1
|
Li B, Zhang J, He T, Yuan H, Wu H, Wang P, Wu C. PRR adjuvants restrain high stability peptides presentation on APCs. eLife 2024; 13:RP99173. [PMID: 39475096 PMCID: PMC11524579 DOI: 10.7554/elife.99173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Adjuvants can affect APCs function and boost adaptive immune responses post-vaccination. However, whether they modulate the specificity of immune responses, particularly immunodominant epitope responses, and the mechanisms of regulating antigen processing and presentation remain poorly defined. Here, using overlapping synthetic peptides, we screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that the adjuvants altered the antigen-specific CD4+ T-cell immunodominant epitope hierarchy. MHC-II immunopeptidomes demonstrated that the peptide repertoires presented by APCs were significantly altered by the adjuvants. Unexpectedly, no novel peptide presentation was detected after adjuvant treatment, whereas peptides with high binding stability for MHC-II presented in the control group were missing after adjuvant stimulation, particularly in the MPLA- and CpG-stimulated groups. The low-stability peptide present in the adjuvant groups effectively elicited robust T-cell responses and formed immune memory. Collectively, our results suggest that adjuvants (MPLA and CpG) inhibit high-stability peptide presentation instead of revealing cryptic epitopes, which may alter the specificity of CD4+ T-cell-dominant epitope responses. The capacity of adjuvants to modify peptide-MHC (pMHC) stability and antigen-specific T-cell immunodominant epitope responses has fundamental implications for the selection of suitable adjuvants in the vaccine design process and epitope vaccine development.
Collapse
Affiliation(s)
- Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| |
Collapse
|
2
|
Rapaka RR. How do adjuvants enhance immune responses? eLife 2024; 13:e101259. [PMID: 39136115 PMCID: PMC11321759 DOI: 10.7554/elife.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
By altering which peptide antigens are presented to CD4+ T cells, adjuvants affect the specificity of the immune response.
Collapse
Affiliation(s)
- Rekha R Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of MedicineBaltimoreUnited States
- Moderna TherapeuticsCambridgeUnited States
| |
Collapse
|
3
|
Budeus B, Álvaro-Benito M, Crivello P. HLA-DM and HLA-DO interplay for the peptide editing of HLA class II in healthy tissues and leukemia. Best Pract Res Clin Haematol 2024; 37:101561. [PMID: 39098801 DOI: 10.1016/j.beha.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
HLA class II antigen presentation is modulated by the activity of the peptide editor HLA-DM and its antagonist HLA-DO, with their interplay controlling the peptide repertoires presented by normal and malignant cells. The role of these molecules in allogeneic hematopoietic cell transplantation (alloHCT) is poorly investigated. Balanced expression of HLA-DM and HLA-DO can influence the presentation of leukemia-associated antigens and peptides targeted by alloreactive T cells, therefore affecting both anti-leukemia immunity and the potential onset of Graft versus Host Disease. We leveraged on a large collection of bulk and single cell RNA sequencing data, available at different repositories, to comprehensively review the level and distribution of HLA-DM and HLA-DO in different cell types and tissues of the human body. The resulting expression atlas will help future investigations aiming to dissect the dual role of HLA class II peptide editing in alloHCT, and their potential impact on its clinical outcome.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
| | - Miguel Álvaro-Benito
- School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute, Madrid, Spain; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
| |
Collapse
|
4
|
Connection between MHC class II binding and aggregation propensity: The antigenic peptide 10 of Paracoccidioides brasiliensis as a benchmark study. Comput Struct Biotechnol J 2023; 21:1746-1758. [PMID: 36890879 PMCID: PMC9986244 DOI: 10.1016/j.csbj.2023.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The aggregation of epitopes that are also able to bind major histocompatibility complex (MHC) alleles raises questions around the potential connection between the formation of epitope aggregates and their affinities to MHC receptors. We first performed a general bioinformatic assessment over a public dataset of MHC class II epitopes, finding that higher experimental binding correlates with higher aggregation-propensity predictors. We then focused on the case of P10, an epitope used as a vaccine candidate against Paracoccidioides brasiliensis that aggregates into amyloid fibrils. We used a computational protocol to design variants of the P10 epitope to study the connection between the binding stabilities towards human MHC class II alleles and their aggregation propensities. The binding of the designed variants was tested experimentally, as well as their aggregation capacity. High-affinity MHC class II binders in vitro were more disposed to aggregate forming amyloid fibrils capable of binding Thioflavin T and congo red, while low affinity MHC class II binders remained soluble or formed rare amorphous aggregates. This study shows a possible connection between the aggregation propensity of an epitope and its affinity for the MHC class II cleft.
Collapse
|
5
|
Pissarra J, Dorkeld F, Loire E, Bonhomme V, Sereno D, Lemesre JL, Holzmuller P. SILVI, an open-source pipeline for T-cell epitope selection. PLoS One 2022; 17:e0273494. [PMID: 36070252 PMCID: PMC9451077 DOI: 10.1371/journal.pone.0273494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
High-throughput screening of available genomic data and identification of potential antigenic candidates have promoted the development of epitope-based vaccines and therapeutics. Several immunoinformatic tools are available to predict potential epitopes and other immunogenicity-related features, yet it is still challenging and time-consuming to compare and integrate results from different algorithms. We developed the R script SILVI (short for: from in silico to in vivo), to assist in the selection of the potentially most immunogenic T-cell epitopes from Human Leukocyte Antigen (HLA)-binding prediction data. SILVI merges and compares data from available HLA-binding prediction servers, and integrates additional relevant information of predicted epitopes, namely BLASTp alignments with host proteins and physical-chemical properties. The two default criteria applied by SILVI and additional filtering allow the fast selection of the most conserved, promiscuous, strong binding T-cell epitopes. Users may adapt the script at their discretion as it is written in open-source R language. To demonstrate the workflow and present selection options, SILVI was used to integrate HLA-binding prediction results of three example proteins, from viral, bacterial and parasitic microorganisms, containing validated epitopes included in the Immune Epitope Database (IEDB), plus the Human Papillomavirus (HPV) proteome. Applying different filters on predicted IC50, hydrophobicity and mismatches with host proteins allows to significantly reduce the epitope lists with favourable sensitivity and specificity to select immunogenic epitopes. We contemplate SILVI will assist T-cell epitope selections and can be continuously refined in a community-driven manner, helping the improvement and design of peptide-based vaccines or immunotherapies. SILVI development version is available at: github.com/JoanaPissarra/SILVI2020 and https://doi.org/10.5281/zenodo.6865909.
Collapse
Affiliation(s)
- Joana Pissarra
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
- * E-mail:
| | - Franck Dorkeld
- UMR CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier (I-MUSE), Montpellier, France
| | - Etienne Loire
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Vincent Bonhomme
- ISEM, CNRS, EPHE, IRD, University of Montpellier (I-MUSE), Montpellier, France
| | - Denis Sereno
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
| | - Jean-Loup Lemesre
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| |
Collapse
|
6
|
Ochoa R, Lunardelli VAS, Rosa DS, Laio A, Cossio P. Multiple-Allele MHC Class II Epitope Engineering by a Molecular Dynamics-Based Evolution Protocol. Front Immunol 2022; 13:862851. [PMID: 35572587 PMCID: PMC9094701 DOI: 10.3389/fimmu.2022.862851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Epitopes that bind simultaneously to all human alleles of Major Histocompatibility Complex class II (MHC II) are considered one of the key factors for the development of improved vaccines and cancer immunotherapies. To engineer MHC II multiple-allele binders, we developed a protocol called PanMHC-PARCE, based on the unsupervised optimization of the epitope sequence by single-point mutations, parallel explicit-solvent molecular dynamics simulations and scoring of the MHC II-epitope complexes. The key idea is accepting mutations that not only improve the affinity but also reduce the affinity gap between the alleles. We applied this methodology to enhance a Plasmodium vivax epitope for multiple-allele binding. In vitro rate-binding assays showed that four engineered peptides were able to bind with improved affinity toward multiple human MHC II alleles. Moreover, we demonstrated that mice immunized with the peptides exhibited interferon-gamma cellular immune response. Overall, the method enables the engineering of peptides with improved binding properties that can be used for the generation of new immunotherapies.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia
| | | | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, Sao Paulo, Brazil.,Institute for Investigation in Immunology (iii), Instituto Nacional de Ciência e Tecnologia (INCT), Sao Paulo, Brazil
| | - Alessandro Laio
- Physics Area, International School for Advanced Studies (SISSA), Trieste, Italy.,Condensed Matter and Statistical Physics Section, International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Center for Computational Mathematics, Flatiron Institute, New York, NY, United States.,Center for Computational Biology, Flatiron Institute, New York, NY, United States
| |
Collapse
|
7
|
GILT Expression in Human Melanoma Cells Enhances Generation of Antigenic Peptides for HLA Class II-Mediated Immune Recognition. Int J Mol Sci 2022; 23:ijms23031066. [PMID: 35162988 PMCID: PMC8835040 DOI: 10.3390/ijms23031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.
