1
|
Tran D, Beeler JS, Liu J, Wiley B, Chan IC, Xin Z, Kramer MH, Batchi-Bouyou AL, Zong X, Walter MJ, Petrone GE, Chlamydas S, Ferraro F, Oh ST, Link DC, Busby B, Cao Y, Bolton KL. Plasma Proteomic Signature Predicts Myeloid Neoplasm Risk. Clin Cancer Res 2024; 30:3220-3228. [PMID: 38446993 PMCID: PMC11292192 DOI: 10.1158/1078-0432.ccr-23-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.
Collapse
Affiliation(s)
- Duc Tran
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - J. Scott Beeler
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Jie Liu
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Brian Wiley
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Irenaeus C.C. Chan
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Zilan Xin
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Michael H. Kramer
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Armel L. Batchi-Bouyou
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Xiaoyu Zong
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Matthew J. Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Giulia E.M. Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | | | - Francesca Ferraro
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, WUSM, St. Louis, Missouri.
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| | - Ben Busby
- DNAnexus, Mountain View, California.
| | - Yin Cao
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| | - Kelly L. Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine (WUSM), St. Louis, Missouri.
| |
Collapse
|
2
|
Chen XY, Feng SN, Bao Y, Zhou YX, Ba F. Identification of Clec7a as the therapeutic target of rTMS in alleviating Parkinson's disease: targeting neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166814. [PMID: 37495085 DOI: 10.1016/j.bbadis.2023.166814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/25/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease. Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic tool in PD. High-throughput sequencing was performed to screen potential therapeutic targets in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. The candidate gene, Clec7a, was screened out and validated. Clec7a is a pattern recognition receptor involved in neuroinflammation. The higher expression of Clec7a was observed in the substantia nigra (SN) and striatum of PD rats with dopaminergic neurons damage and was mainly localized in the microglial. Adeno-associated virus (AAV)-mediated specific knockdown of Clec7a in microglial alleviated 6-OHDA induced motor deficits and nigrostriatal dopaminergic neuron damage of rats, as evidenced by the increase of tyrosine hydroxylase (TH) -positive neurons in SN, as well as dopaminergic nerve fibers in the striatum. Clec7a knockdown restrained the neuroinflammation by suppressing inflammatory factors (IFN-γ, TNF-α, IL-1β, IL-18, and IL-6) release in SN, which might result from enhanced Arg-1 expression (M2 polarization) and defective inducible nitric oxide synthase (iNOS) expression (M1 polarization). The same phenomena were also observed in the LPS inflammatory rat model of PD. In vitro, α-synuclein fibrils induced upregulation of Clec7a expression and microglia polarization to a pro-inflammatory state of BV2 cells, leading to increased release of cytokines. However, Clec7a knockdown reversed those changes and induced a shift to an anti-inflammatory phenotype in BV2 cells. In conclusion, our study suggested that Clec7a was involved in PD pathogenesis, and its inhibition might protect rats from PD by depressing neuroinflammation through microglial polarization.
Collapse
Affiliation(s)
- Xue-Yun Chen
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Si-Ning Feng
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yin Bao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yu-Xin Zhou
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Fang Ba
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
3
|
Inomata M, Amano S, Abe M, Hayashi T, Sakagami H. Innate immune response of human periodontal ligament fibroblasts via the Dectin-1/Syk pathway. J Med Microbiol 2022; 71. [PMID: 36748551 DOI: 10.1099/jmm.0.001627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. A diverse microbiota including fungi exists in the subgingival sites of patients with chronic periodontitis. The cell wall of Candida albicans, the most abundant fungal species, contains β-glucan. Dectin-1 binds β-glucan and participates in fungal recognition.Gap statement. Human periodontal ligament fibroblasts (PDLFs) are present in the periodontal ligament and synthesize immunomodulatory cytokines that influence the local response to infections. However, the expression and role of Dectin-1 in PDLFs have not been explored.Aim. This study aimed to determine if PDLFs express Dectin-1 and induce innate immune responses through Dectin-1 and the signalling molecule Syk.Methodology. The expression of Dectin-1 in PDLFs was determined by flow cytometry, western blotting and confocal microscopy. Real-time PCR and Western blotting were used to determine the immune response of PDLFs stimulated with β-glucan-rich zymosan and C. albicans.Results. Dectin-1 was constitutively expressed in PDLFs. Zymosan induced the expression of cytokines, including IL6, IL1B and IL17A, and the chemokine IL8. Zymosan also induced the expression of the antimicrobial peptide β-defensin-1 (DEFB1). Further, the phosphorylation of Syk and NF-κB occurred upon Dectin-1 activation. Notably, heat-killed C. albicans induced the expression of IL6, IL17A, IL8 and DEFB1, and this activation was suppressed by the Syk inhibitor, R406.Conclusion. These findings indicate that the Dectin-1/Syk pathway induces an innate immune response of PDLFs, which may facilitate the control of oral infections such as candidiasis and periodontitis.
Collapse
Affiliation(s)
- Megumi Inomata
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| | - Masayo Abe
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Toru Hayashi
- Department of Anatomy Science, School of Allied Health Sciences, Kitasato University, Kitasato, Japan
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
4
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
5
|
Chen Y, Fu W, Zheng Y, Yang J, Liu Y, Qi Z, Wu M, Fan Z, Yin K, Chen Y, Gao W, Ding Z, Dong J, Li Q, Zhang S, Hu L. Galectin 3 enhances platelet aggregation and thrombosis via Dectin-1 activation: a translational study. Eur Heart J 2022; 43:3556-3574. [PMID: 35165707 PMCID: PMC9989600 DOI: 10.1093/eurheartj/ehac034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Galectin-3, a β-galactoside-binding lectin, is abnormally increased in cardiovascular disease. Plasma Galectin-3 receives a Class II recommendation for heart failure management and has been extensively studied for multiple cellular functions. The direct effects of Galectin-3 on platelet activation remain unclear. This study explores the direct effects of Galectin-3 on platelet activation and thrombosis. METHODS AND RESULTS A strong positive correlation between plasma Galectin-3 concentration and platelet aggregation or whole blood thrombus formation was observed in patients with coronary artery disease (CAD). Multiple platelet function studies demonstrated that Galectin-3 directly potentiated platelet activation and in vivo thrombosis. Mechanistic studies using the Dectin-1 inhibitor, laminarin, and Dectin-1-/- mice revealed that Galectin-3 bound to and activated Dectin-1, a receptor not previously reported in platelets, to phosphorylate spleen tyrosine kinase and thus increased Ca2+ influx, protein kinase C activation, and reactive oxygen species production to regulate platelet hyperreactivity. TD139, a Galectin-3 inhibitor in a Phase II clinical trial, concentration dependently suppressed Galectin-3-potentiated platelet activation and inhibited occlusive thrombosis without exacerbating haemorrhage in ApoE-/- mice, which spontaneously developed increased plasma Galectin-3 levels. TD139 also suppressed microvascular thrombosis to protect the heart from myocardial ischaemia-reperfusion injury in ApoE-/- mice. CONCLUSION Galectin-3 is a novel positive regulator of platelet hyperreactivity and thrombus formation in CAD. As TD139 has potent antithrombotic effects without bleeding risk, Galectin-3 inhibitors may have therapeutic advantages as potential antiplatelet drugs for patients with high plasma Galectin-3 levels.
Collapse
Affiliation(s)
- Yufei Chen
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanrong Fu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunbo Zheng
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Liu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Qi
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meiling Wu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Kanhua Yin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongren Ding
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzeng Dong
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Front Pharmacol 2022; 13:915565. [PMID: 35847031 PMCID: PMC9280161 DOI: 10.3389/fphar.2022.915565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune system is the first line of host's defense against invading pathogens. Multiple cellular sensors that detect viral components can induce innate antiviral immune responses. As a result, interferons and pro-inflammatory cytokines are produced which help in the elimination of invading viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to Coronaviridae family, and has a single-stranded, positive-sense RNA genome. It can infect multiple hosts; in humans, it is responsible for the novel coronavirus disease 2019 (COVID-19). Successful, timely, and appropriate detection of SARS-CoV-2 can be very important for the early generation of the immune response. Several drugs that target the innate immune receptors as well as other signaling molecules generated during the innate immune response are currently being investigated in clinical trials. In this review, we summarized the current knowledge of the mechanisms underlying host sensing and innate immune responses against SARS-CoV-2 infection, as well as the role of innate immune receptors in terms of their therapeutic potential against SARS-CoV-2. Moreover, we discussed the drugs undergoing clinical trials and the FDA approved drugs against SARS-CoV-2. This review will help in understanding the interactions between SARS-CoV-2 and innate immune receptors and thus will point towards new dimensions for the development of new therapeutics, which can be beneficial in the current pandemic.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| |
Collapse
|
7
|
Mentrup T, Stumpff-Niggemann AY, Leinung N, Schlosser C, Schubert K, Wehner R, Tunger A, Schatz V, Neubert P, Gradtke AC, Wolf J, Rose-John S, Saftig P, Dalpke A, Jantsch J, Schmitz M, Fluhrer R, Jacobsen ID, Schröder B. Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nat Commun 2022; 13:1880. [PMID: 35388002 PMCID: PMC8987071 DOI: 10.1038/s41467-022-29474-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal β-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses. Dectin-1 is a critical component of the innate sensing repertoire which is involved in pattern based recognition of fungal pathogens. Here the authors show that intramembrane proteolysis is involved in the regulation of the antifungal host response by termination of the phagosomal signalling of Dectin-1.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Wolf
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Mayhew JA, Cummins MJ, Cresswell ET, Callister RJ, Smith DW, Graham BA. Age-related gene expression changes in lumbar spinal cord: Implications for neuropathic pain. Mol Pain 2021; 16:1744806920971914. [PMID: 33241748 DOI: 10.1177/1744806920971914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.
