsumura Y, Vo S, Kjellman P, Grema L, Ishitsuka Y, Nakamura Y, Okiyama N, Fujisawa Y, Fujimoto M, Eidsmo L, Clark RA, Watanabe R. Skin T cells maintain their diversity and functionality in the elderly. Commun Biol 2021; 4:13. [PMID: 33398080 PMCID: PMC7782613 DOI: 10.1038/s42003-020-01551-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/27/2020] [Indexed: 01/23/2023] Open
Abstract
Recent studies have highlighted that human resident memory T cells (TRM) are functionally distinct from circulating T cells. Thus, it can be postulated that skin T cells age differently from blood-circulating T cells. We assessed T-cell density, diversity, and function in individuals of various ages to study the immunologic effects of aging on human skin from two different countries. No decline in the density of T cells was noted with advancing age, and the frequency of epidermal CD49a+ CD8 TRM was increased in elderly individuals regardless of ethnicity. T-cell diversity and antipathogen responses were maintained in the skin of elderly individuals but declined in the blood. Our findings demonstrate that in elderly individuals, skin T cells maintain their density, diversity, and protective cytokine production despite the reduced T-cell diversity and function in blood. Skin resident T cells may represent a long-lived, highly protective reservoir of immunity in elderly people.
Collapse
Affiliation(s)
- Hanako Koguchi-Yoshioka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Visionsgatan 18, L8, 171 76, Solna, Sweden
| | - Stanley Cheuk
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Visionsgatan 18, L8, 171 76, Solna, Sweden
| | - Yutaka Matsumura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Sa Vo
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Petra Kjellman
- Diagnostiskt Centrum Hud, Apelbergsgatan 60, 111 37, Stockholm, Sweden
| | - Lucian Grema
- Diagnostiskt Centrum Hud, Apelbergsgatan 60, 111 37, Stockholm, Sweden
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshiyuki Nakamura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Visionsgatan 18, L8, 171 76, Solna, Sweden.,Diagnostiskt Centrum Hud, Apelbergsgatan 60, 111 37, Stockholm, Sweden
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Rei Watanabe
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
34
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Kernen L, Rieder J, Duus A, Holbech H, Segner H, Bailey C. Thymus development in the zebrafish (Danio rerio) from an ecoimmunology perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:805-819. [PMID: 33306886 DOI: 10.1002/jez.2435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023]
Abstract
The thymus is present in all gnathostome vertebrates and is an essential organ for the adaptive immune system via the generation of functional mature T-cells. Over the life span of mammals, the thymus undergoes morphological and functional alterations, including an age-related involution, which in humans starts in early life. Life history tradeoffs have been suggested as possible reasons for thymus involution. While in teleost fish, only a few studies have investigated alterations of thymus structure and function over different life stages, resulting in a fragmented database. Here, we investigated the thymus growth of zebrafish (Danio rerio) from early life, throughout puberty and reproductive stage, up to 1-year-old. We assessed thymus growth by histological and morphometric analyses and thymocyte numbers. Thymus function was assessed by measuring the transcripts of the thymocyte marker genes, ikaros, tcrα, and tcrδ. Additionally, we analyzed gonad maturity and tail homogenate vitellogenin concentrations to align thymus status with the status of the reproductive system. Our results showed that the zebrafish thymus, in contrast to the human thymus, grew strongly during early life and puberty but started to undergo involution when the fish reached the reproductive age. The involution was characterized by reduced thymus area and thymocyte number, altered histoarchitecture, and decreasing thymocyte marker gene transcript levels. Our findings suggest that age-related changes of the zebrafish thymus do exist and could be partly explained in terms of resource tradeoffs, but also in terms of the ontogenetically late development of a functional adaptive immune system in teleosts.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Annette Duus
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Christyn Bailey
