1
|
Rehermann B, Graham AL, Masopust D, Hamilton SE. Integrating natural commensals and pathogens into preclinical mouse models. Nat Rev Immunol 2025; 25:385-397. [PMID: 39562646 DOI: 10.1038/s41577-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Fundamental discoveries in many aspects of mammalian physiology have been made using laboratory mice as research models. These studies have been facilitated by the genetic tractability and inbreeding of such mice, the large set of immunological reagents that are available, and the establishment of environmentally controlled, high-throughput facilities. Such facilities typically include barriers to keep the mouse colonies free of pathogens and the frequent re-derivation of the mice severely limits their commensal flora. Because humans have co-evolved with microorganisms and are exposed to a variety of pathogens, a growing community of researchers posits that preclinical disease research can be improved by studying mice in the context of the microbiota and pathogens that they would encounter in the natural world. Here, we provide a perspective of how these different approaches can be combined and integrated to improve existing mouse models to enhance our understanding of disease mechanisms and develop new therapies for humans. We also propose that the term 'mice with natural microbiota' is more appropriate for describing these models than existing terms such as 'dirty mice'.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Xu R, Hong HA, Khandaker S, Baltazar M, Allehyani N, Beentjes D, Prince T, Ho YL, Nguyen LH, Hynes D, Love W, Cutting SM, Kadioglu A. Nasal delivery of killed Bacillus subtilis spores protects against influenza, RSV and SARS-CoV-2. Front Immunol 2025; 16:1501907. [PMID: 40242757 PMCID: PMC12000887 DOI: 10.3389/fimmu.2025.1501907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Spores of the bacterium Bacillus subtilis (B. subtilis) have been shown to carry a number of properties potentially beneficial for vaccination. Firstly, as vehicles enabling mucosal delivery of heterologous antigens and secondly, as stimulators of innate immunity. Here, we have examined the specificity of protection conferred by the spore-induced innate response, focusing on influenza H1N1, respiratory syncytial virus (RSV), and coronavirus-2 (SARS-CoV-2) infections. Methods In vivo viral challenge murine models were used to assess the prophylactic anti-viral effects of B. subtilis spores delivered by intranasal instilling, using an optimised three-dose regimen. Multiple nasal boosting doses following intramuscular priming with SARS-CoV-2 spike protein was also tested for the capability of spores on enhancing the efficacy of parenteral vaccination. To determine the impact of spores on immune cell trafficking to lungs, we used intravascular staining to characterise cellular participants in spore-dosed pulmonary compartments (airway and lung parenchyma) before and after viral challenge. Results We found that mice pre-treated with spores developed resistance to all three pathogens and, in each case, exhibited a significant improvement in both survival rate and disease severity. Intranasal spore dosing expanded alveolar macrophages and induced recruitment of leukocyte populations, providing a cellular mechanism for the protection. Most importantly, virus-induced inflammatory leukocyte infiltration was attenuated in spore-treated lungs, which may alleviate the associated collateral tissue damage that leads to the development of severe conditions. Remarkably, spores were able to promote the induction of tissue-resident memory T cells, and, when administered following an intramuscular prime with SARS-CoV-2 spike protein, increased the levels of anti-spike IgA and IgG in the lung and serum. Conclusions Taken together, our results show that Bacillus spores are able to regulate both innate and adaptive immunity, providing heterologous protection against a variety of important respiratory viruses of high global disease burden.
Collapse
Affiliation(s)
- Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Huynh A. Hong
- SporeGen Ltd., London Bioscience Innovation Centre, London, United Kingdom
| | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Noor Allehyani
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Daan Beentjes
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Tessa Prince
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, United Kingdom
| | - Yen-Linh Ho
- Huro Biotech Joint Stock Company, Ho Chi Minh, Vietnam
| | | | - Daniel Hynes
- Destiny Pharma Plc., Sussex Innovation Centre, Brighton, United Kingdom
| | - William Love
- Destiny Pharma Plc., Sussex Innovation Centre, Brighton, United Kingdom
| | - Simon M. Cutting
- SporeGen Ltd., London Bioscience Innovation Centre, London, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Minute L, Montalbán-Hernández K, Bravo-Robles L, Conejero L, Iborra S, Del Fresno C. Trained immunity-based mucosal immunotherapies for the prevention of respiratory infections. Trends Immunol 2025; 46:270-283. [PMID: 40113536 DOI: 10.1016/j.it.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The devastating impact of respiratory infections demonstrates the critical need for novel prophylactic vaccines. In this opinion article, we advocate for bacterial immunotherapies as a complementary tool in our fight against respiratory infections. These immunotherapies can activate a wide spectrum of immunological mechanisms, with trained immunity (TI) being particularly significant. This phenomenon has led to the concept of trained immunity-based vaccines (TIbVs), which represent a novel approach in vaccinology. We discuss examples of TIbVs, including the tuberculosis vaccine Bacille Calmette-Guérin (BCG) and the polybacterial immunotherapy MV130. From our viewpoint, illustrating the mode of action and clinical evidence supports the proposal that TIbVs should be considered as next-generation vaccines to confer protection against a wide range of respiratory infections.
Collapse
Affiliation(s)
- Luna Minute
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Laura Bravo-Robles
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | | | - Carlos Del Fresno
- The Innate Immune Response Group, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain; Immunomodulation Laboratory, La Paz University Hospital Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain.
| |
Collapse
|
4
|
Warrick KA, Vallez CN, Meibers HE, Pasare C. Bidirectional Communication Between the Innate and Adaptive Immune Systems. Annu Rev Immunol 2025; 43:489-514. [PMID: 40279312 DOI: 10.1146/annurev-immunol-083122-040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Effective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell-mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell-driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.
Collapse
Affiliation(s)
- Kathrynne A Warrick
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Charles N Vallez
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Hannah E Meibers
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| |
Collapse
|
5
|
Le HN, de Freitas MV, Antunes DA. Strengths and limitations of web servers for the modeling of TCRpMHC complexes. Comput Struct Biotechnol J 2024; 23:2938-2948. [PMID: 39104710 PMCID: PMC11298609 DOI: 10.1016/j.csbj.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cellular immunity relies on the ability of a T-cell receptor (TCR) to recognize a peptide (p) presented by a class I major histocompatibility complex (MHC) receptor on the surface of a cell. The TCR-peptide-MHC (TCRpMHC) interaction is a crucial step in activating T-cells, and the structural characteristics of these molecules play a significant role in determining the specificity and affinity of this interaction. Hence, obtaining 3D structures of TCRpMHC complexes offers valuable insights into various aspects of cellular immunity and can facilitate the development of T-cell-based immunotherapies. Here, we aimed to compare three popular web servers for modeling the structures of TCRpMHC complexes, namely ImmuneScape (IS), TCRpMHCmodels, and TCRmodel2, to examine their strengths and limitations. Each method employs a different modeling strategy, including docking, homology modeling, and deep learning. The accuracy of each method was evaluated by reproducing the 3D structures of a dataset of 87 TCRpMHC complexes with experimentally determined crystal structures available on the Protein Data Bank (PDB). All selected structures were limited to human MHC alleles, presenting a diverse set of peptide ligands. A detailed analysis of produced models was conducted using multiple metrics, including Root Mean Square Deviation (RMSD) and standardized assessments from CAPRI and DockQ. Special attention was given to the complementarity-determining region (CDR) loops of the TCRs and to the peptide ligands, which define most of the unique features and specificity of a given TCRpMHC interaction. Our study provides an optimistic view of the current state-of-the-art for TCRpMHC modeling but highlights some remaining challenges that must be addressed in order to support the future application of these tools for TCR engineering and computer-aided design of TCR-based immunotherapies.
Collapse
Affiliation(s)
- Hoa Nhu Le
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| | | | - Dinler Amaral Antunes
- University of Houston, Departments of Biology and Biochemistry, Houston, 77204, TX, USA
| |
Collapse
|
6
|
Pretti MAM, Vieira GF, Boroni M, Bonamino MH. Unveiling cross-reactivity: implications for immune response modulation in cancer. Brief Bioinform 2024; 26:bbaf012. [PMID: 39831892 PMCID: PMC11744606 DOI: 10.1093/bib/bbaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Antigen recognition by CD8+ T-cell receptors (TCR) is crucial for immune responses to pathogens and tumors. TCRs are cross-reactive, a single TCR can recognize multiple peptide-Human Leukocyte Antigen (HLA) complexes. The study of cross-reactivity can support the development of therapies focusing on immune modulation, such as the expansion of pre-existing T-cell clones to fight pathogens and tumors. The peptide-HLA (pHLA) surface has previously been used to identify TCR cross-reactivities. In the present work, we sought to perform a comprehensive analysis of peptide-HLA by selecting thousands of human and viral epitopes. We profit from established docking models to identify features from different spatial perspectives of HLA-A*02:01, explore similarities between self and non-self epitopes, and list potential cross-reactive epitopes of therapeutic interest. A total of 2631 unique epitopes from representative viral proteins or human proteins were modeled. We were able to demonstrate that cross-reactive CDR3 sequences from public databases recognize epitopes with similar electrostatic potential, charge, and spatial location. Using data from published studies that measured T-cell reactivity to mutated epitopes, we observed a negative correlation between epitope dissimilarity and T-cell activation. Most analysed cancer epitopes were more similar to self epitopes, yet we identified features distinguishing those more similar to viral antigens. Finally, we enumerated potential cross-reactivities between tumoral and viral epitopes and highlighted some challenges in their identification for therapeutic use. Moreover, the thousands of peptide-HLA complexes generated in our work constitute a valuable resource to study T-cell cross-reactivity.