Collapse
Affiliation(s)
- Jack A Mayhew
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mitchell J Cummins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
9
|
NFAT signaling in human mesenchymal stromal cells affects extracellular matrix remodeling and antifungal immune responses. iScience 2021; 24:102683. [PMID: 34195564 PMCID: PMC8233198 DOI: 10.1016/j.isci.2021.102683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) combined with calcineurin-nuclear factor of activated T cell (CN-NFAT) inhibitors are being tested as a treatment for graft-versus-host disease (GvHD). The immunosuppressive properties of MSCs seem beneficial; however, their response during fungal infection, which is an important cause of mortality in patients with GvHD , is unknown. We report that MSCs phagocytose the fungal component zymosan, resulting in phosphorylation of spleen tyrosine kinase (Syk), increase in cytosolic calcium levels, and ultimately, increase in NFAT1 nuclear translocation. RNA sequencing analysis of zymosan-treated MSCs showed that CN-NFAT inhibition affects extracellular matrix (ECM) genes but not cytokine expression that is under the control of the NF-κB pathway. When coculturing MSCs or decellularized MSC-ECM with human peripheral blood mononuclear cells (PBMCs), selective NFAT inhibition in MSCs decreased cytokine expression by PBMCs. These findings reveal a dual mechanism underlying the MSC response to zymosan: while NF-κB directly controls inflammatory cytokine expression, NFAT impacts immune-cell functions by regulating ECM remodeling. Stimulation of MSCs with zymosan activates NFAT and NF-kB via the dectin1-Syk axis Calcineurin-NFAT inhibition impacts the expression of extracellular matrix genes NF-kB pathway regulates cytokine expression in zymosan-stimulated MSCs Selective NFAT inhibition in MSCs impacts cytokine secretion of MSC-PBMC cocultures
Collapse
|
10
|
Pedro ARV, Lima T, Fróis-Martins R, Leal B, Ramos IC, Martins EG, Cabrita ARJ, Fonseca AJM, Maia MRG, Vilanova M, Correia A. Dectin-1-Mediated Production of Pro-Inflammatory Cytokines Induced by Yeast β-Glucans in Bovine Monocytes. Front Immunol 2021; 12:689879. [PMID: 34122455 PMCID: PMC8195389 DOI: 10.3389/fimmu.2021.689879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 12/03/2022] Open
Abstract
Yeast-derived products containing β-glucans have long been used as feed supplements in domesticated animals in an attempt to increase immunity. β-glucans are mainly recognized by the cell surface receptor CLEC7A, also designated Dectin-1. Although the immune mechanisms elicited through Dectin-1 activation have been studied in detail in mice and humans, they are poorly understood in other species. Here, we evaluated the response of bovine monocytes to soluble and particulate purified β-glucans, and also to Zymosan. Our results show that particulate, but not soluble β-glucans, can upregulate the surface expression of costimulatory molecules CD80 and CD86 on bovine monocytes. In addition, stimulated cells increased production of IL-8 and of TNF, IL1B, and IL6 mRNA expression, in a dose-dependent manner, which correlated positively with CLEC7A gene expression. Production of IL-8 and TNF expression decreased significantly after CLEC7A knockdown using two different pairs of siRNAs. Overall, we demonstrated here that bovine monocytes respond to particulate β-glucans, through Dectin-1, by increasing the expression of pro-inflammatory cytokines. Our data support further studies in cattle on the induction of trained immunity using dietary β-glucans.
Collapse
Affiliation(s)
- Ana R V Pedro
- Immunobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratório de Imunologia, DIMFF, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,LAQV, REQUIMTE, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Lima
- Immunobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ricardo Fróis-Martins
- Immunobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bárbara Leal
- Laboratório de Imunogenética, DPIM, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel C Ramos
- Animal Nutrition Division, Cooperativa Agrícola de Vila do Conde, Vila do Conde, Portugal
| | - Elisabete G Martins
- ADM Portugal, SA, Murtede, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.,Department of Veterinary Medicine, Escola Universitária Vasco da Gama, Coimbra, Portugal
| | - Ana R J Cabrita
- LAQV, REQUIMTE, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - António J M Fonseca
- LAQV, REQUIMTE, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida R G Maia
- LAQV, REQUIMTE, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Manuel Vilanova
- Immunobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratório de Imunologia, DIMFF, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- Immunobiology Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Laboratório de Imunologia, DIMFF, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Zhao W, Wang X, Zhao C, Yan Z. Immunomodulatory mechanism of Bacillus subtilis R0179 in RAW 264.7 cells against Candida albicans challenge. Microb Pathog 2021; 157:104988. [PMID: 34044051 DOI: 10.1016/j.micpath.2021.104988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
This study was aimed to explore the immunomodulatory and anti-Candida mechanisms of Bacillus subtilis (B. subtilis) R0179 in macrophages. RAW 264.7 cells were first challenged with B. subtilis R0179. B. subtilis R0179 was found to down-regulate the signals of Dectin-1, Card9, P-Iκ-Bα, Iκ-Bα, and NF-κB. Meanwhile, it reduced the levels of cytokines interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor (TNF)-α, but increased the level of cytokine IL-10. Then RAW 264.7 cells were pretreated with B. subtilis R0179 before challenged with Candida albicans (C. albicans) or RAW 264.7 cells were co-treated with B. subtilis R0179 and C. albicans. In the presence of C. albicans, B. subtilis R0179 also showed the similar immunomodulatory effects on RAW 264.7 cells. Hence, this study provides the first insight into the immunomodulatory mechanisms of B. subtilis R0179 on the Dectin-1-related downstream signaling pathways in macrophages, which may prevent tissue damage caused by excessive pro-inflammatory response during the infection of C. albicans.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center of Stomatology, Peking University School and Hospital of Stomatology, China
| | - Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center of Stomatology, Peking University School and Hospital of Stomatology, China
| | - Chen Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Department of Oral Medicine, The Affiliated Stomatology Hospital of Tongji University, Shanghai, 200070, PR China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China; Central Laboratory, Peking University School and Hospital of Stomatology, China; National Center of Stomatology, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
12
|
Duan JL, He HQ, Yu Y, Liu T, Ma SJ, Li F, Jiang YS, Lin X, Li DD, Lv QZ, Ma HH, Jia XM. E3 ligase c-Cbl regulates intestinal inflammation through suppressing fungi-induced noncanonical NF-κB activation. SCIENCE ADVANCES 2021; 7:7/19/eabe5171. [PMID: 33962939 PMCID: PMC8104877 DOI: 10.1126/sciadv.abe5171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Intestinal fungi are critical for modulating host immune homeostasis and underlying mechanisms remain unclear. We show that dendritic cell (DC)-specific deficiency of casitas B-lineage lymphoma (c-Cbl) renders mice susceptible to dextran sodium sulfate (DSS)-induced colitis. Mechanistically, we identify that c-Cbl functions downstream of Dectin-2 and Dectin-3 to mediate the ubiquitination and degradation of noncanonical nuclear factor κB subunit RelB. Thus, c-Cbl deficiency in DCs promotes α-mannan-induced activation of RelB, which suppresses p65-mediated transcription of an anti-inflammatory cytokine gene, il10, thereby aggravating DSS-induced colitis. Moreover, suppressing fungal growth with fluconazole or inhibition of RelB activation in vivo attenuates colitis in mice with DC-specific deletion of c-Cbl. We also demonstrate an interaction between c-Cbl and c-Abl tyrosine kinase and find that treatment with DPH, a c-Abl agonist, synergistically increases fungi-induced c-Cbl activation to restrict colitis. Together, these findings unravel a previously unidentified fungi-induced c-Cbl/RelB axis that sustains intestinal homeostasis and protects against intestinal inflammation.