- Fish Immunology and Pathology Group, Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
36
|
Razali N, Hohjoh H, Inazumi T, Maharjan BD, Nakagawa K, Konishi M, Sugimoto Y, Hasegawa H. Induced Prostanoid Synthesis Regulates the Balance between Th1- and Th2-Producing Inflammatory Cytokines in the Thymus of Diet-Restricted Mice. Biol Pharm Bull 2020; 43:649-662. [PMID: 32238706 DOI: 10.1248/bpb.b19-00838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple external and internal factors have been reported to induce thymic involution. Involution involves dramatic reduction in size and function of the thymus, leading to various immunodeficiency-related disorders. Therefore, clarifying and manipulating molecular mechanisms governing thymic involution are clinically important, although only a few studies have dealt with this issue. In the present study, we investigated the molecular mechanisms underlying thymic involution using a murine acute diet-restriction model. Gene expression analyses indicated that the expression of T helper 1 (Th1)-producing cytokines, namely interferon-γ and interleukin (IL)-2, was down-regulated, while that of Th2-producing IL-5, IL-6, IL-10 and IL-13 was up-regulated, suggesting that acute diet-restriction regulates the polarization of naïve T cells to a Th2-like phenotype during thymic involution. mRNAs for prostanoid biosynthetic enzymes were up-regulated by acute diet-restriction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses detected the increased production of prostanoids, particularly prostaglandin D2 and thromboxane B2, a metabolite of thromboxane A2, in the diet-restricted thymus. Administration of non-steroidal anti-inflammatory drugs, namely aspirin and etodolac, to inhibit prostanoid synthesis suppressed the biased expression of Th1- and Th2-cytokines as well as molecular markers of Th1 and Th2 cells in the diet-restricted thymus, without affecting the reduction of thymus size. In vitro stimulation of thymocytes with phorbol myristate acetate (PMA)/ionomycin confirmed the polarization of thymocytes from diet-restricted mice toward Th2 cells. These results indicated that the induced production of prostanoids during diet-restriction-induced thymic involution is involved in the polarization of naïve T cells in the thymus.
Collapse
Affiliation(s)
| | - Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| | | | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | |
Collapse
|
37
|
Deniz S, Susam S, Aksel N, Gayaf M, Güldaval F, Erbaycu AE, Yılmaz U. Effect of Rebound Thymic Hyperplasia on Survival in Chemotherapy-Treated Lung Cancer. Turk Thorac J 2020; 21:303-307. [PMID: 33031720 DOI: 10.5152/turkthoracj.2020.18163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/03/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Thymus is a lymphoepithelial system in which cells responsible for the immune system are produced and directed. The aim of this study is to determine the overall survival effect of rebound thymic hyperplasia (RTH) in patients with non-small cell lung cancer (NSCLC) treated with systemic chemotherapy (CT). MATERIALS AND METHODS The study was designed as retrospective case series. One hundred and thirty patients who met the inclusion criteria were evaluated. Demographic data, type of tumor, and treatments administered were recorded. The frequency of RTH development and the relationship between RTH development and survival was investigated. RESULTS The median age of the patients was 59, and nine of 13 patients (69.4%) with RTH were iden-tified as stable disease, two patients had a partial response (15.3%), and two were evaluated as progres-sive disease (15.3%). Of the remaining 117 patients, 78 (66.6%) had stable disease, 11 (9.4%) had com-plete response, 21 (17.9%) had partial response, and seven patients were evaluated as having progressive disease (5.9%). The patients were categorized into two groups: Group 1 - without RTH and group 2 - with RTH. Thirteen (10%) of 130 patients developed RTH (group 2), while the remaining 117 (90%) patients did not have RTH (group 1). There was no difference between the two groups (59.1 years) in terms of age (p = 0.933). The RTH developed after a median time of 4.5 months (2-7 months) after CT had been administered. Overall survival was longer in patients with RTH than in patients without RTH (20.04 months) (95% CI, 4.79-35.29) vs. 10.05 months (95% CI, 8.74-11.36; p=0.049). CONCLUSION The developing of RTH during systemic CT may be a prognostic marker in stage 4 non-small cell lung cancer.
