1
|
Sampsonidis I, Michailidou K, Spritinoudi K, Dimitriadi A, Ainali NM, Bobori DC, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kalogiannis S. Genotoxicity and metabolic changes induced via ingestion of virgin and UV-aged polyethylene microplastics by the freshwater fish Perca fluviatilis. CHEMOSPHERE 2024; 362:142619. [PMID: 38880257 DOI: 10.1016/j.chemosphere.2024.142619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.
Collapse
Affiliation(s)
- Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece
| | - Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Kalliopi Spritinoudi
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | | | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01, Thessaloniki, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece.
| |
Collapse
|
2
|
Tullio SCMC, McCoy K, Chalcraft DR. Chronic toxicity and liver histopathology of mosquito fish (Gambusia holbrooki) exposed to natural and modified nanoclays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168060. [PMID: 37918747 DOI: 10.1016/j.scitotenv.2023.168060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
Nanoclays are found in the air, water, and soil, and modified nanoclays are being developed and used in several consumer products. For example, modified nanoclays are used to remove pollutants from wastewater. Ironically, however, nanoclays are now considered emerging contaminants. Indeed, release of modified nanoclays in aquatic systems, even as remediating agents, could adversely affect associated wildlife. However, aquatic organisms have interacted with natural nanoclays for millennia, and it is unclear if modified nanoclays induce stronger effects than the nanoclays that occur naturally. The concentrations over which nanoclays occur and illicit negative effects are not well studied. This study investigated the dose response of a natural nanoclay (Na+montmorillonite) relative to two modified nanoclays (Cloisite®30B and Novaclay™) on survival, body condition, and liver pathomorphology of Gambusia holbrooki after 14 days of exposure. Although none of the nanoclays affected survival and body condition of G. holbrooki over 14 days, each nanoclay induced histopathological changes in liver tissues at very low concentrations (LOAEL: 0.01 mgL-1). The effects of nanoclays on hepatic cell circulatory (blood cell aggregation with increased number of Kupffer cells and hemosiderin deposits), regressive (hepatocyte vacuolization), and degenerative (cell death) changes of mosquito fish varied among nanoclay types. Novaclay™ at low concentrations caused circulatory changes on hepatic tissues of G. holbrooki, whereas both natural nanoclays and Cloisite®30B showed little effect on circulatory endpoints. In contrast, all of the nanoclays induced regressive and degenerative changes on liver tissues of mosquito fish across all concentrations tested. This study clearly reveals that natural and modified nanoclays have important health implications for fish and other aquatic organisms. Consequently, the widespread use of modified nanoclays in several applications and increased release of natural nanoclays through erosion or other processes needs to be evaluated in more detail especially in the context of their safety for aquatic systems.
Collapse
Affiliation(s)
- S C M C Tullio
- Department of Biology, East Carolina University, 1000 E 5th Street, N108 Howell Science Building, Greenville, NC 27834, USA.
| | - K McCoy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US1 North, Fort Pierce, FL 34946, USA
| | - D R Chalcraft
- Department of Biology, East Carolina University, 1000 E 5th Street, N108 Howell Science Building, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Skrodenytė-Arbačiauskienė V, Butrimienė R, Kalnaitytė-Vengelienė A, Bagdonas S, Montvydienė D, Stankevičiūtė M, Sauliutė G, Jokšas K, Kazlauskienė N, Karitonas R, Matviienko N, Jurgelėnė Ž. A multiscale study of the effects of a diet containing CdSe/ZnS-COOH quantum dots on Salmo trutta fario L.: Potential feed-related nanotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167696. [PMID: 37827305 DOI: 10.1016/j.scitotenv.2023.167696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Quantum dots (QDs) receive widespread attention in industrial and biomedical fields, but the risks posed by the use of nanoparticles to aquatic organisms and the associated toxicological effects are still not well understood. In this study, effects of the 7-day dietary exposure of Salmo trutta fario L. juveniles to CdSe/ZnS-COOH QDs were evaluated at molecular, cellular, physiological and whole-organism levels. Fish feeding with QDs-contaminated feed resulted in an increased somatic index of the liver, a genotoxic effect on peripheral blood erythrocytes, altered enzyme activity and decreased MDA level. Furthermore, Cd levels in the gills and liver tissues of the exposed fish were found to be significantly higher than in those of the control fish. Alpha diversity indexes of the gut microbiota of the QDs-exposed S. trutta fario L. individuals exhibited a decreasing trend. The principal coordinate analysis (PCoA) showed that the gut microbiota of the control fish was significantly different from that of the fish exposed to QDs (p < 0.05). Additionally, the linear discriminant analysis (LDA) performed using an effect size (LEfSe) algorithm unveiled 19 significant taxonomic differences at different taxonomic levels between the control group and the QDs-exposed group. In the QDs-exposed group, the relative abundance of the genus Citrobacter (Proteobacteria phylum) in the gut microbiota was found to be significantly increased whereas that of the genus Mycoplasma (Tenericutes phylum) significantly decreased compared to the control group. In summary, QDs-contaminated diet affects the gut microbiota of fish by significantly changing the relative abundance of some taxa, potentially leading to dysbiosis. This, together with morphophysiological, cytogenetic and biochemical changes, poses a risk to fish health.
Collapse
Affiliation(s)
| | - Renata Butrimienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Agnė Kalnaitytė-Vengelienė
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Danguolė Montvydienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Milda Stankevičiūtė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Gintarė Sauliutė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Kęstutis Jokšas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Rolandas Karitonas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Nataliia Matviienko
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; NAAS Institute of Fisheries, Obukhivska str. 135, Kyiv 03164, Ukraine
| | - Živilė Jurgelėnė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania.
| |
Collapse
|
4
|
Fernández-García F, Carvalhais A, Marques A, Oliveira IB, Guilherme S, Oliveira H, Oliveira CCV, Cabrita E, Asturiano JF, Pacheco M, Mieiro C. Silver nanoparticles and silver ions indistinguishably decrease sperm motility in Pacific oysters (Magallana gigas) after short-term direct exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104202. [PMID: 37385394 DOI: 10.1016/j.etap.2023.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The present study aimed to evaluate the reprotoxicity of environmental (0.25μg.L-1) and supra-environmental (25μg.L-1 and 250μg.L-1) levels of silver nanoparticles (Ag NP) on the Pacific oyster (Magallana gigas), by determining sperm quality. For that, we evaluated sperm motility, mitochondrial function and oxidative stress. To determine whether the Ag toxicity was related to the NP or its dissociation into Ag ions (Ag+), we tested the same concentrations of Ag+. We observed no dose-dependent responses for Ag NP and Ag+, and both impaired sperm motility indistinctly without affecting mitochondrial function or inducing membrane damage. We hypothesize that the toxicity of Ag NP is mainly due to adhesion to the sperm membrane. Blockade of membrane ion channels may also be a mechanism by which Ag NP and Ag+ induce toxicity. The presence of Ag in the marine ecosystem is of environmental concern as it may affect reproduction in oysters.
Collapse
Affiliation(s)
- Fátima Fernández-García
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Marques
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Elsa Cabrita
- CCMAR, University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| | - Juan F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Andreï J, Guérold F, Bouquerel J, Devin S, Mehennaoui K, Cambier S, Gutleb AC, Giambérini L, Pain-Devin S. Assessing the effects of silver nanoparticles on the ecophysiology of Gammarus roeseli. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106421. [PMID: 36805111 DOI: 10.1016/j.aquatox.2023.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Being part of the macrobenthic fauna, gammarids are efficient indicators of contamination of aquatic ecosystems by nanoparticles that are likely to sediment on the bottom. The present study investigates the effects of silver nanoparticles (nAg) on ecophysiological functions in Gammarus roeseli by using a realistic scenario of contamination. Indeed, an experiment was conducted during 72 h, assessing the effects of 5 silver nAg from 10 to 100 nm diluted at concentrations of maximum 5 µg L-1 in a natural water retrieved from a stream and supplemented with food. The measured endpoints in gammarids were survival, silver concentrations in tissues, consumption of oxygen and ventilation of gills. Additionally, a set of biomarkers of the energetic metabolism was measured. After a 72-h exposure, results showed a concentration-dependent increase of silver levels in G. roeseli that was significant for the smallest nAg size (10 nm). Ecophysiological responses in G. roeseli were affected and the most striking effect was a concentration-dependent increase in oxygen consumption especially for the smallest nAg (10 to 40 nm), whereas ventilation of gills by gammarids was not changed. The potential mechanisms underlying these findings are discussed. Thus, we demonstrated the very low exposure concentration of 0.5 µg L-1 for the small nAg size led to significant ecophysiological effects reinforcing the need to further investigate subtle effects on nanoparticles on aquatic organisms.