Collapse
Affiliation(s)
- Jie-Lin Duan
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Hui-Qian He
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Tao Liu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Shu-Jun Ma
- Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yan-Shan Jiang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xin Lin
- Institute for Immunology, Tsinghua University School of Medicine, Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing 100084, China
| | - De-Dong Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Quan-Zhen Lv
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
13
|
Barroso MV, Gropillo I, Detoni MAA, Thompson-Souza GA, Muniz VS, Vasconcelos CRI, Figueiredo RT, Melo RCN, Neves JS. Structural and Signaling Events Driving Aspergillus fumigatus-Induced Human Eosinophil Extracellular Trap Release. Front Microbiol 2021; 12:633696. [PMID: 33679663 PMCID: PMC7930393 DOI: 10.3389/fmicb.2021.633696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Eosinophils are granulocytes classically involved in allergic diseases and in the host immune responses to helminths, fungi, bacteria and viruses. The release of extracellular DNA traps by leukocytes is an important mechanism of the innate immune response to pathogens in various infectious conditions, including fungal infections. Aspergillus fumigatus is an opportunistic fungus responsible for allergic bronchopulmonary aspergillosis (ABPA), a pulmonary disease marked by prominent eosinophilic inflammation. Previously, we demonstrated that isolated human eosinophils release extracellular DNA traps (eosinophil extracellular traps; EETs) when stimulated by A. fumigatus in vitro. This release occurs through a lytic non-oxidative mechanism that involves CD11b and Syk tyrosine kinase. In this work, we unraveled different intracellular mechanisms that drive the release of extracellular DNA traps by A. fumigatus-stimulated eosinophils. Ultrastructurally, we originally observed that A. fumigatus-stimulated eosinophils present typical signs of extracellular DNA trap cell death (ETosis) with the nuclei losing both their shape (delobulation) and the euchromatin/heterochromatin distinction, followed by rupture of the nuclear envelope and EETs release. We also found that by targeting class I PI3K, and more specifically PI3Kδ, the release of extracellular DNA traps induced by A. fumigatus is inhibited. We also demonstrated that A. fumigatus-induced EETs release depends on the Src family, Akt, calcium and p38 MAPK signaling pathways in a process in which fungal viability is dispensable. Interestingly, we showed that A. fumigatus-induced EETs release occurs in a mechanism independent of PAD4 histone citrullination. These findings may contribute to a better understanding of the mechanisms that underlie EETs release in response to A. fumigatus, which may lead to better knowledge of ABPA pathophysiology and treatment.
Collapse
Affiliation(s)
- Marina Valente Barroso
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Gropillo
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcella A A Detoni
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Valdirene S Muniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rodrigo T Figueiredo
- Institute of Biomedical Sciences/Campus of Duque de Caxias, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Sphingomyelin Biosynthesis Is Essential for Phagocytic Signaling during Mycobacterium tuberculosis Host Cell Entry. mBio 2021; 12:mBio.03141-20. [PMID: 33500344 PMCID: PMC7858061 DOI: 10.1128/mbio.03141-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) invades alveolar macrophages through phagocytosis to establish infection and cause disease. The molecular mechanisms underlying Mtb entry are still poorly understood. Phagocytosis by alveolar macrophages is the obligate first step in Mycobacterium tuberculosis (Mtb) infection, yet the mechanism underlying this process is incompletely understood. Here, we show that Mtb invasion relies on an intact sphingolipid biosynthetic pathway. Inhibition or knockout of early sphingolipid biosynthetic enzymes greatly reduces Mtb uptake across multiple phagocytic cell types without affecting other forms of endocytosis. While the phagocytic receptor dectin-1 undergoes normal clustering at the pathogen contact sites, sphingolipid biosynthetic mutant cells fail to segregate the regulatory phosphatase CD45 from the clustered receptors. Blocking sphingolipid production also impairs downstream activation of Rho GTPases, actin dynamics, and phosphoinositide turnover at the nascent phagocytic cup. Moreover, we found that production of sphingomyelin, not glycosphingolipids, is essential for Mtb uptake. Collectively, our data support a critical role of sphingomyelin biosynthesis in an early stage of Mtb infection and provide novel insights into the mechanism underlying phagocytic entry of this pathogen.
Collapse
|
15
|
De Marco Castro E, Calder PC, Roche HM. β-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions. Mol Nutr Food Res 2021; 65:e1901071. [PMID: 32223047 PMCID: PMC7816268 DOI: 10.1002/mnfr.201901071] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/28/2020] [Indexed: 12/16/2022]
Abstract
The innate immune system responds in a rapid and non-specific manner against immunologic threats; inflammation is part of this response. This is followed by a slower but targeted and specific response termed the adaptive or acquired immune response. There is emerging evidence that dietary components, including yeast-derived β-glucans, can aid host defense against pathogens by modulating inflammatory and antimicrobial activity of neutrophils and macrophages. Innate immune training refers to a newly recognized phenomenon wherein compounds may "train" innate immune cells, such that monocyte and macrophage precursor biology is altered to mount a more effective immunological response. Although various human studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between β-glucan supplementation and human immune function. This review offers an up-to-date report on yeast-derived β-glucans as immunomodulators, including a brief overview of the current paradigm regarding the interaction of β-glucans with the immune system. The recent pre-clinical work that has partly decrypted mode of action and the newest evidence from human trials are also reviewed. According to pre-clinical studies, β-1,3/1,6-glucan derived from baker's yeast may offer increased immuno-surveillance, although the human evidence is weaker than that gained from pre-clinical studies.
Collapse
Affiliation(s)
- Elena De Marco Castro
- Nutrigenomics Research GroupSchool of Public Health, Physiotherapy, and Sports ScienceConway Institute, and Institute of Food and HealthUniversity College DublinDublin 4D04 V1W8Ireland
- Diabetes Complications Research CentreConway InstituteUniversity College DublinDublin 4D04 V1W8Ireland
| | - Philip C. Calder
- Faculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Helen M. Roche
- Nutrigenomics Research GroupSchool of Public Health, Physiotherapy, and Sports ScienceConway Institute, and Institute of Food and HealthUniversity College DublinDublin 4D04 V1W8Ireland
- Diabetes Complications Research CentreConway InstituteUniversity College DublinDublin 4D04 V1W8Ireland
- Institute for Global Food SecurityQueens University BelfastBelfastNorthern IrelandBT9 5DLUK
| |
Collapse
|
16
|
Bruno M, Kersten S, Bain JM, Jaeger M, Rosati D, Kruppa MD, Lowman DW, Rice PJ, Graves B, Ma Z, Jiao YN, Chowdhary A, Renieris G, van de Veerdonk FL, Kullberg BJ, Giamarellos-Bourboulis EJ, Hoischen A, Gow NAR, Brown AJP, Meis JF, Williams DL, Netea MG. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol 2020; 5:1516-1531. [PMID: 32839538 DOI: 10.1038/s41564-020-0780-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
Abstract
Candida auris is among the most important emerging fungal pathogens, yet mechanistic insights into its immune recognition and control are lacking. Here, we integrate transcriptional and functional immune-cell profiling to uncover innate defence mechanisms against C. auris. C. auris induces a specific transcriptome in human mononuclear cells, a stronger cytokine response compared with Candida albicans, but a lower macrophage lysis capacity. C. auris-induced innate immune activation is mediated through the recognition of C-type lectin receptors, mainly elicited by structurally unique C. auris mannoproteins. In in vivo experimental models of disseminated candidiasis, C. auris was less virulent than C. albicans. Collectively, these results demonstrate that C. auris is a strong inducer of innate host defence, and identify possible targets for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Simone Kersten
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith M Bain
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Martin Jaeger
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Diletta Rosati
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael D Kruppa
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Douglas W Lowman
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Bridget Graves
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zuchao Ma
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yue Ning Jiao
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - George Renieris
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | | | - Alexander Hoischen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Venkatachalam G, Arumugam S, Doble M. Synthesis, Characterization, and Biological Activity of Aminated Zymosan. ACS OMEGA 2020; 5:15973-15982. [PMID: 32656418 PMCID: PMC7345428 DOI: 10.1021/acsomega.0c01243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Zymosan (ZM), a naturally occurring insoluble macromolecule obtained from the cell wall of Saccharomyces cerevisiae, is used as a functional food (as dietary fiber), phagocytic stimulus, and immune potentiator. The present study aimed to increase its solubility and evaluate its immunological application. ZM was converted into soluble 6-amino-6-deoxy-β-(1-3)-glucan of a molecular weight of 296 kDa by reduction. Detailed structural characterization of aminated ZM was determined by Fourier transform infrared spectroscopy and two-dimensional NMR analysis (2D, COSY, TOCSY, ROSEY, NOSEY, and HSQC). Aminated ZM was biocompatible with Raw 264.7 macrophage cell lines up to a concentration of 100 μg/mL. Rhodamine tagging revealed that the aminated ZM microparticles were found localized within the nucleus of Raw 264.7 cells. Both native and aminated ZM showed a similar expression pattern of inflammatory genes in Raw 264.7.