Collapse
Affiliation(s)
- Marco Antônio M Pretti
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Program of Cell and Gene Therapy, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Gustavo Fioravanti Vieira
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Postgraduate Program in Health and Human Development, La Salle University, Canoas, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín H Bonamino
- Program of Cell and Gene Therapy, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Farrer TJ, Moore JD, Chase M, Gale SD, Hedges DW. Infectious Disease as a Modifiable Risk Factor for Dementia: A Narrative Review. Pathogens 2024; 13:974. [PMID: 39599527 PMCID: PMC11597442 DOI: 10.3390/pathogens13110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This narrative review examines infectious diseases as modifiable risk factors for dementia, particularly in the context of an aging global population. As the prevalence of Alzheimer's disease and related dementias is expected to rise, prevention has become increasingly important due to the limited efficacy of current treatments. Emerging evidence links specific infectious diseases to increased dementia risk, possibly through mechanisms like neuroinflammation and disruption to normal cell function. Here, we review findings on how viral and bacterial infections contribute to dementia and explore potentially preventive measures, including vaccinations and antiviral treatments. Studies indicate that vaccinations against influenza, herpes zoster, and hepatitis, as well as antiviral treatments targeting human herpesvirus, could reduce the incidence of dementia. Additionally, non-pharmaceutical interventions during pandemics and in long-term care settings are highlighted as effective strategies for reducing the spread of infectious diseases, potentially lowering dementia risk. Putative mechanisms underlying the protective effects of these interventions suggest that reducing systemic inflammation may be important to their efficacy. While the currently available evidence suggests at best an association between some infectious diseases and dementia, this narrative review emphasizes the need to incorporate infectious disease prevention into broader public health strategies to potentially mitigate the growing burden of dementia. Further research is required to explore these preventive measures across diverse populations and to deepen our understanding of the biological mechanisms involved.
Collapse
Affiliation(s)
- Thomas J. Farrer
- Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| | - Jonathan D. Moore
- Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| | - Morgan Chase
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA; (M.C.); (S.D.G.); (D.W.H.)
| | - Shawn D. Gale
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA; (M.C.); (S.D.G.); (D.W.H.)
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA
| | - Dawson W. Hedges
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA; (M.C.); (S.D.G.); (D.W.H.)
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
9
|
Doan TA, Forward TS, Schafer JB, Lucas ED, Fleming I, Uecker-Martin A, Ayala E, Guthmiller JJ, Hesselberth JR, Morrison TE, Tamburini BAJ. Immunization-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. NPJ Vaccines 2024; 9:66. [PMID: 38514656 PMCID: PMC10957963 DOI: 10.1038/s41541-024-00856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ira Fleming
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aspen Uecker-Martin
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jay R Hesselberth
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
10
|
Hardisty G, Nicol MQ, Shaw DJ, Bennet ID, Bryson K, Ligertwood Y, Schwarze J, Beard PM, Hopkins J, Dutia BM. Latent gammaherpesvirus infection enhances type I IFN response and reduces virus spread in an influenza A virus co-infection model. J Gen Virol 2024; 105. [PMID: 38329395 DOI: 10.1099/jgv.0.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Infections with persistent or latent viruses alter host immune homeostasis and have potential to affect the outcome of concomitant acute viral infections such as influenza A virus (IAV). Gammaherpesviruses establish life-long infections and require an on-going immune response to control reactivation. We have used a murine model of co-infection to investigate the response to IAV infection in mice latently infected with the gammaherpesvirus MHV-68. Over the course of infection, latently infected BALB/c mice showed less weight loss, clinical signs, pulmonary cellular infiltration and expression of inflammatory mediators than naïve mice infected with IAV and had significantly more activated CD8+ T cells in the lungs. Four days after IAV infection, virus spread in the lungs of latently infected animals was significantly lower than in naïve animals. By 7 days after IAV infection latently infected lungs express elevated levels of cytokines and chemokines indicating they are primed to respond to the secondary infection. Investigation at an early time point showed that 24 h after IAV infection co-infected animals had higher expression of IFNβ and Ddx58 (RIG-I) and a range of ISGs than mice infected with IAV alone suggesting that the type I IFN response plays a role in the protective effect. This effect was mouse strain dependent and did not occur in 129/Sv/Ev mice. These results offer insight into innate immune mechanisms that could be utilized to protect against IAV infection and highlight on-going and persistent viral infections as a significant factor impacting the severity of acute respiratory infections.
Collapse
Affiliation(s)
- Gareth Hardisty
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian D Bennet
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Karen Bryson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Yvonne Ligertwood
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh. EH16 4UU, UK
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BF, UK
| | - John Hopkins
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| |
Collapse
|
11
|
Pearson TF, Harris JE. Expanding the White Armor of Vitiligo. J Invest Dermatol 2024; 144:5-7. [PMID: 37831052 DOI: 10.1016/j.jid.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Todd F Pearson
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - John E Harris
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
12
|
Okon EM, Okocha RC, Taiwo AB, Michael FB, Bolanle AM. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100096. [PMID: 37250211 PMCID: PMC10213192 DOI: 10.1016/j.fsirep.2023.100096] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Co-infections can affect the transmission of a pathogen within a population and the pathogen's virulence, ultimately affecting the disease's dynamics. In addition, co-infections can potentially affect the host's immunological responses, clinical outcomes, survival, and disease control efficacy. Co-infections significantly impact fish production and can change several fish diseases' progression and severity. However, the effect of co-infection has only recently garnered limited attention in aquatic animals such as fish, and there is currently a dearth of studies on this topic. This study, therefore, presents an in-depth summary of the dynamics of co-infection in fish. This study reviewed the co-infection of fish pathogens, the interaction of pathogens and fish, clinical outcomes and impacts on fish immune responses, and fish survival. Most studies described the prevalence of co-infections in fish, with various parameters influencing their outcomes. Bacterial co-infection increased fish mortality, ulcerative dermatitis, and intestinal haemorrhage. Viral co-infection resulted in osmoregulatory effects, increased mortality and cytopathic effect (CPE). More severe histological alterations and clinical symptoms were related to the co-infection of fish than in single-infected fish. In parasitic co-infection, there was increased mortality, high kidney swelling index, and severe necrotic alterations in the kidney, liver, and spleen. In other cases, there were more severe kidney lesions, cartilage destruction and displacement. There was a dearth of information on mitigating co-infections in fish. Therefore, further studies on the mitigation strategies of co-infections in fish will provide valuable insights into this research area. Also, more research on the immunology of co-infection specific to each fish pathogen class (bacteria, viruses, fungi, and parasites) is imperative. The findings from such studies would provide valuable information on the relationship between fish immune systems and targeted responses.
Collapse
Affiliation(s)
| | - Reuben Chukwuka Okocha
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Climate Action Research Group, Landmark University SDG 13, Nigeria
| | | | - Falana Babatunde Michael
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Life Below Water Research Group, Landmark University SDG 14, Nigeria
| | - Adeniran Moji Bolanle
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
13
|
Tamburini B, Doan T, Forward T, Lucas E, Fleming I, Uecker-Martin A, Hesselberth J, Morrison T. Vaccine-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. RESEARCH SQUARE 2023:rs.3.rs-3307809. [PMID: 37841845 PMCID: PMC10571600 DOI: 10.21203/rs.3.rs-3307809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Viral and vaccine antigens persist or are archived in lymph node stromal cells (LNSC) such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration boosted memory CD8+ T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8+ T cells specific to the vaccine archived antigen were significantly higher than memory CD8+ T cells of a different antigen specificity. Finally, the boosted memory CD8+ T cells resulted in increased protection against Listeria monocytogenes expressing the vaccine antigen, but only for the duration that the vaccine antigen was archived. These findings outline a novel mechanism by which LNSC archived antigens, in addition to bystander activation, can augment memory CD8+ T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
| | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | - Erin Lucas
- University of Colorado Anschutz Medical Campus
| | - Ira Fleming
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
14
|
Balz K, Kaushik A, Cemic F, Sampath V, Heger V, Renz H, Nadeau K, Skevaki C. Cross-reactive MHC class I T cell epitopes may dictate heterologous immune responses between respiratory viruses and food allergens. Sci Rep 2023; 13:14874. [PMID: 37684288 PMCID: PMC10491592 DOI: 10.1038/s41598-023-41187-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Respiratory virus infections play a major role in asthma, while there is a close correlation between asthma and food allergy. We hypothesized that T cell-mediated heterologous immunity may induce asthma symptoms among sensitized individuals and used two independent in silico pipelines for the identification of cross-reactive virus- and food allergen- derived T cell epitopes, considering individual peptide sequence similarity, MHC binding affinity and immunogenicity. We assessed the proteomes of human rhinovirus (RV1b), respiratory syncytial virus (RSVA2) and influenza-strains contained in the seasonal quadrivalent influenza vaccine 2019/2020 (QIV 2019/2020), as well as SARS-CoV-2 for human HLA alleles, in addition to more than 200 most common food allergen protein sequences. All resulting allergen-derived peptide candidates were subjected to an elaborate scoring system considering multiple criteria, including clinical relevance. In both bioinformatics approaches, we found that shortlisted peptide pairs that are potentially binding to MHC class II molecules scored up to 10 × lower compared to MHC class I candidate epitopes. For MHC class I food allergen epitopes, several potentially cross-reactive peptides from shrimp, kiwi, apple, soybean and chicken were identified. The shortlisted set of peptide pairs may be implicated in heterologous immune responses and translated to peptide immunization strategies with immunomodulatory properties.