Collapse
Affiliation(s)
| | | | | | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Kahina Mehennaoui
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sebastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Laure Giambérini
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix en Provence, France
| | | |
Collapse
|
6
|
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159867. [PMID: 36334667 DOI: 10.1016/j.scitotenv.2022.159867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Broad application of nanotechnology inevitably results in the release of nanomaterials (NMs) into the aquatic environment, and the negative effects of NMs on aquatic organisms have received much attention. Notably, in the natural aquatic environment, ubiquitous ecological macromolecules (i.e., natural organic matter, extracellular polymeric substances, proteins, and metabolites) can easily adsorb onto the surfaces of NMs and form an "eco-corona". As most NMs have such an eco-corona modification, the properties of their eco-corona significantly determine the fate and ecotoxicity of NMs in the natural aquatic ecosystem. Therefore, it is of great importance to understand the role of the eco-corona to evaluate the environmental risks NMs pose. However, studies on the mechanism of eco-corona formation and its resulting nanotoxicity on aquatic organisms, especially at molecular levels, are rare. This review systemically summarizes the mechanisms of eco-corona formation by several typical ecological macromolecules. In addition, the similarities and differences in nanotoxicity between pristine and corona-coated NMs to aquatic organisms at different trophic levels were compared. Finally, recent findings about potential mechanisms on how NM coronas act on aquatic organisms are discussed, including cellular internalization, oxidative stress, and genotoxicity. The literature shows that 1) the formation of an eco-corona on NMs and its biological effect highly depend on both the composition and conformation of macromolecules; 2) both feeding behavior and body size of aquatic organisms at different trophic levels result in different responses to corona-coated NMs; 3) genotoxicity can be used as a promising biological endpoint for evaluating the role of eco-coronas in natural waters. This review provides informative insight for a better understanding of the role of eco-corona plays in the nanotoxicity of NMs to aquatic organisms which will aid the safe use of NMs.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Zhang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
8
|
Deepa S, Mamta SK, Anitha A, Senthilkumaran B. Exposure of carbon nanotubes affects testis and brain of common carp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103957. [PMID: 35963554 DOI: 10.1016/j.etap.2022.103957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes production has been rapidly increasing for many potential applications, however, the environmental impact of this nanomaterial needs to be comprehended. The present work focused on unraveling the effects of single-walled carbon nanotubes (SWCNT) in the common carp, Cyprinus carpio. The physicochemical properties of SWCNT were analyzed with X-ray diffraction, Fourier transforms infra-red, UV-Vis absorption, transmission electron microscopy (TEM), and Raman spectroscopy before testing for exposure impact. The effects of SWCNT, were investigated by exposing to two doses viz., 10 and 50 μg/L, for 7 days in adult common carp, in vivo. Expression of key steroidogenic and transcription factor genes related to testis and brain were downregulated after the treatment. The concomitant decreases in serum testosterone and 11-ketotestosterone levels revealed the impact of SWCNT after exposure. Further, SWCNT exposure induced antioxidant enzymes namely glutathione-S-transferases, superoxide dismutase, and catalase in both testis and brain. Concurrently, histological and TEM analysis of testis revealed structural disarray. In addition, SWCNT treatment, in testicular and brain primary cell cultures decreased cell viability with an increase of reactive oxygen species levels, leading to a significant elevation of apoptotic cells. In line with this, low mitochondrial membrane potential and DNA damage were also observed during post SWCNT treatment. Taken together, transient exposure of SWCNT causes toxic effects and alters testicular and brain function in the common carp. Thus, the discharge of carbon nanotubes poses a greater risk to the aquatic environment warranting regulatory measures.
Collapse
Affiliation(s)
- Seetharam Deepa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Sajwan-Khatri Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
9
|
Carvalhais A, Oliveira IB, Oliveira H, Oliveira CCV, Ferrão L, Cabrita E, Asturiano JF, Guilherme S, Pacheco M, Mieiro CL. Ex vivo exposure to titanium dioxide and silver nanoparticles mildly affect sperm of gilthead seabream (Sparus aurata) - A multiparameter spermiotoxicity approach. MARINE POLLUTION BULLETIN 2022; 177:113487. [PMID: 35245769 DOI: 10.1016/j.marpolbul.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NP) are potentially reprotoxic, which may compromise the success of populations. However, the reprotoxicity of NP is still scarcely addressed in marine fish. Therefore, we evaluated the impacts of environmentally relevant and supra environmental concentrations of titanium dioxide (TiO2: 10 to 10,000 μg·L-1) and silver NP (Ag: 0.25 to 250 μg·L-1) on the sperm of gilthead seabream (Sparus aurata). We performed short-term direct exposures (ex vivo) and evaluated sperm motility, head morphometry, mitochondrial function, antioxidant responses and DNA integrity. No alteration in sperm motility (except for supra environmental Ag NP concentration), head morphometry, mitochondrial function, and DNA integrity occurred. However, depletion of all antioxidants occurred after exposure to TiO2 NP, whereas SOD decreased after exposure to Ag NP (lowest and intermediate concentration). Considering our results, the decrease in antioxidants did not indicate vulnerability towards oxidative stress. TiO2 NP and Ag NP induced low spermiotoxicity, without proven relevant ecological impacts.
Collapse
Affiliation(s)
- A Carvalhais
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - I B Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - H Oliveira
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C C V Oliveira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - L Ferrão
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - E Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - S Guilherme
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Pacheco
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C L Mieiro
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Li L, Liu Z, Quan J, Lu J, Zhao G, Sun J. Metabonomics analysis reveals the protective effect of nano‑selenium against heat stress of rainbow trout (Oncorhynchus mykiss). J Proteomics 2022; 259:104545. [DOI: 10.1016/j.jprot.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
12
|
Alves KVB, Martinez DST, Alves OL, Barbieri E. Co-exposure of carbon nanotubes with carbofuran pesticide affects metabolic rate in Palaemon pandaliformis (shrimp). CHEMOSPHERE 2022; 288:132359. [PMID: 34627048 DOI: 10.1016/j.chemosphere.2021.132359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Palaemon pandalirformis (shrimp) is a species widely distributed in the Brazilian coastal region and with an important economic role. In addition, this organism is considered an indicator of environmental pollution in estuaries; however, its physiological responses to toxic environmental pollutants, including pesticides and nanomaterials, are not well known, mainly, the effects of co-exposure. Thus, the purpose of this study was to evaluate the ecotoxicological effects of co-exposure between oxidized multiwalled carbon nanotubes (HNO3-MWCNT) and carbofuran pesticide on the routine metabolism of P. pandalirformis. The shrimps were exposed to different concentrations of HNO3-MWCNT (0; 10; 100; 500; 1000 μg L-1), carbofuran (0; 0.1; 1.0; 5.0; 10 μg L-1) and to co-exposure with 100 μg L-1 of HNO3-MWCNT + carbofuran (0; 0.1; 1.0; 5.0; 10 μg L-1), to evaluate the effects on metabolic rate (O2 consumption) and excretion of ammonia (NH4+NH3). Our results showed that the shrimps exposed to HNO3-MWCNT (10 μg L-1) increased the metabolic rate by 292% and the excretion of ammonia by 275%; those exposed to carbofuran (10 μg L-1) increased their metabolic rate by 162% and the excretion of ammonia by 425%; and with the co-exposure of HNO3-MWCNT + carbofuran there was also an increase in the metabolic rate by 317% and an excretion of ammonia by 433% when compared to control. These findings provides useful information toward better understanding the physiological responses of shrimps after combined exposure to nanomaterials and pesticides in aquatic environments.
Collapse
Affiliation(s)
- Kelison Venício Brito Alves
- Programa de Pós-graduação do Instituto de Pesca-APTA-SAA/SP-Governo do Estado de São Paulo, Cananeia, SP, 11990-00, Brazil
| | - Diego Stéfani T Martinez
- Laboratório de Química Do Sólido (LQES), Instituto de Química, Universidade Estadual de Campinas (Unicamp), Campinas, SP, 13081-970, Brazil; Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa Em Energia e Materiais (CNPEM), Campinas, SP, 13083-100, Brazil
| | - Oswaldo L Alves
- Laboratório de Química Do Sólido (LQES), Instituto de Química, Universidade Estadual de Campinas (Unicamp), Campinas, SP, 13081-970, Brazil
| | - Edison Barbieri
- Instituto de Pesca - APTA-SAA/SP, Governo Do Estado de São Paulo, Cananéia, SP, 1990-000, Brazil.
| |
Collapse
|
13
|
Santana LMBM, Rodrigues ACM, Campos D, Kaczerewska O, Figueiredo J, Silva S, Sousa I, Maia F, Tedim J, Abessa DMS, Pousão-Ferreira P, Candeias-Mendes A, Soares F, Castanho S, Soares AMVM, Rocha RJM, Gravato C, Patrício Silva AL, Martins R. Can the toxicity of polyethylene microplastics and engineered nanoclays on flatfish (Solea senegalensis) be influenced by the presence of each other? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150188. [PMID: 34798736 DOI: 10.1016/j.scitotenv.2021.150188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and nanomaterials are applied in a myriad of commercial and industrial applications. When leaked to natural environments, such small particles might threaten living organisms' health, particularly when considering their potential combination that remains poorly investigated. This study investigated the physiological and biochemical effects of polyethylene (PE; 64-125 μm in size, 0.1, 1.0, and 10.0 mg·L-1) single and combined with an engineered nanomaterial applied in antifouling coatings, the copper-aluminium layered double hydroxides (Cu-Al LDH; 0.33, 1.0, and 3.33 mg·L-1) in the flatfish Solea senegalensis larvae (8 dph) after 3 h exposure, in a full factorial design. Particles ingestion, histopathology, and biochemical biomarkers were assessed. Fish larvae presented <1 PE particles in their gut, independently of their concentration in the medium. The histological health index showed minimal pathological alterations at PE combined exposure, with a higher value observed at 1 mg LDH·L-1 × 0.1 mg PE·L-1. Gut deformity and increased antioxidant defences (catalase), neurotransmission (acetylcholinesterase), and aerobic energy production (electron transport system) were observed at PE ≥ 1.0 mg·L-1. No oxidative damage (lipid peroxidation) or alterations in the detoxification capacity (glutathione-S-transferase) was observed on single and combined exposures. PE, combined or not with Cu-Al LDH, does not seem to compromise larvae's homeostasis considering levels reported so far in the marine and aquaculture environments. However, harsh effects are expected with MP contamination rise, as projections suggest.
