1
|
Mohapatra S, Cafiero J, Kashfi K, Mehta P, Banerjee P. Why Don't the Mutant Cells That Evade DNA Repair Cause Cancer More Frequently? Importance of the Innate Immune System in the Tumor Microenvironment. Int J Mol Sci 2023; 24:5026. [PMID: 36902456 PMCID: PMC10002487 DOI: 10.3390/ijms24055026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
The standard of care for most malignant solid tumors still involves tumor resection followed by chemo- and radiation therapy, hoping to eliminate the residual tumor cells. This strategy has been successful in extending the life of many cancer patients. Still, for primary glioblastoma (GBM), it has not controlled recurrence or increased the life expectancies of patients. Amid such disappointment, attempts to design therapies using the cells in the tumor microenvironment (TME) have gained ground. Such "immunotherapies" have so far overwhelmingly used genetic modifications of Tc cells (Car-T cell therapy) or blocking of proteins (PD-1 or PD-L1) that inhibit Tc-cell-mediated cancer cell elimination. Despite such advances, GBM has remained a "Kiss of Death" for most patients. Although the use of innate immune cells, such as the microglia, macrophages, and natural killer (NK) cells, has been considered in designing therapies for cancers, such attempts have not reached the clinic yet. We have reported a series of preclinical studies highlighting strategies to "re-educate" GBM-associated microglia and macrophages (TAMs) so that they assume a tumoricidal status. Such cells then secrete chemokines to recruit activated, GBM-eliminating NK cells and cause the rescue of 50-60% GBM mice in a syngeneic model of GBM. This review discusses a more fundamental question that most biochemists harbor: "since we are generating mutant cells in our body all the time, why don't we get cancer more often?" The review visits publications addressing this question and discusses some published strategies for re-educating the TAMs to take on the "sentry" role they initially maintained in the absence of cancer.
Collapse
Affiliation(s)
- Shubhasmita Mohapatra
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Jared Cafiero
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Parag Mehta
- Aveta Biomics, Inc., 110 Great Road, Suite 302, Bedford, MA 01730, USA
| | - Probal Banerjee
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
2
|
Wei X, Zhou Z, Long M, Lin Q, Qiu M, Chen P, Huang Q, Qiu J, Jiang Y, Wen Q, Liu Y, Li R, Nong C, Guo Q, Yu H, Zhou X. A novel signature constructed by super-enhancer-related genes for the prediction of prognosis in hepatocellular carcinoma and associated with immune infiltration. Front Oncol 2023; 13:1043203. [PMID: 36845708 PMCID: PMC9948016 DOI: 10.3389/fonc.2023.1043203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background Super-enhancer (SE) refers to a regulatory element with super transcriptional activity, which can enrich transcription factors and drive gene expression. SE-related genes play an important role in the pathogenesis of malignant tumors, including hepatocellular carcinoma (HCC). Methods The SE-related genes were obtained from the human super-enhancer database (SEdb). Data from the transcriptome analysis and related clinical information with HCC were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. The upregulated SE-related genes from TCGA-LIHC were identified by the DESeq2R package. Multivariate Cox regression analysis was used to construct a four-gene prognostic signature. According to the median risk score, HCC patients were divided into high-risk and low-risk group patients. Results The Kaplan-Meier (KM) curve showed that a significantly worse prognosis was found for the high-risk group (P<0.001). In the TCGA-LIHC dataset, the area under the curve (AUC) values were 0.737, 0.662, and 0.667 for the model predicting overall survival (OS) over 1-, 3-, and 5- years, respectively, indicating the good prediction ability of our prediction model. This model's prognostic value was further validated in the LIRI-JP dataset and HCC samples (n=65). Furthermore, we found that higher infiltration level of M0 macrophages and upregulated of CTLA4 and PD1 in the high-risk group, implying that immunotherapy could be effective for those patients. Conclusion These results provide further evidence that the unique SE-related gene model could accurately predict the prognosis of HCC.