Collapse
|
8
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Bernhardt AL, Zeun J, Marecek M, Reimann H, Kretschmann S, Bausenwein J, van der Meijden ED, Karg MM, Haug T, Meintker L, Lutzny-Geier G, Mackensen A, Kremer AN. Influence of DM-sensitivity on immunogenicity of MHC class II restricted antigens. J Immunother Cancer 2021; 9:jitc-2021-002401. [PMID: 34266882 PMCID: PMC8286791 DOI: 10.1136/jitc-2021-002401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Graft-versus-host-disease (GvHD) is a major problem in allogeneic stem cell transplantation. We previously described two types of endogenous human leukocyte antigen (HLA)-II restricted antigens depending on their behavior towards HLA-DM. While DM-resistant antigens are presented in the presence of HLA-DM, DM-sensitive antigens rely on the expression of HLA-DO-the natural inhibitor of HLA-DM. Since expression of HLA-DO is not upregulated by inflammatory cytokines, DM-sensitive antigens cannot be presented on non-hematopoietic tissues even under inflammatory conditions. Therefore, usage of CD4+ T cells directed against DM-sensitive antigens might allow induction of graft-versus-leukemia effect without GvHD. As DM-sensitivity is likely linked to low affinity peptides, it remains elusive whether DM-sensitive antigens are inferior in their immunogenicity. METHODS We created an in vivo system using a DM-sensitive and a DM-resistant variant of the same antigen. First, we generated murine cell lines overexpressing either H2-M or H2-O (murine HLA-DM and HLA-DO) to assign the two model antigens ovalbumin (OVA) and DBY to their category. Further, we introduced mutations within the two T-cell epitopes and tested the effect on DM-sensitivity or DM-resistance. Furthermore, we vaccinated C57BL/6 mice with either variant of the epitope and measured expansion and reactivity of OVA-specific and DBY-specific CD4+ T cells. RESULTS By testing T-cell recognition of OVA and DBY on a murine B-cell line overexpressing H2-M and H2-O, respectively, we showed that OVA leads to a stronger T-cell activation in the presence of H2-O demonstrating its DM-sensitivity. In contrast, the DBY epitope does not rely on H2-O for T-cell activation indicating DM-resistance. By introducing mutations within the T-cell epitopes we could generate one further DM-sensitive variant of OVA and two DM-resistant counterparts. Likewise, we designed DM-resistant and DM-sensitive variants of DBY. On vaccination of C57BL/6 mice with either epitope variant we measured comparable expansion and reactivity of OVA-specific and DBY-specific T-cells both in vivo and ex vivo. By generating T-cell lines and clones of healthy human donors we showed that DM-sensitive antigens are targeted by the natural T-cell repertoire. CONCLUSION We successfully generated DM-sensitive and DM-resistant variants for two model antigens. Thereby, we demonstrated that DM-sensitive antigens are not inferior to their DM-resistant counterpart and are therefore interesting tools for immunotherapy after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Anna Luise Bernhardt
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Julia Zeun
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Miriam Marecek
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Hannah Reimann
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Judith Bausenwein
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Edith D van der Meijden
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Margarete M Karg
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany.,Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tabea Haug
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Lisa Meintker
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| |
Collapse
|
10
|
Cassotta A, Paparoditis P, Geiger R, Mettu RR, Landry SJ, Donati A, Benevento M, Foglierini M, Lewis DJM, Lanzavecchia A, Sallusto F. Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. J Exp Med 2021; 217:151933. [PMID: 32644114 PMCID: PMC7537397 DOI: 10.1084/jem.20200206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
The importance of CD4+ T helper (Th) cells is well appreciated in view of their essential role in the elicitation of antibody and cytotoxic T cell responses. However, the mechanisms that determine the selection of immunodominant epitopes within complex protein antigens remain elusive. Here, we used ex vivo stimulation of memory T cells and screening of naive and memory T cell libraries, combined with T cell cloning and TCR sequencing, to dissect the human naive and memory CD4+ T cell repertoire against the influenza pandemic H1 hemagglutinin (H1-HA). We found that naive CD4+ T cells have a broad repertoire, being able to recognize naturally processed as well as cryptic peptides spanning the whole H1-HA sequence. In contrast, memory Th cells were primarily directed against just a few immunodominant peptides that were readily detected by mass spectrometry–based MHC-II peptidomics and predicted by structural accessibility analysis. Collectively, these findings reveal the presence of a broad repertoire of naive T cells specific for cryptic H1-HA peptides and demonstrate that antigen processing represents a major constraint determining immunodominance.
Collapse
Affiliation(s)
- Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA
| | - Alessia Donati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Marco Benevento
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David J M Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Szeto C, Bloom JI, Sloane H, Lobos CA, Fodor J, Jayasinghe D, Chatzileontiadou DSM, Grant EJ, Buckle AM, Gras S. Impact of HLA-DR Antigen Binding Cleft Rigidity on T Cell Recognition. Int J Mol Sci 2020; 21:ijms21197081. [PMID: 32992915 PMCID: PMC7582474 DOI: 10.3390/ijms21197081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/22/2023] Open
Abstract
The interaction between T cell receptor (TCR) and peptide (p)-Human Leukocyte Antigen (HLA) complexes is the critical first step in determining T cell responses. X-ray crystallographic studies of pHLA in TCR-bound and free states provide a structural perspective that can help understand T cell activation. These structures represent a static “snapshot”, yet the nature of pHLAs and their interactions with TCRs are highly dynamic. This has been demonstrated for HLA class I molecules with in silico techniques showing that some interactions, thought to stabilise pHLA-I, are only transient and prone to high flexibility. Here, we investigated the dynamics of HLA class II molecules by focusing on three allomorphs (HLA-DR1, -DR11 and -DR15) that are able to present the same epitope and activate CD4+ T cells. A single TCR (F24) has been shown to recognise all three HLA-DR molecules, albeit with different affinities. Using molecular dynamics and crystallographic ensemble refinement, we investigate the molecular basis of these different affinities and uncover hidden roles for HLA polymorphic residues. These polymorphisms were responsible for the widening of the antigen binding cleft and disruption of pHLA-TCR interactions, underpinning the hierarchy of F24 TCR binding affinity, and ultimately T cell activation. We expanded this approach to all available pHLA-DR structures and discovered that all HLA-DR molecules were inherently rigid. Together with in vitro protein stability and peptide affinity measurements, our results suggest that HLA-DR1 possesses inherently high protein stability, and low HLA-DM susceptibility.