Collapse
Affiliation(s)
- Sami Deniz
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| | - Seher Susam
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| | - Nimet Aksel
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| | - Mine Gayaf
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| | - Filiz Güldaval
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| | - Ahmet Emin Erbaycu
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| | - Ufuk Yılmaz
- Department of Chest Diseases, Health Science University, Dr Suat Seren Chest Diseases and Thoracic Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
38
|
Gao S, Jiang J, Jin C, Gao J, Xiong D, Yang P, Cui S, Yang W, Leng Q, Dong J, Chen G, Liu J, Wang L, Ke A, Wang H, Ding J. Interleukin-8 as a candidate for thymoma identification and recurrence surveillance. Nat Commun 2020; 11:4881. [PMID: 32985506 PMCID: PMC7522267 DOI: 10.1038/s41467-020-18697-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
Thymoma is the most common tumor of the anterior mediastinum. Routine imaging methods such as computed tomography or magnetic resonance imaging often lead to misdiagnosis between thymoma and other thymic abnormalities. Therefore, urgently needed is to develop a new diagnostic strategy. Here we identify interleukin-8 (IL-8) as a biomarker for auxiliary diagnosis of thymoma. We find that IL-8 levels in naïve T cells are markedly elevated in patients with thymoma compared to those with other thymic tumors. IL-8 levels in naive T cells are significantly decreased after surgical resection in thymoma patients, and rise again when thymoma recurs. A receiver operating characteristic curve analysis shows that IL-8 evaluation performs well in thymoma identification, with high specificities and sensitivities. We also observe significant clinical relevance between IL-8 levels in naïve T cells and clinicopathological features. In conclusion, our study suggests that IL-8 is a biomarker for thymoma identification and recurrence surveillance.
Collapse
Affiliation(s)
- Shilin Gao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Xuhui Central Hospital, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dian Xiong
- Department of Thoracic Surgery, Xuhui Central Hospital, Shanghai, China
| | - Pengjie Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shuzhong Cui
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenhao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Qibin Leng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junzhen Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wang
- Physical Examination Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jianyong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Wei TT, Li MJ, Guo L, Xie YD, Chen WH, Sun Y, Liu GH, Ding Y, Chai YR. Resveratrol ameliorates thymus senescence changes in D-galactose induced mice. Microbiol Immunol 2020; 64:620-629. [PMID: 32691886 DOI: 10.1111/1348-0421.12833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2023]
Abstract
The thymic microenvironment plays an important role in the development of T cells. A decrease of thymic epithelial cells is the main cause of age-related thymic atrophy or degeneration. Resveratrol (RSV), a phytoalexin produced from plants, has been shown to inhibit the adverse effects of dietary obesity on the structure and function of the thymus. D-Galactose (D-gal) can induce accelerated aging in mice. In the present study, young mice (2 months old) were injected with D-gal (120 mg/kg/day) for 8 consecutive weeks to construct an accelerated aging model. Compared with normal control mice, the thymus epithelium of the D-gal treated mice had structural changes, the number of senescent cells increased, the number of CD4+ T cells decreased, and CD8+ T cells increased. After RSV administration by gavage for 6 weeks, it was found that RSV improved the surface phenotypes of D-gal treated mice, and recovered thymus function by maintaining the ratio of CD4+ to CD8+ cells. It also indicated that RSV enhanced the cell proliferation and inhibited cell senescence. Increased autoimmune regulator (Aire) expression was present in the RSV treated mice. The lymphotoxin-beta receptor (LTβR) expression also increased. These findings suggested that RSV intake could restore the alterations caused by D-gal treatment in the thymus via stimulation of Aire expression.
Collapse
Affiliation(s)
- Ting-Ting Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Population and Family Planning Science and Technology Research Institute of Henan, Zhengzhou, Henan Province, China
| | - Meng-Jie Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Dong Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wen-Hui Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guo-Hong Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
40
|
Zhao J, Su M, Lin Y, Liu H, He Z, Lai L. Administration of Amyloid Precursor Protein Gene Deleted Mouse ESC-Derived Thymic Epithelial Progenitors Attenuates Alzheimer's Pathology. Front Immunol 2020; 11:1781. [PMID: 32849642 PMCID: PMC7431620 DOI: 10.3389/fimmu.2020.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia in older adults. Although amyloid-beta (Aβ) plaque deposition and chronic neuroinflammation in the central nervous system (CNS) contribute to AD pathology, neither Aβ plaque removal nor anti-inflammatory therapy has shown much clinical success, suggesting that the combinational therapies for the disease-causative factors may be needed for amelioration. Recent data also suggest that systemic immunity in AD should be boosted, rather than suppressed, to drive an immune-dependent cascade needed for Aβ clearance and brain repair. Thymic epithelial cells (TECs) not only play a critical role in supporting T cell development but also mediate the deletion of autoreactive T cells by expressing autoantigens. We have reported that embryonic stem cells (ESCs) can be selectively induced to differentiate into thymic epithelial progenitors (TEPs) in vitro that further develop into TECs in vivo to support T cell development. We show here that transplantation of mouse ESC (mESC)-TEPs into AD mice reduced cerebral Aβ plaque load and improved cognitive performance, in correlation with an increased number of T cells, enhanced choroid plexus (CP) gateway activity, and increased number of macrophages in the brain. Furthermore, transplantation of the amyloid precursor protein (APP) gene deleted mESC-TEPs (APP-/-) results in more effective reduction of AD pathology as compared to wild-type (APP+/+) mESC-TEPs. This is associated with the generation of Aβ-specific T cells, which leads to an increase of anti-Aβ antibody (Ab)-producing B cells in the spleen and enhanced levels of anti-Aβ antibodies in the serum, as well as an increase of Aβ phagocytosing macrophages in the CNS. Our results suggest that transplantation of APP-/- human ESC- or induced pluripotent stem cell (iPSC)-derived TEPs may provide a new tool to mitigate AD in patients.