Collapse
Affiliation(s)
- Kathrin Balz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), 35043, Marburg, Germany
| | - Abhinav Kaushik
- Division of Pulmonary, Allergy and Critical Care Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94040, USA
- Departmental of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Franz Cemic
- Department of Computer Science, TH Mittelhessen, University of Applied Sciences Gießen, 35390, Giessen, Germany
| | - Vanitha Sampath
- Division of Pulmonary, Allergy and Critical Care Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94040, USA
| | - Vanessa Heger
- Department of Computer Science, TH Mittelhessen, University of Applied Sciences Gießen, 35390, Giessen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), 35043, Marburg, Germany
| | - Kari Nadeau
- Departmental of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), 35043, Marburg, Germany.
| |
Collapse
|
15
|
N’Guessan A, Kailasam S, Mostefai F, Poujol R, Grenier JC, Ismailova N, Contini P, De Palma R, Haber C, Stadler V, Bourque G, Hussin JG, Shapiro BJ, Fritz JH, Piccirillo CA. Selection for immune evasion in SARS-CoV-2 revealed by high-resolution epitope mapping and sequence analysis. iScience 2023; 26:107394. [PMID: 37599818 PMCID: PMC10433132 DOI: 10.1016/j.isci.2023.107394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Here, we exploit a deep serological profiling strategy coupled with an integrated, computational framework for the analysis of SARS-CoV-2 humoral immune responses. Applying a high-density peptide array (HDPA) spanning the entire proteomes of SARS-CoV-2 and endemic human coronaviruses allowed identification of B cell epitopes and relate them to their evolutionary and structural properties. We identify hotspots of pre-existing immunity and identify cross-reactive epitopes that contribute to increasing the overall humoral immune response to SARS-CoV-2. Using a public dataset of over 38,000 viral genomes from the early phase of the pandemic, capturing both inter- and within-host genetic viral diversity, we determined the evolutionary profile of epitopes and the differences across proteins, waves, and SARS-CoV-2 variants. Lastly, we show that mutations in spike and nucleocapsid epitopes are under stronger selection between than within patients, suggesting that most of the selective pressure for immune evasion occurs upon transmission between hosts.
Collapse
Affiliation(s)
- Arnaud N’Guessan
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Senthilkumar Kailasam
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Fatima Mostefai
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Raphaël Poujol
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Paola Contini
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, University of Genoa and IRCCS IST-Ospedale San Martino, Genoa, Italy
| | | | | | - Guillaume Bourque
- Canadian Center for Computational Genomics, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julie G. Hussin
- Research Centre, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program of the Research Institute of McGill Health Center, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| |
Collapse
|
16
|
Hedström AK. Risk factors for multiple sclerosis in the context of Epstein-Barr virus infection. Front Immunol 2023; 14:1212676. [PMID: 37554326 PMCID: PMC10406387 DOI: 10.3389/fimmu.2023.1212676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Compelling evidence indicates that Epstein Barr virus (EBV) infection is a prerequisite for multiple sclerosis (MS). The disease may arise from a complex interplay between latent EBV infection, genetic predisposition, and various environmental and lifestyle factors that negatively affect immune control of the infection. Evidence of gene-environment interactions and epigenetic modifications triggered by environmental factors in genetically susceptible individuals supports this view. This review gives a short introduction to EBV and host immunity and discusses evidence indicating EBV as a prerequisite for MS. The role of genetic and environmental risk factors, and their interactions, in MS pathogenesis is reviewed and put in the context of EBV infection. Finally, possible preventive measures are discussed based on the findings presented.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Zafar I, Taniguchi T, Baghdadi HB, Kondoh D, Rizk MA, Galon EM, Ji S, El-Sayed SAES, Do T, Li H, Amer MM, Zhuowei M, Yihong M, Zhou J, Inoue N, Xuan X. Babesia microti alleviates disease manifestations caused by Plasmodium berghei ANKA in murine co-infection model of complicated malaria. Front Cell Infect Microbiol 2023; 13:1226088. [PMID: 37492527 PMCID: PMC10364126 DOI: 10.3389/fcimb.2023.1226088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Malaria remains one of the most significant health issues worldwide, accounting for 2.6% of the total global disease burden, and efforts to eliminate this threat continue. The key focus is to develop an efficient and long-term immunity to this disease via vaccination or therapeutic approach, and innovative strategies would enable us to achieve this target. Previously, using a mouse co-infection disease model, cross-protection was illustrated between Babesia microti and Plasmodium chabaudi. Hence, this study was planned to elucidate the impact of acute B. microti Peabody mjr and Plasmodium berghei ANKA co-infection on the consequence of complicated malaria in the C57BL/6J mouse model of malaria. Furthermore, immune response and pathological features were analyzed, and the course of the disease was compared among experimental groups. Our study established that acute B. microti infection activated immunity which was otherwise suppressed by P. berghei. The immunosuppressive tissue microenvironment was counteracted as evidenced by the enhanced immune cell population in co-infected mice, in contrast to P. berghei-infected control mice. Parasite sequestration in the brain, liver, lung, and spleen of co-infected mice was significantly decreased and tissue injury was ameliorated. Meanwhile, the serum levels of IFN-γ, TNF-α, and IL-12p70 were reduced while the secretion of IL-10 was promoted in co-infected mice. Eventually, co-infected mice showed an extended rate of survival. Hereby, the principal cytokines associated with the severity of malaria by P. berghei infection were TNF-α, IFN-γ, and IL-12p70. Moreover, it was evident from our flow cytometry results that innate immunity is crucial and macrophages are at the frontline of immunity against P. berghei infection. Our study recommended further investigations to shed light on the effects of babesiosis in suppressing malaria with the goal of developing Babesia-based therapy against malaria.
Collapse
Affiliation(s)
- Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Punjab, Pakistan
| | - Tomoyo Taniguchi
- Department of Immunology and Parasitology, Graduate School of Medicine University of the Ryukyus, Nishihara Cho, Japan
| | - Hanadi B. Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Cavite, Philippines
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Moaz M. Amer
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Zhuowei
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ma Yihong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
18
|
Afroz S, Bartolo L, Su LF. Pre-existing T Cell Memory to Novel Pathogens. Immunohorizons 2023; 7:543-553. [PMID: 37436166 PMCID: PMC10587503 DOI: 10.4049/immunohorizons.2200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Immunological experiences lead to the development of specific T and B cell memory, which readies the host for a later pathogen rechallenge. Currently, immunological memory is best understood as a linear process whereby memory responses are generated by and directed against the same pathogen. However, numerous studies have identified memory cells that target pathogens in unexposed individuals. How "pre-existing memory" forms and impacts the outcome of infection remains unclear. In this review, we discuss differences in the composition of baseline T cell repertoire in mice and humans, factors that influence pre-existing immune states, and recent literature on their functional significance. We summarize current knowledge on the roles of pre-existing T cells in homeostasis and perturbation and their impacts on health and disease.
Collapse
Affiliation(s)
- Sumbul Afroz
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laurent Bartolo
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
| | - Laura F. Su
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
19
|
Elzagallaai AA, Rieder MJ. Novel insights into molecular and cellular aspects of delayed drug hypersensitivity reactions. Expert Rev Clin Pharmacol 2023; 16:1187-1199. [PMID: 38018416 DOI: 10.1080/17512433.2023.2289543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Delayed drug hypersensitivity reactions (DDHRs) represent a major health problem. They are unpredictable and can cause life-long disability or even death. The pathophysiology of DDHRs is complicated, multifactorial, and not well understood mainly due to the lack of validated animal models or in vitro systems. The role of the immune system is well demonstrated but its exact pathophysiology still a matter of debate. AREA COVERED This review summarizes the current understanding of DDHRs pathophysiology and abridges the available new evidence supporting each hypothesis. A comprehensive literature search for relevant publications was performed using PubMed, Google Scholar, and Medline databases with no date restrictions and focusing on the most recent 10 years. EXPERT OPINION Although multiple milestones have been achieved in our understanding of DDHRs pathophysiology as a result of the development of useful experimental models, many questions are yet to be fully answered. A deeper understanding of the mechanistic basis of DDHRs would not only facilitate the development of robust and reliable diagnostic assays for diagnosis, but would also inform therapy by providing specific target(s) for immunomodulation and potentially permit pre-therapeutic risk assessment to pursue the common goal of safe and effective drug therapy.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Paediatrics and Physiology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Fonseca AF, Antunes DA. CrossDome: an interactive R package to predict cross-reactivity risk using immunopeptidomics databases. Front Immunol 2023; 14:1142573. [PMID: 37377956 PMCID: PMC10291144 DOI: 10.3389/fimmu.2023.1142573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
T-cell-based immunotherapies hold tremendous potential in the fight against cancer, thanks to their capacity to specifically targeting diseased cells. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off-targets displayed by healthy cells. In a notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells, inducing lethal damage in melanoma patients. Such off-target toxicity has been related to T-cell cross-reactivity induced by molecular mimicry. In this context, there is growing interest in developing the means to avoid off-target toxicity, and to provide safer immunotherapy products. To this end, we present CrossDome, a multi-omics suite to predict the off-target toxicity risk of T-cell-based immunotherapies. Our suite provides two alternative protocols, i) a peptide-centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we evaluate our approach using 16 well-known cross-reactivity cases involving cancer-associated antigens. With CrossDome, the TITIN-derived peptide was predicted at the 99+ percentile rank among 36,000 scored candidates (p-value < 0.001). In addition, off-targets for all the 16 known cases were predicted within the top ranges of relatedness score on a Monte Carlo simulation with over 5 million putative peptide pairs, allowing us to determine a cut-off p-value for off-target toxicity risk. We also implemented a penalty system based on TCR hotspots, named contact map (CM). This TCR-centered approach improved upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g., from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended dataset of experimentally-determined cross-reactive peptides to evaluate alternative CrossDome protocols. The level of enrichment of validated cases among top 50 best-scored peptides was 63% for the peptide-centered protocol, and up to 82% for the TCR-centered protocol. Finally, we performed functional characterization of top ranking candidates, by integrating expression data, HLA binding, and immunogenicity predictions. CrossDome was designed as an R package for easy integration with antigen discovery pipelines, and an interactive web interface for users without coding experience. CrossDome is under active development, and it is available at https://github.com/AntunesLab/crossdome.