Collapse
Affiliation(s)
- Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Joseph I. Bloom
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Christian A. Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - James Fodor
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (C.S.); (J.I.B.); (H.S.); (C.A.L.); (J.F.); (D.J.); (D.S.M.C.); (E.J.G.); (A.M.B.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
12
|
Steiner G, Marban-Doran C, Langer J, Pimenova T, Duran-Pacheco G, Sauter D, Langenkamp A, Solier C, Singer T, Bray-French K, Ducret A. Enabling Routine MHC-II-Associated Peptide Proteomics for Risk Assessment of Drug-Induced Immunogenicity. J Proteome Res 2020; 19:3792-3806. [PMID: 32786679 DOI: 10.1021/acs.jproteome.0c00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Major histocompatibility complex-II (MHC-II)-Associated Peptide Proteomics (MAPPs) is a mass spectrometry-based approach to identify and relatively quantitate naturally processed and presented MHC-II-associated peptides that can potentially activate T cells and contribute to the immunogenicity of a drug. Acceptance of the MAPPs technology as an appropriate preclinical (and potentially clinical) immunogenicity risk assessment tool depends not only on its technical stability and robustness but also on the ability to compare results across experiments and donors. To this end, we developed a specialized MAPPs data processing pipeline, dataMAPPs, which presents complex mass spectrometric data sets in the form of heat maps (heatMAPPs), enabling rapid and convenient comparison between conditions and donors. A customized normalization procedure based on identified endogenous peptides standardizes signal intensities within and between donors and enables cross-experimental comparison. We evaluated the technical reproducibility of the MAPPs platform using tool compounds with respect to the most prominent experimental factors and found that the systematic biological differences across donors by far outweighed any technical source of variation. We illustrate the capability of the MAPPs platform to generate data that may be used for preclinical risk assessment of drug-induced immunogenicity and discuss its applicability in the clinics.
Collapse
Affiliation(s)
- Guido Steiner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Céline Marban-Doran
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Jessica Langer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Tatiana Pimenova
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Gonzalo Duran-Pacheco
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Denise Sauter
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Anja Langenkamp
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Corinne Solier
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Katharine Bray-French
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| | - Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Innovation Center Basel, Basel 4070, Switzerland
| |
Collapse
|
13
|
Knowlden ZAG, Richards KA, Moritzky SA, Sant AJ. Peptide Epitope Hot Spots of CD4 T Cell Recognition Within Influenza Hemagglutinin During the Primary Response to Infection. Pathogens 2019; 8:pathogens8040220. [PMID: 31694141 PMCID: PMC6963931 DOI: 10.3390/pathogens8040220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
Antibodies specific for the hemagglutinin (HA) protein of influenza virus are critical for protective immunity to infection. Our studies show that CD4 T cells specific for epitopes derived from HA are the most effective in providing help for the HA-specific B cell responses to infection and vaccination. In this study, we asked whether HA epitopes recognized by CD4 T cells in the primary response to infection are equally distributed across the HA protein or if certain segments are enriched in CD4 T cell epitopes. Mice that collectively expressed eight alternative MHC (Major Histocompatibility Complex) class II molecules, that would each have different peptide binding specificities, were infected with an H1N1 influenza virus. CD4 T cell peptide epitope specificities were identified by cytokine EliSpots. These studies revealed that the HA-specific CD4 T cell epitopes cluster in two distinct regions of HA and that some segments of HA are completely devoid of CD4 T cell epitopes. When located on the HA structure, it appears that the regions that most poorly recruit CD4 T cells are sequestered within the interior of the HA trimer, perhaps inaccessible to the proteolytic machinery inside the endosomal compartments of antigen presenting cells.
Collapse
|
14
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
15
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
16
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
17
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Evolving Insights for MHC Class II Antigen Processing and Presentation in Health and Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0097-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Abstract
Unlike B cells, CD8-positive and CD4-positive T cells of the adaptive immune system do not recognize intact foreign proteins but instead recognize polypeptide fragments of potential antigens. These antigenic peptides are expressed on the surface of antigen presenting cells bound to MHC class I and MHC class II proteins. Here, we review the basics of antigen acquisition by antigen presenting cells, antigen proteolysis into polypeptide fragments, antigenic peptide binding to MHC proteins, and surface display of both MHC class I-peptide and MHC class II-peptide complexes.
Collapse
|
20
|
Kim A, Boronina TN, Cole RN, Darrah E, Sadegh-Nasseri S. Distorted Immunodominance by Linker Sequences or other Epitopes from a Second Protein Antigen During Antigen-Processing. Sci Rep 2017; 7:46418. [PMID: 28422163 PMCID: PMC5396073 DOI: 10.1038/srep46418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/15/2017] [Indexed: 11/09/2022] Open
Abstract
The immune system focuses on and responds to very few representative immunodominant epitopes from pathogenic insults. However, due to the complexity of the antigen processing, understanding the parameters that lead to immunodominance has proved difficult. In an attempt to uncover the determinants of immunodominance among several dominant epitopes, we utilized a cell free antigen processing system and allowed the system to identify the hierarchies among potential determinants. We then tested the results in vivo; in mice and in human. We report here, that immunodominance of known sequences in a given protein can change if two or more proteins are being processed and presented simultaneously. Surprisingly, we find that new spacer/tag sequences commonly added to proteins for purification purposes can distort the capture of the physiological immunodominant epitopes. We warn against adding tags and spacers to candidate vaccines, or recommend cleaving it off before using for vaccination.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatiana N Boronina
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Darrah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | |
Collapse
|
21
|
Thomas C, Tampé R. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions. Front Immunol 2017; 8:65. [PMID: 28228754 PMCID: PMC5296336 DOI: 10.3389/fimmu.2017.00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein–protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that highlights the common mechanistic principles shared by the MHC I editors Tsn and TAPBPR, and the MHC II editor HLA-DM, but also illustrate the distinct quality control strategies employed by these chaperones to sample epitopes. Unraveling the mechanistic underpinnings of catalyzed peptide proofreading will be crucial for a thorough understanding of many aspects of immune recognition, from infection control and tumor immunity to autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
22
|
Zhou Z, Reyes-Vargas E, Escobar H, Chang KY, Barker AP, Rockwood AL, Delgado JC, He X, Jensen PE. Peptidomic analysis of type 1 diabetes associated HLA-DQ molecules and the impact of HLA-DM on peptide repertoire editing. Eur J Immunol 2016; 47:314-326. [PMID: 27861808 DOI: 10.1002/eji.201646656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/21/2016] [Accepted: 11/10/2016] [Indexed: 11/08/2022]
Abstract
HLA-DM and class II associated invariant chain (Ii) are key cofactors in the MHC class II (MHCII) antigen processing pathway. We used tandem mass spectrometry sequencing to directly interrogate the global impact of DM and Ii on the repertoire of MHCII-bound peptides in human embryonic kidney 293T cells expressing HLA-DQ molecules in the absence or presence of these cofactors. We found that Ii and DM have a major impact on the repertoire of peptides presented by DQ1 and DQ6, with the caveat that this technology is not quantitative. The peptide repertoires of type 1 diabetes (T1D) associated DQ8, DQ2, and DQ8/2 are altered to a lesser degree by DM expression, and these molecules share overlapping features in their peptide binding motifs that are distinct from control DQ1 and DQ6 molecules. Peptides were categorized into DM-resistant, DM-dependent, or DM-sensitive groups based on the mass spectrometry data, and representative peptides were tested in competitive binding assays and peptide dissociation rate experiments with soluble DQ6. Our data support the conclusion that high intrinsic stability of DQ-peptide complexes is necessary but not sufficient to confer resistance to DM editing, and provide candidate parameters that may be useful in predicting the sensitivity of T-cell epitopes to DM editing.
Collapse
Affiliation(s)
- Zemin Zhou
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | | | | - Kuan Y Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Adam P Barker
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Alan L Rockwood
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Julio C Delgado
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Peter E Jensen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Ziraldo C, Gong C, Kirschner DE, Linderman JJ. Strategic Priming with Multiple Antigens can Yield Memory Cell Phenotypes Optimized for Infection with Mycobacterium tuberculosis: A Computational Study. Front Microbiol 2016; 6:1477. [PMID: 26779136 PMCID: PMC4701940 DOI: 10.3389/fmicb.2015.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. Although many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likely key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. Given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.
