1
|
Liang X, Guo J, Wang X, Luo B, Fu R, Chen H, Yang Y, Jin Z, Lin C, Zang A, Jia Y, Feng L, Wang L. Overexpression of ornithine decarboxylase 1 mediates the immune-deserted microenvironment and poor prognosis in diffuse large B-cell lymphoma. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:57-74. [PMID: 40040873 PMCID: PMC11873660 DOI: 10.1016/j.jncc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 03/06/2025] Open
Abstract
Background Previous researches mainly focused on whether cancer stem cells exist in diffuse large B-cell lymphoma (DLBCL). However, subgroups with dismal prognosis and stem cell-like characteristics have been overlooked. Methods Using large scale data (n = 2133), we conducted machine learning algorithms to identify a high risk DLBCL subgroup with stem cell-like features, and then investigated the potential mechanisms in shaping this subgroup using transcriptome, genome and single-cell RNA-seq data, and in vitro experiments. Results We identified a high-risk subgroup (25.6 % of DLBCL) with stem cell-like characteristics and dismal prognosis. This high-risk group (HRG) was featured by upregulation of key enzyme (ODC1) in polyamine metabolism and cold tumor microenvironment (TME), and had a poor prognosis with lower 3-year overall survival (OS) (54.3 % vs. 83.6 %, P < 0.0001) and progression-free survival (PFS) (42.8 % vs. 74.7 %, P < 0.0001) rates compared to the low-risk group. HRG also exhibited malignant proliferative phenotypes similar to Burkitt lymphoma. Patients with MYC rearrangement, double-hit, double-expressors, or complete remission might have either favorable or poor prognosis, which could be further distinguished by our risk stratification model. Genomic analysis revealed widespread copy number losses in the chemokine and interferon coding regions 8p23.1 and 9p21.3 in HRG. We identified ODC1 as a therapeutic vulnerability for HRG-DLBCL. Single-cell analysis and in vitro experiments demonstrated that ODC1 overexpression enhanced DLBCL cell proliferation and drove macrophage polarization towards the M2 phenotype. Conversely, ODC1 inhibition reduced DLBCL cell proliferation, induced cell cycle arrest and apoptosis, and promoted macrophage polarization towards the M1 phenotype. Finally, we developed a comprehensive database of DLBCL for clinical application. Conclusions Our study effectively advances the precise risk stratification of DLBCL and reveals that ODC1 and immune-deserted microenvironment jointly shape a group of DLBCL patients with stem cell-like features. Targeting ODC1 regulates immunotherapies in DLBCL, offering new insights for DLBCL treatment.
Collapse
Affiliation(s)
- Xiaojie Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia Guo
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Baiwei Luo
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiying Fu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haiying Chen
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yunong Yang
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zhihao Jin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chaoran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Youchao Jia
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Laurent C, Trisal P, Tesson B, Seth S, Beyou A, Roulland S, Lesne B, Van Acker N, Cerapio JP, Chartier L, Guille A, Stokes ME, Huang CC, Huet S, Gandhi AK, Morschhauser F, Xerri L. Follicular lymphoma comprises germinal center-like and memory-like molecular subtypes with prognostic significance. Blood 2024; 144:2503-2516. [PMID: 39374535 DOI: 10.1182/blood.2024024496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT A robust prognostic and biological classification for newly diagnosed follicular lymphoma (FL) using molecular profiling remains challenging. FL tumors from patients treated in the RELEVANCE trial with rituximab-chemotherapy (R-chemo) or rituximab-lenalidomide (R2) were analyzed using RNA sequencing, DNA sequencing, immunohistochemistry (IHC), and/or fluorescence in situ hybridization. Unsupervised gene clustering identified 2 gene expression signatures (GSs) enriched in normal memory (MEM) B cells and germinal center (GC) B-cell signals, respectively. These 2 GSs were combined into a 20-gene predictor (FL20) to classify patients into MEM-like (n = 160) or GC-like (n = 164) subtypes, which also displayed different mutational profiles. In the R-chemo arm, patients with MEM-like FL had significantly shorter progression-free survival (PFS) than patients with GC-like FL (hazard ratio [HR], 2.13; P = .0023). In the R2 arm, both subtypes had comparable PFS, demonstrating that R2 has a benefit over R-chemo for patients with MEM-like FL (HR, 0.54; P = .011). The prognostic value of FL20 was validated in an independent FL cohort with R-chemo treatment (GSE119214 [n = 137]). An IHC algorithm (FLcm) that used FOXP1, LMO2, CD22, and MUM1 antibodies was developed with significant prognostic correlation with FL20. These data indicate that FL tumors can be classified into MEM-like and GC-like subtypes that are biologically distinct and clinically different in their risk profile. The FLcm assay can be used in routine clinical practice to identify patients with MEM-like FL who might benefit from therapies other than R-chemo, such as the R2 combination. This trial was registered at www.clinicaltrials.gov as #NCT01476787 and #NCT01650701.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Preeti Trisal
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Bruno Tesson
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Sahil Seth
- Division of Integrative Predictive Sciences, Bristol Myers Squibb, Cambridge, MA
| | - Alicia Beyou
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre National de la Recherche Scientifique, INSERM, Marseille, France
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre National de la Recherche Scientifique, INSERM, Marseille, France
| | - Bastien Lesne
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Nathalie Van Acker
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Juan-Pablo Cerapio
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Loïc Chartier
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Arnaud Guille
- Department of Predictive Oncology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Matthew E Stokes
- Integrative Predictive Sciences, Bristol Myers Squibb, Summit, NJ
| | - C Chris Huang
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Sarah Huet
- Department of Hematology, Hospices Civils De Lyon, Pierre Bénite, France
| | - Anita K Gandhi
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | | | - Luc Xerri
- Department of Pathology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, Marseille, France
| |
Collapse
|
3
|
Tanabe A, Ndzinu J, Sahara H. Development and Validation of a Novel Four Gene-Pairs Signature for Predicting Prognosis in DLBCL Patients. Int J Mol Sci 2024; 25:12807. [PMID: 39684518 DOI: 10.3390/ijms252312807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma. Because individual clinical outcomes of DLBCL in response to standard therapy differ widely, new treatment strategies are being investigated to improve therapeutic efficacy. In this study, we identified a novel signature for stratification of DLBCL useful for prognosis prediction and treatment selection. First, 408 prognostic gene sets were selected from approximately 2500 DLBCL samples in public databases, from which four gene-pair signatures consisting of seven prognostic genes were identified by Cox regression analysis. Then, the risk score was calculated based on these gene-pairs and we validated the risk score as a prognostic predictor for DLBCL patient outcomes. This risk score demonstrated independent predictive performance even when combined with other clinical parameters and molecular subtypes. Evaluating external DLBCL cohorts, we demonstrated that the risk-scoring model based the four gene-pair signatures leads to stable predictive performance, compared with nine existing predictive models. Finally, high-risk DLBCL showed high resistance to DNA damage caused by anticancer drugs, suggesting that this characteristic is responsible for the unfavorable prognosis of high-risk DLBCL patients. These results provide a novel index for classifying the biological characteristics of DLBCL and clearly indicate the importance of genetic analyses in the treatment of DLBCL.
Collapse
Affiliation(s)
- Atsushi Tanabe
- Laboratory of Highly-Advanced Veterinary Medical Technology, Veterinary Teaching Hospital, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| | - Jerry Ndzinu
- Laboratory of Biology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
- Department of Research and Development (R&D), Malignant Tumor Treatment Technologies, Inc., 130-42 Nagasone, Kita-ku, Sakai 591-8025, Osaka, Japan
| | - Hiroeki Sahara
- Laboratory of Biology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| |
Collapse
|
4
|
Choi J, Ceribelli M, Phelan JD, Häupl B, Huang DW, Wright GW, Hsiao T, Morris V, Ciccarese F, Wang B, Corcoran S, Scheich S, Yu X, Xu W, Yang Y, Zhao H, Zhou J, Zhang G, Muppidi J, Inghirami GG, Oellerich T, Wilson WH, Thomas CJ, Staudt LM. Molecular targets of glucocorticoids that elucidate their therapeutic efficacy in aggressive lymphomas. Cancer Cell 2024; 42:833-849.e12. [PMID: 38701792 PMCID: PMC11168741 DOI: 10.1016/j.ccell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4). GR directly represses transcription of CSK, a kinase that limits the activity of BCR-proximal Src-family kinases. CSK inhibition attenuates the constitutive BCR signaling of lymphomas by hyperactivating Src-family kinases, triggering their ubiquitination and degradation. With the knowledge that glucocorticoids disable oncogenic BCR signaling, they can now be deployed rationally to treat BCR-dependent aggressive lymphomas and used to construct mechanistically sound combination regimens with inhibitors of BTK, PI3 kinase, BCL2, and CSK.
Collapse
MESH Headings
- Humans
- Glucocorticoids/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Animals
- Signal Transduction/drug effects
- Receptors, Glucocorticoid/metabolism
- Mice
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Molecular Targeted Therapy/methods
- Phosphatidylinositol 3-Kinases/metabolism
- src-Family Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George W Wright
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Ciccarese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis identifies unique immune environments associated with immunotherapy response in diffuse large B cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576100. [PMID: 38328071 PMCID: PMC10849512 DOI: 10.1101/2024.01.17.576100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.
Collapse
|
6
|
Li J, Chin CR, Ying HY, Meydan C, Teater MR, Xia M, Farinha P, Takata K, Chu CS, Jiang Y, Eagles J, Passerini V, Tang Z, Rivas MA, Weigert O, Pugh TJ, Chadburn A, Steidl C, Scott DW, Roeder RG, Mason CE, Zappasodi R, Béguelin W, Melnick AM. Loss of CREBBP and KMT2D cooperate to accelerate lymphomagenesis and shape the lymphoma immune microenvironment. Nat Commun 2024; 15:2879. [PMID: 38570506 PMCID: PMC10991284 DOI: 10.1038/s41467-024-47012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Hsia-Yuan Ying
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew R Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pedro Farinha
- BC Cancer Centre for Lymphoid Cancer, Department of Pathology and Laboratorial Medicine, University of British Columbia, Vancouver, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Yiyue Jiang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jenna Eagles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Verena Passerini
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Zhanyun Tang
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Martin A Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Oliver Weigert
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Zappasodi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
7
|
Krull JE, Wenzl K, Hopper MA, Manske MK, Sarangi V, Maurer MJ, Larson MC, Mondello P, Yang Z, Novak JP, Serres M, Whitaker KR, Villasboas Bisneto JC, Habermann TM, Witzig TE, Link BK, Rimsza LM, King RL, Ansell SM, Cerhan JR, Novak AJ. Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments. Cell Rep Med 2024; 5:101443. [PMID: 38428430 PMCID: PMC10983045 DOI: 10.1016/j.xcrm.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - ZhiZhang Yang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Cooper A, Tumuluru S, Kissick K, Venkataraman G, Song JY, Lytle A, Duns G, Yu J, Kotlov N, Bagaev A, Hodkinson B, Srinivasan S, Smith SM, Scott DW, Steidl C, Godfrey JK, Kline J. CD5 Gene Signature Identifies Diffuse Large B-Cell Lymphomas Sensitive to Bruton's Tyrosine Kinase Inhibition. J Clin Oncol 2024; 42:467-480. [PMID: 38079587 DOI: 10.1200/jco.23.01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 01/31/2024] Open
Abstract
PURPOSE A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.