Collapse
Affiliation(s)
| | - Dinler A. Antunes
- Antunes Lab, Center for Nuclear Receptors and Cell Signaling (CNRCS), Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
22
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Clark F, Gil A, Thapa I, Aslan N, Ghersi D, Selin LK. Cross-reactivity influences changes in human influenza A virus and Epstein Barr virus specific CD8 memory T cell receptor alpha and beta repertoires between young and old. Front Immunol 2023; 13:1011935. [PMID: 36923729 PMCID: PMC10009332 DOI: 10.3389/fimmu.2022.1011935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/30/2022] [Indexed: 03/03/2023] Open
Abstract
Older people have difficulty controlling infection with common viruses such as influenza A virus (IAV), RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), DNA virus which persists in B cells for life in the 95% of people that become acutely infected. We questioned whether changes in epitope-specific memory CD8 T cell receptor (TCR) repertoires to these two common viruses could occur with increasing age and contribute to waning immunity. We compared CD8 memory TCR alpha and beta repertoires in two HLA-A2+ EBV- and IAV-immune donors, young (Y) and older (O) donors to three immunodominant epitopes known to be cross-reactive, IAV-M158-66 (IAV-M1), EBV-BMLF1280-288 (EBV-BM), and EBV-BRLF1109-117 (EBV-BR). We, therefore, also designed these studies to examine if TCR cross-reactivity could contribute to changes in repertoire with increasing age. TCR high throughput sequencing showed a significant difference in the pattern of TRBV usage between Y and O. However, there were many more differences in AV and AJ usage, between the age groups suggesting that changes in TCRα usage may play a greater role in evolution of the TCR repertoire emphasizing the importance of studying TRAV repertoires. With increasing age there was a preferential retention of TCR for all three epitopes with features in their complementarity-determining region (CDR3) that increased their ease of generation, and their cross-reactive potential. Young and older donors differed in the patterns of AV/AJ and BV/BJ pairings and usage of dominant CDR3 motifs specific to all three epitopes. Both young and older donors had cross-reactive responses between these 3 epitopes, which were unique and differed from the cognate responses having features that suggested they could interact with either ligand. There was an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-JB2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this clone may relate to its cross-reactivity with EBV. These results suggest that although young and older donors retain classic TCR features for each epitope their repertoires are gradually changing with age, maintaining TCRs that are cross-reactive between these two common human viruses, one with recurrent infections and the other a persistent virus which frequently reactivates.
Collapse
Affiliation(s)
- Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Liisa K. Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
24
|
Rivino L, Wooldridge L. Ready and waiting to go. eLife 2023; 12:85080. [PMID: 36607230 PMCID: PMC9822238 DOI: 10.7554/elife.85080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some T cells that have been activated by a herpesvirus can also respond to SARS-CoV-2, even if the original herpesvirus infection happened before the COVID-19 pandemic.
Collapse
Affiliation(s)
- Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of BristolBristolUnited Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health Sciences, University of BristolBristolUnited Kingdom
| |
Collapse
|
25
|
MOLECULAR MIMICRY OF SARS-COV-2 SPIKE PROTEIN IN THE NERVOUS SYSTEM: A BIOINFORMATICS APPROACH. Comput Struct Biotechnol J 2022; 20:6041-6054. [PMID: 36317085 PMCID: PMC9605789 DOI: 10.1016/j.csbj.2022.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction The development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in record time to cope with the ongoing coronavirus disease 2019 (COVID-19) pandemic has led to uncertainty about their use and the appearance of adverse neurological reactions. The SARS-CoV-2 spike protein (SP) is used to produce neutralizing antibodies and stimulate innate immunity. However, considering the alterations in the nervous system (NS) caused by COVID- 19, cross-reactions are plausible. Objective To identify peptides in Homo sapiens SP-like proteins involved in myelin and axon homeostasis that may be affected due to molecular mimicry by antibodies and T cells induced by interaction with SP. Materials and methods A bioinformatics approach was used. To select the H. sapiens proteins to be studied, related biological processes categorized based on gene ontology were extracted through the construction of a protein–protein interaction network. Peripheral myelin protein 22, a major component of myelin in the peripheral nervous system, was used as the query protein. The extracellular domains and regions susceptible to recognition by antibodies were extracted from UniProt. In the study of T cells, linear sequence similarity between H. sapiens proteins and SP was assessed using BLASTp. This study considered the similarity in terms of biochemical groups per residue and affinity to the human major histocompatibility complex (human leukocyte antigen I), which were evaluated using Needle and NetMHCpan 4.1, respectively. Results A large number of shared pentapeptides between SP and H. sapiens proteins were identified. However, only a small group of 39 proteins was linked to axon and myelin homeostasis. In particular, some proteins, such as phosphacan, attractin, and teneurin-4, were susceptible targets of B and T cells. Other proteins closely related to myelin components in the NS, such as myelin-associated glycoprotein, were found to share at least one pentamer with SP in extracellular domains. Conclusion Proteins involved in the maintenance of nerve conduction in the central and peripheral NS were identified in H. sapiens. Based on these findings, re-evaluation of the vaccine composition is recommended to prevent possible neurological side effects.
Collapse
|
26
|
Georgakilas GK, Galanopoulos AP, Tsinaris Z, Kyritsi M, Mouchtouri VA, Speletas M, Hadjichristodoulou C. Machine-Learning-Assisted Analysis of TCR Profiling Data Unveils Cross-Reactivity between SARS-CoV-2 and a Wide Spectrum of Pathogens and Other Diseases. BIOLOGY 2022; 11:1531. [PMID: 36290433 PMCID: PMC9598299 DOI: 10.3390/biology11101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022]
Abstract
During the last two years, the emergence of SARS-CoV-2 has led to millions of deaths worldwide, with a devastating socio-economic impact on a global scale. The scientific community's focus has recently shifted towards the association of the T cell immunological repertoire with COVID-19 progression and severity, by utilising T cell receptor sequencing (TCR-Seq) assays. The Multiplexed Identification of T cell Receptor Antigen (MIRA) dataset, which is a subset of the immunoACCESS study, provides thousands of TCRs that can specifically recognise SARS-CoV-2 epitopes. Our study proposes a novel Machine Learning (ML)-assisted approach for analysing TCR-Seq data from the antigens' point of view, with the ability to unveil key antigens that can accurately distinguish between MIRA COVID-19-convalescent and healthy individuals based on differences in the triggered immune response. Some SARS-CoV-2 antigens were found to exhibit equal levels of recognition by MIRA TCRs in both convalescent and healthy cohorts, leading to the assumption of putative cross-reactivity between SARS-CoV-2 and other infectious agents. This hypothesis was tested by combining MIRA with other public TCR profiling repositories that host assays and sequencing data concerning a plethora of pathogens. Our study provides evidence regarding putative cross-reactivity between SARS-CoV-2 and a wide spectrum of pathogens and diseases, with M. tuberculosis and Influenza virus exhibiting the highest levels of cross-reactivity. These results can potentially shift the emphasis of immunological studies towards an increased application of TCR profiling assays that have the potential to uncover key mechanisms of cell-mediated immune response against pathogens and diseases.