Collapse
Affiliation(s)
- Cordelia Ziraldo
- Department of Chemical Engineering, University of Michigan, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA
| | - Chang Gong
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann ArborMI, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jennifer J Linderman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| |
Collapse
|
24
|
Jiang W, Strohman MJ, Somasundaram S, Ayyangar S, Hou T, Wang N, Mellins ED. pH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity. Sci Rep 2015; 5:17333. [PMID: 26610428 PMCID: PMC4661524 DOI: 10.1038/srep17333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/28/2015] [Indexed: 11/14/2022] Open
Abstract
The peptide-exchange catalyst, HLA-DM, and its inhibitor, HLA-DO control endosomal generation of peptide/class II major histocompatibility protein (MHC-II) complexes; these complexes traffic to the cell surface for inspection by CD4+ T cells. Some evidence suggests that pH influences DO regulation of DM function, but pH also affects the stability of polymorphic MHC-II proteins, spontaneous peptide loading, DM/MHC-II interactions and DM catalytic activity, imposing challenges on approaches to determine pH effects on DM-DO function and their mechanistic basis. Using optimized biochemical methods, we dissected pH-dependence of spontaneous and DM-DO-mediated class II peptide exchange and identified an MHC-II allele-independent relationship between pH, DO/DM ratio and efficient peptide exchange. We demonstrate that active, free DM is generated from DM-DO complexes at late endosomal/lysosomal pH due to irreversible, acid-promoted DO destruction rather than DO/DM molecular dissociation. Any soluble DM that remains in complex with DO stays inert. pH-exposure of DM-DO in cell lysates corroborates such a pH-regulated mechanism, suggesting acid-activated generation of functional DM in DO-expressing cells.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael J Strohman
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | | | - Sashi Ayyangar
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Tieying Hou
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Nan Wang
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
The Role of Aggregates of Therapeutic Protein Products in Immunogenicity: An Evaluation by Mathematical Modeling. J Immunol Res 2015; 2015:401956. [PMID: 26682236 PMCID: PMC4670651 DOI: 10.1155/2015/401956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/07/2015] [Indexed: 01/12/2023] Open
Abstract
Therapeutic protein products (TPP) have been widely used to treat a variety of human diseases, including cancer, hemophilia, and autoimmune diseases. However, TPP can induce unwanted immune responses that can impact both drug efficacy and patient safety. The presence of aggregates is of particular concern as they have been implicated in inducing both T cell-independent and T cell-dependent immune responses. We used mathematical modeling to evaluate several mechanisms through which aggregates of TPP could contribute to the development of immunogenicity. Modeling interactions between aggregates and B cell receptors demonstrated that aggregates are unlikely to induce T cell-independent immune responses by cross-linking B cell receptors because the amount of signal transducing complex that can form under physiologically relevant conditions is limited. We systematically evaluate the role of aggregates in inducing T cell-dependent immune responses using a recently developed multiscale mechanistic mathematical model. Our analysis indicates that aggregates could contribute to T cell-dependent immune response by inducing high affinity epitopes which may not be present in the nonaggregated TPP and/or by enhancing danger signals to break tolerance. In summary, our computational analysis is suggestive of novel insights into the mechanisms underlying aggregate-induced immunogenicity, which could be used to develop mitigation strategies.
Collapse
|
26
|
Yin L, Maben ZJ, Becerra A, Stern LJ. Evaluating the Role of HLA-DM in MHC Class II-Peptide Association Reactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:706-16. [PMID: 26062997 PMCID: PMC4490944 DOI: 10.4049/jimmunol.1403190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/15/2015] [Indexed: 01/07/2023]
Abstract
Ag presentation by MHC class II (MHC II) molecules to CD4(+) T cells plays a key role in the regulation of the adaptive immune response. Loading of antigenic peptides onto MHC II is catalyzed by HLA-DM (DM), a nonclassical MHC II molecule. The mechanism of DM-facilitated peptide loading is an outstanding problem in the field of Ag presentation. In this study, we systemically explored possible kinetic mechanisms for DM-catalyzed peptide association by measuring real-time peptide association kinetics using fluorescence polarization assays and comparing the experimental data with numerically modeled peptide association reactions. We found that DM does not facilitate peptide association by stabilizing peptide-free MHC II against aggregation. Moreover, DM does not promote transition of an inactive peptide-averse conformation of MHC II to an active peptide-receptive conformation. Instead, DM forms an intermediate with MHC II that binds peptide with faster kinetics than MHC II in the absence of DM. In the absence of peptides, interaction of MHC II with DM leads to inactivation and formation of a peptide-averse form. This study provides novel insights into how DM efficiently catalyzes peptide loading during Ag presentation.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Zachary J Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Aniuska Becerra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
27
|
Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol 2015; 295:118-26. [DOI: 10.1016/j.cellimm.2015.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
28
|
Karunakaran KP, Yu H, Jiang X, Chan Q, Moon KM, Foster LJ, Brunham RC. Outer membrane proteins preferentially load MHC class II peptides: implications for a Chlamydia trachomatis T cell vaccine. Vaccine 2015; 33:2159-66. [PMID: 25738816 PMCID: PMC4390527 DOI: 10.1016/j.vaccine.2015.02.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 02/03/2023]
Abstract
CD4 T cell immune responses such as interferon-γ and tumor necrosis factor-α secretion are necessary for Chlamydia immunity. We used an immunoproteomic approach in which Chlamydia trachomatis and Chlamydia muridarum-derived peptides presented by MHC class II molecules on the surface of infected dendritic cells (DCs) were identified by tandem mass spectrometry using bone marrow derived DCs (BMDCs) from mice of different MHC background. We first compared the C. muridarum immunoproteome in C3H mice to that previously identified in C57BL/6 mice. Fourteen MHC class II binding peptides from 11 Chlamydia proteins were identified from C3H infected BMDCs. Two C. muridarum proteins overlapped between C3H and C57B/6 mice and both were polymorphic membrane proteins (Pmps) which presented distinct class II binding peptides. Next we studied DCs from C57BL/6 mice infected with the human strain, C. trachomatis serovar D. Sixty MHC class II binding peptides derived from 27 C. trachomatis proteins were identified. Nine proteins were orthologous T cell antigens between C. trachomatis and C. muridarum and 2 of the nine were Pmps which generated MHC class II binding epitopes at distinct sequences within the proteins. As determined by antigen specific splenocyte responses outer membrane proteins PmpF, -G and -H and the major outer membrane protein (MOMP) were antigenic in mice previously infected with C. muridarum or C. trachomatis. Furthermore a recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with MOMP formulated with a Th1 polarizing adjuvant significantly accelerated (p<0.001) clearance in the C57BL/6 mice C. trachomatis transcervical infection model. We conclude that Chlamydia outer membrane proteins are important T cell antigens useful in the development of a C. trachomatis subunit vaccine.
Collapse
Affiliation(s)
- Karuna P Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Hong Yu
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Xiaozhou Jiang
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Queenie Chan
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Robert C Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Álvaro-Benito M, Wieczorek M, Sticht J, Kipar C, Freund C. HLA-DMA polymorphisms differentially affect MHC class II peptide loading. THE JOURNAL OF IMMUNOLOGY 2014; 194:803-16. [PMID: 25505276 DOI: 10.4049/jimmunol.1401389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the adaptive immune response, MHCII proteins display antigenic peptides on the cell surface of APCs for CD4(+) T cell surveillance. HLA-DM, a nonclassical MHCII protein, acts as a peptide exchange catalyst for MHCII, editing the peptide repertoire. Although they map to the same gene locus, MHCII proteins exhibit a high degree of polymorphism, whereas only low variability has been observed for HLA-DM. As HLA-DM activity directly favors immunodominant peptide presentation, polymorphisms in HLA-DM (DMA or DMB chain) might well be a contributing risk factor for autoimmunity and immune disorders. Our systematic comparison of DMA*0103/DMB*0101 (DMA-G155A and DMA-R184H) with DMA*0101/DMB*0101 in terms of catalyzed peptide exchange and dissociation, as well as direct interaction with several HLA-DR/peptide complexes, reveals an attenuated catalytic activity of DMA*0103/DMB*0101. The G155A substitution dominates the catalytic behavior of DMA*0103/DMB*0101 by decreasing peptide release velocity. Preloaded peptide-MHCII complexes exhibit ∼2-fold increase in half-life in the presence of DMA*0103/DMB*0101 when compared with DMA*0101/DMB*0101. We show that this effect leads to a greater persistence of autoimmunity-related Ags in the presence of high-affinity competitor peptide. Our study therefore reveals that HLA-DM polymorphic residues have a considerable impact on HLA-DM catalytic activity.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Marek Wieczorek
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany
| | - Jana Sticht
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Claudia Kipar
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Christian Freund
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany; and Leibniz Institute for Molecular Pharmacology, 13125 Berlin, Germany
| |
Collapse
|
30
|
Sestak JO, Fakhari A, Badawi AH, Siahaan TJ, Berkland C. Structure, size, and solubility of antigen arrays determines efficacy in experimental autoimmune encephalomyelitis. AAPS J 2014; 16:1185-93. [PMID: 25193268 PMCID: PMC4389745 DOI: 10.1208/s12248-014-9654-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/26/2014] [Indexed: 01/02/2023] Open
Abstract
Presentation of antigen with immune stimulating "signal" has been a cornerstone of vaccine design for decades. Here, the antigen plus immune "signal" of vaccines is modified to produce antigen-specific immunotherapies (antigen-SITs) that can potentially reprogram the immune response toward tolerance of an autoantigen. The codelivery of antigen with a cell adhesion inhibitor using Soluble Antigen Arrays (SAgAs) was previously shown to slow or halt experimental autoimmune encephalomyelitis (EAE), a murine form of multiple sclerosis (MS). SAgAs are comprised of a hyaluronic acid backbone with cografted intercellular cell adhesion molecule-1 ligand derived from αL-integrin (CD11a237-246, "LABL") and an encephalitogenic epitope peptide of proteolipid protein (PLP139-151, "PLP"). Here, the physical characteristics of the carrier were investigated to evaluate how structure, size, and solubility drive the immune response when treating EAE. A bifunctional peptide (small, soluble), SAgAs (large, soluble), and PLGA nanoparticles (large, insoluble) all displaying PLP and LABL in equimolar ratios were compared. Maximum EAE suppression was achieved with coincident display of both peptides on a soluble construct.