Collapse
|
18
|
Thompson‐Souza GA, Santos GMP, Silva JC, Muniz VS, Braga YAV, Figueiredo RT, Melo RCN, Santos ALS, Pinto MR, Neves JS. Histoplasma capsulatum
‐induced extracellular DNA trap release in human neutrophils. Cell Microbiol 2020; 22:e13195. [DOI: 10.1111/cmi.13195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Juliana C. Silva
- Institute of Biomedical Sciences/Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Valdirene S. Muniz
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Yasmim A. V. Braga
- Institute of Biomedical Sciences/Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Rodrigo T. Figueiredo
- Institute of Biomedical Sciences/Campus of Duque de CaxiasFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological SciencesFederal University of Juiz de Fora Juiz de Fora Brazil
| | - André L. S. Santos
- Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Marcia R. Pinto
- Biomedical InstituteFluminense Federal University Niterói Brazil
| | - Josiane S. Neves
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
19
|
Drouin M, Saenz J, Chiffoleau E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front Immunol 2020; 11:251. [PMID: 32133013 PMCID: PMC7040094 DOI: 10.3389/fimmu.2020.00251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
C-type lectin-like receptors (CLRs) represent a family of transmembrane pattern recognition receptors, expressed primarily by myeloid cells. They recognize not only pathogen moieties for host defense, but also modified self-antigens such as damage-associated molecular patterns released from dead cells. Upon ligation, CLR signaling leads to the production of inflammatory mediators to shape amplitude, duration and outcome of the immune response. Thus, following excessive injury, dysregulation of these receptors leads to the development of inflammatory diseases. Herein, we will focus on four CLRs of the "Dectin family," shown to decode the immunogenicity of cell death. CLEC9A on dendritic cells links F-actin exposed by dying cells to favor cross-presentation of dead-cell associated antigens to CD8+ T cells. Nevertheless, CLEC9A exerts also feedback mechanisms to temper neutrophil recruitment and prevent additional tissue damage. MINCLE expressed by macrophages binds nuclear SAP130 released by necrotic cells to potentiate pro-inflammatory responses. However, the consequent inflammation can exacerbate pathogenesis of inflammatory diseases. Moreover, in a tumor microenvironment, MINCLE induces macrophage-induced immune suppression and cancer progression. Similarly, triggering of LOX-1 by oxidized LDL, amplifies pro-inflammatory response but promotes tumor immune escape and metastasis. Finally, CLEC12A that recognizes monosodium urate crystals formed during cell death, inhibits activating signals to prevent detrimental inflammation. Interestingly, CLEC12A also sustains type-I IFN response to finely tune immune responses in case of viral-induced collateral damage. Therefore, CLRs acting in concert as sensors of injury, could be used in a targeted way to treat numerous diseases such as allergies, obesity, tumors, and autoimmunity.
Collapse
Affiliation(s)
- Marion Drouin
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,OSE Immunotherapeutics, Nantes, France
| | - Javier Saenz
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Elise Chiffoleau
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
20
|
Guzman G, Niekamp P, Tafesse FG. The Squeaky Yeast Gets Greased: The Roles of Host Lipids in the Clearance of Pathogenic Fungi. J Fungi (Basel) 2020; 6:E19. [PMID: 32024011 PMCID: PMC7151219 DOI: 10.3390/jof6010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Fungal infections remain a global health threat with high morbidity and mortality. The human immune system must, therefore, perpetually defend against invasive fungal infections. Phagocytosis is critical for the clearance of fungal pathogens, as this cellular process allows select immune cells to internalize and destroy invading fungal cells. While much is known about the protein players that enable phagocytosis, the various roles that lipids play during this fundamental innate immune process are still being illuminated. In this review, we describe recent discoveries that shed new light on the mechanisms by which host lipids enable the phagocytic uptake and clearance of fungal pathogens.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; (G.G.); (P.N.)
| | - Patrick Niekamp
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; (G.G.); (P.N.)
- Biology & Chemistry Department, University of Osnabrück, Fachbereich Biologie/Chemie, Barbarastrasse 13, 49076 Osnabrück, Germany
| | - Fikadu Geta Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA; (G.G.); (P.N.)
| |
Collapse
|
21
|
Abstract
C-type lectin receptors (CLRs) are a family of transmembrane proteins having at least one C-type lectin-like domain (CTLD) on the cell surface and either a short intracellular signaling tail or a transmembrane domain that facilitates interaction with a second protein, often the Fc receptor common gamma chain (FcRγ), that mediates signaling. Many CLRs directly recognize microbial cell walls and influence innate immunity by activating inflammatory and antimicrobial responses in phagocytes. In this review, we examine the contributions of certain CLRs to activation and regulation of phagocytosis in cells such as macrophages, dendritic cells and neutrophils.
Collapse
|
22
|
Kim VY, Batty A, Li J, Kirk SG, Crowell SA, Jin Y, Tang J, Zhang J, Rogers LK, Deng HX, Nelin LD, Liu Y. Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic Candida albicans Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:2239-2251. [PMID: 31501257 DOI: 10.4049/jimmunol.1701686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/07/2019] [Indexed: 01/16/2023]
Abstract
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.
Collapse
Affiliation(s)
- Victoria Y Kim
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Abel Batty
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Jinhui Li
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara A Crowell
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Yi Jin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Lynette K Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Han-Xiang Deng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| |
Collapse
|
23
|
Lin Y, Zhang Y, Yu H, Tian R, Wang G, Li F. Identification of unique key genes and miRNAs in latent tuberculosis infection by network analysis. Mol Immunol 2019; 112:103-114. [PMID: 31082644 DOI: 10.1016/j.molimm.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M.tb). New cases are now mainly caused by the progression of latent tuberculosis infection (LTBI). Thus, methods to diagnose and treat LTBI are urgently needed to prevent the development of active TB in infected individuals and the subsequent spread of the disease. In this study, a systems biology approach was utilized to obtain numerous microarray data sets for mRNAs and microRNAs (miRNAs) expressed in the peripheral blood mononuclear cells (PBMCs) of TB patients and individuals with LTBI. Within these data sets, we identified the differentially expressed mRNAs and miRNAs and further investigated which differentially expressed genes and miRNAs were uniquely expressed during LTBI. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was employed to analyze the functional annotations and pathway classifications of the identified genes. To further understand the unique miRNA-gene regulatory network of LTBI, we constructed a protein-protein interaction (PPI) network for the targeted genes. The PPI network included 39 genes that were differentially and uniquely expressed in PBMCs of individuals with LTBI, and KEGG pathway enrichment analysis showed that these genes were predominantly involved in the PI3K-Akt signaling pathway, which plays an important role in chronic inflammation. DIANA TOOLs-mirPath analysis revealed that the identified miRNAs in the miRNA-gene regulatory network for LTBI were mainly associated with the Hippo signaling pathway, which functions in the development of inflammation. Quantitative real-time PCR verified the up expression of hsa-miR-212-3p and its predicted target gene -MAPK1 which had low expression and was a major component of the PPI network, and MAPK1 expression was correlated with the clinicopathological characteristics of LTBI by receiver operating characteristic (ROC) curve analysis. Therefore, MAPK1 has potential to be a new investigable marker during LTBI, which merits our further study and solution. The unique aberrant miRNA-gene regulatory network and the related PPI network identified in this study provide insight into the molecular mechanisms of the immune response to LTBI, and thus, may aid in the development of a novel treatment strategy.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Yuwei Zhang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Huiyuan Yu
- School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Ruonan Tian
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China; The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, Jilin, 130021, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, 130021, China; The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, Jilin, 130021, China; Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, Jilin, 130021, China; Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, Jilin, 130021, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China.
| |
Collapse
|
24
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
25
|
Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med Chem 2019; 11:869-883. [PMID: 30994368 DOI: 10.4155/fmc-2018-0465] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are a worldwide problem associated with high morbidity and mortality. There are relatively few antifungal agents, and resistance has emerged within these pathogens for the newest antifungal drugs. As the fungal cell wall is critical for growth and development, it is one of the most important targets for drug development. In this review, the currently available cell wall inhibitors and suitable drug candidates for the treatment of fungal infections are explored. Future studies of the fungal cell wall and compounds that have detrimental effects on this important outer structural layer could aid in antifungal drug discovery and lead to the development of alternative cell wall inhibitors to fill gaps in clinical therapies for difficult-to-treat fungal infections.