Collapse
Affiliation(s)
- Jin Zhao
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Department of Immunology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Haiyan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States.,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
41
|
Chang YW, Kang HM, Lee EJ. Long-Term Follow-Up Ultrasonographic Findings of Intrathyroidal Thymus in Children. Korean J Radiol 2020; 21:1248-1255. [PMID: 32729268 PMCID: PMC7462766 DOI: 10.3348/kjr.2019.0973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/03/2022] Open
Abstract
Objective To analyze long-term follow-up sonographic findings of intrathyroidal thymus in children. Materials and Methods Among 1259 patients with congenital hypothyroidism under 15 years of age who underwent thyroid ultrasonography (US), 41 patients were diagnosed with an intrathyroidal thymus based on US criteria, i.e., hypoechoic solid lesion with punctate and linear echogenicity. In 26 patients aged one to 14 years old, the last follow-up US was performed after 6 to 132 months and compared with the initial US. The lesion was considered to decrease in size if there was a change of more than 2 mm in any dimension. The margin change was divided into well-defined and indistinct, blurred. When the echogenicity changed to a hyperechoic from a characteristic thymic echogenicity pattern, the pattern was considered a hyperechogenic. The changes in size were compared with the changes in shape, margin, and echogenicity pattern. The changes in size, shape, margin, and echogenicity were analyzed the association with the age of last follow-up. Statistical analysis was conducted using the chi-squared test and logistic regression. Results Fifteen (57.7%) cases were stable in size, and 11 (42.3%) decreased in size, including one that disappeared. Ten (38.5%) cases changed to indistinct margins from initially well-defined margins including one case of initially indistinct margin. Six (23.1%) changed to hyperechogenic, from initially characteristic thymic echogenicity patterns. When follow-up change was compared, decreases in size were significantly associated with lesion changes to indistinct margins (p = 0.004). The age at last follow-up was significantly associated with change to hyperechogenicity (odd ratio, 2.141; 95% confidence interval, 1.144–4.010, p = 0.017). Conclusion On follow-up US, an intrathyroidal thymus may be decreased in size, with indistinct margins, or show changes to a hyperechoic mass. Decreases in size may be associated with changing to indistinct margins, and changes to hyperechogenicity may be associated with increasing age.
Collapse
Affiliation(s)
- Yun Woo Chang
- Department of Radiology, Soonchunhyang University Hospital Seoul, Seoul, Korea.