Collapse
Affiliation(s)
- Alan Cooper
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Kyle Kissick
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Andrew Lytle
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC
| | - Gerben Duns
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | | | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Srimathi Srinivasan
- Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA
| | - Sonali M Smith
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David W Scott
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Christian Steidl
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - James K Godfrey
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Sartori G, Tarantelli C, Spriano F, Gaudio E, Cascione L, Mascia M, Barreca M, Arribas AJ, Licenziato L, Golino G, Ferragamo A, Pileri S, Damia G, Zucca E, Stathis A, Politz O, Wengner AM, Bertoni F. The ATR inhibitor elimusertib exhibits anti-lymphoma activity and synergizes with the PI3K inhibitor copanlisib. Br J Haematol 2024; 204:191-205. [PMID: 38011941 DOI: 10.1111/bjh.19218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The DNA damage response (DDR) is the cellular process of preserving an intact genome and is often deregulated in lymphoma cells. The ataxia telangiectasia and Rad3-related (ATR) kinase is a crucial factor of DDR in the response to DNA single-strand breaks. ATR inhibitors are agents that have shown considerable clinical potential in this context. We characterized the activity of the ATR inhibitor elimusertib (BAY 1895344) in a large panel of lymphoma cell lines. Furthermore, we evaluated its activity combined with the clinically approved PI3K inhibitor copanlisib in vitro and in vivo. Elimusertib exhibits potent anti-tumour activity across various lymphoma subtypes, which is associated with the expression of genes related to replication stress, cell cycle regulation and, as also sustained by CRISPR Cas9 experiments, CDKN2A loss. In several tumour models, elimusertib demonstrated widespread anti-tumour activity stronger than ceralasertib, another ATR inhibitor. This activity is present in both DDR-proficient and DDR-deficient lymphoma models. Furthermore, a combination of ATR and PI3K inhibition by treatment with elimusertib and copanlisib has in vitro and in vivo anti-tumour activity, providing a potential new treatment option for lymphoma patients.
Collapse
Affiliation(s)
- Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michele Mascia
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Marilia Barreca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Luca Licenziato
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Gaetanina Golino
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Adele Ferragamo
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Stefano Pileri
- Division of Diagnostic Haematopathology, European Institute of Oncology, Milan, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Oliver Politz
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| |
Collapse
|
11
|
Arribas AJ, Gaudio E, Napoli S, Yvon Herbaux CJ, Tarantelli C, Bordone RP, Cascione L, Munz N, Aresu L, Sgrignani J, Rinaldi A, Kwee I, Rossi D, Cavalli A, Zucca E, Stussi G, Stathis A, Sloss C, Davids MS, Bertoni F. PI3Kδ activation, IL6 over-expression, and CD37 loss cause resistance to the targeting of CD37-positive lymphomas with the antibody-drug conjugate naratuximab emtansine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566994. [PMID: 38014209 PMCID: PMC10680772 DOI: 10.1101/2023.11.14.566994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Purpose The transmembrane protein CD37 is expressed almost exclusively in lymphoid tissues, with the highest abundance in mature B cells. CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical and promising early clinical activity. Naratuximab emtansine (Debio 1562, IMGN529) is an antibodydrug conjugate (ADC) that incorporates an anti-CD37 monoclonal antibody conjugated to the maytansinoid DM1 as payload. Naratuximab emtansine has shown activity as a single agent and in combination with the anti-CD20 monoclonal antibody rituximab in B cell lymphoma patients. Experimental Design We assessed the activity of naratuximab emtansine using in vitro models of lymphomas, correlated its activity with CD37 expression levels, characterized two resistance mechanisms to the ADC, and identified combination partners providing synergy. Results The anti-tumor activity of naratuximab emtansine was tested in 54 lymphoma cell lines alongside its free payload. The median IC 50 of naratuximab emtansine was 780 pM, and the activity, primarily cytotoxic, was more potent in B than in T cell lymphoma cell lines. In the subgroup of cell lines derived from B cell lymphoma, there was some correlation between sensitivity to DM1 and sensitivity to naratuximab emtansine (r=0.28, P = 0.06). After prolonged exposure to the ADC, one diffuse large B cell lymphoma (DLBCL) cell line developed resistance to the ADC due to the biallelic loss of the CD37 gene. After CD37 loss, we also observed upregulation of IL6 (IL-6) and other transcripts from MYD88/IL6-signaling. Recombinant IL6 led to resistance to naratuximab emtansine, while the anti-IL6 antibody tocilizumab improved the cytotoxic activity of the ADC in CD37-positive cells. In a second model, resistance was sustained by an activating mutation in the PIK3CD gene, associated with increased sensitivity to PI3K δ inhibition and a switch from functional dependence on the anti-apoptotic protein MCL1 to reliance on BCL2. The addition of idelalisib or venetoclax to naratuximab emtansine overcame resistance to the ADC in the resistant derivative while also improving the cytotoxic activity of the ADC in the parental cells. Conclusions Targeting B cell lymphoma with the CD37 targeting ADC naratuximab emtansine showed vigorous anti-tumor activity as a single agent, which was also observed in models bearing genetic lesions associated with inferior outcomes, such as MYC translocations and TP53 inactivation or resistance to R-CHOP. Resistance DLBCL models identified active combinations of naratuximab emtansine with drugs targeting IL6, PI3K δ , and BCL2. Despite notable progress in recent decades, we still face challenges in achieving a cure for a substantial number of lymphoma patients (1,2). A pertinent example is diffuse large B cell lymphoma (DLBCL), the most prevalent type of lymphoma (3). More than half of DLBCL patients can achieve remission, but around 40% of them experience refractory disease or relapse following an initial positive response (3). Regrettably, the prognosis for many of these cases remains unsatisfactory despite introducing the most recent antibody-based or cellular therapies (3,4), underscoring the importance of innovating new therapeutic strategies and gaining insights into the mechanisms of therapy resistance. CD37 is a transmembrane glycoprotein belonging to the tetraspanin family, primarily expressed on the surface of immune cells, principally in mature B cells but also, at lower levels, in T cells, macrophages/monocytes, granulocytes and dendritic cells (5) (6-8). CD37 plays a crucial role in various immune functions, including B cell activation, proliferation, and signaling, although its precise role still needs to be fully elucidated. CD37 interacts with multiple molecules, including SYK, LYN, CD19, CD22, PI3K δ , PI3K γ , and different integrins, among others (6-8). In mice, the lack of CD37 is paired with reduced T cell-dependent antibody-secreting cells and memory B cells, apparently due to the loss of CD37-mediated clustering of α 4 β 1 integrins (VLA-4) on germinal center B cells and decreased downstream activation of PI3K/AKT signaling and cell survival (5). Reflecting the expression pattern observed in normal lymphocytes, CD37 exhibits elevated expression in all mature B-cell lymphoid neoplasms, including most lymphoma subtypes, and absence in early progenitor cells or terminally differentiated plasma cells (6,8-14). In DLBCL, CD37 expression has been reported between 40% and 90% of cases across multiple studies performed using different antibodies (10,14-16). CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical (7,10-14,17-23) and early promising clinical activity (24-32). Among the CD37-targeting agents, naratuximab emtansine (Debio 1562, IMGN529) is an antibody-drug conjugate (ADC) that incorporates the anti-CD37 humanized IgG1 monoclonal antibody K7153A conjugated to the maytansinoid DM1, as payload, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) (10). Based on the initial in vitro and in vivo evidence of anti-tumor activity in lymphoma and chronic lymphocytic leukemia (CLL) (7,10), naratuximab emtansine entered the clinical evaluation as a single agent. The phase 1 study exploring naratuximab emtansine enrolled 39 patients with relapsed/refractory B cell lymphoma (27). The overall response rate (ORR) was 13% across all patients and 22% in DLBCL patients, including the only observed complete remission (CR) (27). In preliminary results of a phase 2 trial exploring the combination of naratuximab emtansine with the anti-CD20 monoclonal antibody rituximab (18), based on positive preclinical data (18), the ORR was 45% in 76 patients with DLBCL with 24 CRs (32%), 57% in 14 patients with follicular lymphoma (five CR), 50% in four MCL patients (2 CR) (31). Here, we studied the pattern of activity of naratuximab emtansine across a large panel of cell lines derived from DLBCL and other lymphoma subtypes and characterized two resistance mechanisms to the ADC.
Collapse
|
12
|
Chung EYL, Sartori G, Ponzoni M, Cascione L, Priebe V, Xu-Monette ZY, Fang X, Zhang M, Visco C, Tzankov A, Rinaldi A, Sgrignani J, Zucca E, Rossi D, Cavalli A, Inghirami G, Scott DW, Young KH, Bertoni F. ETS1 phosphorylation at threonine 38 is associated with the cell of origin of diffuse large B cell lymphoma and sustains the growth of tumour cells. Br J Haematol 2023; 203:244-254. [PMID: 37584198 DOI: 10.1111/bjh.19018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The transcriptional factor ETS1 is upregulated in 25% of diffuse large B cell lymphoma (DLBCL). Here, we studied the role of ETS1 phosphorylation at threonine 38, a marker for ETS1 activation, in DLBCL cellular models and clinical specimens. p-ETS1 was detected in activated B cell-like DLBCL (ABC), not in germinal centre B-cell-like DLBCL (GCB) cell lines and, accordingly, it was more common in ABC than GCB DLBCL diagnostic biopsies. MEK inhibition decreased both baseline and IgM stimulation-induced p-ETS1 levels. Genetic inhibition of phosphorylation of ETS1 at threonine 38 affected the growth and the BCR-mediated transcriptome program in DLBCL cell lines. Our data demonstrate that ETS1 phosphorylation at threonine 38 is important for the growth of DLBCL cells and its pharmacological inhibition could benefit lymphoma patients.
Collapse
Affiliation(s)
- Elaine Y L Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Maurilio Ponzoni
- IRCCS San Raffaele Hospital Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | - Xiaosheng Fang
- Duke University Medical Center, Durham, North Carolina, USA
| | - Mingzhi Zhang
- Duke University Medical Center, Durham, North Carolina, USA
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, USI, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, USI, Bellinzona, Switzerland
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, New York, USA
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ken H Young
- Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
13
|
Scheich S, Chen J, Liu J, Schnütgen F, Enssle JC, Ceribelli M, Thomas CJ, Choi J, Morris V, Hsiao T, Nguyen H, Wang B, Bolomsky A, Phelan JD, Corcoran S, Urlaub H, Young RM, Häupl B, Wright GW, Huang DW, Ji Y, Yu X, Xu W, Yang Y, Zhao H, Muppidi J, Pan KT, Oellerich T, Staudt LM. Targeting N-linked Glycosylation for the Therapy of Aggressive Lymphomas. Cancer Discov 2023; 13:1862-1883. [PMID: 37141112 PMCID: PMC10524254 DOI: 10.1158/2159-8290.cd-22-1401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be subdivided into the activated B-cell (ABC) and germinal center B cell-like (GCB) subtypes. Self-antigen engagement of B-cell receptors (BCR) in ABC tumors induces their clustering, thereby initiating chronic active signaling and activation of NF-κB and PI3 kinase. Constitutive BCR signaling is essential in some GCB tumors but primarily activates PI3 kinase. We devised genome-wide CRISPR-Cas9 screens to identify regulators of IRF4, a direct transcriptional target of NF-κB and an indicator of proximal BCR signaling in ABC DLBCL. Unexpectedly, inactivation of N-linked protein glycosylation by the oligosaccharyltransferase-B (OST-B) complex reduced IRF4 expression. OST-B inhibition of BCR glycosylation reduced BCR clustering and internalization while promoting its association with CD22, which attenuated PI3 kinase and NF-κB activation. By directly interfering with proximal BCR signaling, OST-B inactivation killed models of ABC and GCB DLBCL, supporting the development of selective OST-B inhibitors for the treatment of these aggressive cancers. SIGNIFICANCE DLBCL depends on constitutive BCR activation and signaling. There are currently no therapeutics that target the BCR directly and attenuate its pathologic signaling. Here, we unraveled a therapeutically exploitable, OST-B-dependent glycosylation pathway that drives BCR organization and proximal BCR signaling. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Julius C. Enssle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Craig J. Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD, 21218, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hang Nguyen
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James D. Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - George W. Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanlong Ji
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Patra-Kneuer M, Chang G, Xu W, Augsberger C, Grau M, Zapukhlyak M, Ilieva K, Landgraf K, Mangelberger-Eberl D, Yousefi K, Berning P, Kurz KS, Ott G, Klener P, Khandanpour C, Horna P, Schanzer J, Steidl S, Endell J, Heitmüller C, Lenz G. Activity of tafasitamab in combination with rituximab in subtypes of aggressive lymphoma. Front Immunol 2023; 14:1220558. [PMID: 37600821 PMCID: PMC10433160 DOI: 10.3389/fimmu.2023.1220558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Background Despite recent advances in the treatment of aggressive lymphomas, a significant fraction of patients still succumbs to their disease. Thus, novel therapies are urgently needed. As the anti-CD20 antibody rituximab and the CD19-targeting antibody tafasitamab share distinct modes of actions, we investigated if dual-targeting of aggressive lymphoma B-cells by combining rituximab and tafasitamab might increase cytotoxic effects. Methods Antibody single and combination efficacy was determined investigating different modes of action including direct cytotoxicity, antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) in in vitro and in vivo models of aggressive B-cell lymphoma comprising diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Results Three different sensitivity profiles to antibody monotherapy or combination treatment were observed in in vitro models: while 1/11 cell lines was primarily sensitive to tafasitamab and 2/11 to rituximab, the combination resulted in enhanced cell death in 8/11 cell lines in at least one mode of action. Treatment with either antibody or the combination resulted in decreased expression of the oncogenic transcription factor MYC and inhibition of AKT signaling, which mirrored the cell line-specific sensitivities to direct cytotoxicity. At last, the combination resulted in a synergistic survival benefit in a PBMC-humanized Ramos NOD/SCID mouse model. Conclusion This study demonstrates that the combination of tafasitamab and rituximab improves efficacy compared to single-agent treatments in models of aggressive B-cell lymphoma in vitro and in vivo.