Collapse
|
26
|
de Graaff P, Govers C, Wichers HJ, Debets R. Consumption of β-glucans to spice up T cell treatment of tumors: a review. Expert Opin Biol Ther 2019; 18:1023-1040. [PMID: 30221551 DOI: 10.1080/14712598.2018.1523392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adoptive T-cell treatments of solid cancers have evolved into a robust therapy with objective response rates surpassing those of standardized treatments. Unfortunately, only a limited fraction of patients shows durable responses, which is considered to be due to a T cell-suppressive tumor microenvironment (TME). Here we argue that naturally occurring β-glucans can enable reversion of such T cell suppression by engaging innate immune cells and enhancing numbers and function of lymphocyte effectors. AREAS COVERED This review summarizes timely reports with respect to absorption, trafficking and immune stimulatory effects of β-glucans, particularly in relation to innate immune cells. Furthermore, we list effects toward well-being and immune functions in healthy subjects as well as cancer patients treated with orally administered β-glucans, extended with effects of β-glucan treatments in mouse cancer models. EXPERT OPINION Beta-glucans, when present in food and following uptake in the proximal gut, stimulate immune cells present in gut-associated lymphoid tissue and initiate highly conserved pro-inflammatory pathways. When tested in mouse cancer models, β-glucans result in better control of tumor growth and shift the TME toward a T cell-sensitive environment. Along these lines, we advocate that intake of β-glucans provides an accessible and immune-potentiating adjuvant when combined with adoptive T-cell treatments of cancer.
Collapse
Affiliation(s)
- Priscilla de Graaff
- a Laboratory of Tumor Immunology, Department of Medical Oncology , Erasmus MC Cancer Institute , Rotterdam , The Netherlands.,b Food and Biobased Research , Wageningen University and Research , Wageningen , The Netherlands
| | - Coen Govers
- b Food and Biobased Research , Wageningen University and Research , Wageningen , The Netherlands
| | - Harry J Wichers
- b Food and Biobased Research , Wageningen University and Research , Wageningen , The Netherlands
| | - Reno Debets
- a Laboratory of Tumor Immunology, Department of Medical Oncology , Erasmus MC Cancer Institute , Rotterdam , The Netherlands
| |
Collapse
|
27
|
Dekker RFH, Queiroz EAIF, Cunha MAA, Barbosa-Dekker AM. Botryosphaeran – A Fungal Exopolysaccharide of the (1→3)(1→6)-β-D-Glucan Kind: Structure and Biological Functions. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Angulo M, Reyes-Becerril M, Tovar-Ramírez D, Ascencio F, Angulo C. Debaryomyces hansenii CBS 8339 β-glucan enhances immune responses and down-stream gene signaling pathways in goat peripheral blood leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:173-182. [PMID: 30031015 DOI: 10.1016/j.dci.2018.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Debaryomyces hansenii-derived β-glucan has shown immunostimulant effect on aquaculture species and recently on goat peripheral blood leukocytes. Moreover, the marine yeast D. hansenii CBS 8339 has demonstrated to enhance fish immune response. Nonetheless, the associated immune signaling pathways induced by β-glucan from this marine yeast have not been characterized yet. This study described the effects of β-glucan from D. hansenii CBS 8339 against challenge with Escherichia coli and activation of possible mechanisms on goat peripheral blood leukocytes. The proton nuclear magnetic resonance spectra showed that D. hansenii had β-(1,3)(1,6)-glucan. The phagocytic ability enhanced after E. coli challenge, and nitric oxide production increased before and after challenge in leukocytes stimulated with D. hansenii β-glucan. In addition, an early gene expression stimulation was found related to β-glucan recognition by TLR2 and Dectin-1 receptors, intracellular regulation by Syk, TRAF6, MyD88 and transcription factor NFκB, and effector functions of pro-inflammatory cytokine, such as IL-1β and TNF-α. Interestingly, simulation with D. hansenii-derived β-glucan increased leukocyte viability after E. coli challenge. In conclusion, β-glucan from D. hansenii CBS 8339 reduced cytotoxic effects of E. coli and modulated signaling pathways and innate immune response in goat peripheral blood leukocytes.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Dariel Tovar-Ramírez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Felipe Ascencio
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23096, Mexico.
| |
Collapse
|
29
|
Yang L, Wu H, Qiu W, Guo L, Du X, Yu Q, Gao J, Luo S. Pulsatilla decoction inhibits Candida albicans proliferation and adhesion in a mouse model of vulvovaginal candidiasis via the Dectin-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:51-62. [PMID: 29775695 DOI: 10.1016/j.jep.2018.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulsatilla decoction (PD) is a classical prescription in Traditional Chinese Medicine (TCM) and has been reported to have inhibitory effects on Candida albicans proliferation. STUDY AIM To investigate the therapeutic effects of PD in the treatment of Vulvovaginal candidiasis (VVC) and elucidate the potential mechanism. MATERIALS AND METHODS Female BALB/c mice (N = 90) were randomized to six treatment groups, including the Control group, Model group, three PD groups and Fluconazole group which served as a positive control (20 mg/kg weekly). The three PD groups (low dose group, medium dose group and high dose group) were given a daily intragastric gavage of PD at doses of 5, 10 and 20 g/kg, respectively. Five animals from each group were euthanized on Day 4, Day 7 and Day 14 after treatment. Colony forming unit (CFU) was measured by the serial dilution method. The degree of infection was assessed by Gram staining, Periodic acid schiff (PAS) staining, Hematoxylin and eosin (H&E) staining and Scanning electron microscopy (SEM). The serum inflammation levels were determined by a Luminex assay. Gene and protein expression levels of components of the Dectin-1 signaling pathway were determined by Real-time PCR, Western-blot and immunohistochemistry, respectively. RESULTS The administration of PD significantly decreased the fungal load from Day 7 post-infection onwards and decreased the number of visible microorganisms based on findings from Gram staining, PAS staining and SEM. H&E staining indicated that the impaired histological profiles were improved in all three PD groups. PD led to a significantly lower level of IL-23 in the serum; the levels of IL-10 and TNF-α were also decreased, although the differences were not significant. Furthermore, a substantial downregulation of Dectin-1, CARD9 and NF-κB mRNA levels and Dectin-1, Syk, CARD9 and NF-κB protein levels was observed after the administration of PD. CONCLUSION This study suggests that PD exerts inhibitory effects on C. albicans proliferation, adhesion and inflammation and simultaneously downregulates the expression levels of important genes and proteins associated with the Dectin-1 pathway, highlighting the potential application of PD to improve the clinical management of VVC.
Collapse
Affiliation(s)
- Lilin Yang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiwang Wu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiyu Qiu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Longyi Guo
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Du
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingying Yu
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Gao
- Department of Gynecology, the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Songping Luo
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
30
|
Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol 2018; 9:1261. [PMID: 29915598 PMCID: PMC5994417 DOI: 10.3389/fimmu.2018.01261] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.
Collapse
Affiliation(s)
- Surabhi Goyal
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juan Camilo Castrillón-Betancur
- Septomics Research Center, Jena University Hospital, Jena, Germany.,International Leibniz Research School for Microbial and Biomolecular Interactions, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knöll Institute, Jena, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
31
|
Purvis HA, Clarke F, Jordan CK, Blanco CS, Cornish GH, Dai X, Rawlings DJ, Zamoyska R, Cope AP. Protein tyrosine phosphatase PTPN22 regulates IL-1β dependent Th17 responses by modulating dectin-1 signaling in mice. Eur J Immunol 2018; 48:306-315. [PMID: 28948613 PMCID: PMC5859948 DOI: 10.1002/eji.201747092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/24/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
A single nucleotide polymorphism within the PTPN22 gene is a strong genetic risk factor predisposing to the development of multiple autoimmune diseases. PTPN22 regulates Syk and Src family kinases downstream of immuno-receptors. Fungal β-glucan receptor dectin-1 signals via Syk, and dectin-1 stimulation induces arthritis in mouse models. We investigated whether PTPN22 regulates dectin-1 dependent immune responses. Bone marrow derived dendritic cells (BMDCs) generated from C57BL/6 wild type (WT) and Ptpn22-/- mutant mice, were pulsed with OVA323-339 and the dectin-1 agonist curdlan and co-cultured in vitro with OT-II T-cells or adoptively transferred into OT-II mice, and T-cell responses were determined by immunoassay. Dectin-1 activated Ptpn22-/- BMDCs enhanced T-cell secretion of IL-17 in vitro and in vivo in an IL-1β dependent manner. Immunoblotting revealed that compared to WT, dectin-1 activated Ptpn22-/- BMDCs displayed enhanced Syk and Erk phosphorylation. Dectin-1 activation of BMDCs expressing Ptpn22R619W (the mouse orthologue of human PTPN22R620W ) also resulted in increased IL-1β secretion and T-cell dependent IL-17 responses, indicating that in the context of dectin-1 Ptpn22R619W operates as a loss-of-function variant. These findings highlight PTPN22 as a novel regulator of dectin-1 signals, providing a link between genetically conferred perturbations of innate receptor signaling and the risk of autoimmune disease.