Collapse
Affiliation(s)
- Joshua O. Sestak
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
| | - Amir Fakhari
- />Department of Bioengineering, University of Kansas, 1520 West 15th Street, Room 1, Eaton Hall, Lawrence, Kansas 66045 USA
| | - Ahmed H. Badawi
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
| | - Teruna J. Siahaan
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
| | - Cory Berkland
- />Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, Kansas 66047 USA
- />Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th, Rm. 4132 Learned Hall, Lawrence, Kansas 66045 USA
- />Department of Bioengineering, University of Kansas, 1520 West 15th Street, Room 1, Eaton Hall, Lawrence, Kansas 66045 USA
| |
Collapse
|
31
|
Yin L, Trenh P, Guce A, Wieczorek M, Lange S, Sticht J, Jiang W, Bylsma M, Mellins ED, Freund C, Stern LJ. Susceptibility to HLA-DM protein is determined by a dynamic conformation of major histocompatibility complex class II molecule bound with peptide. J Biol Chem 2014; 289:23449-64. [PMID: 25002586 DOI: 10.1074/jbc.m114.585539] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-DM mediates the exchange of peptides loaded onto MHCII molecules during antigen presentation by a mechanism that remains unclear and controversial. Here, we investigated the sequence and structural determinants of HLA-DM interaction. Peptides interacting nonoptimally in the P1 pocket exhibited low MHCII binding affinity and kinetic instability and were highly susceptible to HLA-DM-mediated peptide exchange. These changes were accompanied by conformational alterations detected by surface plasmon resonance, SDS resistance assay, antibody binding assay, gel filtration, dynamic light scattering, small angle x-ray scattering, and NMR spectroscopy. Surprisingly, all of those changes could be reversed by substitution of the P9 pocket anchor residue. Moreover, MHCII mutations outside the P1 pocket and the HLA-DM interaction site increased HLA-DM susceptibility. These results indicate that a dynamic MHCII conformational determinant rather than P1 pocket occupancy is the key factor determining susceptibility to HLA-DM-mediated peptide exchange and provide a molecular mechanism for HLA-DM to efficiently target unstable MHCII-peptide complexes for editing and exchange those for more stable ones.
Collapse
Affiliation(s)
- Liusong Yin
- From the Program in Immunology and Microbiology and
| | - Peter Trenh
- From the Program in Immunology and Microbiology and
| | - Abigail Guce
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Marek Wieczorek
- the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany, and
| | - Sascha Lange
- the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany, and
| | - Jana Sticht
- the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany, and
| | - Wei Jiang
- the Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, California 94305
| | - Marissa Bylsma
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Elizabeth D Mellins
- the Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, California 94305
| | - Christian Freund
- the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany, and
| | - Lawrence J Stern
- From the Program in Immunology and Microbiology and Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605,
| |
Collapse
|
32
|
Parra-López CA, Bernal-Estévez D, Vargas LE, Pulido-Calixto C, Salazar LM, Calvo-Calle JM, Stern LJ. An unstable Th epitope of P. falciparum fosters central memory T cells and anti-CS antibody responses. PLoS One 2014; 9:e100639. [PMID: 24983460 PMCID: PMC4077652 DOI: 10.1371/journal.pone.0100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite. A major target of the antibody response to sporozoites are the repeat epitopes of the circumsporozoite (CS) protein, which span almost one half of the protein. Antibodies to these repeats can neutralize sporozoite infectivity. Generation of protective antibody responses to the CS protein (anti-CS Ab) requires help by CD4 T cells. A CD4 T cell epitope from the CS protein designated T* was previously identified by screening T cells from volunteers immunized with irradiated P. falciparum sporozoites. The T* sequence spans twenty amino acids that contains multiple T cell epitopes restricted by various HLA alleles. Subunit malaria vaccines including T* are highly immunogenic in rodents, non-human primates and humans. In this study we characterized a highly conserved HLA-DRβ1*04:01 (DR4) restricted T cell epitope (QNT-5) located at the C-terminus of T*. We found that a peptide containing QNT-5 was able to elicit long-term anti-CS Ab responses and prime CD4 T cells in HLA-DR4 transgenic mice despite forming relatively unstable MHC-peptide complexes highly susceptible to HLA-DM editing. We attempted to improve the immunogenicity of QNT-5 by replacing the P1 anchor position with an optimal tyrosine residue. The modified peptide QNT-Y formed stable MHC-peptide complexes highly resistant to HLA-DM editing. Contrary to expectations, a linear peptide containing QNT-Y elicited almost 10-fold lower long-term antibody and IFN-γ responses compared to the linear peptide containing the wild type QNT-5 sequence. Some possibilities regarding why QNT-5 is more effective than QNT-Y in inducing long-term T cell and anti-CS Ab when used as vaccine are discussed.
Collapse
Affiliation(s)
- Carlos A. Parra-López
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Graduate School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (CAP-L); (LJS)
| | - David Bernal-Estévez
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Graduate School in Biomedical Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
- Fundación Salud de los Andes, Research Group of Immunology and Clinical Oncology - GIIOC, Bogotá, Colombia
| | - Luis Eduardo Vargas
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carolina Pulido-Calixto
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz Mary Salazar
- Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - J. Mauricio Calvo-Calle
- University of Massachusetts Medical School, Department of Pathology and Biochemistry and the Department of Molecular Pharmacology, Worcester, Massachusetts, United States of America
| | - Lawrence J. Stern
- University of Massachusetts Medical School, Department of Pathology and Biochemistry and the Department of Molecular Pharmacology, Worcester, Massachusetts, United States of America
- * E-mail: (CAP-L); (LJS)
| |
Collapse
|
33
|
Pavlović MD, Jandrlić DR, Mitić NS. Epitope distribution in ordered and disordered protein regions. Part B — Ordered regions and disordered binding sites are targets of T- and B-cell immunity. J Immunol Methods 2014; 407:90-107. [DOI: 10.1016/j.jim.2014.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/04/2023]
|
34
|
Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14008. [PMID: 26015953 PMCID: PMC4420258 DOI: 10.1038/mtm.2014.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/30/2022]
Abstract
Autoimmune diseases such as multiple sclerosis (MS) are typified by the misrecognition of self-antigen and the clonal expansion of autoreactive T cells. Antigen-specific immunotherapies (antigen-SITs) have long been explored as a means to desensitize patients to offending self-antigen(s) with the potential to retolerize the immune response. Soluble antigen arrays (SAgAs) are composed of hyaluronic acid (HA) cografted with disease-specific autoantigen (proteolipid protein peptide) and an ICAM-1 inhibitor peptide (LABL). SAgAs were designed as an antigen-SIT that codeliver peptides to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Codelivery of antigen and cell adhesion inhibitor (LABL) conjugated to HA was essential for SAgA treatment of EAE. Individual SAgA components or mixtures thereof reduced proinflammatory cytokines in cultured splenocytes from EAE mice; however, these treatments showed minimal to no in vivo therapeutic effect in EAE mice. Thus, carriers that codeliver antigen and a secondary “context” signal (e.g., LABL) in vivo may be an important design criteria to consider when designing antigen-SIT for autoimmune therapy.