Collapse
Affiliation(s)
| | - Gaomei Chang
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | | | - Michael Grau
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | | | | | | | - Kasra Yousefi
- Translational Research, MorphoSys AG, Planegg, Germany
| | - Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin S. Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czechia
- First Medical Department, Department of Hematology, Charles University General Hospital Prague, Prague, Czechia
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Hematology and Oncology Clinic, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN, United States
| | | | - Stefan Steidl
- Translational Research, MorphoSys AG, Planegg, Germany
| | - Jan Endell
- Translational Research, MorphoSys AG, Planegg, Germany
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
15
|
Li J, Chin CR, Ying HY, Meydan C, Teater MR, Xia M, Farinha P, Takata K, Chu CS, Rivas MA, Chadburn A, Steidl C, Scott DW, Roeder RG, Mason CE, Béguelin W, Melnick AM. Cooperative super-enhancer inactivation caused by heterozygous loss of CREBBP and KMT2D skews B cell fate decisions and yields T cell-depleted lymphomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528351. [PMID: 36824887 PMCID: PMC9949106 DOI: 10.1101/2023.02.13.528351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mutations affecting enhancer chromatin regulators CREBBP and KMT2D are highly co-occurrent in germinal center (GC)-derived lymphomas and other tumors, even though regulating similar pathways. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d (C+K) indeed accelerated lymphomagenesis. C+K haploinsufficiency induced GC hyperplasia by altering cell fate decisions, skewing B cells away from memory and plasma cell differentiation. C+K deficiency particularly impaired enhancer activation for immune synapse genes involved in exiting the GC reaction. This effect was especially severe at super-enhancers for immunoregulatory and differentiation genes. Mechanistically, CREBBP and KMT2D formed a complex, were highly co-localized on chromatin, and were required for each-other's stable recruitment to enhancers. Notably, C+K lymphomas in mice and humans manifested significantly reduced CD8 + T-cell abundance. Hence, deficiency of C+K cooperatively induced an immune evasive phenotype due at least in part to failure to activate key immune synapse super-enhancers, associated with altered immune cell fate decisions. SIGNIFICANCE Although CREBBP and KMT2D have similar enhancer regulatory functions, they are paradoxically co-mutated in lymphomas. We show that their combined loss causes specific disruption of super-enhancers driving immune synapse genes. Importantly, this leads to reduction of CD8 cells in lymphomas, linking super-enhancer function to immune surveillance, with implications for immunotherapy resistance.
Collapse
|
16
|
Negligible role of TRAIL death receptors in cell death upon endoplasmic reticulum stress in B-cell malignancies. Oncogenesis 2023; 12:6. [PMID: 36755015 PMCID: PMC9908905 DOI: 10.1038/s41389-023-00450-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Impairments in protein folding in the endoplasmic reticulum (ER) lead to a condition called ER stress, which can trigger apoptosis via the mitochondrial or the death receptor (extrinsic) pathway. There is controversy concerning involvement of the death receptor (DR)4 and DR5-Caspase-8 -Bid pathway in ER stress-mediated cell death, and this axis has not been fully studied in B-cell malignancies. Using three B-cell lines from Mantle Cell Lymphoma, Waldenström's macroglobulinemia and Multiple Myeloma origins, we engineered a set of CRISPR KOs of key components of these cell death pathways to address this controversy. We demonstrate that DR4 and/or DR5 are essential for killing via TRAIL, however, they were dispensable for ER-stress induced-cell death, by Thapsigargin, Brefeldin A or Bortezomib, as were Caspase-8 and Bid. In contrast, the deficiency of Bax and Bak fully protected from ER stressors. Caspase-8 and Bid were cleaved upon ER-stress stimulation, but this was DR4/5 independent and rather a result of mitochondrial-induced feedback loop subsequent to Bax/Bak activation. Finally, combined activation of the ER-stress and TRAIL cell-death pathways was synergistic with putative clinical relevance for B-cell malignancies.
Collapse
|
17
|
Shimkus G, Nonaka T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front Mol Biosci 2023; 10:1124360. [PMID: 36818048 PMCID: PMC9936827 DOI: 10.3389/fmolb.2023.1124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a wide variety of disease states that have to date been subgrouped and characterized based on immunohistochemical methods, which provide limited prognostic value to clinicians and no alteration in treatment regimen. The addition of rituximab to CHOP therapy was the last leap forward in terms of treatment, but regimens currently follow a standardized course when disease becomes refractory with no individualization based on genotype. Research groups are tentatively proposing new strategies for categorizing DLBCL based on genetic abnormalities that are frequently found together to better predict disease course following dysregulation of specific pathways and to deliver targeted treatment. Novel algorithms in combination with next-generation sequencing techniques have identified between 4 and 7 subgroups of DLBCL, depending on the research team, with potentially significant and actionable genetic alterations. Various drugs aimed at pathways including BCR signaling, NF-κB dysfunction, and epigenetic regulation have shown promise in their respective groups and may show initial utility as second or third line therapies to patients with recurrent DLBCL. Implementation of subgroups will allow collection of necessary data to determine which groups are significant, which treatments may be indicated, and will provide better insight to clinicians and patients on specific disease course.
Collapse
Affiliation(s)
- Gaelen Shimkus
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
18
|
Mlynarczyk C, Teater M, Pae J, Chin CR, Wang L, Arulraj T, Barisic D, Papin A, Hoehn KB, Kots E, Ersching J, Bandyopadhyay A, Barin E, Poh HX, Evans CM, Chadburn A, Chen Z, Shen H, Isles HM, Pelzer B, Tsialta I, Doane AS, Geng H, Rehman MH, Melnick J, Morgan W, Nguyen DTT, Elemento O, Kharas MG, Jaffrey SR, Scott DW, Khelashvili G, Meyer-Hermann M, Victora GD, Melnick A. BTG1 mutation yields supercompetitive B cells primed for malignant transformation. Science 2023; 379:eabj7412. [PMID: 36656933 PMCID: PMC10515739 DOI: 10.1126/science.abj7412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/12/2022] [Indexed: 01/21/2023]
Abstract
Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.
Collapse
Affiliation(s)
- Coraline Mlynarczyk
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher R. Chin
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ling Wang
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Darko Barisic
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Antonin Papin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ersilia Barin
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hui Xian Poh
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chiara M. Evans
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Hao Shen
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hannah M. Isles
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Benedikt Pelzer
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ioanna Tsialta
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S. Doane
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Muhammad Hassan Rehman
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Qatar, Doha, Qatar
| | - Jonah Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wyatt Morgan
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diu T. T. Nguyen
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine and Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R. Jaffrey
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - George Khelashvili
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
19
|
Rizzello C, Cancila V, Sangaletti S, Botti L, Ratti C, Milani M, Dugo M, Bertoni F, Tripodo C, Chiodoni C, Colombo MP. Intracellular osteopontin protects from autoimmunity-driven lymphoma development inhibiting TLR9-MYD88-STAT3 signaling. Mol Cancer 2022; 21:215. [PMID: 36503430 PMCID: PMC9743519 DOI: 10.1186/s12943-022-01687-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autoimmune disorders, including Systemic Lupus Erythematosus (SLE), are associated with increased incidence of hematological malignancies. The matricellular protein osteopontin (OPN) has been linked to SLE pathogenesis, as SLE patients show increased serum levels of OPN and often polymorphisms in its gene. Although widely studied for its pro-tumorigenic role in different solid tumours, the role of OPN in autoimmunity-driven lymphomagenesis has not been investigated yet. METHODS To test the role of OPN in the SLE-associated lymphomagenesis, the SLE-like prone Faslpr/lpr mutation was transferred onto an OPN-deficient background. Spleen from Faslpr/lpr and OPN-/-Faslpr/lpr mice, as well as purified B cells, were analysed by histopathology, flow cytometry, Western Blot, immunohistochemistry, immunofluorescence and gene expression profile to define lymphoma characteristics and investigate the molecular mechanisms behind the observed phenotype. OPN cellular localization in primary splenic B cells and mouse and human DLBCL cell lines was assessed by confocal microscopy. Finally, gain of function experiments, by stable over-expression of the secreted (sOPN) and intracellular OPN (iOPN) in OPN-/-Faslpr/lpr -derived DLBCL cell lines, were performed for further validation experiments. RESULTS Despite reduced autoimmunity signs, OPN-/-Faslpr/lpr mice developed splenic lymphomas with higher incidence than Faslpr/lpr counterparts. In situ and ex vivo analysis featured such tumours as activated type of diffuse large B cell lymphoma (ABC-DLBCL), expressing BCL2 and c-MYC, but not BCL6, with activated STAT3 signaling. OPN-/-Faslpr/lpr B lymphocytes showed an enhanced TLR9-MYD88 signaling pathway, either at baseline or after stimulation with CpG oligonucleotides, which mimic dsDNA circulating in autoimmune conditions. B cells from Faslpr/lpr mice were found to express the intracellular form of OPN. Accordingly, gene transfer-mediated re-expression of iOPN, but not of its secreted isoform, into ABC-DLBCL cell lines established from OPN-/-Faslpr/lpr mice, prevented CpG-mediated activation of STAT3, suggesting that the intracellular form of OPN may represent a brake to TLR9 signaling pathway activation. CONCLUSION These data indicate that, in the setting of SLE-like syndrome in which double strand-DNA chronically circulates and activates TLRs, B cell intracellular OPN exerts a protective role in autoimmunity-driven DLBCL development, mainly acting as a brake in the TLR9-MYD88-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Celeste Rizzello
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Valeria Cancila
- grid.10776.370000 0004 1762 5517Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo, Italy
| | - Sabina Sangaletti
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Laura Botti
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Chiara Ratti
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Matteo Milani
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Matteo Dugo
- grid.417893.00000 0001 0807 2568Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy ,grid.18887.3e0000000417581884Department of Medical Oncology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Bertoni
- grid.29078.340000 0001 2203 2861Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via F. Chiesa 5, 6500 Bellinzona, Switzerland ,grid.419922.5Oncology Institute of Southern Switzerland, Ente Ospedialiero Cantonale, Via A. Gallino 12, 6500 Bellinzona, Switzerland
| | - Claudio Tripodo
- grid.10776.370000 0004 1762 5517Tumor Immunology Unit, Department of Health Science, University of Palermo School of Medicine, Palermo, Italy ,grid.7678.e0000 0004 1757 7797FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Claudia Chiodoni
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Mario P. Colombo
- grid.417893.00000 0001 0807 2568Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133 Milan, Italy
| |
Collapse
|
20
|
Whitlock NC, White ME, Capaldo BJ, Ku AT, Agarwal S, Fang L, Wilkinson S, Trostel SY, Shi ZD, Basuli F, Wong K, Jagoda EM, Kelly K, Choyke PL, Sowalsky AG. Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discov Oncol 2022; 13:97. [PMID: 36181613 PMCID: PMC9526773 DOI: 10.1007/s12672-022-00565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Tarantelli C, Cannas E, Ekeh H, Moscatello C, Gaudio E, Cascione L, Napoli S, Rech C, Testa A, Maniaci C, Rinaldi A, Zucca E, Stathis A, Ciulli A, Bertoni F. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:586-601. [PMID: 36046113 PMCID: PMC9400774 DOI: 10.37349/etat.2021.00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Aim Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that play a fundamental role in transcription regulation. Preclinical and early clinical evidence sustain BET targeting as an anti-cancer approach. BET degraders are chimeric compounds comprising of a BET inhibitor, which allows the binding to BET bromodomains, linked to a small molecule, binder for an E3 ubiquitin ligase complex, triggering BET proteins degradation via the proteasome. These degraders, called proteolysis-targeting chimeras (PROTACs), can exhibit greater target specificity compared to BET inhibitors and overcome some of their limitations, such as the upregulation of the BET proteins themselves. Here are presented data on the anti-tumor activity and the mechanism of action of the BET degrader MZ1 in diffuse large B cell lymphoma (DLBCL) of the activated B-cell like (ABC, ABC DLBCL), using a BET inhibitor as a comparison. Methods Established lymphoma cell lines were exposed for 72 h to increasing doses of the compounds. Cell proliferation was evaluated by using an 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assay. Fluorescent-Activated Cell Sorter (FACS) analysis was performed to measure apoptotic activation and RNA sequencing (RNA-Seq) to study the transcriptional changes induced by the compounds. Results MZ1, and not its negative control epimer cisMZ1, was very active with a median half maximal inhibitory concentration (IC50) of 49 nmol/L. MZ1 was more in vitro active than the BET inhibitor birabresib (OTX015). Importantly, MZ1 induced cell death in all the ABC DLBCL cell lines, while the BET inhibitor was cytotoxic only in a fraction of them. BET degrader and inhibitor shared partially similar changes at transcriptome level but the MZ1 effect was stronger and overlapped with that caused cyclin-dependent kinase 9 (CDK9) inhibition. Conclusions The BET degrader MZ1 had strong cytotoxic activity in all the ABC DLBCL cell lines that were tested, and, at least in vitro, it elicited more profound effects than BET inhibitors, and encourages further investigations.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Hillarie Ekeh