Collapse
Affiliation(s)
- Georgios K. Georgakilas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
- Laboratory of Genetics, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Achilleas P. Galanopoulos
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | - Zafeiris Tsinaris
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Maria Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Varvara A. Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | | |
Collapse
|
27
|
Pre-Pandemic Cross-Reactive Immunity against SARS-CoV-2 among Central and West African Populations. Viruses 2022; 14:v14102259. [PMID: 36298814 PMCID: PMC9611584 DOI: 10.3390/v14102259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
For more than two years after the emergence of COVID-19 (Coronavirus Disease-2019), significant regional differences in morbidity persist. These differences clearly show lower incidence rates in several regions of the African and Asian continents. The work reported here aimed to test the hypothesis of a pre-pandemic natural immunity acquired by some human populations in central and western Africa, which would, therefore, pose the hypothesis of an original antigenic sin with a virus antigenically close to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To identify such pre-existing immunity, sera samples collected before the emergence of COVID-19 were tested to detect the presence of IgG reacting antibodies against SARS-CoV-2 proteins of major significance. Sera samples from French blood donors collected before the pandemic served as a control. The results showed a statistically significant difference of antibodies prevalence between the collected samples in Africa and the control samples collected in France. Given the novelty of our results, our next step consists in highlighting neutralizing antibodies to evaluate their potential for pre-pandemic protective acquired immunity against SARS-CoV-2. In conclusion, our results suggest that, in the investigated African sub-regions, the tested populations could have been potentially and partially pre-exposed, before the COVID-19 pandemic, to the antigens of a yet non-identified Coronaviruses.
Collapse
|
28
|
Chaisawangwong W, Wang H, Kouo T, Salathe SF, Isser A, Bieler JG, Zhang ML, Livingston NK, Li S, Horowitz JJ, Samet RE, Zyskind I, Rosenberg AZ, Schneck JP. Cross-reactivity of SARS-CoV-2- and influenza A-specific T cells in individuals exposed to SARS-CoV-2. JCI Insight 2022; 7:e158308. [PMID: 36134660 PMCID: PMC9675569 DOI: 10.1172/jci.insight.158308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158-66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158-66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
| | - Hanzhi Wang
- Department of Biomedical Engineering, Whiting School of Engineering
| | - Theodore Kouo
- Department of Pediatrics, Division of Emergency Medicine
| | | | - Ariel Isser
- Department of Biomedical Engineering, School of Medicine, and
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Maya L. Zhang
- Department of Biomedical Engineering, Whiting School of Engineering
| | | | - Shuyi Li
- Department of Pathology, School of Medicine
| | | | - Ron E. Samet
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Israel Zyskind
- Department of Pediatrics, NYU Langone Medical Center, New York, New York, USA; Maimonides Medical Center, New York, New York, USA
| | | | - Jonathan P. Schneck
- Department of Pathology, School of Medicine
- Department of Biomedical Engineering, School of Medicine, and
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for Nanobiotechnology and
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Seo SU, Seong BL. Prospects on Repurposing a Live Attenuated Vaccine for the Control of Unrelated Infections. Front Immunol 2022; 13:877845. [PMID: 35651619 PMCID: PMC9149153 DOI: 10.3389/fimmu.2022.877845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Live vaccines use attenuated microbes to acquire immunity against pathogens in a safe way. As live attenuated vaccines (LAVs) still maintain infectivity, the vaccination stimulates diverse immune responses by mimicking natural infection. Induction of pathogen-specific antibodies or cell-mediated cytotoxicity provides means of specific protection, but LAV can also elicit unintended off-target effects, termed non-specific effects. Such mechanisms as short-lived genetic interference and non-specific innate immune response or long-lasting trained immunity and heterologous immunity allow LAVs to develop resistance to subsequent microbial infections. Based on their safety and potential for interference, LAVs may be considered as an alternative for immediate mitigation and control of unexpected pandemic outbreaks before pathogen-specific therapeutic and prophylactic measures are deployed.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Baik-Lin Seong
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
30
|
Fahrner JE, Lahmar I, Goubet AG, Haddad Y, Carrier A, Mazzenga M, Drubay D, Alves Costa Silva C, de Sousa E, Thelemaque C, Melenotte C, Dubuisson A, Geraud A, Ferrere G, Birebent R, Bigenwald C, Picard M, Cerbone L, Lérias JR, Laparra A, Bernard-Tessier A, Kloeckner B, Gazzano M, Danlos FX, Terrisse S, Pizzato E, Flament C, Ly P, Tartour E, Benhamouda N, Meziani L, Ahmed-Belkacem A, Miyara M, Gorochov G, Barlesi F, Trubert A, Ungar B, Estrada Y, Pradon C, Gallois E, Pommeret F, Colomba E, Lavaud P, Deloger M, Droin N, Deutsch E, Gachot B, Spano JP, Merad M, Scotté F, Marabelle A, Griscelli F, Blay JY, Soria JC, Merad M, André F, Villemonteix J, Chevalier MF, Caillat-Zucman S, Fenollar F, Guttman-Yassky E, Launay O, Kroemer G, La Scola B, Maeurer M, Derosa L, Zitvogel L. The Polarity and Specificity of Antiviral T Lymphocyte Responses Determine Susceptibility to SARS-CoV-2 Infection in Patients with Cancer and Healthy Individuals. Cancer Discov 2022; 12:958-983. [PMID: 35179201 PMCID: PMC9394394 DOI: 10.1158/2159-8290.cd-21-1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Jean-Eudes Fahrner
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Transgene S.A., Illkirch-Graffenstaden, France
| | - Imran Lahmar
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Anne-Gaëlle Goubet
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Yacine Haddad
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Agathe Carrier
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marine Mazzenga
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Damien Drubay
- Gustave Roussy, Villejuif, France.,Département de Biostatistique et d'Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Carolina Alves Costa Silva
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Lyon COVID Study Group
- Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France. R&D – Immunoassay, bioMérieux S.A., Marcy l'Etoile, France.,Joint Research Unit Hospices Civils de Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France.,International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.,Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Eric de Sousa
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Cassandra Thelemaque
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Cléa Melenotte
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Aix-Marseille Université, Institut Hospitalo-Universitaire, Institut de Recherche pour le Développement, Assistance Publique – Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Marseille, France
| | - Agathe Dubuisson
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Arthur Geraud
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Roxanne Birebent
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Camille Bigenwald
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marion Picard
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Luigi Cerbone
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ariane Laparra
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Alice Bernard-Tessier
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Benoît Kloeckner
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marianne Gazzano
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - François-Xavier Danlos
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Safae Terrisse
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Eugenie Pizzato
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Caroline Flament
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Pierre Ly
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Eric Tartour
- Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Department of Immunology, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Nadine Benhamouda
- Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Department of Immunology, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | | | | | - Makoto Miyara
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Guy Gorochov
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Fabrice Barlesi
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Sorbonne Université/Institut National de la Santé et de la Recherche Médicale, U1135, Centre d'Immunologie et des Maladies Infectieuses, Hôpital Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Alexandre Trubert
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Benjamin Ungar
- Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Yeriel Estrada
- Department of Dermatology, Center of Excellence in Eczema Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caroline Pradon
- Gustave Roussy, Villejuif, France.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York.,Centre de Ressources Biologiques, ET-EXTRA, Gustave Roussy, Villejuif, France
| | - Emmanuelle Gallois
- Gustave Roussy, Villejuif, France.,Département de Biologie Médicale et Pathologie Médicales, Service de Biochimie, Gustave Roussy, Villejuif, France
| | - Fanny Pommeret
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Emeline Colomba
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Pernelle Lavaud
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Marc Deloger
- Département de Biologie Médicale et Pathologie Médicales, Service de Microbiologie, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS, Villejuif, France
| | - Eric Deutsch
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Gustave Roussy, Plateforme de génomique, Université Paris-Saclay, INSERM US23, CNRS UMS, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1030, Gustave Roussy, Villejuif, France
| | - Bertrand Gachot
- Gustave Roussy, Villejuif, France.,Département de Radiothérapie, Gustave Roussy, Villejuif, France
| | | | - Mansouria Merad
- Gustave Roussy, Villejuif, France.,Department of Medical Oncology, Pitié-Salpétrière Hospital, APHP, Sorbonne Université, Paris, France
| | - Florian Scotté
- Gustave Roussy, Villejuif, France.,Service de Médecine aigue d’Urgence en Cancérologie, Gustave Roussy, Villejuif, France
| | - Aurélien Marabelle
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Département Interdisciplinaire d'Organisation des Parcours Patients, Gustave Roussy, Villejuif, France
| | - Frank Griscelli
- Gustave Roussy, Villejuif, France.,Département de Biologie Médicale et Pathologie Médicales, Service de Biochimie, Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale – UMR935/UA9, Université Paris-Saclay, Villejuif, France.,INGESTEM National IPSC Infrastructure, Université de Paris-Saclay, Villejuif, France.,Université de Paris, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon, France.,Université Claude Bernard, Lyon, France.,Unicancer, Paris, France
| | - Jean-Charles Soria
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, New York.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fabrice André
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U981, Gustave Roussy, Villejuif, France
| | - Juliette Villemonteix
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, APHP, Université de Paris, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR 976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, APHP, Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Florence Fenollar
- IHU Méditérranée Infection, VITROME, IRD, AP-HM, SSA, Aix-Marseille University, Marseille, France
| | - Emma Guttman-Yassky
- Department of Dermatology, Center of Excellence in Eczema Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Odile Launay
- Université de Paris, Inserm CIC 1417, I-Reivac, APHP, Hopital Cochin, Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France.,Pôle de Biologie, Hôpital Européen George Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire, Méditerranée Infection, Marseille, France
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Medizinische Klinik, Johannes Gutenberg University Mainz, Germany
| | - Lisa Derosa
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Corresponding Author: Laurence Zitvogel, University Paris-Saclay, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, Villejuif Cedex 94805, France. Phone: 331-4211-5041; E-mail:
| |
Collapse
|
31
|
Tarabini RF, Rigo MM, Faustino Fonseca A, Rubin F, Bellé R, Kavraki LE, Ferreto TC, Amaral Antunes D, de Souza APD. Large-Scale Structure-Based Screening of Potential T Cell Cross-Reactivities Involving Peptide-Targets From BCG Vaccine and SARS-CoV-2. Front Immunol 2022; 12:812176. [PMID: 35095907 PMCID: PMC8793865 DOI: 10.3389/fimmu.2021.812176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Although not being the first viral pandemic to affect humankind, we are now for the first time faced with a pandemic caused by a coronavirus. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been responsible for the COVID-19 pandemic, which caused more than 4.5 million deaths worldwide. Despite unprecedented efforts, with vaccines being developed in a record time, SARS-CoV-2 continues to spread worldwide with new variants arising in different countries. Such persistent spread is in part enabled by public resistance to vaccination in some countries, and limited access to vaccines in other countries. The limited vaccination coverage, the continued risk for resistant variants, and the existence of natural reservoirs for coronaviruses, highlight the importance of developing additional therapeutic strategies against SARS-CoV-2 and other coronaviruses. At the beginning of the pandemic it was suggested that countries with Bacillus Calmette-Guérin (BCG) vaccination programs could be associated with a reduced number and/or severity of COVID-19 cases. Preliminary studies have provided evidence for this relationship and further investigation is being conducted in ongoing clinical trials. The protection against SARS-CoV-2 induced by BCG vaccination may be mediated by cross-reactive T cell lymphocytes, which recognize peptides displayed by class I Human Leukocyte Antigens (HLA-I) on the surface of infected cells. In order to identify potential targets of T cell cross-reactivity, we implemented an in silico strategy combining sequence-based and structure-based methods to screen over 13,5 million possible cross-reactive peptide pairs from BCG and SARS-CoV-2. Our study produced (i) a list of immunogenic BCG-derived peptides that may prime T cell cross-reactivity against SARS-CoV-2, (ii) a large dataset of modeled peptide-HLA structures for the screened targets, and (iii) new computational methods for structure-based screenings that can be used by others in future studies. Our study expands the list of BCG peptides potentially involved in T cell cross-reactivity with SARS-CoV-2-derived peptides, and identifies multiple high-density "neighborhoods" of cross-reactive peptides which could be driving heterologous immunity induced by BCG vaccination, therefore providing insights for future vaccine development efforts.