Collapse
Affiliation(s)
- Lígia M B M Santana
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Andreia C M Rodrigues
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Kaczerewska
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Figueiredo
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Sousa
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek-Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - João Tedim
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Denis M S Abessa
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Pedro Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Ana Candeias-Mendes
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Sara Castanho
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui J M Rocha
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Faculty of Sciences and CESAM, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana L Patrício Silva
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Roberto Martins
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Zhou Y, Kong Q, Lin Z, Ma J, Zhang H. Transcriptome aberration associated with altered locomotor behavior of zebrafish (Danio rerio) caused by Waterborne Benzo[a]pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112928. [PMID: 34710819 DOI: 10.1016/j.ecoenv.2021.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 μg/L and 2.0 μg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 μg/L group and the opposite in the 2.0 μg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China.
| | - Jinyue Ma
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China.
| |
Collapse
|
15
|
Koner D, Banerjee B, Kumari A, Lanong AS, Snaitang R, Saha N. Molecular characterization of superoxide dismutase and catalase genes, and the induction of antioxidant genes under the zinc oxide nanoparticle-induced oxidative stress in air-breathing magur catfish (Clarias magur). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1909-1932. [PMID: 34609607 DOI: 10.1007/s10695-021-01019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The deduced amino acid sequences from the complete cDNA coding sequences of three antioxidant enzyme genes (sod1, sod2, and cat) demonstrated that phylogenetically the magur catfish (Clarias magur) is very much close to other bony fishes with complete conservation of active site residues among piscine, amphibian, and mammalian species. The three-dimensional structures of three antioxidant enzyme proteins are very much similar to mammalian counterparts, thereby suggesting the functional similarities of these enzymes. Exposure to ZnO NPs resulted in an oxidative stress as evidenced by an initial sharp rise of intracellular concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) but decreased gradually at later stages. The level of glutathione (GSH) also increased gradually in all the tissues examined after an initial decrease. Biochemical and gene expression analyses indicated that the magur catfish has the ability to defend the ZnO NP-induced oxidative stress by inducing the SOD/CAT enzyme system and also the GSH-related enzymes that are mediated through the activation of various antioxidant-related genes both at the transcriptional and translational levels in various tissues. Furthermore, it appeared that the stimulation of NO, as a consequence of induction nos2 gene, under NP-induced oxidative stress serves as a modulator to induce the SOD/CAT system in various tissues of magur catfish as an antioxidant strategy. Thus, it can be contemplated that the magur catfish possesses a very efficient antioxidant defensive mechanisms to defend against the oxidative stress and also from related cellular damages during exposure to ZnO NPs into their natural environment.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Annu Kumari
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Aquisha S Lanong
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
16
|
Kaloyianni M, Bobori DC, Xanthopoulou D, Malioufa G, Sampsonidis I, Kalogiannis S, Feidantsis K, Kastrinaki G, Dimitriadi A, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. TOXICS 2021; 9:289. [PMID: 34822680 PMCID: PMC8625933 DOI: 10.3390/toxics9110289] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 02/04/2023]
Abstract
Microplastics (MPs)' ingestion has been demonstrated in several aquatic organisms. This process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota. In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue function and metabolic profile was investigated for the early detection of adverse effects of 21-day exposure to polystyrene microplastics (PS-MPs, sized 5-12 μm) in the liver and gills of zebrafish Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume map representation of the zebrafish gill by Raman spectroscopy depicted 5 μm diameter PS-MP dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish in relation to controls were observed, as well as activation of apoptosis and autophagy processes. Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the most susceptible biomarker exhibiting greater response in the liver of both species. The interaction between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with specific biomarkers responding differently in gills and in liver. The fish species that seemed to be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The current findings add to a holistic approach for the identification of small sized PS-MPs' biological effects in fish, thus aiming to provide evidence regarding PS-MPs' environmental impact on wild fish populations and food safety and adequacy.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Dimitra C. Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Xanthopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Glykeria Malioufa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, 57001 Thessaloniki, Greece;
| | - Anastasia Dimitriadi
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - George Koumoundouros
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
17
|
MacCormack TJ, Gormley PT, Khuong BN, Adams OA, Braz-Mota S, Duarte RM, Vogels CM, Tremblay L, Val AL, Almeida-Val VMF, Westcott SA. Boron Oxide Nanoparticles Exhibit Minor, Species-Specific Acute Toxicity to North-Temperate and Amazonian Freshwater Fishes. Front Bioeng Biotechnol 2021; 9:689933. [PMID: 34124028 PMCID: PMC8194395 DOI: 10.3389/fbioe.2021.689933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Boron oxide nanoparticles (nB2O3) are manufactured for structural, propellant, and clinical applications and also form spontaneously through the degradation of bulk boron compounds. Bulk boron is not toxic to vertebrates but the distinctive properties of its nanostructured equivalent may alter its biocompatibility. Few studies have addressed this possibility, thus our goal was to gain an initial understanding of the potential acute toxicity of nB2O3 to freshwater fish and we used a variety of model systems to achieve this. Bioactivity was investigated in rainbow trout (Oncorhynchus mykiss) hepatocytes and at the whole animal level in three other North and South American fish species using indicators of aerobic metabolism, behavior, oxidative stress, neurotoxicity, and ionoregulation. nB2O3 reduced O. mykiss hepatocyte oxygen consumption (ṀO2) by 35% at high doses but whole animal ṀO2 was not affected in any species. Spontaneous activity was assessed using ṀO2 frequency distribution plots from live fish. nB2O3 increased the frequency of high ṀO2 events in the Amazonian fish Paracheirodon axelrodi, suggesting exposure enhanced spontaneous aerobic activity. ṀO2 frequency distributions were not affected in the other species examined. Liver lactate accumulation and significant changes in cardiac acetylcholinesterase and gill Na+/K+-ATPase activity were noted in the north-temperate Fundulus diaphanus exposed to nB2O3, but not in the Amazonian Apistogramma agassizii or P. axelrodi. nB2O3 did not induce oxidative stress in any of the species studied. Overall, nB2O3 exhibited modest, species-specific bioactivity but only at doses exceeding predicted environmental relevance. Chronic, low dose exposure studies are required for confirmation, but our data suggest that, like bulk boron, nB2O3 is relatively non-toxic to aquatic vertebrates and thus represents a promising formulation for further development.
Collapse
Affiliation(s)
- Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Patrick T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - B Ninh Khuong
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Olivia A Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Rafael M Duarte
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, Brazil
| | - Christopher M Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Luc Tremblay
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Vera M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
18
|
Carvalhais A, Pereira B, Sabato M, Seixas R, Dolbeth M, Marques A, Guilherme S, Pereira P, Pacheco M, Mieiro C. Mild Effects of Sunscreen Agents on a Marine Flatfish: Oxidative Stress, Energetic Profiles, Neurotoxicity and Behaviour in Response to Titanium Dioxide Nanoparticles and Oxybenzone. Int J Mol Sci 2021; 22:1567. [PMID: 33557180 PMCID: PMC7913899 DOI: 10.3390/ijms22041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
UV filters are potentially harmful to marine organisms. Given their worldwide dissemination and the scarcity of studies on marine fish, we evaluated the toxicity of an organic (oxybenzone) and an inorganic (titanium dioxide nanoparticles) UV filter, individually and in a binary mixture, in the turbot (Scophthalmus maximus). Fish were intraperitoneally injected and a multi-level assessment was carried out 3 and 7 days later. Oxybenzone and titanium dioxide nanoparticles induced mild effects on turbot, both isolated and in mixture. Neither oxidative stress (intestine, liver and kidney) nor neurotoxicity (brain) was found. However, liver metabolic function was altered after 7 days, suggesting the impairment of the aerobic metabolism. An increased motility rate in oxybenzone treatment was the only behavioural alteration (day 7). The intestine and liver were preferentially targeted, while kidney and brain were unaffected. Both infra- and supra-additive interactions were perceived, with a toxicodynamic nature, resulting either in favourable or unfavourable toxicological outcomes, which were markedly dependent on the organ, parameter and post-injection time. The combined exposure to the UV filters did not show a consistent increment in toxicity in comparison with the isolated exposures, which is an ecologically relevant finding providing key information towards the formulation of environmentally safe sunscreen products.
Collapse
Affiliation(s)
- Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Bárbara Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mariangela Sabato
- Department of Biological and Environmental Sciences, Università degli Studi di Messina, 98166 Messina, Italy;
| | - Rafaela Seixas
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Marina Dolbeth
- CIIMAR, University of Porto, 4450-208 Matosinhos, Portugal; or
| | - Ana Marques
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Patrícia Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| |
Collapse
|
19
|
Effects of the Ionic and Nanoparticle Forms of Cu and Ag on These Metals' Bioaccumulation in the Eggs and Fry of Rainbow Trout ( Oncorhynchus mykiss W.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176392. [PMID: 32887354 PMCID: PMC7504287 DOI: 10.3390/ijerph17176392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 01/04/2023]
Abstract
Nanotechnology is a rapidly growing field of science, and an increasing number of nanoproducts, including nanometals, can be found on the market. Various nanometals and the products that are manufactured based on them can help to fight bacteria and fungi, but they can also penetrate organisms and accumulate in them. This study aimed to compare the effects of two metals, silver (Ag) and copper (Cu), with known antibacterial and fungicidal properties in their ionic (AgNO3, CuSO4·5H2O) and nanoparticle (AgNPs, CuNPs) forms on rainbow trout eggs and fry. Concentrations of metals ranging from 0 to 16 mg/L were used during egg swelling for 2 h. The swelling of eggs in Cu solutions resulted in an increase in Cu content in the eggs (just like in the case of Ag); however, the changes in fry were not significant in the case of both Ag and Cu. The concentrations of these metals in eggs was greatly affected by the applied form of Ag and Cu. Because CuNPs penetrated the embryo in fish eggs at lower concentrations compared to AgNPs, it would be worth considering them for antibacterial applications during egg incubation.