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Carmelo Moscatello
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, 1000 Lausanne, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Cesare Rech
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
22
|
Wilson WH, Wright GW, Huang DW, Hodkinson B, Balasubramanian S, Fan Y, Vermeulen J, Shreeve M, Staudt LM. Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL. Cancer Cell 2021; 39:1643-1653.e3. [PMID: 34739844 PMCID: PMC8722194 DOI: 10.1016/j.ccell.2021.10.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
In diffuse large B cell lymphoma (DLBCL), tumors belonging to the ABC but not GCB gene expression subgroup rely upon chronic active B cell receptor signaling for viability, a dependency that is targetable by ibrutinib. A phase III trial ("Phoenix;" ClinicalTrials.gov: NCT01855750) showed a survival benefit of ibrutinib addition to R-CHOP chemotherapy in younger patients with non-GCB DLBCL, but the molecular basis for this benefit was unclear. Analysis of biopsies from Phoenix trial patients revealed three previously characterized genetic subtypes of DLBCL: MCD, BN2, and N1. The 3-year event-free survival of younger patients (age ≤60 years) treated with ibrutinib plus R-CHOP was 100% in the MCD and N1 subtypes while the survival of patients with these subtypes treated with R-CHOP alone was significantly inferior (42.9% and 50%, respectively). This work provides a mechanistic understanding of the benefit of ibrutinib addition to chemotherapy, supporting its use in younger patients with non-GCB DLBCL.
Collapse
Affiliation(s)
- Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brendan Hodkinson
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | | | - Yue Fan
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Jessica Vermeulen
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Martin Shreeve
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ 08933, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Center for Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Shaffer AL, Phelan JD, Wang JQ, Huang D, Wright GW, Kasbekar M, Choi J, Young RM, Webster DE, Yang Y, Zhao H, Yu X, Xu W, Roulland S, Ceribelli M, Zhang X, Wilson KM, Chen L, McKnight C, Klumpp-Thomas C, Thomas CJ, Häupl B, Oellerich T, Rae Z, Kelly MC, Ahn IE, Sun C, Gaglione EM, Wilson WH, Wiestner A, Staudt LM. Overcoming Acquired Epigenetic Resistance to BTK Inhibitors. Blood Cancer Discov 2021; 2:630-647. [PMID: 34778802 DOI: 10.1158/2643-3230.bcd-21-0063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
The use of Bruton tyrosine kinase (BTK) inhibitors to block B-cell receptor (BCR)-dependent NF-κB activation in lymphoid malignancies has been a major clinical advance, yet acquired therapeutic resistance is a recurring problem. We modeled the development of resistance to the BTK inhibitor ibrutinib in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma, which relies on chronic active BCR signaling for survival. The primary mode of resistance was epigenetic, driven in part by the transcription factor TCF4. The resultant phenotypic shift altered BCR signaling such that the GTPase RAC2 substituted for BTK in the activation of phospholipase Cγ2, thereby sustaining NF-κB activity. The interaction of RAC2 with phospholipase Cγ2 was also increased in chronic lymphocytic leukemia cells from patients with persistent or progressive disease on BTK inhibitor treatment. We identified clinically available drugs that can treat epigenetic ibrutinib resistance, suggesting combination therapeutic strategies. Significance In diffuse large B-cell lymphoma, we show that primary resistance to BTK inhibitors is due to epigenetic rather than genetic changes that circumvent the BTK blockade. We also observed this resistance mechanism in chronic lymphocytic leukemia, suggesting that epigenetic alterations may contribute more to BTK inhibitor resistance than currently thought.See related commentary by Pasqualucci, p. 555. This article is highlighted in the In This Issue feature, p. 549.
Collapse
Affiliation(s)
- Arthur L Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James Q Wang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - DaWei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - George W Wright
- Biometric Research Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel E Webster
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hong Zhao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xin Yu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Weihong Xu
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Craig J Thomas
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt; German Cancer Consortium/German Cancer Research Center, Heidelberg; and Department of Molecular Diagnostics and Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt; German Cancer Consortium/German Cancer Research Center, Heidelberg; and Department of Molecular Diagnostics and Translational Proteomics, Frankfurt Cancer Institute, Frankfurt, Germany
| | - Zachary Rae
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael C Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Sartori G, Napoli S, Cascione L, Chung EYL, Priebe V, Arribas AJ, Mensah AA, Dall'Angelo M, Falzarano C, Barnabei L, Forcato M, Rinaldi A, Bicciato S, Thome M, Bertoni F. ASB2 is a direct target of FLI1 that sustains NF-κB pathway activation in germinal center-derived diffuse large B-cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:357. [PMID: 34763718 PMCID: PMC8582153 DOI: 10.1186/s13046-021-02159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) comprises at least two main biologically distinct entities: germinal center B-cell (GCB) and activated B-cell (ABC) subtype. Albeit sharing common lesions, GCB and ABC DLBCL present subtype-specific oncogenic pathway perturbations. ABC DLBCL is typically characterized by a constitutively active NF-kB. However, the latter is seen in also 30% of GCB DLBCL. Another recurrent lesion in DLBCL is an 11q24.3 gain, associated with the overexpression of two ETS transcription factors, ETS1 and FLI1. Here, we showed that FLI1 is more expressed in GCB than ABC DLBCL and we characterized its transcriptional network. Methods Gene expression data were obtained from public datasets GSE98588, phs001444.v2.p1, GSE95013 and GSE10846. ChIP-Seq for FLI1 paired with transcriptome analysis (RNA-Seq) after FLI1 silencing (siRNAs) was performed. Sequencing was carried out using the NextSeq 500 (Illumina). Detection of peaks was done using HOMER (v2.6); differential expressed genes were identified using moderated t-test (limma R-package) and functionally annotated with g:Profiler. ChIP-Seq and RNA-Seq data from GCB DLBCL cell lines after FLI1 downregulation were integrated to identify putative direct targets of FLI1. Results Analysis of clinical DLBCL specimens showed that FLI1 gene was more frequently expressed at higher levels in GCB than in ABC DLBCL and its protein levels were higher in GCB than in ABC DLBCL cell lines. Genes negatively regulated by FLI1 included tumor suppressor genes involved in negative regulation of cell cycle and hypoxia. Among positively regulated targets of FLI1, we found genes annotated for immune response, MYC targets, NF-κB and BCR signaling and NOTCH pathway genes. Of note, direct targets of FLI1 overlapped with genes regulated by ETS1, the other transcription factor gained at the 11q24.3 locus in DLBCL, suggesting a functional convergence within the ETS family. Positive targets of FLI1 included the NF-κB-associated ASB2, a putative essential gene for DLBCL cell survival. ASB2 gene downregulation was toxic in GCB DLBCL cell lines and induced NF-κB inhibition via downregulation of RelB and increased IκBα. Additionally, downregulation of FLI1, but not ASB2, caused reduction of NF-κB1 and RelA protein levels. Conclusions We conclude that FLI1 directly regulates a network of biologically crucial genes and processes in GCB DLBCL. FLI1 regulates both the classical NF-κB pathway at the transcriptional level, and the alternative NF-κB pathway, via ASB2. FLI1 and ASB2 inhibition represents a potential novel therapeutic approach for GCB DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02159-3.
Collapse
Affiliation(s)
- Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elaine Yee Lin Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Alberto Jesus Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Michela Dall'Angelo
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Computer Science, University of Verona, Verona, Italy
| | - Chiara Falzarano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Laura Barnabei
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, via Francesco Chiesa 5, 6500, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.
| |
Collapse
|
25
|
Koh J, Jang I, Mun S, Lee C, Cha HJ, Oh YH, Kim JM, Han JH, Paik JH, Cho J, Ko YH, Park CS, Go H, Huh J, Kim K, Jeon YK. Genetic profiles of subcutaneous panniculitis-like T-cell lymphoma and clinicopathological impact of HAVCR2 mutations. Blood Adv 2021; 5:3919-3930. [PMID: 34535012 PMCID: PMC8945616 DOI: 10.1182/bloodadvances.2021004562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies identified germline mutations in HAVCR2 (encoding T-cell immunoglobulin mucin 3) as a genetic factor that predisposes to subcutaneous panniculitis-like T-cell lymphoma (SPTCL). However, the differences between HAVCR2-mutated (HAVCR2MUT) and HAVCR2 wild-type (HAVCR2WT) SPTCLs remain unclear. A nationwide cohort of 53 patients with SPTCL diagnosed at 8 Korean institutions was established. Whole-exome sequencing and RNA-sequencing were performed on 8 patients in the discovery set. In the validation set, targeted gene sequencing or direct sequencing of HAVCR2 was performed. Of 49 patients with available HAVCR2 status, 25 (51.0%) were HAVCR2Y82C. HAVCR2Y82C was associated with younger age (P = .001), development of hemophagocytic lymphohistiocytosis or hemophagocytic lymphohistiocytosis-like systemic illness (P < .001), and short relapse-free survival (RFS) (P = .023). Most mutated genes in SPTCLs were involved in immune responses, epigenetic modifications, and cell signaling. Mutations in UNC13D, PIAS3, and KMT2D were more frequent in HAVCR2WT SPTCLs. At the gene expression level, HAVCR2Y82C SPTCLs were enriched in genes involved in IL6-JAK-STAT3 signaling and in tumor necrosis factor-α signaling via NF-κB. CCR4 was significantly upregulated in HAVCR2WT SPTCLs both at the messenger RNA level and at the protein level. We established a risk stratification system for SPTCL by integrating clinical and histopathological features, including age and HAVCR2 mutation status. This risk stratification system was strongly associated with RFS (P = .031). In conclusion, the HAVCR2Y82C mutation was common in Korean patients with SPTCL and was associated with unique clinicopathological and genetic features. Combining clinicopathological parameters could aid in predicting prognosis for patients with SPTCL.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insoon Jang
- Department of Data Science Research, Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seungchan Mun
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Young Ha Oh
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Kwangsoo Kim
- Department of Data Science Research, Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| |
Collapse
|
26
|
Yuan H, Nishikori M, Otsuka Y, Arima H, Kitawaki T, Takaori-Kondo A. The EZH2 inhibitor tazemetostat upregulates the expression of CCL17/TARC in B-cell lymphoma and enhances T-cell recruitment. Cancer Sci 2021; 112:4604-4616. [PMID: 34449935 PMCID: PMC8586691 DOI: 10.1111/cas.15122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
An inhibitor of the histone methyltransferase enhancer of zeste homologue 2 (EZH2), tazemetostat, has been developed for the treatment of B‐cell lymphoma, but its mechanisms of action are not fully elucidated. We screened for genes targeted by tazemetostat in eleven B‐cell lymphoma cell lines and found that tazemetostat significantly increased the expression of chemokine (C‐C motif) ligand 17 (CCL17)/thymus‐ and activation‐regulated chemokine (TARC) in all, which codes for a chemokine that is a hallmark of Hodgkin/Reed‐Sternberg (H/RS) cells in Hodgkin lymphoma. Notably, gene set enrichment analysis demonstrated a positive correlation between the genes upregulated by tazemetostat in five follicular lymphoma (FL) cell lines and those reported to be overexpressed in H/RS cells. The CCL17 promoter region was enriched in repressive histone modification H3K27me3, and tazemetostat induced H3K27 demethylation and activated gene transcription. CCL17 protein secretion was also induced by EZH2 inhibition, which was further enhanced by concurrent CpG stimulation. In vitro transwell migration assay demonstrated that CCL17 produced by tazemetostat‐treated B cells enhanced the recruitment of T cells, which had the potential to exert antilymphoma response. Analysis of publicly available human lymphoma databases showed that CCL17 gene expression was inversely correlated with the EZH2 activation signature and significantly paralleled the CD4+ and CD8+ T‐cell–rich signature in FL and germinal center B‐cell–like diffuse large B‐cell lymphoma. Our findings indicate that tazemetostat can potentially activate antilymphoma response by upregulating CCL17 expression in B‐cell lymphoma cells and promote T‐cell recruitment, which provides a rationale for its combination with immunotherapy.