Collapse
|
35
|
Mitić NS, Pavlović MD, Jandrlić DR. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy. J Immunol Methods 2014; 406:83-103. [PMID: 24614036 DOI: 10.1016/j.jim.2014.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Highly disordered protein regions are prevalently hydrophilic, extremely sensitive to proteolysis in vitro, and are expected to be under-represented as T-cell epitopes. The aim of this research was to find out whether disorder and hydropathy prediction methods could help in understanding epitope processing and presentation. According to the pan-specific T-cell epitope predictors NetMHCpan and NetMHCIIpan and 9 publicly available disorder predictors, frequency of epitopes presented by human leukocyte antigens (HLA) class-I or -II was found to be more than 2.5 times higher in ordered than in disordered protein regions (depending on the disorder predictor). Both HLA class-I and HLA class-II binding epitopes are prevalently hydrophilic in disordered and prevalently hydrophobic in ordered protein regions, whereas epitopes recognized by HLA class-II alleles are more hydrophobic than those recognized by HLA class-I. As regards both classes of HLA molecules, high-affinity binding epitopes display more hydrophobicity than low affinity-binding epitopes (in both ordered and disordered regions). Epitopes belonging to disordered protein regions were not predicted to have poor affinity to HLA class-II molecules, as expected from disorder intrinsic proteolytic instability. The relation of epitope hydrophobicity and order/disorder location was also valid if alleles were grouped according to the HLA class-I and HLA class-II supertypes, except for the class-I supertype A3 in which the main part of recognized epitopes was prevalently hydrophilic. Regarding specific supertypes, the affinity of epitopes belonging to ordered regions varies only slightly (depending on the disorder predictor) compared to the affinity of epitopes in corresponding disordered regions. The distribution of epitopes in ordered and disordered protein regions has revealed that the curves of order-epitope distribution were convex-like while the curves of disorder-epitope distribution were concave-like. The percentage of prevalently hydrophobic epitopes increases with the enhancement of epitope promiscuity level and moving from disordered to ordered regions. These data suggests that reverse vaccinology, oriented towards promiscuous and high-affinity epitopes, is also oriented towards prevalently hydrophobic, ordered regions. The analysis of predicted and experimentally evaluated epitopes of cancer-testis antigen MAGE-A3 has confirmed that the majority of T-cell epitopes, particularly those that are promiscuous or naturally processed, was located in ordered and disorder/order boundary protein regions overlapping hydrophobic regions.
Collapse
Affiliation(s)
- Nenad S Mitić
- University of Belgrade, Faculty of Mathematics, P.O.B. 550, Studentski trg 16, Belgrade, Serbia.
| | - Mirjana D Pavlović
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, Serbia.
| | - Davorka R Jandrlić
- University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia.
| |
Collapse
|
36
|
Yin L, Stern LJ. A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination. J Immunol Methods 2014; 406:21-33. [PMID: 24583195 DOI: 10.1016/j.jim.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 01/17/2023]
Abstract
HLA-DM (DM) functions as a peptide editor that mediates the exchange of peptides loaded onto MHCII molecules by accelerating peptide dissociation and association kinetics. The relative DM-susceptibility of peptides bound to MHCII molecules correlates with antigen presentation and immunodominance hierarchy, and measurement of DM-susceptibility has been a key effort in this field. Current assays of DM-susceptibility, based on differential peptide dissociation rates measured for individually labeled peptides over a long time base, are difficult and cumbersome. Here, we present a novel method to measure DM-susceptibility based on peptide binding competition assays performed in the presence and absence of DM, reported as a delta-IC(50) (change in 50% inhibition concentration) value. We simulated binding competition reactions of peptides with various intrinsic and DM-catalyzed kinetic parameters and found that under a wide range of conditions the delta-IC(50) value is highly correlated with DM-susceptibility as measured in off-rate assay. We confirmed experimentally that DM-susceptibility measured by delta-IC(50) is comparable to that measured by traditional off-rate assay for peptides with known DM-susceptibility hierarchy. The major advantage of this method is that it allows simple, fast and high throughput measurement of DM-susceptibility for a large set of unlabeled peptides in studies of the mechanism of DM action and for identification of CD4+ T cell epitopes.
Collapse
Affiliation(s)
- Liusong Yin
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Lawrence J Stern
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, United States; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
37
|
Rombach-Riegraf V, Karle AC, Wolf B, Sordé L, Koepke S, Gottlieb S, Krieg J, Djidja MC, Baban A, Spindeldreher S, Koulov AV, Kiessling A. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One 2014; 9:e86322. [PMID: 24466023 PMCID: PMC3897673 DOI: 10.1371/journal.pone.0086322] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/07/2013] [Indexed: 12/14/2022] Open
Abstract
Subvisible proteinaceous particles which are present in all therapeutic protein formulations are in the focus of intense discussions between health authorities, academics and biopharmaceutical companies in the context of concerns that such particles could promote unwanted immunogenicity via anti-drug antibody formation. In order to provide further understanding of the subject, this study closely examines the specific biological effects proteinaceous particles may exert on dendritic cells (DCs) as the most efficient antigen-presenting cell population crucial for the initiation of the adaptive immune response. Two different model IgG antibodies were subjected to three different types of exaggerated physical stress to generate subvisible particles in far greater concentrations than the ones typical for the currently marketed biotherapeutical antibodies. The aggregated samples were used in in vitro biological assays in order to interrogate the early DC-driven events that initiate CD4 T-cell dependent humoral adaptive immune responses – peptide presentation capacity and co-stimulatory activity of DCs. Most importantly, antigen presentation was addressed with a unique approach called MHC-associated Peptide Proteomics (MAPPs), which allows for identifying the sequences of HLA-DR associated peptides directly from human dendritic cells. The experiments demonstrated that highly aggregated solutions of two model mAbs generated under controlled conditions can induce activation of human monocyte-derived DCs as indicated by upregulation of typical maturation markers including co-stimulatory molecules necessary for CD4 T-cell activation. Additional data suggest that highly aggregated proteins could induce in vitro T-cell responses. Intriguingly, strong aggregation-mediated changes in the pattern and quantity of antigen-derived HLA-DR associated peptides presented on DCs were observed, indicating a change in protein processing and presentation. Increasing the amounts of subvisible proteinaceous particles correlated very well with the pronounced increase in the peptide number and clusters presented in the context of class II HLA-DR molecules, suggesting a major involvement of a mass-action mechanism of altering the presentation.