Collapse
|
20
|
Ollerhead KM, Adams OA, Willett NJ, Gates MA, Bennett JC, Murimboh J, Morash AJ, Lamarre SG, MacCormack TJ. Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114044. [PMID: 32004967 DOI: 10.1016/j.envpol.2020.114044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Aerobic performance in fish is linked to individual and population fitness and can be impacted by anthropogenic contaminants. Exposure to some engineered nanomaterials, including silver nanoparticles (nAg), reduces rates of oxygen consumption in some fish species, but the underlying mechanisms remain unclear. In addition, their effects on swim performance have not been studied. Our aim was to quantify the impact of exposure to functionalized nAg on aerobic scope and swim performance in rainbow trout (Oncorhychus mykiss) and to characterize the contribution of changing rates of protein synthesis to these physiological endpoints. Fish were exposed for 48 h to 5 nm polyvinylpyrolidone-functionalized nAg (nAgPVP; 100 μg L-1) or 0.22 μg L-1 Ag+ (as AgNO3), which was the measured quantity of Ag released from the nAgPVP over that time period. Aerobic scope, critical swimming speed (Ucrit), and fractional rates of protein synthesis (Ks), were then assessed, along with indicators of osmoregulation and cardiotoxicity. Neither nAgPVP, nor Ag+ exposure significantly altered aerobic scope, its component parts, or swim performance. Ks was similarly unaffected in 8 tissue types, though it tended to be lower in liver of nAgPVP treated fish. The treatments tended to decrease gill Na+/K+-ATPase activity, but effects were not significant. The latter results suggest that a longer or more concentrated nAgPVP exposure may induce significant effects. Although this same formulation of nAgPVP is bioactive in other fish, it had no effects on rainbow trout under the conditions tested. Such findings on common model animals like trout may thus misrepresent the safety of nAg to more sensitive species.
Collapse
Affiliation(s)
- K M Ollerhead
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - O A Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N J Willett
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - M A Gates
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J Murimboh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - A J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
21
|
Banan A, Kalbassi MR, Bahmani M, Sotoudeh E, Johari SA, Ali JM, Kolok AS. Salinity modulates biochemical and histopathological changes caused by silver nanoparticles in juvenile Persian sturgeon (Acipenser persicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10658-10671. [PMID: 31939027 DOI: 10.1007/s11356-020-07687-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The objective of this study was to evaluate the effect of salinity on the acute and sub-chronic toxicity of silver nanoparticles (AgNPs) in Persian sturgeon. This was evaluated by exposing Persian sturgeon to AgNPs in three salinities: freshwater (F: 0.4 ppt), brackish water 1 (B1: 6 ± 0.2 ppt), and brackish water 2 (B2: 12 ± 0.3 ppt) for 14 days, which was followed by analysis of alterations in plasma chemistry and histopathology of the gills, liver, and intestine. Values of 96-h median lethal concentration (LC50) were calculated as 0.89 mg/L in F, 2.07 mg/L in B1, and 1.59 mg/L in B2. After sub-chronic exposures, plasma cortisol, glucose, potassium, and sodium levels illustrated no significant changes within each salinity level. In F, 0.2 mg/L AgNP caused the highest levels of alkaline phosphatase and osmolality levels. In B1, 0.6 mg/L AgNP induced the highest level of alkaline phosphatase and elevated plasma osmolality was recorded in all AgNP-exposed treatments in comparison with the controls. The B2 treatment combined with 0.6 mg/L AgNP significantly reduced plasma chloride level. The results showed elevating salinity significantly increased osmolality, chloride, sodium, and potassium levels of plasma in the fish exposed to AgNPs. The abundance of the tissue lesions was AgNP concentration-dependent, where the highest number of damages was observed in the gills, followed by liver and intestine, respectively. The histopathological study also confirmed alterations such as degeneration of lamella, lifting of lamellar epithelium, hepatic vacuolation, pyknotic nuclei, and cellular infiltration of the lamina propria elicited by AgNPs in the gills, liver, and intestine of Persian sturgeon. In conclusion, the stability of AgNPs in aquatic environments can be regulated by changing the salinity, noting that AgNPs are more stable in low salinity waters.
Collapse
Affiliation(s)
- Ashkan Banan
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, 68151, Khorramabad, Iran.
| | - Mohammad Reza Kalbassi
- Department of Aquaculture, School of Marine Sciences, Tarbiat Modares University, 46414, Tehran, Iran.
| | - Mahmoud Bahmani
- Iranian Fisheries Science and Research Institute, 15745, Tehran, Iran
| | - Ebrahim Sotoudeh
- Department of Fisheries, Faculty of Marine Science and Technology, Persian Gulf University, 75169, Bushehr, Iran
| | - Seyed Ali Johari
- Fisheries Department, Natural Resources Faculty, University of Kurdistan, 66177, Sanandaj, Iran
| | - Jonathan M Ali
- Permitting and Environmental Health Bureau, New Hampshire Department of Environmental Services, 03302, Concord, USA
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, 83844, Moscow, USA
| |
Collapse
|
22
|
Bakshi MS. Impact of nanomaterials on ecosystems: Mechanistic aspects in vivo. ENVIRONMENTAL RESEARCH 2020; 182:109099. [PMID: 31901674 DOI: 10.1016/j.envres.2019.109099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Nanotechnologies are becoming increasingly popular in modern era of human development in every aspect of life. Their impact on our ecosystem in air, soil, and water is largely unknown because of the limited amount of information available, and hence, they require considerable attention. This account highlights the important routes of nanomaterials toxicity in air, soil, and water, their possible impact on the ecosystem and aquatic life. The mechanistic aspects have been focused on the size, shape, and surface modifications of nanomaterials. The preventive measures and future directions along with appropriate designs and implementation of nanotechnologies have been proposed so as to minimize the interactions of nanomaterials with terrestrial flora and aquatic life. Specifically, the focus largely remains on the toxicity of metallic nanoparticles such as gold (Au) and silver (Ag) because of their applications in diverse fields. The account lists some prominent mechanistic routes of nanotoxicity along with in vivo experimental results based on the fundamental understanding that how nanometallic surfaces interact with plant as well as animal biological systems. The appropriate modifications of the nanometallic surfaces with biocompatible molecules are considered to be the most effective preventive measures to reduce the nanotoxicity.
Collapse
Affiliation(s)
- Mandeep Singh Bakshi
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin - Green Bay, 2420 Nicolet Drive, Green Bay, WI, 54311-7001, USA.
| |
Collapse
|
23
|
Kaloyianni M, Dimitriadi A, Ovezik M, Stamkopoulou D, Feidantsis K, Kastrinaki G, Gallios G, Tsiaoussis I, Koumoundouros G, Bobori D. Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121204. [PMID: 31541956 DOI: 10.1016/j.jhazmat.2019.121204] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 05/25/2023]
Abstract
Among pollutants, nanoparticles (NPs) consist a potential environmental hazard, as they could possibly harm the aquatic and terrestrial ecosystems while having unpredictable repercussions on human health. Since monitoring the impact of NPs on aquatic and terrestrial life is challenging, due to the differential sensitivities of organisms to a given nanomaterial, the present study examines magnetite nanoparticles' mediated toxicity in different animal models, representing distinctive environments (terrestrial and aquatic). Oxidative, proteolytic and genotoxic effects were evaluated on the hemocytes of the snail Cornu aspersum; in addition to those, apoptotic effects were measured in gills and liver of the zebrafish Danio rerio, and the prussian carp Carassius gibelio. All biochemical parameters studied increased significantly in animals after 8 days exposure to NPs. Inter-species and inter-tissues differences in responses were evident. Our results suggest a common toxicity response mechanism functioning in the tissues of the three animals studied that is triggered by magnetite NPs. The simultaneous use of these parameters could be established after further investigation as a reliable multi-parameter approach for biomonitoring of terrestrial and aquatic ecosystems against magnetite nanoparticles. Additionally, the results of our study could contribute to the design of studies for the production and rational utilization of nanoparticles.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Maria Ovezik
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Stamkopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Kastrinaki
- Aerosol & Particle Technology Laboratory, CERTH/CPERI, Thessaloniki, Greece
| | - Georgios Gallios
- Laboratory of General & Inorganic Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tsiaoussis
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Dimitra Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
24
|
Naguib M, Mahmoud UM, Mekkawy IA, Sayed AEDH. Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicol Rep 2020; 7:133-141. [PMID: 31956514 PMCID: PMC6962648 DOI: 10.1016/j.toxrep.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/28/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
The current study investigates the hepatotoxic effects of two acute doses of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on African catfish (Clarias garepinus) using biochemical, histopathological, and histochemical changes and the determination of silver in liver tissue as biomarkers. AgNPs-induced impacts were recorded in some of these characteristics based on their size (20 and 40 nm) and their concentration (10 and 100 μg/L). Concentrations of liver enzymes (Aspartic aminotransferase; AST, Alanine aminotransferase; ALT), alkaline phosphatase (ALP), total lipids (Tl), Glucose (Glu) and Ag-concentration in liver tissue exhibited a significant increase under stress in all exposed groups compared to the control group. The total proteins (Tp), albumin (Al), and globulin (Gl) concentrations exhibited significantly decrease in all treated groups compared to the control group. At tissue and cell levels, histopathological changes were observed. These changes include proliferation of hepatocytes, infiltrations of inflammatory cells, pyknotic nuclei, cytoplasmic vaculation, melanomacrophages aggregation, dilation in the blood vessel, hepatic necrosis, rupture of the wall of the central vein, and apoptotic cells in the liver of AgNPs-exposed fish. As well as the depletion of glycogen content in the liver (feeble magenta coloration) was observed. The size and number of melanomacrophage centers (MMCs) in liver tissue showed highly significant difference in all exposed groups compared to the control group. Recovery period for 15 days led to improved most alterations in the biochemical, histopathological, and histochemical parameters induced by AgNPs and AgNO3. In conclusion, one can assume liver sensitivity of C. garepinus for AgNPs and the recovery period is a must.
Collapse
Affiliation(s)
| | | | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
25
|
Meneses-Márquez JC, Hamdan-Partida A, Monroy-Dosta MD, Castro-Mejía J, Faustino-Vega A, Soria-Castro E, Bustos-Martínez J. Use of silver nanoparticles to control Vibrio fluvialis in cultured angelfish Pterophyllum scalare. DISEASES OF AQUATIC ORGANISMS 2019; 137:65-72. [PMID: 31802743 DOI: 10.3354/dao03423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles have multiple applications, among which is their use as antimicrobial agents in aquaculture. The objective of this work was to determine the antibacterial effect of silver nanoparticles (AgNPs) against Vibrio fluvialis in cultured angelfish Pterophyllum scalare. AgNPs were synthetized through chemical reduction and characterized by UV-visible and infrared spectroscopy. Particle size ranged from 60 to 170.8 nm, and scanning electron microscopy revealed cubic and spherical forms. A minimal inhibitory concentration of 222.5 ppm was determined, as well as inhibition halos between 8.66 and 14.3 mm. Inhibition of V. fluvialis growth was observed upon contact with AgNPs. An 88% survival of infected fish was obtained when treated with AgNPs, in contrast to 100% mortality of fish that were not treated. No damage to internal or external organs was observed in fish exposed to AgNPs. We conclude that AgNPs exert an antimicrobial effect against V. fluvialis, and thus represent a new alternative to control diseases caused by this microorganism in P. scalare culture.