Collapse
Affiliation(s)
- Harriet A Purvis
- Academic Department of RheumatologyCentre for Inflammation Biology and Cancer ImmunologyFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Fiona Clarke
- Academic Department of RheumatologyCentre for Inflammation Biology and Cancer ImmunologyFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Christine K Jordan
- Academic Department of RheumatologyCentre for Inflammation Biology and Cancer ImmunologyFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Cristina Sanchez Blanco
- Academic Department of RheumatologyCentre for Inflammation Biology and Cancer ImmunologyFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Georgina H Cornish
- Academic Department of RheumatologyCentre for Inflammation Biology and Cancer ImmunologyFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Xuezhi Dai
- Seattle Children's Research Institute and Departments of Pediatrics and ImmunologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - David J Rawlings
- Seattle Children's Research Institute and Departments of Pediatrics and ImmunologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Rose Zamoyska
- Institute of Immunology and Infection ResearchCentre for Immunity, Infection and EvolutionUniversity of EdinburghEdinburghUK
| | - Andrew P Cope
- Academic Department of RheumatologyCentre for Inflammation Biology and Cancer ImmunologyFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
32
|
A novel peptide targeting Clec9a on dendritic cell for cancer immunotherapy. Oncotarget 2018; 7:40437-40450. [PMID: 27250027 PMCID: PMC5130018 DOI: 10.18632/oncotarget.9624] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells with antigen recognition molecules on the surface. Clec9a is selectively expressed on mouse CD8a+ DCs and CD103+ DCs subsets, which are functionally similar to human BDCA3+ DCs. It is reported that Clec9a is responsible for the antigen cross-presentation of these DC subsets. In the present study, by using phage display technique, we discovered a novel peptide WH, which can selectively bind to mouse Flt3L induced Clec9a+ DCs or Clec9a over-expressed HEK-293T cells. Furthermore, by using computer-aided docking model and mutation assay, we observed that Asp248 and Trp250 are two key residues for Clec9a to bind with peptide WH. When coupled with OVA257-264 epitope, peptide WH can significantly enhance the ability of Clec9a+ DCs to activate OVA-specific CD8+ T cells, which elicit strong ability to secret IFN-γ, express perforin and granzyme B mRNA. In B16-OVA lung metastasis mouse model, WH-OVA257-264 fusion peptide can also enhance the activation of CD8+ T cells and decrease the lung metastasis loci. All these results suggested that peptide WH could be considered as an antigen delivery carrier targeting Clec9a+ DCs for cancer immunotherapy.
Collapse
|
33
|
Biagioli M, Mencarelli A, Carino A, Cipriani S, Marchianò S, Fiorucci C, Donini A, Graziosi L, Baldelli F, Distrutti E, Costantino G, Fiorucci S. Genetic and Pharmacological Dissection of the Role of Spleen Tyrosine Kinase (Syk) in Intestinal Inflammation and Immune Dysfunction in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2017; 24:123-135. [PMID: 29272492 DOI: 10.1093/ibd/izx031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND The DNAX adaptor protein 12 (DAP12) is a transmembrane adaptor molecule that signals through the activation of Syk (Spleen Tyrosine Kinase) in myeloid cells. The purpose of this study is to investigate the role of DAP12 and Syk pathways in inflammatory bowel diseases (IBDs). METHODS DAP12 deficient and DAP12 transgenic, overexpressing an increased amount of DAP12, mice and Syk deficient mice in the C57/BL6 background were used for these studies. Colitis was induced by administering mice with dextran sulfate sodium (DSS), in drinking water, or 2,4,6-trinitrobenzene sulfonic acid (TNBS), by intrarectal enema. RESULTS Abundant expression of DAP12 and Syk was detected in colon samples obtained from Crohn's disease patients with expression restricted to immune cells infiltrating the colonic wall. In rodents development of DSS colitis as measured by assessing severity of wasting diseases, global colitis score,and macroscopic and histology scores was robustly attenuated in DAP12-/- and Syk-/- mice. In contrast, DAP12 overexpression resulted in a striking exacerbation of colon damage caused by DSS. Induction of colon expression of proinflammatory cytokines and chemokines in response to DSS administration was attenuated in DAP12-/- and Syk-/- mice, whereas opposite results were observed in DAP12 transgenic mice. Treating wild-type mice with a DAP-12 inhibitor or a Syk inhibitor caused a robust attenuation of colitis induced by DSS and TNBS. CONCLUSIONS DAP12 and Syk are essential mediators in inflammation-driven immune dysfunction in murine colitides. Because DAP12 and Syk expression is upregulated in patients with active disease, present findings suggest a beneficial role for DAP12 and Syk inhibitors in IBD.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Andrea Mencarelli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Chiara Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Annibale Donini
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Franco Baldelli
- Department of Medicine, University of Perugia, Perugia, 06132, Italy; ‡Perugia Hospital, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
34
|
Muniz VS, Silva JC, Braga YAV, Melo RCN, Ueki S, Takeda M, Hebisawa A, Asano K, Figueiredo RT, Neves JS. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J Allergy Clin Immunol 2017; 141:571-585.e7. [PMID: 28943470 DOI: 10.1016/j.jaci.2017.07.048] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Eosinophils mediate the immune response in different infectious conditions. The release of extracellular DNA traps (ETs) by leukocytes has been described as an innate immune response mechanism that is relevant in many disorders including fungal diseases. Different stimuli induce the release of human eosinophil ETs (EETs). Aspergillus fumigatus is an opportunistic fungus that may cause eosinophilic allergic bronchopulmonary aspergillosis (ABPA). It has been reported that eosinophils are important to the clearance of A fumigatus in infected mice lungs. However, the immunological mechanisms that underlie the molecular interactions between A fumigatus and eosinophils are poorly understood. OBJECTIVE Here, we investigated the presence of EETs in the bronchial mucus plugs of patients with ABPA. We also determined whether A fumigatus induced the release of human eosinophil EETs in vitro. METHODS Mucus samples of patients with ABPA were analyzed by light and confocal fluorescence microscopy. The release of EETs by human blood eosinophils was evaluated using different pharmacological tools and neutralizing antibodies by fluorescence microscopy and a fluorimetric method. RESULTS We identified abundant nuclear histone-bearing EETs in the bronchial secretions obtained from patients with ABPA. In vitro, we demonstrated that A fumigatus induces the release of EETs through a mechanism independent of reactive oxygen species but associated with eosinophil death, histone citrullination, CD11b, and the Syk tyrosine kinase pathway. EETs lack the killing or fungistatic activities against A fumigatus. CONCLUSIONS Our findings may contribute to the understanding of how eosinophils recognize and act as immune cells in response to A fumigatus, which may lead to novel insights regarding the treatment of patients with ABPA.
Collapse
Affiliation(s)
- Valdirene S Muniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana C Silva
- Institute of Biomedical Sciences/Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmim A V Braga
- Institute of Biomedical Sciences/Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akira Hebisawa
- Clinical Research Center and Pathology Division, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Rodrigo T Figueiredo
- Institute of Biomedical Sciences/Unit of Xerem, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:1-35. [DOI: 10.1007/978-981-10-5987-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Chesney JA, Mitchell RA, Yaddanapudi K. Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy. J Leukoc Biol 2017; 102:727-740. [PMID: 28546500 DOI: 10.1189/jlb.5vmr1116-458rrr] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that accumulate during pathologic conditions, such as cancer. Patients diagnosed with advanced metastatic cancers have an average survival of 12-24 mo, a survival time that hasn't changed significantly in the past 30 yr. Despite some encouraging improvements in response rates and overall survival in patients receiving immunotherapies, such as immune checkpoint inhibitors, most patients will ultimately progress. MDSCs contribute to immunotherapeutic resistance by actively inhibiting antitumor T cell proliferation and cytotoxic activity as well as by promoting expansion of protumorigenic T regulatory cells, thereby, dampening the host immune responses against the tumor. In addition, MDSCs promote angiogenesis, tumor invasion, and metastasis. Thus, MDSCs are potential therapeutic targets in cases of multiple cancers. This review focuses on the phenotypic and functional characteristics of MDSCs and provides an overview of the mono- and combinatorial-therapeutic strategies that target MDSCs with an objective of enhancing the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Jason A Chesney
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA; .,Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and
| | - Robert A Mitchell
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA; .,Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Kavitha Yaddanapudi
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA; .,Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
37
|
Yao WR, Yu L, Li D, Yang GB. Molecular cloning and characterization of DNGR-1 in rhesus macaques. Mol Immunol 2017; 87:217-226. [PMID: 28511091 DOI: 10.1016/j.molimm.2017.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
DC, NK lectin group receptor-1 (DNGR-1), also known as C-type lectin domain family 9 member A (CLEC9A), is a promising target for immunological therapeutics and vaccination against tumors and viruses. However, little is known about its property in rhesus macaques. In this study, we cloned rhesus macaque DNGR-1 cDNA, and found that its coding region could encode a 241-amino acid polypeptide with 91.7% sequence identity and similar antigenicity to that of humans. Both free and cell surface rhesus macaque DNGR-1 expressed in vitro could bind to apoptotic/dead cells induced by serum deprivation or freeze-thaw, and to pyroptotic cells stimulated with PMA and LPS. We also demonstrated that rhesus macaque DNGR-1 mRNA was present in all the examined tissues, with the highest in lymph nodes, spleen, blood, and thymus. The expression of DNGR-1 that is highly similar to that of humans warranted the usefulness of rhesus macaques in testing human therapeutics and vaccines targeting DNGR-1, especially those for HIV/AIDS.