Collapse
Affiliation(s)
- Verena Rombach-Riegraf
- Novartis Pharma AG, Technical R&D, Biologics Process R&D, Late Phase Analytical & Pharmaceutical Development, Werk Klybeck, Basel, Switzerland
- * E-mail: (VR-R); (ACK); (AK)
| | - Anette C. Karle
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
- * E-mail: (VR-R); (ACK); (AK)
| | - Babette Wolf
- Novartis Pharma AG, Pre-clinical Safety, Biologics Safety and Disposition, Experimental Pathology, Immunosafety, Werk Klybeck, Basel, Switzerland
| | - Laetitia Sordé
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
| | - Stephan Koepke
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
| | - Sascha Gottlieb
- Novartis Pharma AG, Integrated Biologics Profiling Unit, Immunogenicity Risk Assessment, Werk Klybeck, Basel, Switzerland
| | - Jennifer Krieg
- Novartis Pharma AG, Pre-clinical Safety, Biologics Safety and Disposition, Experimental Pathology, Immunosafety, Werk Klybeck, Basel, Switzerland
| | - Marie-Claude Djidja
- Novartis Pharma AG, Technical R&D, Biologics Process R&D, Late Phase Analytical & Pharmaceutical Development, Werk Klybeck, Basel, Switzerland
| | - Aida Baban
- Novartis Pharma AG, Pre-clinical Safety Biologics Safety and Disposition, Bioanalytics, Werk Klybeck, Basel, Switzerland
| | - Sebastian Spindeldreher
- Novartis Pharma AG, Pre-clinical Safety Biologics Safety and Disposition, Bioanalytics, Werk Klybeck, Basel, Switzerland
| | - Atanas V. Koulov
- Novartis Pharma AG, Technical R&D, Biologics Process R&D, Late Phase Analytical & Pharmaceutical Development, Werk Klybeck, Basel, Switzerland
| | - Andrea Kiessling
- Novartis Pharma AG, Pre-clinical Safety, Biologics Safety and Disposition, Experimental Pathology, Immunosafety, Werk Klybeck, Basel, Switzerland
- * E-mail: (VR-R); (ACK); (AK)
| |
Collapse
|
38
|
Patarroyo ME, Bermúdez A, Moreno-Vranich A. Towards the development of a fully protectivePlasmodium falciparumantimalarial vaccine. Expert Rev Vaccines 2014; 11:1057-70. [DOI: 10.1586/erv.12.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Sant AJ, Chaves FA, Krafcik FR, Lazarski CA, Menges P, Richards K, Weaver JM. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev Vaccines 2014; 6:357-68. [PMID: 17542751 DOI: 10.1586/14760584.6.3.357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4 T cells play a primary role in regulating immune responses to pathogenic organisms and to vaccines. Antigen-specific CD4 T cells provide cognate help to B cells, a requisite event for immunoglobulin switch and affinity maturation of B cells that produce neutralizing antibodies and also provide help to cytotoxic CD8 T cells, critical for their expansion and persistence as memory cells. Finally, CD4 T cells may participate directly in pathogen clearance via cell-mediated cytotoxicity or through production of cytokines. Understanding the role of CD4 T-cell immunity to viruses and other pathogens, as well as evaluation of the efficacy of vaccines, requires insight into the specificity of CD4 T cells. This review focuses on the events within antigen-presenting cells that focus CD4 T cells toward a limited number of peptide antigens within the pathogen or vaccine. The molecular events are discussed in light of the special challenges that the influenza virus poses, owing to the high degree of genetic variability, unpredictable pathogenicity and the repeated encounters that human populations face with this highly infectious pathogenic organism.
Collapse
Affiliation(s)
- Andrea J Sant
- David H Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sant AJ, Chaves FA, Leddon SA, Tung J. The control of the specificity of CD4 T cell responses: thresholds, breakpoints, and ceilings. Front Immunol 2013; 4:340. [PMID: 24167504 PMCID: PMC3805957 DOI: 10.3389/fimmu.2013.00340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
It has been known for over 25 years that CD4 T cell responses are restricted to a finite number of peptide epitopes within pathogens or protein vaccines. These selected peptide epitopes are termed "immunodominant." Other peptides within the antigen that can bind to host MHC molecules and recruit CD4 T cells as single peptides are termed "cryptic" because they fail to induce responses when expressed in complex proteins or when in competition with other peptides during the immune response. In the last decade, our laboratory has evaluated the mechanisms that underlie the preferential specificity of CD4 T cells and have discovered that both intracellular events within antigen presenting cells, particular selective DM editing, and intercellular regulatory pathways, involving IFN-γ, indoleamine 2,3-dioxygenase, and regulatory T cells, play a role in selecting the final peptide specificity of CD4 T cells. In this review, we summarize our findings, discuss the implications of this work on responses to pathogens and vaccines and speculate on the logic of these regulatory events.
Collapse
Affiliation(s)
- Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A. Chaves
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline Tung
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
41
|
Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin Immunol 2013; 149:534-55. [PMID: 24263283 DOI: 10.1016/j.clim.2013.09.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 02/07/2023]
Abstract
Protein therapeutics hold a prominent and rapidly expanding place among medicinal products. Purified blood products, recombinant cytokines, growth factors, enzyme replacement factors, monoclonal antibodies, fusion proteins, and chimeric fusion proteins are all examples of therapeutic proteins that have been developed in the past few decades and approved for use in the treatment of human disease. Despite early belief that the fully human nature of these proteins would represent a significant advantage, adverse effects associated with immune responses to some biologic therapies have become a topic of some concern. As a result, drug developers are devising strategies to assess immune responses to protein therapeutics during both the preclinical and the clinical phases of development. While there are many factors that contribute to protein immunogenicity, T cell- (thymus-) dependent (Td) responses appear to play a critical role in the development of antibody responses to biologic therapeutics. A range of methodologies to predict and measure Td immune responses to protein drugs has been developed. This review will focus on the Td contribution to immunogenicity, summarizing current approaches for the prediction and measurement of T cell-dependent immune responses to protein biologics, discussing the advantages and limitations of these technologies, and suggesting a practical approach for assessing and mitigating Td immunogenicity.
Collapse
|
42
|
Collado JA, Alvarez I, Ciudad MT, Espinosa G, Canals F, Pujol-Borrell R, Carrascal M, Abian J, Jaraquemada D. Composition of the HLA-DR-associated human thymus peptidome. Eur J Immunol 2013; 43:2273-82. [PMID: 23719902 DOI: 10.1002/eji.201243280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/27/2013] [Indexed: 11/05/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules bind to and display antigenic peptides on the surface of antigen-presenting cells (APCs). In the absence of infection, MHC-II molecules on APCs present self-peptides and interact with CD4(+) T cells to maintain tolerance and homeostasis. In the thymus, self-peptides bind to MHC-II molecules expressed by defined populations of APCs specialised for the different steps of T-cell selection. Cortical epithelial cells present peptides for positive selection, whereas medullary epithelial cells and dendritic cells are responsible for peptide presentation for negative selection. However, few data are available on the peptides presented by MHC molecules in the thymus. Here, we apply mass spectrometry to analyse and identify MHC-II-associated peptides from five fresh human thymus samples. The data show a diverse self-peptide repertoire, mostly consisting of predicted MHC-II high binders. Despite technical limitations preventing single cell population analyses of peptides, these data constitute the first direct assessment of the HLA-II-bound peptidome and provide insight into how this peptidome is generated and how it drives T-cell repertoire formation.
Collapse
Affiliation(s)
- Javier A Collado
- Immunology Unit, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia (BCFI), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pos W, Sethi DK, Wucherpfennig KW. Mechanisms of peptide repertoire selection by HLA-DM. Trends Immunol 2013; 34:495-501. [PMID: 23835076 DOI: 10.1016/j.it.2013.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Recently, crystal structures of key complexes in antigen presentation have been reported. HLA-DM functions in antigen presentation by catalyzing dissociation of an invariant chain remnant from the peptide binding groove and stabilizing empty MHC class II proteins in a peptide-receptive conformation. The crystal structure of a MHC class II-HLA-DM complex explains how HLA-DM stabilizes an otherwise short-lived transition state and promotes a rapid peptide exchange process that favors the highest-affinity ligands. HLA-DO has sequence similarity with MHC class II molecules yet inhibits antigen presentation. The structure of the HLA-DO-HLA-DM complex shows that it blocks HLA-DM activity as a substrate mimic. Alterations in the efficiency of DM-mediated peptide selection may contribute to autoimmune pathologies, which will be an exciting area for future investigation.