Collapse
Affiliation(s)
- Julio César Meneses-Márquez
- Laboratorio de Microbiología y Biología Molecular, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | | | | | | | | | | | | |
Collapse
|
26
|
Campbell LA, Gormley PT, Bennett JC, Murimboh JD, MacCormack TJ. Functionalized silver nanoparticles depress aerobic metabolism in the absence of overt toxicity in brackish water killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105221. [PMID: 31207537 DOI: 10.1016/j.aquatox.2019.105221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) tend to precipitate in saline waters so the majority of aquatic toxicity studies have focused on freshwaters, where bioavailability is presumed to be higher. Recent studies have illustrated that some ENM formulations are bioavailable and bioactive in salt water and that their effects are more pronounced at the physiological than biochemical level. These findings raise concerns regarding the effects of ENMs on marine organisms. Therefore, our goal was to characterize the effects of polyvinylpyrolidone-functionalized silver ENMs (nAg) on aerobic performance in the killifish (Fundulus heteroclitus), a common euryhaline teleost. Fish were exposed to 80 μg L-1 of 5 nm nAg for 48 h in brackish water (12 ppt) and routine (ṀO2min) and maximum (ṀO2max) rates of oxygen consumption were quantified. Silver dissolution was minimal and nAg remained well dispersed in brackish water, with a hydrodynamic diameter of 21.0 nm, compared to 19.3 in freshwater. Both ṀO2min and ṀO2max were significantly lower (by 53 and 30%, respectively) in killifish exposed to nAg and a reduction in ṀO2 variability suggested spontaneous activity was suppressed. Neither gill Na+/K+-ATPase activity, nor various other biochemical markers were affected by nAg exposure. The results illustrate that a common ENM formulation is bioactive in salt water and, as in previous studies on functionalized copper ENMs, that effects are more pronounced at the whole animal than the biochemical level.
Collapse
Affiliation(s)
- L A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - P T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J D Murimboh
- Department Chemistry, Acadia University, Wolfville, NS, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
27
|
Abstract
Nanomaterials (NMs) find widespread use in different industries that range from agriculture, food, medicine, pharmaceuticals, and electronics to cosmetics. It is the exceptional properties of these materials at the nanoscale, which make them successful as growth promoters, drug carriers, catalysts, filters and fillers, but a price must be paid via the potential toxity of these materials. The harmful effects of nanoparticles (NPs) to environment, human and animal health needs to be investigated and critically examined, to find appropriate solutions and lower the risks involved in the manufacture and use of these exotic materials.The vast number and complex interaction of NM/NPs with different biological systems implies that there is no universal toxicity mechanism or assessment method. The various challenges need to be overcome and a number of research studies have been conducted during the past decade on different NMs to explore the possible mechanisms of uptake, concentrations/dosage and toxicity levels. This review article examines critically the recent reports in this field to summarize and present opportunities for safer design using case studies from published literature.
Collapse
|
28
|
Zeng J, Xu P, Chen G, Zeng G, Chen A, Hu L, Huang Z, He K, Guo Z, Liu W, Wu J, Shi J. Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem. J Environ Sci (China) 2019; 75:181-192. [PMID: 30473283 DOI: 10.1016/j.jes.2018.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 06/09/2023]
Abstract
Due to the wide use of silver nanoparticles (AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media (deionized water and XiangJiang River water). There were a number of quite different experimental results (including 100% mortality of zebrafish, decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure (HOE) compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of AgNPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.
Collapse
Affiliation(s)
- Jingwen Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China.
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Hu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Kai He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhi Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Weiwei Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Jing Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| | - Jiangbo Shi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control of Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Terova G, Rimoldi S, Izquierdo M, Pirrone C, Ghrab W, Bernardini G. Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1375-1391. [PMID: 29911270 DOI: 10.1007/s10695-018-0528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2β, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and upregulated mRNA copy number of OC gene. The expression of this gene was strongly correlated with mineralization degree, thus confirming its potency as a good marker of bone mineralization in gilthead seabream larvae.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy.
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), University Institute Ecoaqua, University of Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Wafa Ghrab
- Grupo de Investigación en Acuicultura (GIA), University Institute Ecoaqua, University of Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy
| |
Collapse
|
30
|
Vicari T, Dagostim AC, Klingelfus T, Galvan GL, Monteiro PS, da Silva Pereira L, Silva de Assis HC, Cestari MM. Co-exposure to titanium dioxide nanoparticles (NpTiO 2) and lead at environmentally relevant concentrations in the Neotropical fish species Hoplias intermedius. Toxicol Rep 2018; 5:1032-1043. [PMID: 30386731 PMCID: PMC6205112 DOI: 10.1016/j.toxrep.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/13/2018] [Accepted: 09/01/2018] [Indexed: 12/03/2022] Open
Abstract
Growing production and utilization of titanium dioxide nanoparticles (NpTiO2) invariably lead to their accumulation in oceans, rivers and other water bodies, thus increasing the risk to the welfare of this ecosystem. The progressive launch of these nanoparticles in the environment has been accompanied by concern in understanding the dynamics and the toxic effect of these xenobiotic in different ecosystems, either on their own or in tandem with different contaminants (such as organic compounds and heavy metals), possibly altering their toxicity. Nevertheless, it remains unknown if these combined effects may induce damage in freshwater organisms. Therefore, this study aimed to analyze the consequences caused by NpTiO2, after a waterborne exposure of 96 h to a Neotropical fish species Hoplias intermedius, as well as after a co-exposure with lead, whose effects for fish have already been well described in the literature. The characterization of NpTiO2 stock suspension was carried out in order to provide additional information and revealed a stable colloidal suspension. As a result, NpTiO2 showed some genotoxic effects which were observed by comet assay in gill, kidney and brain cells. Also, the activity of brain acetylcholinesterase (AChE) has not changed, but the activity of muscle AChE decreased in the group exposed only to PbII. Regarding the hepatic antioxidant system, catalase (CAT) did not show any change in its activity, whereas that of superoxide dismutase (SOD) intensified in the groups submitted only to PbII and NpTiO2 alone. As for lipid peroxidation, there was a decrease in the group exposed to the NpTiO2 alone and to the co-exposed group (NpTiO2+PbII). As far as metallothionein is concerned, its concentration rose for the co-exposed group (NpTiO2+PbII) and for the group exposed to PbII alone. Overall, we may conclude that NpTiO2 alone caused DNA damage to vital tissues. Also, some impairment related to the antioxidant mechanism was described but it is probably not related to the DNA damage observed, suggesting that the genotoxic effect observed may be due to a different mechanism instead of ROS production.
Collapse
Affiliation(s)
- Taynah Vicari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Ana Carolina Dagostim
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Tatiane Klingelfus
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Gabrieli Limberger Galvan
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Sampaio Monteiro
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Letícia da Silva Pereira
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
31
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Development of a new tool for the long term in vitro ecotoxicity testing of nanomaterials using a rainbow-trout cell line (RTL-W1). Toxicol In Vitro 2018; 50:305-317. [DOI: 10.1016/j.tiv.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
33
|
Cai Z, Liu H, Wang L, Li X, Bai L, Gan X, Li L, Han C. Molecular Evolutionary Analysis of the HCRTR Gene Family in Vertebrates. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8120263. [PMID: 29967787 PMCID: PMC6008884 DOI: 10.1155/2018/8120263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/17/2018] [Accepted: 04/17/2018] [Indexed: 12/02/2022]
Abstract
Hypocretin system is composed of hypocretins (hcrts) and their receptors (hcrtrs), which has multiple vital functions. Hypocretins work via hypocretin receptors and it is reported that functional differentiation occurred in hcrtrs. It is necessary to figure out the evolution process of hypocretin receptors. In our study, we adopt a comprehensive approach and various bioinformatics tools to analyse the evolution process of HCRTR gene family. It turns out that the second round of whole genome duplication in early vertebrate ancestry and the independent round in fish ancestry may contribute to the diversity of HCRTR gene family. HCRTR1 of fishes and mammals are not the same receptor, which means that there are three members in the family. HCRTR2 is proved to be the most ancient one in HCRTR gene family. After duplication events, the structure of HCRTR1 diverged from HCRTR2 owing to relaxed selective pressure. Negative selection is the predominant evolutionary force acting on the HCRTR gene family but HCRTR1 of mammals is found to be subjected to positive selection. Our study gains insight into the molecular evolution process of HCRTR gene family, which contributes to the further study of the system.