Collapse
Affiliation(s)
- Wen-Rong Yao
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Lei Yu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Dong Li
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China.
| |
Collapse
|
38
|
Tong Y, Tang J. Candida albicans infection and intestinal immunity. Microbiol Res 2017; 198:27-35. [PMID: 28285659 DOI: 10.1016/j.micres.2017.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/27/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
Fungal infections cause high rates of morbidity and mortality in intensive care and immunocompromised patients, and can represent a life-threatening disease. As a microorganism commonly found in the intestine, Candida albicans (C. albicans) can invade the gut epithelium barrier via microfold cells and enter the bloodstream. The defensive potential of the intestinal barrier against invasive C. albicans is dependent on innate and adaptive immune responses which enable the host to eliminate pathogenic fungi. The lamina propria layer of the intestine contains numerous immune cells capable of inducing an innate cellular immune response against invasive fungi. This review focuses on the immune response triggered by a C. albicans infection in the intestine.
Collapse
Affiliation(s)
- Yiqing Tong
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University; Shanghai 200240, PR China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University; Shanghai 200240, PR China.
| |
Collapse
|
39
|
Bauer B, Wotapek T, Zöller T, Rutkowski E, Steinle A. The Activating C-type Lectin-like Receptor NKp65 Signals through a Hemi-immunoreceptor Tyrosine-based Activation Motif (hemITAM) and Spleen Tyrosine Kinase (Syk). J Biol Chem 2017; 292:3213-3223. [PMID: 28082678 DOI: 10.1074/jbc.m116.759977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/11/2017] [Indexed: 11/06/2022] Open
Abstract
NKp65 is an activating human C-type lectin-like receptor (CTLR) triggering cellular cytotoxicity and cytokine secretion upon high-affinity interaction with the cognate CTLR keratinocyte-associated C-type lectin (KACL) selectively expressed by human keratinocytes. Previously, we demonstrated that NKp65-mediated cellular cytotoxicity depends on tyrosine 7, located in a cytoplasmic sequence motif of NKp65 resembling a hemi-immunoreceptor tyrosine-based activation motif (hemITAM). HemITAMs have been reported for a few activating myeloid-specific CTLRs, including Dectin-1 and CLEC-2, and consist of a single tyrosine signaling unit preceded by a triacidic motif. Upon receptor engagement, the hemITAM undergoes phosphotyrosinylation and specifically recruits spleen tyrosine kinase (Syk), initiating cellular activation. In this study, we addressed the functionality of the putative hemITAM of NKp65. We show that NKp65 forms homodimers and is phosphorylated at the hemITAM-embedded tyrosine 7 upon engagement by antibodies or KACL homodimers. HemITAM phosphotyrosinylation initiates a signaling pathway involving and depending on Syk, leading to cellular activation and natural killer (NK) cell degranulation. However, although NKp65 utilizes Syk for NK cell activation, a physical association of Syk with the NKp65 hemITAM could not be detected, unlike shown previously for the hemITAM of myeloid CTLR. Failure of NKp65 to recruit Syk is not due to an alteration of the triacidic motif, which rather affects the efficiency of hemITAM phosphotyrosinylation. In summary, NKp65 utilizes a hemITAM-like motif for cellular activation that requires Syk, although Syk appears not to be recruited to NKp65.
Collapse
Affiliation(s)
- Björn Bauer
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Tobias Zöller
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Emilia Rutkowski
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
da Cunha MA, Albornoz S, Queiroz Santos V, Sánchez W, Barbosa-Dekker A, Dekker R. Structure and Biological Functions of d -Glucans and Their Applications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Yasuda K, Ushio H. Keyhole limpet hemocyanin induces innate immunity via Syk and Erk phosphorylation. EXCLI JOURNAL 2016; 15:474-481. [PMID: 27822175 PMCID: PMC5083961 DOI: 10.17179/excli2016-488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
Abstract
Hemocyanin is an extracellular respiratory protein containing copper in hemolymph of invertebrates, such as Mollusk and Arthropod. Keyhole limpet hemocyanin (KLH) is one of hemocyanins and has many years of experience for vaccine developments and immunological studies in mammals including human. However, the association between KLH and the immune systems, especially the innate immune systems, remains poorly understood. The aim of this study is to clarify the direct effects of KLH on the innate immune systems. KLH activated an inflammation-related transcription factor NF-κB as much as lipopolysaccharide (LPS) in a human monocytic leukemia THP-1 reporter cell line. We have found that the KLH-induced NF-κB activation is partially involved in a spleen tyrosine kinase (Syk) pathway. We have also successfully revealed that an extracellular signal-regulated kinase (Erk), a member of mitogen-activated protein kinases, is located in an upstream of NF-κB activation induced by KLH. Furthermore, a Syk phosphorylation inhibitor partially suppressed the Erk activation in KLH-stimulated THP-1. These results suggest that both Syk and Erk associate with the KLH-induced NF-κB activation in the human monocyte.
Collapse
Affiliation(s)
- Kyoko Yasuda
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hideki Ushio
- Laboratory of Marine Biochemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
42
|
C-type lectin receptors in tuberculosis: what we know. Med Microbiol Immunol 2016; 205:513-535. [DOI: 10.1007/s00430-016-0470-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
|
43
|
Qin Y, Zhang L, Xu Z, Zhang J, Jiang YY, Cao Y, Yan T. Innate immune cell response upon Candida albicans infection. Virulence 2016; 7:512-26. [PMID: 27078171 DOI: 10.1080/21505594.2016.1138201] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity.
Collapse
Affiliation(s)
- Yulin Qin
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Lulu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Zheng Xu
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Jinyu Zhang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yuan-Ying Jiang
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Yongbing Cao
- a Research and Develop Center of New Drug, School of Pharmacy, Second Military Medical University , Shanghai , China
| | - Tianhua Yan
- b Department of Pharmacology , School of Pharmacy, China Pharmaceutical University , Nanjing , China
| |
Collapse
|
44
|
Khan NS, Kasperkovitz PV, Timmons AK, Mansour MK, Tam JM, Seward MW, Reedy JL, Puranam S, Feliu M, Vyas JM. Dectin-1 Controls TLR9 Trafficking to Phagosomes Containing β-1,3 Glucan. THE JOURNAL OF IMMUNOLOGY 2016; 196:2249-61. [PMID: 26829985 DOI: 10.4049/jimmunol.1401545] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/03/2016] [Indexed: 12/23/2022]
Abstract
Dectin-1 and TLR9 play distinct roles in the recognition and induction of innate immune responses to Aspergillus fumigatus and Candida albicans. Dectin-1 is a receptor for the major fungal cell wall carbohydrate β-1,3 glucan that induces inflammatory cytokines and controls phagosomal maturation through spleen tyrosine kinase activation. TLR9 is an endosomal TLR that also modulates the inflammatory cytokine response to fungal pathogens. In this study, we demonstrate that β-1,3 glucan beads are sufficient to induce dynamic redistribution and accumulation of cleaved TLR9 to phagosomes. Trafficking of TLR9 to A. fumigatus and C. albicans phagosomes requires Dectin-1 recognition. Inhibition of phagosomal acidification blocks TLR9 accumulation on phagosomes containing β-1,3 glucan beads. Dectin-1-mediated spleen tyrosine kinase activation is required for TLR9 trafficking to β-1,3 glucan-, A. fumigatus-, and C. albicans-containing phagosomes. In addition, Dectin-1 regulates TLR9-dependent gene expression. Collectively, our study demonstrates that recognition of β-1,3 glucan by Dectin-1 triggers TLR9 trafficking to β-1,3 glucan-containing phagosomes, which may be critical in coordinating innate antifungal defense.