Collapse
Affiliation(s)
- Hepei Yuan
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nishikori
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Otsuka
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Arima
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Kitawaki
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Meyer SN, Koul S, Pasqualucci L. Mouse Models of Germinal Center Derived B-Cell Lymphomas. Front Immunol 2021; 12:710711. [PMID: 34456919 PMCID: PMC8387591 DOI: 10.3389/fimmu.2021.710711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, the revolution in DNA sequencing has changed the way we understand the genetics and biology of B-cell lymphomas by uncovering a large number of recurrently mutated genes, whose aberrant function is likely to play an important role in the initiation and/or maintenance of these cancers. Dissecting how the involved genes contribute to the physiology and pathology of germinal center (GC) B cells -the origin of most B-cell lymphomas- will be key to advance our ability to diagnose and treat these patients. Genetically engineered mouse models (GEMM) that faithfully recapitulate lymphoma-associated genetic alterations offer a valuable platform to investigate the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, and to pre-clinically develop new therapeutic principles in the context of an intact tumor immune microenvironment. In this review, we provide a summary of state-of-the art GEMMs obtained by accurately modelling the most common genetic alterations found in human GC B cell malignancies, with a focus on Burkitt lymphoma, follicular lymphoma, and diffuse large B-cell lymphoma, and we discuss how lessons learned from these models can help guide the design of novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Stefanie N. Meyer
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College (City University of New York), Bayside, NY, United States
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
28
|
The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood 2021; 139:384-398. [PMID: 34232979 DOI: 10.1182/blood.2020010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. NF-kB transcription factor family is activated by two main pathways, the canonical and the alternative NF-kB activation pathways with different functions. The alternative NF-kB pathway leads to the activation of the transcriptionally active RelB NF-kB subunit. Alternative NF-kB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their ABC or GCB subtypes. RelB activity defines a new subset of DLBCL patients with a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for ABC tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-kB, thus indicating that current genetic tools to evaluate NF-kB activity in DLBCL do not provide information on the alternative NF-kB activation. Further, the newly defined RelB-positive subgroup of DLBCL patients exhibits a dismal outcome following immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA-damage induced apoptosis in response to doxorubicin, a genotoxic agent used in front-line treatment for DLBCL. We also show that RelB positivity is associated with high expression of cIAP2. Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of DLBCL patients.
Collapse
|
29
|
A novel model of alternative NF-κB pathway activation in anaplastic large cell lymphoma. Leukemia 2021; 35:1976-1989. [PMID: 33184494 PMCID: PMC9245089 DOI: 10.1038/s41375-020-01088-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/01/2020] [Accepted: 10/29/2020] [Indexed: 02/01/2023]
Abstract
Aberrant activation of NF-κB is the most striking oncogenic mechanism in B-cell lymphoma; however, its role in anaplastic large cell lymphomas (ALCL) has not been fully established and its activation mechanism(s) remain unclear. Using ALCL cell line models, we revealed the supporting roles for NFKB2 and the NIK pathway in some ALCL lines. To investigate the detailed activation mechanisms for this oncogenic pathway, we performed specifically designed alternative NF-κB reporter CRISPR screens followed by the RNA-seq analysis, which led us to identify STAT3 as the major mediator for NIK-dependent NF-κB activation in ALCL. Consistently, p-STAT3 level was correlated with NFKB2 nuclear accumulation in primary clinical samples. Mechanistically, we found that in NIK-positive ALK- ALCL cells, common JAK/STAT3 mutations promote transcriptional activity of STAT3 which directly regulates NFKB2 and CD30 expression. Endogenous expression of CD30 induces constitutive NF-κB activation through binding and degrading of TRAF3. In ALK+ ALCL, the CD30 pathway is blocked by the NPM-ALK oncoprotein, but STAT3 activity and resultant NFKB2 expression can still be induced by NPM-ALK, leading to minimal alternative NF-κB activation. Our data suggest combined NIK and JAK inhibitor therapy could benefit patients with NIK-positive ALK- ALCL carrying JAK/STAT3 somatic mutations.
Collapse
|
30
|
Inhibition of B-cell receptor signaling disrupts cell adhesion in mantle cell lymphoma via RAC2. Blood Adv 2021; 5:185-197. [PMID: 33570628 DOI: 10.1182/bloodadvances.2020001665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of the B-cell receptor (BCR) signaling pathway is highly effective in B-cell neoplasia through Bruton tyrosine kinase inhibition by ibrutinib. Ibrutinib also disrupts cell adhesion between a tumor and its microenvironment. However, it is largely unknown how BCR signaling is linked to cell adhesion. We observed that intrinsic sensitivities of mantle cell lymphoma (MCL) cell lines to ibrutinib correlated well with their cell adhesion phenotype. RNA-sequencing revealed that BCR and cell adhesion signatures were simultaneously downregulated by ibrutinib in the ibrutinib-sensitive, but not ibrutinib-resistant, cells. Among the differentially expressed genes, RAC2, part of the BCR signature and a known regulator of cell adhesion, was downregulated at both the RNA and protein levels by ibrutinib only in sensitive cells. RAC2 physically associated with B-cell linker protein (BLNK), a BCR adaptor molecule, uniquely in sensitive cells. RAC2 reduction using RNA interference and CRISPR impaired cell adhesion, whereas RAC2 overexpression reversed ibrutinib-induced cell adhesion impairment. In a xenograft mouse model, mice treated with ibrutinib exhibited slower tumor growth, with reduced RAC2 expression in tissue. Finally, RAC2 was expressed in ∼65% of human primary MCL tumors, and RAC2 suppression by ibrutinib resulted in cell adhesion impairment. These findings, made with cell lines, a xenograft model, and human primary lymphoma tumors, uncover a novel link between BCR signaling and cell adhesion. This study highlights the importance of RAC2 and cell adhesion in MCL pathogenesis and drug development.
Collapse
|
31
|
Zhang XT, Hu XB, Wang HL, Kan WJ, Xu L, Wang ZJ, Xiang YQ, Wu WB, Feng B, Li JN, Gao AH, Dong TC, Xia CM, Zhou YB, Li J. Activation of unfolded protein response overcomes Ibrutinib resistance in diffuse large B-cell lymphoma. Acta Pharmacol Sin 2021; 42:814-823. [PMID: 32855532 PMCID: PMC8115113 DOI: 10.1038/s41401-020-00505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 02/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most widespread type of non-Hodgkin lymphoma (NHL). As the most aggressive form of the DLBCL, the activated B-cell-like (ABC) subtype is often resistant to standard chemotherapies. Bruton's tyrosine kinase (BTK) inhibitor ibrutinib provides a potential therapeutic approach for the DLBCL but fails to improve the outcome in the phase III trial. In the current study, we investigated the molecular mechanisms underlying ibrutinib resistance and explored new combination therapy with ibrutinib. We generated an ibrutinib-resistant ABC-DLBCL cell line (OCI-ly10-IR) through continuous exposure to ibrutinib. Transcriptome analysis of the parental and ibrutinib-resistant cell lines revealed that the ibrutinib-resistant cells had significantly lower expression of the unfolded protein response (UPR) marker genes. Overexpression of one UPR branch-XBP1s greatly potentiated ibrutinib-induced apoptosis in both sensitive and resistant cells. The UPR inhibitor tauroursodeoxycholic acid (TUDCA) partially reduced the apoptotic rate induced by the ibrutinib in sensitive cells. The UPR activator 2-deoxy-D-glucose (2-DG) in combination with the ibrutinib triggered even greater cell growth inhibition, apoptosis, and stronger calcium (Ca2+) flux inhibition than either of the agents alone. A combination treatment of ibrutinib (15 mg·kg-1·d-1, po.) and 2-DG (500 mg/kg, po, b.i.d.) synergistically retarded tumor growth in NOD/SCID mice bearing OCI-ly10-IR xenograft. In addition, ibrutinib induced the UPR in the sensitive cell lines but not in the resistant cell lines of the DLBCL. There was also a combined synergistic effect in the primary resistant DLBCL cell lines. Overall, our results suggest that targeting the UPR could be a potential combination strategy to overcome ibrutinib resistance in the DLBCL.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxyglucose/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/physiopathology
- Mice, Inbred NOD
- Mice, SCID
- Piperidines/therapeutic use
- Unfolded Protein Response/drug effects
- Unfolded Protein Response/physiology
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Xiao-Tuan Zhang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiao-Bei Hu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han-Lin Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei-Juan Kan
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Xu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Zhi-Jia Wang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Yu-Qi Xiang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Wen-Biao Wu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Bo Feng
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Jia-Nan Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - An-Hui Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian-Cheng Dong
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Mei Xia
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Bo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
32
|
Pasqualucci L, Klein U. Mouse Models in the Study of Mature B-Cell Malignancies. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034827. [PMID: 32398289 DOI: 10.1101/cshperspect.a034827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past two decades, genomic analyses of several B-cell lymphoma entities have identified a large number of genes that are recurrently mutated, suggesting that their aberrant function promotes lymphomagenesis. For many of those genes, the specific role in normal B-cell development is unknown; moreover, whether and how their deregulated activity contributes to lymphoma initiation and/or maintenance is often difficult to determine. Genetically engineered mouse models that faithfully mimic lymphoma-associated genetic alterations represent valuable tools for elucidating the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, as well as for the preclinical testing of novel therapeutic principles in an intact microenvironment. Here we summarize what has been learned about the mechanisms of oncogenic transformation from accurately modeling the most common and well-characterized genetic alterations identified in mature B-cell malignancies. This information is expected to guide the design of improved molecular diagnostics and mechanism-based therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Department of Pathology & Cell Biology, Institute for Cancer Genetics, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
33
|
Cadot S, Valle C, Tosolini M, Pont F, Largeaud L, Laurent C, Fournie JJ, Ysebaert L, Quillet-Mary A. Longitudinal CITE-Seq profiling of chronic lymphocytic leukemia during ibrutinib treatment: evolution of leukemic and immune cells at relapse. Biomark Res 2020; 8:72. [PMID: 33298182 PMCID: PMC7724843 DOI: 10.1186/s40364-020-00253-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ibrutinib, an irreversible Bruton Tyrosine Kinase (BTK) inhibitor, has revolutionized Chronic Lymphocytic Leukemia (CLL) treatment, but resistances to ibrutinib have emerged, whether related or not to BTK mutations. Patterns of CLL evolution under ibrutinib therapy are well characterized for the leukemic cells but not for their microenvironment. METHODS Here, we addressed this question at the single cell level of both transcriptome and immune-phenotype. The PBMCs from a CLL patient were monitored during ibrutinib treatment using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-Seq) technology. RESULTS This unveiled that the short clinical relapse of this patient driven by BTK mutation is associated with intraclonal heterogeneity in B leukemic cells and up-regulation of common signaling pathways induced by ibrutinib in both B leukemic cells and immune cells. This approach also pinpointed a subset of leukemic cells present before treatment and highly enriched during progression under ibrutinib. These latter exhibit an original gene signature including up-regulated BCR, MYC-activated, and other targetable pathways. Meanwhile, although ibrutinib differentially affected the exhaustion of T lymphocytes, this treatment enhanced the T cell cytotoxicity even during disease progression. CONCLUSIONS These results could open new alternative of therapeutic strategies for ibrutinib-refractory CLL patients, based on immunotherapy or targeting B leukemic cells themselves.