Collapse
Affiliation(s)
- Zhen Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liyun Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinmeng Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
34
|
Clark NJ, Shaw BJ, Handy RD. Low hazard of silver nanoparticles and silver nitrate to the haematopoietic system of rainbow trout. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:121-131. [PMID: 29407778 DOI: 10.1016/j.ecoenv.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (Ag NPs) are known for their antibacterial properties and are used in a growing number of nano-enabled products, with inevitable concerns for releases to the environment. Nanoparticles may also be antigenic and toxic to the haematopoietic system, but the immunotoxic effect of Ag NPs on non-target species such as fishes is poorly understood. This study aimed to assess the effect of Ag NP exposure via the water on the haematopoietic system of rainbow trout, Oncorhynchus mykiss, and to determine whether or not the hazard from Ag NPs was different from that of AgNO3. Fish were exposed for 7 days to a control (dechlorinated Plymouth freshwater), dispersant control, 1µgl-1 Ag as AgNO3 or 100µgl-1 Ag NPs. Animals were sampled on days 0, 4 and 7 for haematology, tissue trace metal concentration, biochemistry for evidence of oxidative stress/inflammation in the spleen and histopathology of the blood cells and spleen. The Ag NP treatment significantly increased the haematocrit, but the haematological changes were within the normal physiological range of the animal. Thrombocytes in spleen prints at day 4, and melanomacrophage deposits at day 7 in the spleen, of Ag NP exposed-fish displayed significant increases compared to all the other treatments within the time point. A dialysis experiment confirmed that dissolution rates were very low and any pathology observed is likely from the NP form rather than dissolved metal released from it. Overall, the data showed subtle differences in the effects of Ag NPs compared to AgNO3 on the haematopoietic system. The lack of pathology in the circulating blood cells and melanomacrophage deposits in the spleen suggests a compensatory physiological effort by the spleen to maintain normal circulating haematology during Ag NP exposure.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
35
|
Majewski M, Ognik K, Zdunczyk P, Juskiewicz J. Effect of dietary copper nanoparticles versus one copper (II) salt: Analysis of vasoreactivity in a rat model. Pharmacol Rep 2017; 69:1282-1288. [DOI: 10.1016/j.pharep.2017.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
36
|
Black MN, Henry EF, Adams OA, Bennett JCF, MacCormack TJ. Environmentally relevant concentrations of amine-functionalized copper nanoparticles exhibit different mechanisms of bioactivity in Fundulus Heteroclitus in fresh and brackish water. Nanotoxicology 2017; 11:1070-1085. [DOI: 10.1080/17435390.2017.1395097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Merryl N. Black
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Elenor F. Henry
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Olivia A. Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | | | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
37
|
Rossbach LM, Shaw BJ, Piegza D, Vevers WF, Atfield AJ, Handy RD. Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:245-255. [PMID: 28888166 DOI: 10.1016/j.aquatox.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of soluble copper (Cu) to marine organisms is reasonably well described. However, the hazard of Cu engineered nanomaterial (ENMs) is poorly understood. The aim of the present study was to compare the toxicity of Cu ENMs to Cu as CuSO4 in the shore crab, Carcinus maenas. The crabs were exposed via the water using a semi-static approach to 0.2 or 1mgL-1 of Cu ENMs or 1mgL-1 of Cu as CuSO4. Gills, hepatopancreas, chela muscle and haemolymph were collected at days 0, 4 and 7 for the body burden of Cu, histology and biochemical analysis [thiobarbituric acid reactive substances (TBARS) and total glutathione (GSH)]. Nominal exposure concentrations of both the ENMs and the metal salt were maintained at over 80% in each treatment throughout the experiment. By day 7, 54% mortality was recorded in the 1mgL-1 CuSO4 treatment, compared to just 21% in the 1mgL-1 Cu ENM-exposed crabs. The target organs for Cu accumulation were similar for both forms of Cu with highest concentrations in the gills, particularly the posterior gills; followed by the hepatopancreas, and with the lowest concentrations in the chela muscle. No changes were observed in the osmolarity of the haemolymph (ANOVA, P>0.05). TBARS were measured as an indicator of lipid peroxidation and showed the greatest change in the anterior and posterior gills and hepatopancreas of animals exposed to 1mgL-1 Cu ENMs (ANOVA or Kruskal-Wallis, P<0.05). No statistically significant changes in total GSH were observed (ANOVA, P>0.05; n=6 crabs per treatment). Histological analysis revealed organ injuries in all treatments. The types of pathologies observed in the Cu ENM treatments were broadly similar to those of the Cu as CuSO4 treatment. Overall, the target organs and Cu accumulation from Cu ENMs were comparable to that following exposure to Cu as CuSO4, and although there were some differences in the sub-lethal effects, the metal salt was more acutely toxic.
Collapse
Affiliation(s)
- Lisa M Rossbach
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Dawid Piegza
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - William F Vevers
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Andrew J Atfield
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
38
|
Orbea A, González-Soto N, Lacave JM, Barrio I, Cajaraville MP. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:59-68. [PMID: 28274763 DOI: 10.1016/j.cbpc.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
Cellular and molecular mechanisms of toxicity of silver nanoparticles (NPs) and their toxicity to fish embryos after waterborne exposure have been widely investigated, but much less information is available regarding the effect of Ag NPs on physiological functions such as growth or reproduction. In this work, the effects of waterborne exposure of adult zebrafish (Danio rerio) to PVP/PEI coated Ag NPs (~5nm) on reproduction (fecundity) were investigated. Moreover, the development of the embryos after parental exposure was compared with the development of embryos after direct waterborne exposure to the NPs. For this, two experiments were run: 1) embryos from unexposed parents were treated for 5days with Ag NPs (10μgAgL-1-10mgAgL-1) and development was monitored, and 2) selected breeding zebrafish were exposed for 3weeks to 100ngAgL-1 (environmentally relevant concentration) or to 10μgAgL-1 of Ag NPs, fecundity was scored and development of resulting embryos was monitored up to 5days. Waterborne exposure of embryos to Ag NPs resulted in being highly toxic (LC50 at 120h=50μgAgL-1), causing 100% mortality during the first 24h of exposure at 0.1mgAgL-1. Exposure of adults, even at the environmentally relevant silver concentration, caused a significant reduction of fecundity by the second week of treatment and resulting embryos showed a higher prevalence of malformations than control embryos. Exposed adult females presented higher prevalence of vacuolization in the liver. These results show that Ag NPs at an environmentally relevant concentration are able to affect population level parameters in zebrafish.
Collapse
MESH Headings
- Animals
- Embryo, Nonmammalian/drug effects
- Embryonic Development/drug effects
- Female
- Infertility, Female/chemically induced
- Infertility, Female/pathology
- Infertility, Female/veterinary
- Liver/drug effects
- Liver/pathology
- Metal Nanoparticles/analysis
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/toxicity
- Metal Nanoparticles/ultrastructure
- Microscopy, Electron, Transmission
- Polyethyleneimine/analysis
- Polyethyleneimine/chemistry
- Polyethyleneimine/toxicity
- Povidone/analysis
- Povidone/chemistry
- Povidone/toxicity
- Random Allocation
- Silver/analysis
- Silver/chemistry
- Silver/toxicity
- Surface Properties
- Survival Analysis
- Teratogens/analysis
- Teratogens/chemistry
- Teratogens/toxicity
- Tissue Distribution
- Toxicity Tests, Acute
- Toxicokinetics
- Vacuoles/drug effects
- Vacuoles/pathology
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/chemistry
- Water Pollutants, Chemical/toxicity
- Zebrafish
Collapse
Affiliation(s)
- Amaia Orbea
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain.
| | - Nagore González-Soto
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - José María Lacave
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Irantzu Barrio
- Dept. of Applied Mathematics, Statistics and Operations Research, Science and Technology Faculty, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology PIE and Science and Technology Faculty, University of Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| |
Collapse
|
39
|
MacCormack TJ, Rundle AM, Malek M, Raveendran A, Meli MV. Gold nanoparticles partition to and increase the activity of glucose-6-phosphatase in a synthetic phospholipid membrane system. PLoS One 2017; 12:e0183274. [PMID: 28817664 PMCID: PMC5560555 DOI: 10.1371/journal.pone.0183274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/01/2017] [Indexed: 01/27/2023] Open
Abstract
Engineered nanomaterials can alter the structure and/or function of biological membranes and membrane proteins but the underlying mechanisms remain unclear. We addressed this using a Langmuir phospholipid monolayer containing an active transmembrane protein, glucose-6-phosphatase (G6Pase). Gold nanoparticles (nAu) with varying ligand shell composition and hydrophobicity were synthesized, and their partitioning in the membrane and effects on protein activity characterized. nAu incorporation did not alter the macroscopic properties of the membrane. Atomic force microscopy showed that when co-spread with other components prior to membrane compression, nAu preferentially interacted with G6Pase and each other in a functional group-dependent manner. Under these conditions, all nAu formulations reduced G6Pase aggregation in the membrane, enhancing catalytic activity 5-6 fold. When injected into the subphase beneath pre-compressed monolayers, nAu did not affect G6Pase activity over 60 minutes, implying they were unable to interact with the protein under these conditions. A small but significant quenching of tryptophan fluorescence showed that nAu interacted with G6Pase in aqueous suspension. nAu also significantly reduced the hydrodynamic diameter of G6Pase in aqueous suspension and promoted catalytic activity, likely via a similar mechanism to that observed in co-spread monolayers. Overall, our results show that nAu can incorporate into membranes and associate preferentially with membrane proteins under certain conditions and that partitioning is dependent upon ligand shell chemistry and composition. Once incorporated, nAu can alter the distribution of membrane proteins and indirectly affect their function by improving active site accessibility, or potentially by changing their native structure and distribution in the membrane.