Collapse
Affiliation(s)
- Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Biomedical Engineering and Biotechnology, University of Massachusetts, Lowell, MA 01854
| | | | - Allison K Timmons
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jenny M Tam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael W Seward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Sravanthi Puranam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Marianela Feliu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Nutrition and Metabolism, Boston University, Boston, MA 02118; and
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Department of Medicine, Harvard Medical School, Boston, MA 02115; Program in Immunology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
45
|
Rui K, Tian J, Tang X, Ma J, Xu P, Tian X, Wang Y, Xu H, Lu L, Wang S. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden. Immunol Res 2016; 64:931-9. [DOI: 10.1007/s12026-016-8789-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Albeituni SH, Ding C, Liu M, Hu X, Luo F, Kloecker G, Bousamra M, Zhang HG, Yan J. Yeast-Derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer. THE JOURNAL OF IMMUNOLOGY 2016; 196:2167-80. [PMID: 26810222 DOI: 10.4049/jimmunol.1501853] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/02/2016] [Indexed: 12/17/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. In this study, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole β-glucan particles (WGP; a ligand to engage and activate dectin-1, oral treatment in vivo) significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of polymorphonuclear MDSC but not monocytic MDSC (M-MDSC), and decreased polymorphonuclear MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80(+)CD11c(+) cells in vitro that served as potent APC to induce Ag-specific CD4(+) and CD8(+) T cell responses in a dectin-1-dependent manner. Additionally, Erk1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c(+) cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated s.c. with Lewis lung carcinoma cells. This effect was dependent on the dectin-1 receptor. Strikingly, patients with non-small cell lung carcinoma that had received WGP treatment for 10-14 d prior to any other treatment had a decreased frequency of CD14(-)HLA-DR(-)CD11b(+)CD33(+) MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer.
Collapse
Affiliation(s)
- Sabrin H Albeituni
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Chuanlin Ding
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Min Liu
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Xiaoling Hu
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Fengling Luo
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Goetz Kloecker
- Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| | - Michael Bousamra
- Division of Thoracic Surgery, Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Huang-ge Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202
| | - Jun Yan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202; Division of Hematology and Medical Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
47
|
Ao J, Ding Y, Chen Y, Mu Y, Chen X. Molecular Characterization and Biological Effects of a C-Type Lectin-Like Receptor in Large Yellow Croaker (Larimichthys crocea). Int J Mol Sci 2015; 16:29631-29642. [PMID: 26690423 PMCID: PMC4691118 DOI: 10.3390/ijms161226175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023] Open
Abstract
The C-type lectin-like receptors (CTLRs) play important roles in innate immunity as one type of pattern recognition receptors. Here, we cloned and characterized a C-type lectin-like receptor (LycCTLR) from large yellow croaker Larimichthys crocea. The full-length cDNA of LycCTLR is 880 nucleotides long, encoding a protein of 215 amino acids. The deduced LycCTLR contains a C-terminal C-type lectin-like domain (CTLD), an N-terminal cytoplasmic tail, and a transmembrane region. The CTLD of LycCTLR possesses six highly conserved cysteine residues (C1-C6), a conserved WI/MGL motif, and two sugar binding motifs, EPD (Glu-Pro-Asp) and WYD (Trp-Tyr-Asp). Ca(2+) binding site 1 and 2 were also found in the CTLD. The LycCTLR gene consists of five exons and four introns, showing the same genomic organization as tilapia (Oreochromis niloticus) and guppy (Poecilia retitculata) CTLRs. LycCTLR was constitutively expressed in various tissues tested, and its transcripts significantly increased in the head kidney and spleen after stimulation with inactivated trivalent bacterial vaccine. Recombinant LycCTLR (rLycCTLR) protein produced in Escherichia coli BL21 exhibited not only the hemagglutinating activity and a preference for galactose, but also the agglutinating activity against two food-borne pathogenic bacteria E. coli and Bacillus cereus in a Ca(2+)-dependent manner. These results indicate that LycCTLR is a potential galactose-binding C-type lectin that may play a role in the antibacterial immunity in fish.
Collapse
Affiliation(s)
- Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Yang Ding
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Yuanyuan Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
48
|
Queiroz EA, Fortes ZB, da Cunha MA, Barbosa AM, Khaper N, Dekker RF. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int J Biochem Cell Biol 2015; 67:14-24. [DOI: 10.1016/j.biocel.2015.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
|
49
|
Blanco-Menéndez N, Del Fresno C, Fernandes S, Calvo E, Conde-Garrosa R, Kerr WG, Sancho D. SHIP-1 Couples to the Dectin-1 hemITAM and Selectively Modulates Reactive Oxygen Species Production in Dendritic Cells in Response to Candida albicans. THE JOURNAL OF IMMUNOLOGY 2015; 195:4466-4478. [PMID: 26416276 DOI: 10.4049/jimmunol.1402874] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 08/29/2015] [Indexed: 12/12/2022]
Abstract
Dectin-1 (Clec7a) is a paradigmatic C-type lectin receptor that binds Syk through a hemITAM motif and couples sensing of pathogens such as fungi to induction of innate responses. Dectin-1 engagement triggers a plethora of activating events, but little is known about the modulation of such pathways. Trying to define a more precise picture of early Dectin-1 signaling, we explored the interactome of the intracellular tail of the receptor in mouse dendritic cells. We found unexpected binding of SHIP-1 phosphatase to the phosphorylated hemITAM. SHIP-1 colocalized with Dectin-1 during phagocytosis of zymosan in a hemITAM-dependent fashion. Moreover, endogenous SHIP-1 relocated to live or heat-killed Candida albicans-containing phagosomes in a Dectin-1-dependent manner in GM-CSF-derived bone marrow cells (GM-BM). However, SHIP-1 absence in GM-BM did not affect activation of MAPK or production of cytokines and readouts dependent on NF-κB and NFAT. Notably, ROS production was enhanced in SHIP-1-deficient GM-BM treated with heat-killed C. albicans, live C. albicans, or the specific Dectin-1 agonists curdlan or whole glucan particles. This increased oxidative burst was dependent on Dectin-1, Syk, PI3K, phosphoinositide-dependent protein kinase 1, and NADPH oxidase. GM-BM from CD11c∆SHIP-1 mice also showed increased killing activity against live C. albicans that was dependent on Dectin-1, Syk, and NADPH oxidase. These results illustrate the complexity of myeloid C-type lectin receptor signaling, and how an activating hemITAM can also couple to intracellular inositol phosphatases to modulate selected functional responses and tightly regulate processes such as ROS production that could be deleterious to the host.
Collapse
Affiliation(s)
- Noelia Blanco-Menéndez
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Carlos Del Fresno
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Sandra Fernandes
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Enrique Calvo
- Proteomic Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Ruth Conde-Garrosa
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - William G Kerr
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA.,Pediatrics Department, SUNY Upstate Medical University, Syracuse, New York, USA.,Chemistry Department, Syracuse University, Syracuse, New York, USA
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| |
Collapse
|
50
|
Toledano V, Hernández-Jiménez E, Cubillos-Zapata C, Flandez M, Álvarez E, Varela-Serrano A, Cantero R, Valles G, García-Rio F, López-Collazo E. Galactomannan Downregulates the Inflammation Responses in Human Macrophages via NFκB2/p100. Mediators Inflamm 2015; 2015:942517. [PMID: 26441484 PMCID: PMC4579314 DOI: 10.1155/2015/942517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 11/17/2022] Open
Abstract
We show that galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups present on the cell wall of several fungi, induces a reprogramming of the inflammatory response in human macrophages through dectin-1 receptor. The nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed after galactomannan challenge. Knocking down NFκB2/p100 using small interfering RNA (siRNA) indicated that NFκB2/p100 expression is a crucial factor in the progression of the galactomannan-induced refractoriness. The data presented in this study could be used as a modulator of inflammatory response in clinical situations where refractory state is required.
Collapse
Affiliation(s)
- Víctor Toledano
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Enrique Hernández-Jiménez
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Marta Flandez
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Enrique Álvarez
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- EMPIREO S.L., 28004 Madrid, Spain
| | - Aníbal Varela-Serrano
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | - Ramón Cantero
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| | | | | | - Eduardo López-Collazo
- Tumor Immunology Laboratory, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
- Innate Immunity Group, IdiPAZ, La Paz Hospital, 28046 Madrid, Spain
| |
Collapse
|