Collapse
Affiliation(s)
- Sarah Cadot
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Carine Valle
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Frederic Pont
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Laetitia Largeaud
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Jean Jacques Fournie
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
| | - Loic Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | - Anne Quillet-Mary
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
- ERL 5294 CNRS, Toulouse, France.
- Laboratoire d'Excellence Toulouse Cancer, TOUCAN, Toulouse, France.
| |
Collapse
|
34
|
The transcription factor C/EBPβ orchestrates dendritic cell maturation and functionality under homeostatic and malignant conditions. Proc Natl Acad Sci U S A 2020; 117:26328-26339. [PMID: 33020261 DOI: 10.1073/pnas.2008883117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cell (DC) maturation is a prerequisite for the induction of adaptive immune responses against pathogens and cancer. Transcription factor (TF) networks control differential aspects of early DC progenitor versus late-stage DC cell fate decisions. Here, we identified the TF C/EBPβ as a key regulator for DC maturation and immunogenic functionality under homeostatic and lymphoma-transformed conditions. Upon cell-specific deletion of C/EBPβ in CD11c+MHCIIhi DCs, gene expression profiles of splenic C/EBPβ-/- DCs showed a down-regulation of E2F cell cycle target genes and associated proliferation signaling pathways, whereas maturation signatures were enriched. Total splenic DC cell numbers were modestly increased but differentiation into cDC1 and cDC2 subsets were unaltered. The splenic CD11c+MHCIIhiCD64+ DC compartment was also increased, suggesting that C/EBPβ deficiency favors the expansion of monocytic-derived DCs. Expression of C/EBPβ could be mimicked in LAP/LAP* isoform knockin DCs, whereas the short isoform LIP supported a differentiation program similar to deletion of the full-length TF. In accordance with E2F1 being a negative regulator of DC maturation, C/EBPβ-/- bone marrow-derived DCs matured much faster enabling them to activate and polarize T cells stronger. In contrast to a homeostatic condition, lymphoma-exposed DCs exhibited an up-regulation of the E2F transcriptional pathways and an impaired maturation. Pharmacological blockade of C/EBPβ/mTOR signaling in human DCs abrogated their protumorigenic function in primary B cell lymphoma cocultures. Thus, C/EBPβ plays a unique role in DC maturation and immunostimulatory functionality and emerges as a key factor of the tumor microenvironment that promotes lymphomagenesis.
Collapse
|
35
|
Cocco M, Care MA, Saadi A, Al-Maskari M, Doody G, Tooze R. A dichotomy of gene regulatory associations during the activated B-cell to plasmablast transition. Life Sci Alliance 2020; 3:e202000654. [PMID: 32843533 PMCID: PMC7471511 DOI: 10.26508/lsa.202000654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/22/2023] Open
Abstract
The activated B-cell (ABC) to plasmablast transition encompasses the cusp of antibody-secreting cell (ASC) differentiation. We explore this transition with integrated analysis in human cells, focusing on changes that follow removal from CD40-mediated signals. Within hours of input signal loss, cell growth programs shift toward enhanced proliferation, accompanied by ER-stress response, and up-regulation of ASC features. Clustering of genomic occupancy for IRF4, BLIMP1, XBP1, and CTCF with histone marks identifies a dichotomy: XBP1 and IRF4 link to induced but not repressed gene modules in plasmablasts, whereas BLIMP1 links to modules of ABC genes that are repressed, but not to activated genes. Between ABC and plasmablast states, IRF4 shifts away from AP1/IRF composite elements while maintaining occupancy at IRF and ETS/IRF elements. This parallels the loss of BATF expression, which is identified as a potential BLIMP1 target. In plasmablasts, IRF4 acquires an association with CTCF, a feature maintained in plasma cell myeloma lines. Thus, shifting occupancy links IRF4 to both ABC and ASC gene expression, whereas BLIMP1 occupancy links to repression of the activation state.
Collapse
Affiliation(s)
- Mario Cocco
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Matthew A Care
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Bioinformatics Group, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Amel Saadi
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Muna Al-Maskari
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Gina Doody
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Reuben Tooze
- Division of Immunology and Haematology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
36
|
Bao W, Sun C, Sun X, He M, Yu H, Yan W, Wen F, Zhang L, Yang C. Targeting BCL10 by small peptides for the treatment of B cell lymphoma. Am J Cancer Res 2020; 10:11622-11636. [PMID: 33052237 PMCID: PMC7546004 DOI: 10.7150/thno.47533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Constitutive activation of the NF-κB signalling pathway plays a pivotal role in the pathogenesis of activated B cell-like diffuse large B-cell lymphomas (ABC-DLBCLs), the most aggressive and chemoresistant form of DLBCL. In ABC-DLBCLs, the CARMA1-BCL10 (CB) complex forms a filamentous structure and functions as a supramolecular organizing centre (CB-SMOC) that is required for constitutive NF-κB activation, making it an attractive drug target for ABC-DLBCL treatment. However, a pharmaceutical approach targeting CB-SMOC has been lacking. Here, we developed Bcl10 peptide inhibitors (BPIs) that specifically target the BCL10 filamentation process. Methods: Electron microscopy and immunofluorescence imaging were used to visualize the effect of the BPIs on the BCL10 filamentation process. The cytotoxicity of the tested BPIs was evaluated in DLBCL cell lines according to cell proliferation assays. Different in vitro experiments (pharmacokinetics, immunoprecipitation, western blotting, annexin V and PI staining) were conducted to determine the functional mechanisms of the BPIs. The in vivo therapeutic effect of the BPIs was examined in different xenograft DLBCL mouse models. Finally, Ki67 and TUNEL staining and histopathology analysis were used to evaluate the antineoplastic mechanisms and systemic toxicity of the BPIs. Results: We showed that these BPIs can effectively disrupt the BCL10 filamentation process, destabilize BCL10 and suppress NF-κB signalling in ABC-DLBCL cells. By examining a panel of DLBCL cell lines, we found that these BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL cells by inducing apoptosis and cell cycle arrest. Moreover, by converting the BPIs to acquire a D-retro inverso (DRI) configuration, we developed DRI-BPIs with significantly improved intracellular stability and unimpaired BPI activity. These DRI-BPIs selectively repressed the growth of CB-SMOC-dependent DLBCL tumors in mouse xenograft models without eliciting discernible adverse effects. Conclusion: We developed novel BPIs to target the BCL10 filamentation process and demonstrated that targeting BCL10 by BPIs is a potentially safe and effective pharmaceutical approach for the treatment of ABC-DLBCL and other CB-SMOC-dependent malignancies.
Collapse
|
37
|
Whitlock NC, Trostel SY, Wilkinson S, Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED, Gryder BE, Capaldo BJ, Ye H, Sowalsky AG. MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene 2020; 39:5663-5674. [PMID: 32681068 PMCID: PMC7441006 DOI: 10.1038/s41388-020-01389-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-regulation are pleiotropic and inconsistent with a poorly proliferative phenotype. Here we show that increased MYC expression and activity are associated with the down-regulation of MEIS1, a HOX-family transcription factor. Using RNA-seq to profile a series of human prostate cancer specimens laser capture microdissected on the basis of MYC immunohistochemistry, MYC activity, and MEIS1 expression were inversely correlated. Knockdown of MYC expression in prostate cancer cells increased the expression of MEIS1 and increased the occupancy of MYC at the MEIS1 locus. Finally, we show in laser capture microdissected human prostate cancer samples and the prostate TCGA cohort that MEIS1 expression is inversely proportional to AR activity as well as HOXB13, a known interacting protein of both AR and MEIS1. Collectively, our data demonstrate that elevated MYC in a subset of primary prostate cancers functions in a negative role in regulating MEIS1 expression, and that this down-regulation may contribute to MYC-driven development and progression.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicholas T Terrigino
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - S Thomas Hennigan
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicole V Carrabba
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Rayann Atway
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth D Walton
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Pathology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Koh J, Jang I, Choi S, Kim S, Jang I, Ahn HK, Lee C, Paik JH, Kim CW, Lim MS, Kim K, Jeon YK. Discovery of Novel Recurrent Mutations and Clinically Meaningful Subgroups in Nodal Marginal Zone Lymphoma. Cancers (Basel) 2020; 12:cancers12061669. [PMID: 32585984 PMCID: PMC7352856 DOI: 10.3390/cancers12061669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Nodal marginal zone lymphoma (NMZL) is a rare B-cell neoplasm, the genetic and transcriptomic landscape of which are unclear. Using high-throughput sequencing for whole-exome and transcriptome, we investigated the genetic characteristics of NMZL in a discovery cohort (n = 8) and validated their features in an extended cohort (n = 30). Novel mutations in NFKBIE and ITPR2 were found in 7.9% (3/38) and 13.9% (5/36), respectively, suggesting roles for the NF-κB pathway and B-cell-receptor-mediated calcium signaling pathway in the pathogenesis of NMZL. RNA-seq showed that NMZLs were characterized by an aberrant marginal zone differentiation, associated with an altered IRF4-NOTCH2 axis and the enrichment of various oncogenic pathways. Based on gene expression profile, two subgroups were identified. Compared with subgroup 1, subgroup 2 showed the following: the significant enrichment of cell cycle-associated and MYC-signaling pathways, a more diverse repertoire of upstream regulators, and higher Ki-67 proliferation indices. We designated two subgroups according to Ki-67 labeling, and subgroup 2 was significantly associated with a shorter progression-free survival (p = 0.014), a greater proportion of large cells (p = 0.009), and higher MYC expression (p = 0.026). We suggest that NMZL has unique features and, in this study, we provide information as to the heterogeneity of this enigmatic entity.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Insoon Jang
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
| | - Seongmin Choi
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
- Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Ingeon Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Hyun Kyung Ahn
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si 46371, Korea;
| | - Chul Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
- Correspondence: (K.K.); (Y.K.J.)
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Correspondence: (K.K.); (Y.K.J.)
| |
Collapse
|
39
|
Cook SL, Franke MC, Sievert EP, Sciammas R. A Synchronous IRF4-Dependent Gene Regulatory Network in B and Helper T Cells Orchestrating the Antibody Response. Trends Immunol 2020; 41:614-628. [PMID: 32467029 DOI: 10.1016/j.it.2020.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Control of diverse pathogens requires an adaptive antibody response, dependent on cellular division of labor to allocate antigen-dependent B- and CD4+ T-cell fates that collaborate to control the quantity and quality of antibody. This is orchestrated by the dynamic action of key transcriptional regulators mediating gene expression programs in response to pathogen-specific environmental inputs. We describe a conserved, likely ancient, gene regulatory network that intriguingly operates contemporaneously in B and CD4+ T cells to control their cell fate dynamics and thus, the character of the antibody response. The remarkable output of this network derives from graded expression, designated by antigen receptor signal strength, of a pivotal transcription factor that regulates alternate cell fate choices.