Collapse
Affiliation(s)
- Tyson J. MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
- * E-mail: (TJM); (MVM)
| | - Amanda M. Rundle
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Michael Malek
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Abhilash Raveendran
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Maria-Victoria Meli
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
- * E-mail: (TJM); (MVM)
| |
Collapse
|
40
|
Kaya H, Duysak M, Akbulut M, Yılmaz S, Gürkan M, Arslan Z, Demir V, Ateş M. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY 2017; 32:1213-1225. [PMID: 27464841 PMCID: PMC5274611 DOI: 10.1002/tox.22318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Zinc nanoparticles (ZnNPs) are among the least investigated NPs and thus their toxicological effects are not known. In this study, tilapia (Oreochromis niloticus) were exposed to 1 and 10 mg/L suspensions of small size (SS, 40-60 nm) and large size (LS, 80-100 nm) ZnNPs for 14 days under semi-static conditions. Total Zn levels in the intestine, liver, kidney, gill, muscle tissue, and brain were measured. Blood serum glucose (GLU), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and lactate dehydrogenase (LDH) were examined to elucidate the physiological disturbances induced by ZnNPs. Organ pathologies were examined for the gills, liver, and kidney to identify injuries associated with exposure. Significant accumulation was observed in the order of intestine, liver, kidney, and gills. Zn levels exhibited time- and concentration-dependent increase in the organs. Accumulation in kidney was also dependent on particle size; NPs SS-ZnNPs were trapped more effectively than LS-ZnNPs. No significant accumulation occurred in the brain (p > 0.05) while Zn levels in muscle tissue increased only marginally (p ≥ 0.05). Significant disturbances were noted in serum GOT and LDH (p < 0.05). The GPT levels fluctuated and were not statistically different from those of controls (p > 0.05). Histopathological tubular deformations and mononuclear cell infiltrations were observed in kidney sections. In addition, an increase in melano-macrophage aggregation intensity was identified on the 7th day in treatments exposed to LS-ZnNPs. Mononuclear cell infiltrations were identified in liver sections for all treatments. Both ZnNPs caused basal hyperplasia in gill sections. Fusions appeared in the gills after the 7th day in fish treated with 10 mg/L suspensions of SS-ZnNPs. In addition, separations in the secondary lamella epithelia were observed. The results indicated that exposure to ZnNPs could lead to disturbances in blood biochemistry and cause histopathological injuries in the tissues of O. niloticus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1213-1225, 2017.
Collapse
Affiliation(s)
- Hasan Kaya
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Müge Duysak
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Mehmet Akbulut
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Sevdan Yılmaz
- Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Mert Gürkan
- Faculty of Arts and Sciences, Department of Biology, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, 39217, USA
| | - Veysel Demir
- Engineering Faculty, Department of Environmental Engineering, Tunceli University, Tunceli, 62000, Turkey
| | - Mehmet Ateş
- Engineering Faculty, Department of Bioengineering, Tunceli University, Tunceli, 62000, Turkey
| |
Collapse
|
41
|
Fernandes AL, Josende ME, Nascimento JP, Santos AP, Sahoo SK, da Silva FMR, Romano LA, Furtado CA, Wasielesky W, Monserrat JM, Ventura-Lima J. Exposure to few-layer graphene through diet induces oxidative stress and histological changes in the marine shrimp Litopenaeus vannamei. Toxicol Res (Camb) 2017; 6:205-214. [PMID: 30090491 PMCID: PMC6062256 DOI: 10.1039/c6tx00380j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
The production and use of graphene-based nanomaterials is rapidly increasing. However, few data are available regarding the toxicity of these nanomaterials in aquatic organisms. In the present study, the toxicity of few-layer graphene (FLG) (obtained by chemical exfoliation) was evaluated in different tissues of the shrimp Litopenaeus vannamei following exposure to FLG through a diet for four weeks. Transmission electron microscopy and dynamic light scattering measurements showed a distribution of lateral sheet sizes between 100 and 2000 nm with the average length and width of 800 and 400 nm, respectively. Oxidative stress parameters were analyzed, indicating that FLG exposure led to an increase in the concentration of reactive oxygen species, modulated the activity of antioxidant enzymes such as glutamate cysteine ligase and glutathione-S-transferase, and reduced glutathione levels and total antioxidant capacity. However, the observed modulations were not sufficient to avoid lipid and DNA damage in both gill and hepatopancreas tissues. Furthermore, graphene exposure resulted in morphological changes in hepatopancreas tissues. These results demonstrate that exposure to FLG through the diet induces alterations in the redox state of cells, leading to a subsequent oxidative stress situation. It is therefore clear that nanomaterials presenting these physico-chemical characteristics may be harmful to aquatic biota.
Collapse
Affiliation(s)
- Amanda Lucena Fernandes
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| | | | | | - Sangram Keshai Sahoo
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN , Belo Horizonte , MG , Brazil
| | - Flávio Manoel Rodrigues da Silva
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências da Saúde - FURG , Brasil
| | | | | | | | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
- Programa de Pós-Graduação em Aquacultura - FURG , Brasil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB) , Universidade Federal do Rio Grande - FURG , Rio Grande , RS , Brasil . ; ; Tel: +55 5332935249
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada - FURG , Brasil
| |
Collapse
|
42
|
Callaghan NI, MacCormack TJ. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:30-41. [PMID: 28017784 DOI: 10.1016/j.cbpc.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Engineered nanomaterials (ENMs) are incorporated into numerous industrial, clinical, food, and consumer products and a significant body of evidence is now available on their toxicity to aquatic organisms. Environmental ENM concentrations are difficult to quantify, but production and release estimates suggest wastewater treatment plant effluent levels ranging from 10-4 to >101μgL-1 for the most common formulations by production volume. Bioavailability and ENM toxicity are heavily influenced by water quality parameters and the physicochemical properties and resulting colloidal behaviour of the particular ENM formulation. ENMs generally induce only mild acute toxicity to most adult fish and crustaceans under environmentally relevant exposure scenarios; however, sensitivity may be considerably higher for certain species and life stages. In adult animals, aquatic ENM exposure often irritates respiratory and digestive epithelia and causes oxidative stress, which can be associated with cardiovascular dysfunction and the activation of immune responses. Direct interactions between ENMs (or their dissolution products) and proteins can also lead to ionoregulatory stress and/or developmental toxicity. Chronic and developmental toxicity have been noted for several common ENMs (e.g. TiO2, Ag), however more data is necessary to accurately characterize long term ecological risks. The bioavailability of ENMs should be limited in saline waters but toxicity has been observed in marine animals, highlighting a need for more study on possible impacts in estuarine and coastal systems. Nano-enabled advancements in industrial processes like water treatment and remediation could provide significant net benefits to the environment and will likely temper the relatively modest impacts of incidental ENM release and exposure.
Collapse
Affiliation(s)
- Neal Ingraham Callaghan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
43
|
Gupta YR, Sellegounder D, Kannan M, Deepa S, Senthilkumaran B, Basavaraju Y. Effect of copper nanoparticles exposure in the physiology of the common carp ( Cyprinus carpio ): Biochemical, histological and proteomic approaches. AQUACULTURE AND FISHERIES 2016. [DOI: 10.1016/j.aaf.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Campos-Garcia J, Martinez DST, Rezende KFO, da Silva JRMC, Alves OL, Barbieri E. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:481-488. [PMID: 27543744 DOI: 10.1016/j.ecoenv.2016.07.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Carbofuran is a nematicide insecticide with a broad spectrum of action. Carbofuran has noxious effects in several species and has been banned in the USA and Europe; however, it is still used in Brazil. Aquatic organisms are not only exposed to pesticides but also to manufactured nanoparticles, and the potential interaction of these compounds therefore requires investigation. The aim of this study was to examine the histopathological alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of exposure to carbofuran, nitric acid-treated multiwalled carbon nanotubes (HNO3-MWCNTs) and the combination of carbofuran with nanotubes. Juvenile fish were exposed to different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L), different concentrations of HNO3-MWCNTs (0.5, 1.0 and 2.0mg/L) or different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L) with 1.0mg/L of HNO3-MWCNTs. After 24h of exposure, the animals were removed from the aquarium, the spinal cord was transversely sectioned, and the second gill arch was removed for histological evaluation. Common histological changes included dislocation of the epithelial cells, hyperplasia of the epithelial cells along the secondary lamellae, aneurism, and dilation and disarrangement of the capillaries. All the groups exposed to carbofuran demonstrated a dose-dependent correlation in the Histological Alteration Index; the values found for carbofuran and carbon nanotubes were up to 25% greater than for carbofuran alone. This result indicates an interaction between these toxicants, with enhanced ecotoxic effects. This work contributes to the understanding of the environmental impacts of nanomaterials on aquatic organisms, which is necessary for the sustainable development of nanotechnologies.
Collapse
Affiliation(s)
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | | | - Oswaldo Luiz Alves
- Solid State Chemistry Laboratory and NanoBioss Laboratory, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edison Barbieri
- Instituto de Pesca-APTA-SAASP-Governo do Estado de São Paulo, Cananeia, Brazil.
| |
Collapse
|
45
|
Hund-Rinke K, Baun A, Cupi D, Fernandes TF, Handy R, Kinross JH, Navas JM, Peijnenburg W, Schlich K, Shaw BJ, Scott-Fordsmand JJ. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology 2016; 10:1442-1447. [PMID: 27592624 DOI: 10.1080/17435390.2016.1229517] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Regulatory ecotoxicity testing of chemicals is of societal importance and a large effort is undertaken at the OECD to ensure that OECD test guidelines (TGs) for nanomaterials (NMs) are available. Significant progress to support the adaptation of selected TGs to NMs was achieved in the context of the project MARINA ( http://www.marina-fp7.eu/ ) funded within the 7th European Framework Program. Eight OECD TGs were adapted based on the testing of at least one ion-releasing NM (Ag) and two inert NMs (TiO2). With the materials applied, two main variants of NMs (ion releasing vs. inert NMs) were addressed. As the modifications of the test guidelines refer to general test topics (e.g. test duration or measuring principle), we assume that the described approaches and modifications will be suitable for the testing of further NMs with other chemical compositions. Firm proposals for modification of protocols with scientific justification(s) are presented for the following tests: growth inhibition using the green algae Raphidocelis subcapitata (formerly: Pseudokirchneriella subcapitata; TG 201), acute toxicity with the crustacean Daphnia magna (TG 202), development toxicity with the fish Danio rerio (TG 210), reproduction of the sediment-living worm Lumbriculus variegatus (TG 225), activity of soil microflora (TGs 216, 217), and reproduction of the invertebrates (Enchytraeus crypticus, Eisenia fetida, TGs 220, 222). Additionally, test descriptions for two further test systems (root elongation of plants in hydroponic culture; test on fish cells) are presented. Ecotoxicological data obtained with the modified test guidelines for TiO2 NMs and Ag NM and detailed method descriptions are available.