Collapse
Affiliation(s)
- Wouter Pos
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
44
|
Tung J, Sant AJ. Orchestration of CD4 T cell epitope preferences after multipeptide immunization. THE JOURNAL OF IMMUNOLOGY 2013; 191:764-72. [PMID: 23772029 DOI: 10.4049/jimmunol.1300312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A detailed understanding of the molecular and cellular mechanisms that underlie epitope preferences in T cell priming is important for vaccines designed to elicit a broad T cell response. Protein vaccinations generally elicit CD4 T cell responses that are skewed toward a small fraction of epitopes, a phenomenon known as immunodominance. This characteristic of T cell responses, which limits the diversity of CD4 T cell recognition, is generally attributed to intracellular Ag processing. However, we recently discovered that immunodominance hierarchies persist even after vaccination with synthetic peptides. In this study, we probed the regulatory mechanisms that cause diminished CD4 T cell responses to subdominant peptides after such multipeptide immunization in mice. We have found that the delivery of subdominant and dominant epitopes on separate dendritic cells rescues expansion of less favored CD4 T cells. Furthermore, through the use of genetic models and inhibitors, we have found that selective losses in CD4 T cell responses are mediated by an IFN-γ-induced pathway, involving IDO, and that regulatory T cell activities may also regulate preferences in CD4 T cell specificity. We propose that after multipeptide immunization, the expansion and differentiation of dominant T cells initiate complex regulatory events that determine the final peptide specificity of the elicited CD4 T cell response.
Collapse
Affiliation(s)
- Jacqueline Tung
- David H Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
45
|
Nigro E, Siccardi A, Vangelista L. Role and Redirection of IgE against Cancer. Antibodies (Basel) 2013; 2:371-391. [DOI: 10.3390/antib2020371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
IgE is a highly elusive antibody class, yet a tremendously powerful elicitor of immune reactions. Despite huge efforts spent on the characterization and understanding of the IgE system many questions remain either unanswered or only marginally addressed. One above all relates to the role of IgE. A common doubt is based on whether IgE mode of action should only be relegated to anti-parasite immunity and allergic manifestations. In search for a hidden role of IgE, reports from several laboratories are described herein in which a natural IgE link to cancer or the experimental redirection of IgE against cancer have been investigated. Epidemiological and investigational studies are trying to elucidate a possible direct intervention of endogenous IgE against cancer, raising thus far no definitive evidence. Conversely, experimental approaches implementing several strategies and engineered IgE formats built up a series of convincing results indicating that cancer might be tackled by the effector functions of this immunoglobulin class. Because of its peculiar immune features, IgE may present a superior anti-tumor performance as compared to IgG. However, extreme care should be taken on how IgE-based anti-tumor approaches should be devised. Overall, IgE appears as a promising resource, likely destined to enrich the anti-cancer arsenal.
Collapse
Affiliation(s)
- Elisa Nigro
- Molecular Immunology Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Antonio Siccardi
- Molecular Immunology Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
46
|
Oyarzún P, Ellis JJ, Bodén M, Kobe B. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC Bioinformatics 2013; 14:52. [PMID: 23409948 PMCID: PMC3598884 DOI: 10.1186/1471-2105-14-52] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022] Open
Abstract
Background CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge. Results We developed the computational tool Predivac to predict CD4+ T-cell epitopes. Predivac can make predictions for 95% of all MHC class II protein variants (allotypes), a substantial advance over other available methods. Predivac bases its prediction on the concept of specificity-determining residues. The performance of the method was assessed both for high-affinity HLA class II peptide binding and CD4+ T-cell epitope prediction. In terms of epitope prediction, Predivac outperformed three available pan-specific approaches (delivering the highest specificity). A central finding was the high accuracy delivered by the method in the identification of immunodominant and promiscuous CD4+ T-cell epitopes, which play an essential role in epitope-based vaccine design. Conclusions The comprehensive HLA class II allele coverage along with the high specificity in identifying immunodominant CD4+ T-cell epitopes makes Predivac a valuable tool to aid epitope-based vaccine design in the context of a genetically heterogeneous human population.The tool is available at: http://predivac.biosci.uq.edu.au/.
Collapse
Affiliation(s)
- Patricio Oyarzún
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
47
|
Endogenous HLA class II epitopes that are immunogenic in vivo show distinct behavior toward HLA-DM and its natural inhibitor HLA-DO. Blood 2012; 120:3246-55. [DOI: 10.1182/blood-2011-12-399311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CD4+ T cells play a central role in adaptive immunity. The acknowledgment of their cytolytic effector function and the finding that endogenous antigens can enter the HLA class II processing pathway make CD4+ T cells promising tools for immunotherapy. Expression of HLA class II and endogenous antigen, however, does not always correlate with T-cell recognition. We therefore investigated processing and presentation of endogenous HLA class II epitopes that induced CD4+ T cells during in vivo immune responses. We demonstrate that the peptide editor HLA-DM allowed antigen presentation of some (DM-resistant antigens) but abolished surface expression of other natural HLA class II epitopes (DM-sensitive antigens). DM sensitivity was shown to be epitope specific, mediated via interaction between HLA-DM and the HLA-DR restriction molecule, and reversible by HLA-DO. Because of the restricted expression of HLA-DO, presentation of DM-sensitive antigens was limited to professional antigen-presenting cells, whereas DM-resistant epitopes were expressed on all HLA class II–expressing cells. In conclusion, our data provide novel insights into the presentation of endogenous HLA class II epitopes and identify intracellular antigen processing and presentation as a critical factor for CD4+ T-cell recognition. This opens perspectives to exploit selective processing capacities as a new approach for targeted immunotherapy.
Collapse
|
48
|
Nayak JL, Sant AJ. Loss in CD4 T-cell responses to multiple epitopes in influenza due to expression of one additional MHC class II molecule in the host. Immunology 2012; 136:425-36. [PMID: 22747522 DOI: 10.1111/j.1365-2567.2012.03599.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An understanding of factors controlling CD4 T-cell immunodominance is needed to pursue CD4 T-cell epitope-driven vaccine design, yet our understanding of this in humans is limited by the complexity of potential MHC class II molecule expression. In the studies described here, we took advantage of genetically restricted, well-defined mouse strains to better understand the effect of increasing MHC class II molecule diversity on the CD4 T-cell repertoire and the resulting anti-influenza immunodominance hierarchy. Interferon-γ ELISPOT assays were implemented to directly quantify CD4 T-cell responses to I-A(b) and I-A(s) restricted peptide epitopes following primary influenza virus infection in parental and F(1) hybrid strains. We found striking and asymmetric declines in the magnitude of many peptide-specific responses in F(1) animals. These declines could not be accounted for by the lower surface density of MHC class II on the cell or by antigen-presenting cells failing to stimulate T cells with lower avidity T-cell receptors. Given the large diversity of MHC class II expressed in humans, these findings have important implications for the rational design of peptide-based vaccines that are based on the premise that CD4 T-cell epitope specificity can be predicted by a simple cataloguing of an individual's MHC class II genotype.
Collapse
Affiliation(s)
- Jennifer L Nayak
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
49
|
Yin L, Calvo-Calle JM, Dominguez-Amorocho O, Stern LJ. HLA-DM constrains epitope selection in the human CD4 T cell response to vaccinia virus by favoring the presentation of peptides with longer HLA-DM-mediated half-lives. THE JOURNAL OF IMMUNOLOGY 2012; 189:3983-94. [PMID: 22966084 DOI: 10.4049/jimmunol.1200626] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
HLA-DM (DM) is a nonclassical MHC class II (MHC II) protein that acts as a peptide editor to mediate the exchange of peptides loaded onto MHC II during Ag presentation. Although the ability of DM to promote peptide exchange in vitro and in vivo is well established, the role of DM in epitope selection is still unclear, especially in human response to infectious disease. In this study, we addressed this question in the context of the human CD4 T cell response to vaccinia virus. We measured the IC(50), intrinsic dissociation t(1/2), and DM-mediated dissociation t(1/2) for a large set of peptides derived from the major core protein A10L and other known vaccinia epitopes bound to HLA-DR1 and compared these properties to the presence and magnitude of peptide-specific CD4(+) T cell responses. We found that MHC II-peptide complex kinetic stability in the presence of DM distinguishes T cell epitopes from nonrecognized peptides in A10L peptides and also in a set of predicted tight binders from the entire vaccinia genome. Taken together, these analyses demonstrate that DM-mediated dissociation t(1/2) is a strong and independent factor governing peptide immunogenicity by favoring the presentation of peptides with greater kinetic stability in the presence of DM.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
50
|
Mohan JF, Unanue ER. Unconventional recognition of peptides by T cells and the implications for autoimmunity. Nat Rev Immunol 2012; 12:721-8. [DOI: 10.1038/nri3294] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|