Collapse
Affiliation(s)
- Renata Fioravanti Tarabini
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - André Faustino Fonseca
- Antunes Lab, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Felipe Rubin
- School of Technology - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rafael Bellé
- Laboratório de alto desempenho – Centro de Apoio ao desenvolvimento cientifico e tecnológico da (IDEIA), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lydia E Kavraki
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Tiago Coelho Ferreto
- School of Technology - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil,Laboratório de alto desempenho – Centro de Apoio ao desenvolvimento cientifico e tecnológico da (IDEIA), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Dinler Amaral Antunes
- Antunes Lab, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States,*Correspondence: Ana Paula Duarte de Souza, ; Dinler Amaral Antunes,
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil,*Correspondence: Ana Paula Duarte de Souza, ; Dinler Amaral Antunes,
| |
Collapse
|
32
|
Luo XH, Poiret T, Liu Z, Meng Q, Nagchowdhury A, Ljungman P. Different recovery patterns of CMV-specific and WT1-specific T cells in patients with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation: Impact of CMV infection and leukemia relapse. Front Immunol 2022; 13:1027593. [PMID: 36824620 PMCID: PMC9941532 DOI: 10.3389/fimmu.2022.1027593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 02/10/2023] Open
Abstract
In allogeneic hematopoietic cell transplantation (allo-HSCT), both virus-specific T cells and leukemia-specific T cells need to be reconstituted to protect patients from virus infections and primary disease relapse. Cytomegalovirus (CMV) infection remains an important cause of morbidity and mortality after allo-HSCT. Emerging data indicate that CMV reactivation is associated with reduced risk of leukemia relapse in patients with acute myeloid leukemia (AML) undergoing allo-HSCT. In a cohort of 24 WT1+ AML patients during the first year following HSCT, CMV specific CD8+ T cells (CMV-CTL) reconstituted much faster than WT1-specific CD8+ T cell (WT1-CTL) after allo-SCT. Moreover, CMV-CTL expressed lower levels of exhaustion markers and were more functional as identified by production of IFN-γ/TNF-α and expression of Eomes/T-bet. Interestingly, our patients with CMV reactivation presented higher frequency of CMV-CTL, lower levels of Eomes+T-bet- and higher levels of Eomes+T-bet+ expression in response to WT1 and CMV pp65 antigen during the first year after transplantation as compared to patients without CMV reactivation. Kinetics of CMV-CTL and WT1-CTL after transplantation might be associated with measurable residual disease and later leukemia relapse. Our results support that CMV reactivation, aside from the CMV-CTL reconstitution, could influence WT1-CTL reconstitution after allo-HSCT, thus potentially contributing to the remission/relapse of AML.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Poiret
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital and Division of Hematology, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
34
|
Wang S, Liu Y, Li Y, Lv M, Gao K, He Y, Wei W, Zhu Y, Dong X, Xu X, Li Z, Liu L, Liu Y. High-Throughput Functional Screening of Antigen-Specific T Cells Based on Droplet Microfluidics at a Single-Cell Level. Anal Chem 2021; 94:918-926. [PMID: 34852202 DOI: 10.1021/acs.analchem.1c03678] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of an efficient method for the identification of tumor antigen-specific T cell receptors (TCRs) impedes the development of T cell-based cancer immunotherapies. Here, we introduce a droplet-based microfluidic platform for function-based screening and sorting of tumor antigen-specific T cells with high throughput. We built a reporter cell line by co-transducing the TCR library and reporter genes at the downstream of TCR signaling, and reporter cells fluoresced upon functionally binding with antigens. We co-encapsulated reporter cells and antigen-presenting cells in droplets to allow for stimulation on a single-cell level. Functioning reporter cells specific against the antigen were identified in the microfluidic channel based on the fluorescent signals of the droplets, which were immediately sorted out using dielectrophoresis. We validated the reporter system and sorting results using flow cytometry. We then performed single-cell RNA sequencing on the sorted cells to further validate this platform and demonstrate the compatibility with genetic characterizations. Our platform provides a means for precise and efficient T cell immunotherapy, and the droplet-based high-throughput TCR screening method could potentially facilitate immunotherapeutic screening and promote T cell-based anti-tumor therapies.
Collapse
Affiliation(s)
- Shiyu Wang
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yijian Li
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghua Lv
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying He
- Department of Gynaecological Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518116, China
| | - Wenbo Wei
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
35
|
Gaevert JA, Luque Duque D, Lythe G, Molina-París C, Thomas PG. Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses. Viruses 2021; 13:1786. [PMID: 34578367 PMCID: PMC8472275 DOI: 10.3390/v13091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
If viral strains are sufficiently similar in their immunodominant epitopes, then populations of cross-reactive T cells may be boosted by exposure to one strain and provide protection against infection by another at a later date. This type of pre-existing immunity may be important in the adaptive immune response to influenza and to coronaviruses. Patterns of recognition of epitopes by T cell clonotypes (a set of cells sharing the same T cell receptor) are represented as edges on a bipartite network. We describe different methods of constructing bipartite networks that exhibit cross-reactivity, and the dynamics of the T cell repertoire in conditions of homeostasis, infection and re-infection. Cross-reactivity may arise simply by chance, or because immunodominant epitopes of different strains are structurally similar. We introduce a circular space of epitopes, so that T cell cross-reactivity is a quantitative measure of the overlap between clonotypes that recognize similar (that is, close in epitope space) epitopes.
Collapse
Affiliation(s)
- Jessica Ann Gaevert
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| | - Daniel Luque Duque
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (D.L.D.); (G.L.)
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (D.L.D.); (G.L.)
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK; (D.L.D.); (G.L.)
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Paul Glyndwr Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Eggenhuizen PJ, Ng BH, Chang J, Fell AL, Cheong RMY, Wong WY, Gan PY, Holdsworth SR, Ooi JD. BCG Vaccine Derived Peptides Induce SARS-CoV-2 T Cell Cross-Reactivity. Front Immunol 2021; 12:692729. [PMID: 34421902 PMCID: PMC8374943 DOI: 10.3389/fimmu.2021.692729] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies and clinical trials suggest Bacillus Calmette-Guérin (BCG) vaccine has protective effects against coronavirus disease 2019 (COVID-19). There are now over 30 clinical trials evaluating if BCG vaccination can prevent or reduce the severity of COVID-19. However, the mechanism by which BCG vaccination can induce severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses is unknown. Here, we identify 8 novel BCG-derived peptides with significant sequence homology to either SARS-CoV-2 NSP3 or NSP13-derived peptides. Using an in vitro co-culture system, we show that human CD4+ and CD8+ T cells primed with a BCG-derived peptide developed enhanced reactivity to its corresponding homologous SARS-CoV-2-derived peptide. As expected, HLA differences between individuals meant that not all persons developed immunogenic responses to all 8 BCG-derived peptides. Nevertheless, all of the 20 individuals that were primed with BCG-derived peptides developed enhanced T cell reactivity to at least 7 of 8 SARS-CoV-2-derived peptides. These findings provide an in vitro mechanism that may account, in part, for the epidemiologic observation that BCG vaccination confers some protection from COVID-19.