Collapse
Affiliation(s)
- Sarah L Cook
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA.
| | - Marissa C Franke
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Evelyn P Sievert
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
40
|
HMGA1-pseudogene7 transgenic mice develop B cell lymphomas. Sci Rep 2020; 10:7057. [PMID: 32341372 PMCID: PMC7184748 DOI: 10.1038/s41598-020-62974-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/22/2020] [Indexed: 01/07/2023] Open
Abstract
We have recently identified and characterized two pseudogenes (HMGA1P6 and HMGA1P7) of the HMGA1 gene, which has a critical role in malignant cell transformation and cancer progression. HMGA1P6 and HMGAP17 act as microRNA decoy for HMGA1 and other cancer-related genes upregulating their protein levels. We have previously shown that they are upregulated in several human carcinomas, and their expression positively correlates with a poor prognosis and an advanced cancer stage. To evaluate in vivo oncogenic activity of HMGA1 pseudogenes, we have generated a HMGA1P7 transgenic mouse line overexpressing this pseudogene. By a mean age of 12 months, about 50% of the transgenic mice developed splenomegaly and accumulation of lymphoid cells in several body compartments. For these mice FACS and immunohistochemical analyses suggested the diagnosis of B-cell lymphoma that was further supported by clonality analyses and RNA expression profile of the pathological tissues of the HMGA1P7 transgenic tissues. Therefore, these results clearly demonstrate the oncogenic activity of HMGA1 pseudogenes in vivo.
Collapse
|
41
|
Wei W, Lin Y, Song Z, Xiao W, Chen L, Yin J, Zhou Y, Barta SK, Petrus M, Waldmann TA, Yang Y. A20 and RBX1 Regulate Brentuximab Vedotin Sensitivity in Hodgkin Lymphoma Models. Clin Cancer Res 2020; 26:4093-4106. [PMID: 32299816 DOI: 10.1158/1078-0432.ccr-19-4137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE For patients with refractory/relapsed Hodgkin lymphoma (roughly 20% of total cases), few effective therapeutic options exist. Currently, brentuximab vedotin (BV), a drug-conjugated anti-CD30 antibody, is one of the most effective approved therapy agents for these patients. However, many patients do not achieve complete remission and ultimately develop BV-resistant disease, necessitating a more detailed understanding of the molecular circuitry that drives BV sensitivity and the mechanism of BV resistance. EXPERIMENTAL DESIGN Here, we established a ubiquitin regulator-focused CRISPR library screening platform in Hodgkin lymphoma and carried out a drug sensitization screen against BV to identify genes regulating BV treatment sensitivity. RESULTS Our CRISPR library screens revealed the ubiquitin-editing enzymes A20 and RBX1 as key molecule effectors that regulate BV sensitivity in Hodgkin lymphoma line L428. A20 negatively regulates NF-κB activity which is required to prevent BV cytotoxicity. In line with these results, the RNA-seq analysis of the BV-resistant single-cell clones demonstrated a consistent upregulation of NF-κB signature genes, as well as the ABC transporter gene ABCB1. Mechanically, NF-κB regulates BV treatment sensitivity through mediating ABCB1 expression. Targeting NF-κB activity synergized well with BV in killing Hodgkin lymphoma cell lines, augmented BV sensitivity, and overcame BV resistance in vitro and in Hodgkin lymphoma xenograft mouse models. CONCLUSIONS Our identification of this previously unrecognized mechanism provides novel knowledge of possible BV responsiveness and resistance mechanisms in Hodgkin lymphoma, as well as leads to promising hypotheses for the development of therapeutic strategies to overcome BV resistance in this disease.
Collapse
Affiliation(s)
- Wei Wei
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yuquan Lin
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhihui Song
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wenming Xiao
- Division of Bioinformatics and Biostatistics, NCTR/FDA, Jefferson, Arkansas
| | - Liqi Chen
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jiejing Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Stefan K Barta
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Petrus
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37:551-568.e14. [PMID: 32289277 PMCID: PMC8459709 DOI: 10.1016/j.ccell.2020.03.015] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Precision Medicine
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Q Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey Tang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | - Calvin A Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David W Scott
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Grau M, Lenz G, Lenz P. Dissection of gene expression datasets into clinically relevant interaction signatures via high-dimensional correlation maximization. Nat Commun 2019; 10:5417. [PMID: 31780653 PMCID: PMC6883077 DOI: 10.1038/s41467-019-12713-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Gene expression is controlled by many simultaneous interactions, frequently measured collectively in biology and medicine by high-throughput technologies. It is a highly challenging task to infer from these data the generating effects and cooperating genes. Here, we present an unsupervised hypothesis-generating learning concept termed signal dissection by correlation maximization (SDCM) that dissects large high-dimensional datasets into signatures. Each signature captures a particular signal pattern that was consistently observed for multiple genes and samples, likely caused by the same underlying interaction. A key difference to other methods is our flexible nonlinear signal superposition model, combined with a precise regression technique. Analyzing gene expression of diffuse large B-cell lymphoma, our method discovers previously unidentified signatures that reveal significant differences in patient survival. These signatures are more predictive than those from various methods used for comparison and robustly validate across technological platforms. This implies highly specific extraction of clinically relevant gene interactions. Identification of clinically relevant gene expression signatures for cancer stratification remains challenging. Here, the authors introduce a flexible nonlinear signal superposition model that enables dissection of large gene expression data sets into signatures and extraction of gene interactions.
Collapse
Affiliation(s)
- Michael Grau
- Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Albert-Schweitzer Campus 1, University Hospital Münster, 48149, Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion, University of Münster, 48149, Münster, Germany
| | - Peter Lenz
- Department of Physics, Renthof 5, University of Marburg, 35032, Marburg, Germany. .,LOEWE Center for Synthetic Microbiology, 35032, Marburg, Germany.
| |
Collapse
|
44
|
Dubois S, Tesson B, Mareschal S, Viailly PJ, Bohers E, Ruminy P, Etancelin P, Peyrouze P, Copie-Bergman C, Fabiani B, Petrella T, Jais JP, Haioun C, Salles G, Molina TJ, Leroy K, Tilly H, Jardin F. Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles. EBioMedicine 2019; 48:58-69. [PMID: 31648986 PMCID: PMC6838437 DOI: 10.1016/j.ebiom.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene expression profiling (GEP), next-generation sequencing (NGS) and copy number variation (CNV) analysis have led to an increasingly detailed characterization of the genomic profiles of DLBCL. The aim of this study was to perform a fully integrated analysis of mutational, genomic, and expression profiles to refine DLBCL subtypes. A comparison of our model with two recently published integrative DLBCL classifiers was carried out, in order to best reflect the current state of genomic subtypes. Methods 223 patients with de novo DLBCL from the prospective, multicenter and randomized LNH-03B LYSA clinical trials were included. GEP data was obtained using Affymetrix GeneChip arrays, mutational profiles were established by Lymphopanel NGS targeting 34 key genes, CNV analysis was obtained by array CGH, and FISH and IHC were performed. Unsupervised independent component analysis (ICA) was applied to GEP data and integrated analysis of multi-level molecular data associated with each component (gene signature) was performed. Findings ICA identified 38 components reflecting transcriptomic variability across our DLBCL cohort. Many of the components were closely related to well-known DLBCL features such as cell-of-origin, stromal and MYC signatures. A component linked to gain of 19q13 locus, among other genomic alterations, was significantly correlated with poor OS and PFS. Through this integrated analysis, a high degree of heterogeneity was highlighted among previously described DLBCL subtypes. Interpretation The results of this integrated analysis enable a global and multi-level view of DLBCL, as well as improve our understanding of DLBCL subgroups.
Collapse
Affiliation(s)
- Sydney Dubois
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Sylvain Mareschal
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Pierre-Julien Viailly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France; Normandie Univ, EdN BISE 497, Normandy, France
| | - Elodie Bohers
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Philippe Ruminy
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Pascaline Etancelin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | | | - Christiane Copie-Bergman
- Department of Pathology, Henri Mondor Hospital, APHP, INSERM U955, Université Paris-Est, Créteil, France
| | - Bettina Fabiani
- Laboratoire de Pathologie, AP-HP Hôpital Saint Antoine, Paris, France
| | - Tony Petrella
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada
| | - Jean-Philippe Jais
- Institut Imagine HGID, Inserm U1163, AP-HP Hôpital Necker, Université Paris Descartes, Paris, France
| | - Corinne Haioun
- Unité Hémopathies Lymphoïdes, AP-HP Hôpital Henri Mondor, Créteil, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Lyon, France
| | - Thierry Jo Molina
- Pathology, AP-HP, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Karen Leroy
- Inserm U1016 - CNRS UMR8104 - Université Paris Descartes Groupe Hospitalier Cochin, Paris, France
| | - Hervé Tilly
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France
| | - Fabrice Jardin
- Inserm U1245, Centre Henri Becquerel, Université de Rouen, IRIB, Rouen, France.
| | | |
Collapse
|
45
|
Roos-Weil D, Decaudin C, Armand M, Della-Valle V, Diop MK, Ghamlouch H, Ropars V, Hérate C, Lara D, Durot E, Haddad R, Mylonas E, Damm F, Pflumio F, Stoilova B, Metzner M, Elemento O, Dessen P, Camara-Clayette V, Cosset FL, Verhoeyen E, Leblond V, Ribrag V, Cornillet-Lefebvre P, Rameau P, Azar N, Charlotte F, Morel P, Charbonnier JB, Vyas P, Mercher T, Aoufouchi S, Droin N, Guillouf C, Nguyen-Khac F, Bernard OA. A Recurrent Activating Missense Mutation in Waldenström Macroglobulinemia Affects the DNA Binding of the ETS Transcription Factor SPI1 and Enhances Proliferation. Cancer Discov 2019; 9:796-811. [PMID: 31018969 DOI: 10.1158/2159-8290.cd-18-0873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022]
Abstract
The ETS-domain transcription factors divide into subfamilies based on protein similarities, DNA-binding sequences, and interaction with cofactors. They are regulated by extracellular clues and contribute to cellular processes, including proliferation and transformation. ETS genes are targeted through genomic rearrangements in oncogenesis. The PU.1/SPI1 gene is inactivated by point mutations in human myeloid malignancies. We identified a recurrent somatic mutation (Q226E) in PU.1/SPI1 in Waldenström macroglobulinemia, a B-cell lymphoproliferative disorder. It affects the DNA-binding affinity of the protein and allows the mutant protein to more frequently bind and activate promoter regions with respect to wild-type protein. Mutant SPI1 binding at promoters activates gene sets typically promoted by other ETS factors, resulting in enhanced proliferation and decreased terminal B-cell differentiation in model cell lines and primary samples. In summary, we describe oncogenic subversion of transcription factor function through subtle alteration of DNA binding leading to cellular proliferation and differentiation arrest. SIGNIFICANCE: The demonstration that a somatic point mutation tips the balance of genome-binding pattern provides a mechanistic paradigm for how missense mutations in transcription factor genes may be oncogenic in human tumors.This article is highlighted in the In This Issue feature, p. 681.