| | - Hee Min Kang
- Department of Radiology, Soonchunhyang University Hospital Seoul, Seoul, Korea
| | - Eun Ji Lee
- Department of Radiology, Soonchunhyang University Hospital Seoul, Seoul, Korea
| |
Collapse
|
42
|
García-Ceca J, Montero-Herradón S, Zapata AG. Thymus aging in mice deficient in either EphB2 or EphB3, two master regulators of thymic epithelium development. Dev Dyn 2020; 249:1243-1258. [PMID: 32506584 DOI: 10.1002/dvdy.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The epithelial microenvironment is involved in thymus aging, but the possible role of EphB receptors that govern the thymic epithelium development has not been investigated. Herein, we study the changes undergone by the thymus of EphB-deficient mice throughout their life. RESULTS Immune alterations occurring throughout life were more severe in mutant than in wild-type (WT) mice. Mutant thymuses exhibit lower cellularity than WT ones, as well as lower proportions of early thymic progenitors cells and double-positive (CD4+ CD8+ ) thymocytes, but higher of double-negative (CD4- CD8- ) and single-positive (CD4+ CD8- , CD4- CD8+ ) cells. Throughout life, CD4+ naïve cells decreased particularly in mutant mice. In correlation, memory T cells, largely CD8+ cells, increased. Aged thymic epithelium undergoes changes including appearance of big epithelial free areas, decrease of K8+ K5- areas, which, however, contain higher proportions of Ly51+ UEA1- cortical epithelial cells, in correlation with reduced Aire+ medullary epithelial cells. Also, aged thymuses particularly those derived from mutant mice exhibited increased collagen IV, fat-storing cells, and connective cells. CONCLUSIONS The absence of EphB accelerates the alterations undergone throughout life by both thymic epithelium and thymocytes, and the proportions of peripheral naïve and memory T cells, all of which are hallmarks of immune aging.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
43
|
Huang Y, Cui Y, Yu S, Liu P, Liu J, He JF, Sun J. Expression characteristics of immune factors in secondary lymphoid organs of newborn, juvenile and adult yaks (Bos grunniens). Cell Tissue Res 2020; 381:285-298. [PMID: 32424508 DOI: 10.1007/s00441-020-03219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
Little is known about lymphoid organ development in yaks. In this study, we characterize and evaluate the main markers of T cell, B cell, plasma cell and antigen-presenting cell in the mesenteric lymph nodes, spleen and hemal node in newborn, juvenile and adult yaks by immunohistochemistry, real-time quantitative polymerase chain reaction and western blotting. The structures of all organs were not fully developed in newborn. The CD3+ cells were mainly located in the paracortex area of the mesenteric lymph node and the T cell dependent area in the hemal node and spleen. CD79a+ cells were mainly detected in the lymphoid follicles. The expression of CD3 and CD79a increased from newborn to juvenile and then decreased in adults. The expression of CD3 was always higher in the spleen and CD79a was higher in the mesenteric lymph node. IgG+ and IgA+ cells were observed in all examined samples, except in newborn yak hemal node. IgG and IgA were up-regulated with age and the highest expression was observed in the mesenteric lymph node. The SIRPα and CD68 were widely expressed. A significant feature was that the SIRPα expression in the spleen was lowest in newborns but highest in juvenile and adult yaks. The expression of CD68 in the hemal node was highest in all groups and increased from newborn to adult yaks. This study sheds light on the relationship between the morphology and function of these organs and provides useful references for normal yak lymphoid organ development.
Collapse
Affiliation(s)
- Yufeng Huang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China. .,Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Penggang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Feng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Juan Sun
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7986071. [PMID: 32089780 PMCID: PMC7025075 DOI: 10.1155/2020/7986071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Collapse
|
45
|
Nacka-Aleksić M, Pilipović I, Kotur-Stevuljević J, Petrović R, Sopta J, Leposavić G. Sexual dimorphism in rat thymic involution: a correlation with thymic oxidative status and inflammation. Biogerontology 2019; 20:545-569. [DOI: 10.1007/s10522-019-09816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
|
46
|
El-Kadiry AEH, Rafei M. Restoring thymic function: Then and now. Cytokine 2019; 120:202-209. [PMID: 31108430 DOI: 10.1016/j.cyto.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/21/2023]
Abstract
Thymic vulnerability, a leading cause of defective immunity, was discovered decades ago. To date, several strategies have been investigated to unveil any immunorestorative capacities they might confer. Studies exploiting castration, transplantation, adoptive cell therapies, hormones/growth factors, and cytokines have demonstrated enhanced in vitro and in vivo thymopoiesis, albeit with clinical restrictions. In this review, we will dissect the thymus on a physiological and pathological level and discuss the pros and cons of several strategies esteemed thymotrophic from a pre-clinical perspective. Finally, we will shed light on interleukin (IL)-21, a pharmacologically-promising cytokine with a significant thymotrophic nature, and elaborate on its potential clinical efficacy and safety in immune-deficient subjects.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada; Montreal Heart Institute, Montréal, Qc, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Qc, Canada.