Collapse
Affiliation(s)
- Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Boaz H Ng
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Ashleigh L Fell
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel M Y Cheong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Wey Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Poh-Yi Gan
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Department of Immunology, Monash Health, Monash Medical Centre, Clayton, VIC, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Department of Immunology, Monash Health, Monash Medical Centre, Clayton, VIC, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
37
|
Abstract
Antibodies, and the B cell and plasma cell populations responsible for their production, are key components of the human immune system's response to SARS-CoV-2, which has caused the coronavirus disease 2019 (COVID-19) pandemic. Here, we review findings addressing the nature of antibody responses against SARS-CoV-2 and their role in protecting from infection or modulating COVID-19 disease severity. In just over a year, much has been learned, and replicated in independent studies, about human immune responses to this pathogen, contributing to the development of effective vaccines. Nevertheless, important questions remain about the duration and effectiveness of antibody responses, differences between immunity derived from infection compared to vaccination, the cellular basis for serological findings, and the extent to which viral variants will escape from current immunity.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sean N. Parker Center for Allergy & Asthma Research, Stanford, CA, USA.
| |
Collapse
|
38
|
Jung MK, Shin EC. Phenotypes and Functions of SARS-CoV-2-Reactive T Cells. Mol Cells 2021; 44:401-407. [PMID: 34120892 PMCID: PMC8245315 DOI: 10.14348/molcells.2021.0079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| |
Collapse
|
39
|
The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells 2021; 10:cells10061508. [PMID: 34203839 PMCID: PMC8232593 DOI: 10.3390/cells10061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow (BM) is key to protective immunological memory because it harbors a major fraction of the body’s plasma cells, memory CD4+ and memory CD8+ T-cells. Despite its paramount significance for the human immune system, many aspects of how the BM enables decade-long immunity against pathogens are still poorly understood. In this review, we discuss the relationship between BM survival niches and long-lasting humoral immunity, how intrinsic and extrinsic factors define memory cell longevity and show that the BM is also capable of adopting many responsibilities of a secondary lymphoid organ. Additionally, with more and more data on the differentiation and maintenance of memory T-cells and plasma cells upon vaccination in humans being reported, we discuss what factors determine the establishment of long-lasting immunological memory in the BM and what we can learn for vaccination technologies and antigen design. Finally, using these insights, we touch on how this holistic understanding of the BM is necessary for the development of modern and efficient vaccines against the pandemic SARS-CoV-2.
Collapse
|
40
|
Ng KW, Faulkner N, Wrobel AG, Gamblin SJ, Kassiotis G. Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Semin Immunol 2021; 55:101507. [PMID: 34716096 PMCID: PMC8542444 DOI: 10.1016/j.smim.2021.101507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/04/2023]
Abstract
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, London, NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
41
|
Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, Jamison DT, Khader SA, Kottilil S, Netea MG, Sparrow A, Gallo RC. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proc Natl Acad Sci U S A 2021; 118:e2101718118. [PMID: 34006644 PMCID: PMC8166166 DOI: 10.1073/pnas.2101718118] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed "trained immunity." An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vaccines arrive. The broad protection induced by LAVs would not be compromised by potential antigenic drift (immune escape) that can render viruses resistant to specific vaccines. LAVs might offer an essential tool to "bend the pandemic curve," averting the exhaustion of public health resources and preventing needless deaths and may also have therapeutic benefits if used for postexposure prophylaxis of disease.
Collapse
Affiliation(s)
- Konstantin Chumakov
- Food and Drug Administration Office of Vaccine Research and Review, Global Virus Network Center of Excellence, Silver Spring, MD 20993
| | - Michael S Avidan
- Department of Anesthesiology, Washington University in St. Louis, St Louis, MO 63130
| | - Christine S Benn
- Department of Clinical Research, Global Virus Network Center of Excellence, University of Southern Denmark, 5230 Odense, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| | - Stefano M Bertozzi
- School of Public Health, Global Virus Network, University of California, Berkeley, CA 94704
- School of Public Health, University of Washington, Seattle, WA 98195
- El Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico
| | - Lawrence Blatt
- Aligos Therapeutics, Global Virus Network Center of Excellence, San Francisco, CA 94080
| | - Angela Y Chang
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| | - Dean T Jamison
- Institute for Global Health Sciences, Global Virus Network, University of California, San Francisco, CA 94158
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63130
| | - Shyam Kottilil
- Institute of Human Virology, Global Virus Network Center of Excellence, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Global Virus Network Center of Excellence, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53113 Bonn, Germany
| | - Annie Sparrow
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert C Gallo
- Institute of Human Virology, Global Virus Network Center of Excellence, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
42
|
Bilich T, Roerden M, Maringer Y, Nelde A, Heitmann JS, Dubbelaar ML, Peter A, Hörber S, Bauer J, Rieth J, Wacker M, Berner F, Flatz L, Held S, Brossart P, Märklin M, Wagner P, Erne E, Klein R, Rammensee HG, Salih HR, Walz JS. Preexisting and Post-COVID-19 Immune Responses to SARS-CoV-2 in Patients with Cancer. Cancer Discov 2021; 11:1982-1995. [PMID: 34011563 DOI: 10.1158/2159-8290.cd-21-0191] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Patients with cancer, in particular patients with hematologic malignancies, are at increased risk for critical illness upon COVID-19. We here assessed antibody as well as CD4+ and CD8+ T-cell responses in unexposed and SARS-CoV-2-infected patients with cancer to characterize SARS-CoV-2 immunity and to identify immunologic parameters contributing to COVID-19 outcome. Unexposed patients with hematologic malignancies presented with reduced prevalence of preexisting SARS-CoV-2 cross-reactive CD4+ T-cell responses and signs of T-cell exhaustion compared with patients with solid tumors and healthy volunteers. Whereas SARS-CoV-2 antibody responses did not differ between patients with COVID-19 and cancer and healthy volunteers, intensity, expandability, and diversity of SARS-CoV-2 T-cell responses were profoundly reduced in patients with cancer, and the latter associated with a severe course of COVID-19. This identifies impaired SARS-CoV-2 T-cell immunity as a potential determinant for dismal outcome of COVID-19 in patients with cancer. SIGNIFICANCE: This first comprehensive analysis of SARS-CoV-2 immune responses in patients with cancer reports on the potential implications of impaired SARS-CoV-2 T-cell responses for understanding pathophysiology and predicting severity of COVID-19, which in turn might allow for the development of therapeutic measures and vaccines for this vulnerable patient population.See related commentary by Salomé and Horowitz, p. 1877.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Marissa L Dubbelaar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefanie Held
- Department for Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Department for Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Philipp Wagner
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Eva Erne
- Department of Urology, Medical Faculty and University Hospital, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. .,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| |
Collapse
|
43
|
Stoddard CI, Galloway J, Chu HY, Shipley MM, Sung K, Itell HL, Wolf CR, Logue JK, Magedson A, Garrett ME, Crawford KHD, Laserson U, Matsen FA, Overbaugh J. Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs. Cell Rep 2021; 35:109164. [PMID: 33991511 PMCID: PMC8121454 DOI: 10.1016/j.celrep.2021.109164] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
A major goal of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efforts is to elicit antibody responses that confer protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for vaccine design, diagnostics, and development of therapeutics. Here, we develop a pan-coronavirus phage display library to map antibody binding sites at high resolution within the complete viral proteomes of all known human-infecting coronaviruses in patients with mild or moderate/severe coronavirus disease 2019 (COVID-19). We find that the majority of immune responses to SARS-CoV-2 are targeted to the spike protein, nucleocapsid, and ORF1ab and include sites of mutation in current variants of concern. Some epitopes are identified in the majority of samples, while others are rare, and we find variation in the number of epitopes targeted between individuals. We find low levels of SARS-CoV-2 cross-reactivity in individuals with no exposure to the virus and significant cross-reactivity with endemic human coronaviruses (CoVs) in convalescent sera from patients with COVID-19.
Collapse
Affiliation(s)
- Caitlin I Stoddard
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jared Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mackenzie M Shipley
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hannah L Itell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Caitlin R Wolf
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jennifer K Logue
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ariana Magedson
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Meghan E Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frederick A Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Sohail MS, Ahmed SF, Quadeer AA, McKay MR. In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv Drug Deliv Rev 2021; 171:29-47. [PMID: 33465451 PMCID: PMC7832442 DOI: 10.1016/j.addr.2021.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that T cells may play a critical role in combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, COVID-19 vaccines that can elicit a robust T cell response may be particularly important. The design, development and experimental evaluation of such vaccines is aided by an understanding of the landscape of T cell epitopes of SARS-CoV-2, which is largely unknown. Due to the challenges of identifying epitopes experimentally, many studies have proposed the use of in silico methods. Here, we present a review of the in silico methods that have been used for the prediction of SARS-CoV-2 T cell epitopes. These methods employ a diverse set of technical approaches, often rooted in machine learning. A performance comparison is provided based on the ability to identify a specific set of immunogenic epitopes that have been determined experimentally to be targeted by T cells in convalescent COVID-19 patients, shedding light on the relative performance merits of the different approaches adopted by the in silico studies. The review also puts forward perspectives for future research directions.