Collapse
Affiliation(s)
- Damien Roos-Weil
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Camille Decaudin
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Marine Armand
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Véronique Della-Valle
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - M'boyba K Diop
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Hussein Ghamlouch
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Cécile Hérate
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Diane Lara
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Eric Durot
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Rima Haddad
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL, Université Paris Diderot Sorbonne Paris Cité, Fontenay-aux-Roses, France
| | - Elena Mylonas
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Francoise Pflumio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) DSV-IRCM-SCSR-LSHL, Université Paris Diderot Sorbonne Paris Cité, Fontenay-aux-Roses, France
| | - Bilyana Stoilova
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York
| | - Philippe Dessen
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - François-Loïc Cosset
- CIRI-InternationalCenter for Infectiology Research, Team EVIR, Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1; CNRS, UMR5308, Lyon, France
| | - Els Verhoeyen
- CIRI-InternationalCenter for Infectiology Research, Team EVIR, Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1; CNRS, UMR5308, Lyon, France.,Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | - Vincent Ribrag
- INSERM U1170, Gustave Roussy, Villejuif, France.,DITEP Gustave Roussy, Villejuif, Paris, France
| | - Pascale Cornillet-Lefebvre
- Laboratoire d'hématologie, Pôle de biologie, CHU de Reims-Hôpital Robert Debré, Avenuedu Général Koenig, Reims, France
| | - Philippe Rameau
- AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Nabih Azar
- Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | | | - Pierre Morel
- Centre Hospitalier Dr. Schaffner,Lens; Service d'Hématologie Clinique et Thérapie Cellulaire, CHU Amiens Picardie, Amiens cedex, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine,NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine and Department of Haematology, Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Said Aoufouchi
- Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,CNRS UMR8200, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,AMMICa, INSERM US23/CNRS UMS3655, Gustave Roussy, Villejuif, France
| | - Christel Guillouf
- INSERM U1170, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Florence Nguyen-Khac
- Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France. .,Sorbonne Université, INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy, Villejuif, France. .,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Villejuif, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
46
|
Activation of MYC, a bona fide client of HSP90, contributes to intrinsic ibrutinib resistance in mantle cell lymphoma. Blood Adv 2019; 2:2039-2051. [PMID: 30115641 DOI: 10.1182/bloodadvances.2018016048] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/11/2018] [Indexed: 11/20/2022] Open
Abstract
The BTK inhibitor ibrutinib has demonstrated a remarkable therapeutic effect in mantle cell lymphoma (MCL). However, approximately one-third of patients do not respond to the drug initially. To identify the mechanisms underlying primary ibrutinib resistance in MCL, we analyzed the transcriptome changes in ibrutinib-sensitive and ibrutinib-resistant cell lines on ibrutinib treatment. We found that MYC gene signature was suppressed by ibrutinib in sensitive but not resistant cell lines. We demonstrated that MYC gene was structurally abnormal and MYC protein was overexpressed in MCL cells. Further, MYC knockdown with RNA interference inhibited cell growth in ibrutinib-sensitive as well as ibrutinib-resistant cells. We explored the possibility of inhibiting MYC through HSP90 inhibition. The chaperon protein is overexpressed in both cell lines and primary MCL cells from the patients. We demonstrated that MYC is a bona fide client of HSP90 in the context of MCL by both immunoprecipitation and chemical precipitation. Furthermore, inhibition of HSP90 using PU-H71 induced apoptosis and caused cell cycle arrest. PU-H71 also demonstrates strong and relatively specific inhibition of the MYC transcriptional program compared with other oncogenic pathways. In a MCL patient-derived xenograft model, the HSP90 inhibitor retards tumor growth and prolongs survival. Last, we showed that PU-H71 induced apoptosis and downregulated MYC protein in MCL cells derived from patients who were clinically resistant to ibrutinib. In conclusion, MYC activity underlies intrinsic resistance to ibrutinib in MCL. As a client protein of HSP90, MYC can be inhibited via PU-H71 to overcome primary ibrutinib resistance.
Collapse
|
47
|
Sha C, Barrans S, Cucco F, Bentley MA, Care MA, Cummin T, Kennedy H, Thompson JS, Uddin R, Worrillow L, Chalkley R, van Hoppe M, Ahmed S, Maishman T, Caddy J, Schuh A, Mamot C, Burton C, Tooze R, Davies A, Du MQ, Johnson PW, Westhead DR. Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy. J Clin Oncol 2019; 37:202-212. [PMID: 30523719 PMCID: PMC6338391 DOI: 10.1200/jco.18.01314] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Biologic heterogeneity is a feature of diffuse large B-cell lymphoma (DLBCL), and the existence of a subgroup with poor prognosis and phenotypic proximity to Burkitt lymphoma is well known. Conventional cytogenetics identifies some patients with rearrangements of MYC and BCL2 and/or BCL6 (double-hit lymphomas) who are increasingly treated with more intensive chemotherapy, but a more biologically coherent and clinically useful definition of this group is required. PATIENTS AND METHODS We defined a molecular high-grade (MHG) group by applying a gene expression-based classifier to 928 patients with DLBCL from a clinical trial that investigated the addition of bortezomib to standard rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy. The prognostic significance of MHG was compared with existing biomarkers. We performed targeted sequencing of 70 genes in 400 patients and explored molecular pathology using gene expression signature databases. Findings were validated in an independent data set. RESULTS The MHG group comprised 83 patients (9%), with 75 in the cell-of-origin germinal center B-cell-like group. MYC rearranged and double-hit groups were strongly over-represented in MHG but comprised only one half of the total. Gene expression analysis revealed a proliferative phenotype with a relationship to centroblasts. Progression-free survival rate at 36 months after R-CHOP in the MHG group was 37% (95% CI, 24% to 55%) compared with 72% (95% CI, 68% to 77%) for others, and an analysis of treatment effects suggested a possible positive effect of bortezomib. Double-hit lymphomas lacking the MHG signature showed no evidence of worse outcome than other germinal center B-cell-like cases. CONCLUSION MHG defines a biologically coherent high-grade B-cell lymphoma group with distinct molecular features and clinical outcomes that effectively doubles the size of the poor-prognosis, double-hit group. Patients with MHG may benefit from intensified chemotherapy or novel targeted therapies.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bortezomib/administration & dosage
- Cyclophosphamide/administration & dosage
- Databases, Genetic
- Doxorubicin/administration & dosage
- Female
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Neoplasm Grading
- Prednisone/administration & dosage
- Proportional Hazards Models
- Randomized Controlled Trials as Topic
- Retrospective Studies
- Rituximab/administration & dosage
- Transcriptome
- Vincristine/administration & dosage
Collapse
Affiliation(s)
- Chulin Sha
- University of Leeds, Leeds, United Kingdom
| | | | | | | | | | - Thomas Cummin
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | - Tom Maishman
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - Josh Caddy
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - Anna Schuh
- University of Oxford, Oxford, United Kingdom
| | - Christoph Mamot
- Cantonal Hospital Aarau, Aarau/Swiss Group for Clinical Cancer Research, Switzerland
| | | | | | - Andrew Davies
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - Ming-Qing Du
- University of Cambridge, Cambridge, United Kingdom
| | - Peter W.M. Johnson
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
48
|
Dadashian EL, McAuley EM, Liu D, Shaffer AL, Young RM, Iyer JR, Kruhlak MJ, Staudt LM, Wiestner A, Herman SEM. TLR Signaling Is Activated in Lymph Node-Resident CLL Cells and Is Only Partially Inhibited by Ibrutinib. Cancer Res 2019; 79:360-371. [PMID: 30498085 PMCID: PMC6342512 DOI: 10.1158/0008-5472.can-18-0781] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells driven by B-cell receptor (BCR) signaling and activated primarily in the lymph node. The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib effectively inhibits BCR-dependent proliferation and survival signals and has emerged as a breakthrough therapy for CLL. However, complete remissions are uncommon and are achieved only after years of continuous therapy. We hypothesized that other signaling pathways that sustain CLL cell survival are only partially inhibited by ibrutinib. In normal B cells, Toll-like receptor (TLR) signaling cooperates with BCR signaling to activate prosurvival NF-κB. Here, we show that an experimentally validated gene signature of TLR activation is overexpressed in lymph node-resident CLL cells compared with cells in the blood. Consistent with TLR activation, we detected phosphorylation of NF-κB, STAT1, and STAT3 in lymph node-resident CLL cells and in cells stimulated with CpG oligonucleotides in vitro. CpG promoted IRAK1 degradation, secretion of IL10, and extended survival of CLL cells in culture. CpG-induced TLR signaling was significantly inhibited by both an IRAK1/4 inhibitor and ibrutinib. Although inhibition of TLR signaling was incomplete with either drug, the combination achieved superior results, including more effective inhibition of TLR-mediated survival signaling. Our data suggest an important role for TLR signaling in CLL pathogenesis and in sustaining the viability of CLL cells during ibrutinib therapy. The combination of ibrutinib with a TLR pathway inhibitor could provide superior antitumor activity and should be investigated in clinical studies. SIGNIFICANCE: CLL relies on the concomitant cooperation of B-cell receptor and Toll-like receptor signaling; inhibition of both pathways is superior to inhibition of either pathway alone. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/2/360/F1.large.jpg.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymph Nodes/drug effects
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Oligodeoxyribonucleotides/pharmacology
- Piperidines
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptor Cross-Talk
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Toll-Like Receptors/antagonists & inhibitors
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Eman L Dadashian
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Erin M McAuley
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Delong Liu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jessica R Iyer
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael J Kruhlak
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sarah E M Herman
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
49
|
Hatzi K, Geng H, Doane AS, Meydan C, LaRiviere R, Cardenas M, Duy C, Shen H, Vidal MNC, Baslan T, Mohammad HP, Kruger RG, Shaknovich R, Haberman AM, Inghirami G, Lowe SW, Melnick AM. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat Immunol 2019; 20:86-96. [PMID: 30538335 PMCID: PMC6294324 DOI: 10.1038/s41590-018-0273-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/31/2018] [Indexed: 01/03/2023]
Abstract
Germinal center (GC) B cells feature repression of many gene enhancers to establish their characteristic transcriptome. Here we show that conditional deletion of Lsd1 in GCs significantly impaired GC formation, associated with failure to repress immune synapse genes linked to GC exit, which are also direct targets of the transcriptional repressor BCL6. We found that BCL6 directly binds LSD1 and recruits it primarily to intergenic and intronic enhancers. Conditional deletion of Lsd1 suppressed GC hyperplasia caused by constitutive expression of BCL6 and significantly delayed BCL6-driven lymphomagenesis. Administration of catalytic inhibitors of LSD1 had little effect on GC formation or GC-derived lymphoma cells. Using a CRISPR-Cas9 domain screen, we found instead that the LSD1 Tower domain was critical for dependence on LSD1 in GC-derived B cells. These results indicate an essential role for LSD1 in the humoral immune response, where it modulates enhancer function by forming repression complexes with BCL6.
Collapse
Affiliation(s)
- Katerina Hatzi
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ashley S Doane
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Reed LaRiviere
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Mariano Cardenas
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- High Throughput and Spectroscopy Resource Center, Rockefeller University, New York, NY, USA
| | - Cihangir Duy
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Hao Shen
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Maria Nieves Calvo Vidal
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helai P Mohammad
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA, USA
| | - Ryan G Kruger
- Cancer Epigenetics Department, GlaxoSmithKline, Collegeville, PA, USA
| | - Rita Shaknovich
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Cancer Genetics Incorporated, Rutherford, NJ, USA
| | - Ann M Haberman
- Department of Laboratory Medicine, Department of Immunobiology Yale University School of Medicine, New Haven, CT, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
50
|
Tarantelli C, Bernasconi E, Gaudio E, Cascione L, Restelli V, Arribas AJ, Spriano F, Rinaldi A, Mensah AA, Kwee I, Ponzoni M, Zucca E, Carrassa L, Riveiro ME, Rezai K, Stathis A, Cvitkovic E, Bertoni F. BET bromodomain inhibitor birabresib in mantle cell lymphoma: in vivo activity and identification of novel combinations to overcome adaptive resistance. ESMO Open 2018; 3:e000387. [PMID: 30305939 PMCID: PMC6173228 DOI: 10.1136/esmoopen-2018-000387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials. Materials and methods The activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines. Results Birabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines. Conclusion Our data provide the rationale to evaluate birabresib in patients affected by MCL.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Elena Bernasconi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Alberto Jesus Arribas
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Filippo Spriano
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Afua Adjeiwaa Mensah
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | - Maurilio Ponzoni
- Department of Onco-Haematology, Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Zucca
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Laura Carrassa
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Keyvan Rezai
- Institut Curie, Hôpital René Huguenin, Saint-Cloud, France
| | - Anastasios Stathis
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Esteban Cvitkovic
- OTD Oncology, Therapeutic Development, Clichy, France.,OncoEthix GmbH, a wholly owned subsidiary of Merck Sharp & Dohme Corp, and Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Francesco Bertoni
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| |
Collapse
|