| |
Collapse
|
47
|
Banfai K, Garai K, Ernszt D, Pongracz JE, Kvell K. Transgenic Exosomes for Thymus Regeneration. Front Immunol 2019; 10:862. [PMID: 31110503 PMCID: PMC6499203 DOI: 10.3389/fimmu.2019.00862] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary.,Faculty of Medicine, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
48
|
Cheng Y, Makara M, Peel E, Fox S, Papenfuss AT, Belov K. Tasmanian devils with contagious cancer exhibit a constricted T-cell repertoire diversity. Commun Biol 2019; 2:99. [PMID: 30886908 PMCID: PMC6416256 DOI: 10.1038/s42003-019-0342-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is threatened by a contagious cancer, known as Devil Facial Tumour Disease (DFTD). A highly diverse T-cell receptor (TCR) repertoire is crucial for successful host defence against cancers. By investigating TCR beta chain diversity in devils of different ages, we show that the T-cell repertoire in devils constricts in their second year of life, which may explain the higher DFTD prevalence in older devils. Unexpectedly, we also observed a pronounced decline in TCR diversity and T cell clonal expansion in devils after DFTD infection. These findings overturned the previous assumption that DFTD did not directly impact host immunity. Yuanyuan Cheng et al. showed that the T-cell repertoire diversity of Tasmanian devils diminishes during their second year of life which may explain the prevalence of devil facial tumor disease in older devils. Infection with this disease also impacts T-cell diversity highlighting a previously unknown effect of the devil facial tumor disease on host immunity.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariano Makara
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha Fox
- Department of Primary Industries, Parks, Water and Environment, 134 Macquarie Street, Hobart, Tasmania, 7000, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
49
|
Barbouti A, Evangelou K, Pateras IS, Papoudou-Bai A, Patereli A, Stefanaki K, Rontogianni D, Muñoz-Espín D, Kanavaros P, Gorgoulis VG. In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mech Ageing Dev 2019; 177:88-90. [PMID: 29490231 DOI: 10.1016/j.mad.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/02/2023]
Abstract
Cellular senescence, an age-related process in response to damage and stress, also occurs during normal development and adult life. The thymus is a central lymphoepithelial organ of the immune system that exhibits age-related changes termed thymic involution. Since the mechanisms regulating thymic involution are still not well elucidated, we questioned whether cellular senescence is implicated in this process. We demonstrate, for the first time in situ, that cellular senescence occurs during human thymic involution using SenTraGor™, a novel chemical compound that is applicable in archival tissue material, providing thus further insights in thymus histophysiology.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Konstantinos Evangelou
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Amalia Patereli
- Department of Pathology, Agia Sophia Hospital, Athens, Greece
| | | | - Dimitra Rontogianni
- Department of Anatomic Pathology, Evangelismos General Hospital, University of Athens, Athens, Greece
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
50
|
Conte M, Martucci M, Sandri M, Franceschi C, Salvioli S. The Dual Role of the Pervasive "Fattish" Tissue Remodeling With Age. Front Endocrinol (Lausanne) 2019; 10:114. [PMID: 30863366 PMCID: PMC6400104 DOI: 10.3389/fendo.2019.00114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Human aging is characterized by dramatic changes in body mass composition that include a general increase of the total fat mass. Within the fat mass, a change in the proportions of adipose tissues also occurs with aging, affecting body metabolism, and playing a central role in many chronic diseases, including insulin resistance, obesity, cardiovascular diseases, and type II diabetes. In mammals, fat accumulates as white (WAT) and brown (BAT) adipose tissue, which differ both in morphology and function. While WAT is involved in lipid storage and immuno-endocrine responses, BAT is aimed at generating heat. With advancing age BAT declines, while WAT increases reaching the maximum peak by early old age and changes its distribution toward a higher proportion of visceral WAT. However, lipids tend to accumulate also within lipid droplets (LDs) in non-adipose tissues, including muscle, liver, and heart. The excess of such ectopic lipid deposition and the alteration of LD homeostasis contribute to the pathogenesis of the above-mentioned age-related diseases. It is not clear why age-associated tissue remodeling seems to lean toward lipid deposition as a "default program." However, it can be noted that such remodeling is not inevitably detrimental. In fact, such a programmed redistribution of fat throughout life could be considered physiological and even protective, in particular at extreme old age. In this regard, it has to be considered that an excessive decrease of subcutaneous peripheral fat is associated with a pro-inflammatory status, and a decrease of LD is associated with lipotoxicity leading to an increased risk of insulin resistance, type II diabetes and cardiovascular diseases. At variance, a balanced rate of fat content and distribution has beneficial effects for health and metabolic homeostasis, positively affecting longevity. In this review, we will summarize the present knowledge on the mechanisms of the age-related changes in lipid distribution and we will discuss how fat mass negatively or positively impacts on human health and longevity.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
- *Correspondence: Maria Conte
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|