Collapse
Affiliation(s)
- Muhammad Saqib Sohail
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
45
|
Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, Elliott AM, Roestenberg M. Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front Immunol 2021; 12:635985. [PMID: 33746974 PMCID: PMC7970007 DOI: 10.3389/fimmu.2021.635985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite mass drug administration programmes with praziquantel, the prevalence of schistosomiasis remains high. A vaccine is urgently needed to control transmission of this debilitating disease. As some promising schistosomiasis vaccine candidates are moving through pre-clinical and clinical testing, we review the immunological challenges that these vaccine candidates may encounter in transitioning through the clinical trial phases in endemic settings. Prior exposure of the target population to schistosomes and other infections may impact vaccine response and efficacy and therefore requires considerable attention. Schistosomes are known for their potential to induce T-reg/IL-10 mediated immune suppression in populations which are chronically infected. Moreover, endemicity of schistosomiasis is focal whereby target and trial populations may exhibit several degrees of prior exposure as well as in utero exposure which may increase heterogeneity of vaccine responses. The age dependent distribution of exposure and development of acquired immunity, and general differences in the baseline immunological profile, adds to the complexity of selecting suitable trial populations. Similarly, prior or concurrent infections with other parasitic helminths, viral and bacterial infections, may alter immunological responses. Consequently, treatment of co-infections may benefit the immunogenicity of vaccines and may be considered despite logistical challenges. On the other hand, viral infections leave a life-long immunological imprint on the human host. Screening for serostatus may be needed to facilitate interpretation of vaccine responses. Co-delivery of schistosome vaccines with PZQ is attractive from a perspective of implementation but may complicate the immunogenicity of schistosomiasis vaccines. Several studies have reported PZQ treatment to induce both transient and long-term immuno-modulatory effects as a result of tegument destruction, worm killing and subsequent exposure of worm antigens to the host immune system. These in turn may augment or antagonize vaccine immunogenicity. Understanding the complex immunological interactions between vaccine, co-infections or prior exposure is essential in early stages of clinical development to facilitate phase 3 clinical trial design and implementation policies. Besides well-designed studies in different target populations using schistosome candidate vaccines or other vaccines as models, controlled human infections could also help identify markers of immune protection in populations with different disease and immunological backgrounds.
Collapse
Affiliation(s)
- Emmanuella Driciru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, TX, United States
- Department of Internal Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
46
|
Drug Reaction with Eosinophilia and Systemic Symptoms: A Complex Interplay between Drug, T Cells, and Herpesviridae. Int J Mol Sci 2021; 22:ijms22031127. [PMID: 33498771 PMCID: PMC7865935 DOI: 10.3390/ijms22031127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome, also known as drug induced hypersensitivity (DiHS) syndrome is a severe delayed hypersensitivity reaction with potentially fatal consequences. Whilst recognised as T cell-mediated, our understanding of the immunopathogenesis of this syndrome remains incomplete. Here, we discuss models of DRESS, including the role of human leukocyte antigen (HLA) and how observations derived from new molecular techniques adopted in key studies have informed our mechanism-based understanding of the central role of Herpesviridae reactivation and heterologous immunity in these disorders.
Collapse
|
47
|
Fatima S, Zaidi SS, Alsharidah AS, Aljaser FS, Banu N. Possible Prophylactic Approach for SARS-CoV-2 Infection by Combination of Melatonin, Vitamin C and Zinc in Animals. Front Vet Sci 2020; 7:585789. [PMID: 33344529 PMCID: PMC7744567 DOI: 10.3389/fvets.2020.585789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2, an epidemic, causes severe stress in both human and animals and may induce oxidative stress (OS) and increases susceptibility to infection. Domestic animals are found infected by their COVID-2 suffering owners. Chronic immobilization stress (CIS), a model of psychological and physical stress of confinement, can trigger depression and anxiety in animals. We evaluated the ameliorative effect of the proposed SARS-CoV-2 prophylactic drugs melatonin, vitamin C, and zinc on CIS-induced OS, inflammation, and DNA damage in rats. Forty male Swiss albino rats (200–250 g, 7–9 weeks old) were divided into five groups as controls, CIS, treated with melatonin (20 mg/kg), and vitamin C plus zinc [VitC+Zn (250 + 2.5 mg/kg)] alone or in combination (melatonin+VitC+zinc) subjected to CIS for 3 weeks. CIS was induced by immobilizing the whole body of the rats in wire mesh cages of their size with free movement of head. Exposure to CIS significantly compromised the circulatory activities of superoxide dismutase, catalase, and glutathione with enhanced malondialdehyde, inflammatory markers (IL-6, IL10, and TNFα), and lymphocyte DNA damage in comparison to controls. Treatment with melatonin and VitC+Zn alone or in combination significantly restored the altered biochemical parameters and DNA damage of stressed rats to their respective control values. However, the cumulative action of melatonin with VitC+Zn was more effective in alleviating the CIS-induced OS, inflammation, and DNA damage. The present study indicates that the antioxidant combination can be an effective preventive measure to combat severe psychological and confinement stress-induced biochemical changes in animals due to abnormal conditions such as SARS-CoV-2.
Collapse
Affiliation(s)
- Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Syed Shams Zaidi
- Director of Pharmacy, Goulburn Valley Health, Shepparton, VIC, Australia
| | | | - Feda S Aljaser
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Naheed Banu
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
48
|
Bacher P, Rosati E, Esser D, Martini GR, Saggau C, Schiminsky E, Dargvainiene J, Schröder I, Wieters I, Khodamoradi Y, Eberhardt F, Vehreschild MJGT, Neb H, Sonntagbauer M, Conrad C, Tran F, Rosenstiel P, Markewitz R, Wandinger KP, Augustin M, Rybniker J, Kochanek M, Leypoldt F, Cornely OA, Koehler P, Franke A, Scheffold A. Low-Avidity CD4 + T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19. Immunity 2020; 53:1258-1271.e5. [PMID: 33296686 PMCID: PMC7689350 DOI: 10.1016/j.immuni.2020.11.016] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Esther Schiminsky
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Imke Wieters
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fabian Eberhardt
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger Neb
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Michael Sonntagbauer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claudio Conrad
- Department of Internal Medicine, Hospital of Preetz, Preetz, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Department of Internal Medicine I, UKSH Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Max Augustin
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Jan Rybniker
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Kochanek
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Oliver A Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Clinical Trials Centre Cologne, ZKS Köln, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
49
|
Skevaki C, Karsonova A, Karaulov A, Xie M, Renz H. Asthma-associated risk for COVID-19 development. J Allergy Clin Immunol 2020; 146:1295-1301. [PMID: 33002516 PMCID: PMC7834224 DOI: 10.1016/j.jaci.2020.09.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The newly described severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a pandemic (coronavirus disease 2019 [COVID-19]). It is now well established that certain comorbidities define high-risk patients. They include hypertension, diabetes, and coronary artery disease. In contrast, the context with bronchial asthma is controversial and shows marked regional differences. Because asthma is the most prevalent chronic inflammatory lung disease worldwide and SARS-CoV-2 primarily affects the upper and lower airways leading to marked inflammation, the question arises about the possible clinical and pathophysiological association between asthma and SARS-CoV-2/COVID-19. Here, we analyze the global epidemiology of asthma among patients with COVID-19 and propose the concept that patients suffering from different asthma endotypes (type 2 asthma vs non-type 2 asthma) present with a different risk profile in terms of SARS-CoV-2 infection, development of COVID-19, and progression to severe COVID-19 outcomes. This concept may have important implications for future COVID-19 diagnostics and immune-based therapy developments.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany; German Center for Lung Research (DZL), Marburg, Germany
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps Universität Marburg, German Center for Lung Research (DZL), Marburg, Germany; German Center for Lung Research (DZL), Marburg, Germany; Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Sechenov University, Moscow, Russia.
| |
Collapse
|
50
|
Ismail MB, Omari SA, Rafei R, Dabboussi F, Hamze M. COVID-19 in children: Could pertussis vaccine play the protective role? Med Hypotheses 2020; 145:110305. [PMID: 33032174 PMCID: PMC7521348 DOI: 10.1016/j.mehy.2020.110305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
While COVID-19 continues to spread across the globe, diligent efforts are made to understand its attributes and dynamics to help develop treatment and prevention measures. The paradox pertaining to children being the least affected by severe illness poses exciting opportunities to investigate potential protective factors. In this paper, we propose that childhood vaccination against pertussis (whooping cough) might play a non-specific protective role against COVID-19 through heterologous adaptive responses in this young population. Pertussis is a vaccine-preventable infectious disease of the respiratory tract and it shares many similarities with COVID-19 including transmission and clinical features. Although pertussis is caused by a bacterium (Bordetella pertussis) while COVID-19 is a viral infection (SARS-CoV-2), previous data showed that cross-reactivity and heterologous adaptive responses can be seen with unrelated agents of highly divergent groups, such as between bacteria and viruses. While we build the arguments of this hypothesis on theoretical and previous empirical evidence, we also outline suggested lines of research from different fields to test its credibility. Besides, we highlight some concerns that may arise when attempting to consider such an approach as a potential public health preventive intervention against COVID-19.
Collapse
Affiliation(s)
- Mohamad Bachar Ismail
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Faculty of Sciences, Lebanese University, Tripoli, Lebanon
| | - Sarah Al Omari
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|