Collapse
Affiliation(s)
- Kerstin Hund-Rinke
- a Fraunhofer Institute for Molecular Biology and Applied Ecology , Schmallenberg , Germany
| | - Anders Baun
- b Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | - Denisa Cupi
- b Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | | | - Richard Handy
- d School of Biological Sciences, University of Plymouth , Plymouth , UK
| | - John H Kinross
- c School of Life Sciences, Heriot-Watt University , Edinburgh , UK
| | | | - Willie Peijnenburg
- f National Institute for Public Health and the Environment , Bilthoven , Netherlands.,g University Leiden , Leiden , Netherlands , and
| | - Karsten Schlich
- a Fraunhofer Institute for Molecular Biology and Applied Ecology , Schmallenberg , Germany
| | - Benjamin J Shaw
- d School of Biological Sciences, University of Plymouth , Plymouth , UK
| | | |
Collapse
|
46
|
Korbut R, Mehrdana F, Kania PW, Larsen MH, Frees D, Dalsgaard I, Jørgensen LVG. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri. PLoS One 2016; 11:e0158968. [PMID: 27404564 PMCID: PMC4942034 DOI: 10.1371/journal.pone.0158968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/26/2016] [Indexed: 12/04/2022] Open
Abstract
Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP) and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant) received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC). In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb) Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.
Collapse
Affiliation(s)
- Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Foojan Mehrdana
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Halberg Larsen
- Food Safety and Zoonoses, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Dorte Frees
- Food Safety and Zoonoses, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Inger Dalsgaard
- Section for Bacteriology and Pathology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
47
|
Shaw BJ, Liddle CC, Windeatt KM, Handy RD. A critical evaluation of the fish early-life stage toxicity test for engineered nanomaterials: experimental modifications and recommendations. Arch Toxicol 2016; 90:2077-2107. [PMID: 27318802 DOI: 10.1007/s00204-016-1734-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/28/2016] [Indexed: 11/30/2022]
Abstract
There are concerns that regulatory toxicity tests are not fit for purpose for engineered nanomaterials (ENMs) or need modifications. The aim of the current study was to evaluate the OECD 210 fish, early-life stage toxicity test for use with TiO2 ENMs, Ag ENMs, and MWCNT. Both TiO2 ENMS (≤160 mg l(-1)) and MWCNT (≤10 mg l(-1)) showed limited acute toxicity, whilst Ag ENMs were acutely toxic to zebrafish, though less so than AgNO3 (6-day LC50 values of 58.6 and 5.0 µg l(-1), respectively). Evidence of delayed hatching, decreased body length and increased muscle width in the tail was seen in fish exposed to Ag ENMs. Oedema (swollen yolk sacs) was also seen in fish from both Ag treatments with, for example, mean yolk sac volumes of 17, 35 and 39 µm(3) for the control, 100 µg l(-1) Ag ENMs and 5 µg l(-1) AgNO3 treatments, respectively. Among the problems with the standard test guidelines was the inability to maintain the test solutions within ±20 % of nominal concentrations. Pronounced settling of the ENMs in some beakers also made it clear the fish were not being exposed to nominal concentrations. To overcome this, the exposure apparatus was modified with the addition of an exposure chamber that ensured mixing without damaging the delicate embryos/larvae. This allowed more homogeneous ENM exposures, signified by improved measured concentrations in the beakers (up to 85.7 and 88.1 % of the nominal concentrations from 10 mg l(-1) TiO2 and 50 µg l(-1) Ag ENM exposures, respectively) and reduced variance between measurements compared to the original method. The recommendations include: that the test is conducted using exposure chambers, the use of quantitative measurements for assessing hatching and morphometrics, and where there is increased sensitivity of larvae over embryos to conduct a shorter, larvae-only toxicity test with the ENMs.
Collapse
Affiliation(s)
- Benjamin J Shaw
- Ecotoxicology Research and Innovation Centre, School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Corin C Liddle
- Ecotoxicology Research and Innovation Centre, School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Kirsten M Windeatt
- Ecotoxicology Research and Innovation Centre, School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard D Handy
- Ecotoxicology Research and Innovation Centre, School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
48
|
Clark ES, Pompini M, Uppal A, Wedekind C. Genetic correlations and little genetic variance for reaction norms may limit potential for adaptation to pollution by ionic and nanoparticulate silver in a whitefish (Salmonidae). Ecol Evol 2016; 6:2751-62. [PMID: 27066251 PMCID: PMC4798832 DOI: 10.1002/ece3.2088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
For natural populations to adapt to anthropogenic threats, heritable variation must persist in tolerance traits. Silver nanoparticles, the most widely used engineered nanoparticles, are expected to increase in concentrations in freshwaters. Little is known about how these particles affect wild populations, and whether genetic variation persists in tolerance to permit rapid evolutionary responses. We sampled wild adult whitefish and crossed them in vitro full factorially. In total, 2896 singly raised embryos of 48 families were exposed to two concentrations (0.5 μg/L; 100 μg/L) of differently sized silver nanoparticles or ions (silver nitrate). These doses were not lethal; yet higher concentrations prompted embryos to hatch earlier and at a smaller size. The induced hatching did not vary with nanoparticle size and was stronger in the silver nitrate group. Additive genetic variation for hatching time was significant across all treatments, with no apparent environmental dependencies. No genetic variation was found for hatching plasticity. We found some treatment‐dependent heritable variation for larval length and yolk volume, and one instance of additive genetic variation for the reaction norm on length at hatching. Our assessment suggests that the effects of silver exposure on additive genetic variation vary according to trait and silver source. While the long‐term fitness consequences of low‐level silver exposure on whitefish embryos must be further investigated to determine whether it is, in fact, detrimental, our results suggest that the evolutionary potential for adaptation to these types of pollutants may be low.
Collapse
Affiliation(s)
- Emily S Clark
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| | - Manuel Pompini
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore University of Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
49
|
Wang T, Chen X, Long X, Liu Z, Yan S. Copper Nanoparticles and Copper Sulphate Induced Cytotoxicity in Hepatocyte Primary Cultures of Epinephelus coioides. PLoS One 2016; 11:e0149484. [PMID: 26890000 PMCID: PMC4758645 DOI: 10.1371/journal.pone.0149484] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/02/2016] [Indexed: 01/23/2023] Open
Abstract
Copper nanoparticles (Cu-NPs) were widely used in various industrial and commercial applications. The aim of this study was to analyze the cytotoxicity of Cu-NPs on primary hepatocytes of E.coioides compared with copper sulphate (CuSO4). Cultured cells were exposed to 0 or 2.4 mg Cu L-1 as CuSO4or Cu-NPs for 24-h. Results showed either form of Cu caused a dramatic loss in cell viability, more so in the CuSO4 than Cu-NPs treatment. Compared to control, either CuSO4 or Cu-NPs significantly increased reactive oxygen species(ROS) and malondialdehyde(MDA) concentration in hepatocytes by overwhelming total superoxide dismutase (T-SOD) activity, catalase(CAT) activity and glutathione(GSH) concentration. In addition, the antioxidative-related genes [SOD (Cu/Zn), SOD (Mn), CAT, GPx4] were also down-regulated. The apoptosis and necrosis percentage was significantly higher after the CuSO4 or Cu-NPs treatment than the control. The apoptosis was induced by the increased cytochrome c concentration in the cytosol and elevated caspase-3, caspase-8 and caspase-9 activities. Additionally, the apoptosis-related genes (p53, p38β and TNF-α) and protein (p53 protein) were up-regulated after the CuSO4 or Cu-NPs treatment, with CuSO4 exposure having a greater effect than Cu-NPs. In conclusion, Cu-NPs had similar types of toxic effects as CuSO4 on primary hepatocytes of E.coioides, but toxicity of CuSO4 was more severe than that of Cu-NPs.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaoyan Chen
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaohua Long
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
- * E-mail:
| | - Zhaopu Liu
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Shaohua Yan
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
50
|
Chernick M, Ware M, Albright E, Kwok KWH, Dong W, Zheng N, Hinton DE. Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:187-198. [PMID: 26655662 PMCID: PMC4698014 DOI: 10.1016/j.aquatox.2015.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 05/15/2023]
Abstract
Selenium (Se) leaches into water from agricultural soils and from storage sites for coal fly ash. Se toxicity causes population and community level effects in fishes and birds. We used the laboratory aquarium model fish, Japanese medaka (Oryzias latipes), an asynchronous breeder, to determine aspects of uptake in adults and resultant developmental toxicity in their offspring. The superior imaging properties of the model enabled detailed descriptions of phenotypic alterations not commonly reported in the existing Se literature. Adult males and females in treatment groups were exposed, separately and together, to a dry diet spiked with 0, 12.5, 25, or 50 μg/g (dry weight) seleno-L-methionine (SeMet) for 6 days, and their embryo progeny collected for 5 days, maintained under controlled conditions and observed daily for hatchability, mortality and/or developmental toxicity. Sites of alteration included: craniofacial, pericardium and abdomen (Pc/Ab), notochord, gall bladder, spleen, blood, and swim bladder. Next, adult tissue Se concentrations (liver, skeletal muscle, ovary and testis) were determined and compared in treatment groups of bred and unbred individuals. No significant difference was found across treatment groups at the various SeMet concentrations; and, subsequent analysis compared exposed vs. control in each of the treatment groups at 10 dpf. Increased embryo mortality was observed in all treatment groups, compared to controls, and embryos had a decreased hatching rate when both parents were exposed. Exposure resulted in significantly more total altered phenotypes than controls. When altered phenotypes following exposure of both parents were higher than maternal only exposure, a male role was suggested. The comparisons between treatment groups revealed that particular types of phenotypic change may be driven by the sex of the exposed parent. Additionally, breeding reduced Se concentrations in some adult tissues, specifically the liver of exposed females and skeletal muscle of exposed males. Detailed phenotypic analysis of progeny from SeMet exposed parents should inform investigations of later life stages in an effort to determine consequences of early life exposure.
Collapse
Affiliation(s)
- Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Megan Ware
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Elizabeth Albright
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin W H Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Na Zheng
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|