Collapse
Affiliation(s)
- Xueyan Wei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China,Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Meiying Long
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China,Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Peiqin Chen
- Editorial Department of Chinese Journal of Oncology Prevention and Treatment, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qiongguang Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China,Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Qiu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yanji Jiang
- Scientific Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Runwei Li
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Cunli Nong
- Department of Infectious Diseases, The 4th Affiliated Hospital of Guangxi Medical University/Liuzhou Worker’s Hospital, Liuzhou, Guangxi, China
| | - Qian Guo
- Department of Infectious Diseases, The 4th Affiliated Hospital of Guangxi Medical University/Liuzhou Worker’s Hospital, Liuzhou, Guangxi, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China,Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China,Key Cultivated Laboratory of Cancer Molecular Medicine, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China,*Correspondence: Xianguo Zhou, ; Hongping Yu,
| | - Xianguo Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China,*Correspondence: Xianguo Zhou, ; Hongping Yu,
| |
Collapse
|
3
|
Andrade A, Poth T, Brobeil A, Merle U, Chamulitrat W. iPLA2β-Null Mice Show HCC Protection by an Induction of Cell-Cycle Arrest after Diethylnitrosamine Treatment. Int J Mol Sci 2022; 23:ijms232213760. [PMID: 36430237 PMCID: PMC9697657 DOI: 10.3390/ijms232213760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Group VIA phospholipase A2 (iPLA2β) play diverse biological functions in epithelial cells and macrophages. Global deletion in iPLA2β-null (KO) mice leads to protection against hepatic steatosis in non-alcoholic fatty liver disease, in part, due to the replenishment of the loss of hepatocellular phospholipids. As the loss of phospholipids also occurs in hepatocellular carcinoma (HCC), we hypothesized that global deletion in KO mice may lead to protection against HCC. Here, HCC induced by diethylnitrosamine (DEN) was chosen because DEN causes direct injury to the hepatocytes. Male wild-type (WT) and KO mice at 3-5 weeks of age (12-13 mice/group) were subjected to a single intraperitoneal treatment with 10 mg/kg DEN, and mice were killed 12 months later. Analyses of histology, plasma cytokines, and gene expression were performed. Due to the low-dose DEN used, we observed a liver nodule in 3 of 13 WT and 2 of 12 KO mice. Only one DEN-treated WT mouse was confirmed to have HCC. DEN-treated KO mice did not show any HCC but showed suppressed hepatic expression of cell-cycle cyclinD2 and BCL2 as well as inflammatory markers IL-1β, IL-10, and VCAM-1. Notably, DEN-treated KO mice showed increased hepatic necrosis and elevated levels of plasma lactate dehydrogenase suggesting an exacerbation of liver injury. Thus, global iPLA2β deficiency in DEN-treated mice rendered HCC protection by an induction of cell-cycle arrest. Our results suggest the role of iPLA2β inhibition in HCC treatment.
Collapse
Affiliation(s)
- Adriana Andrade
- Department of Internal Medicine IV (Gastroenterology and Infectious Disease), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Brobeil
- Tissuebank of the NCT, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV (Gastroenterology and Infectious Disease), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV (Gastroenterology and Infectious Disease), University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
4
|
Liu N, Wang X, Steer CJ, Song G. MicroRNA-206 promotes the recruitment of CD8 + T cells by driving M1 polarisation of Kupffer cells. Gut 2022; 71:1642-1655. [PMID: 34706869 PMCID: PMC9279850 DOI: 10.1136/gutjnl-2021-324170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/02/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Kupffer cells (KCs) protect against hepatocellular carcinoma (HCC) by communicating with other immune cells. However, the underlying mechanism(s) of this process is incompletely understood. DESIGN FVB/NJ mice were hydrodynamically injected with AKT/Ras and Sleeping Beauty transposon to induce HCC. Mini-circle and Sleeping Beauty were used to overexpress microRNA-206 in KCs of mice. Flow cytometry and immunostaining were used to evaluate the change in the immune system. RESULTS Hydrodynamic injection of AKT/Ras into mice drove M2 polarisation of KCs and depletion of cytotoxic T cells (CTLs) and promoted HCC development. M1-to-M2 transition of KCs impaired microRNA-206 biogenesis. By targeting Klf4 (kruppel like factor 4) and, thereby, enhancing the production of M1 markers including C-C motif chemokine ligand 2 (CCL2), microRNA-206 promoted M1 polarisation of macrophages. Indeed, microRNA-206-mediated increase of CCL2 facilitated hepatic recruitment of CTLs via CCR2. Disrupting each component of the KLF4/CCL2/CCR2 axis impaired the ability of microRNA-206 to drive M1 polarisation of macrophages and recruit CTLs. In AKT/Ras mice, KC-specific expression of microRNA-206 drove M1 polarisation of KCs and hepatic recruitment of CTLs and fully prevented HCC, while 100% of control mice died from HCC. Disrupting the interaction between microRNA-206 and Klf4 in KCs and depletion of CD8+ T cells impaired the ability of miR-206 to prevent HCC. CONCLUSIONS M2 polarisation of KCs is a major contributor of HCC in AKT/Ras mice. MicroRNA-206, by driving M1 polarisation of KCs, promoted the recruitment of CD8+ T cells and prevented HCC, suggesting its potential use as an immunotherapeutic approach.
Collapse
Affiliation(s)
- Ningning Liu
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Xiaomei Wang
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Clifford John Steer
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Guisheng Song
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Tumor-Associated Macrophages in Hepatocellular Carcinoma Pathogenesis, Prognosis and Therapy. Cancers (Basel) 2022; 14:cancers14010226. [PMID: 35008390 PMCID: PMC8749970 DOI: 10.3390/cancers14010226] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) constitutes a major health burden, accounting for >80% of primary liver cancers globally. Inflammation has come into the spotlight as a hallmark of cancer, and it is evident that tumor-associated inflammation drives the involvement of monocytes in tumor growth and metastasis. Tumor-associated macrophages (TAMs) actively participate in tumor-related inflammation, representing the main type of inflammatory cells in the tumor microenvironment, setting the crosstalk between tumor and stromal cells. Infiltrating TAMs exert either anti-tumorigenic (M1) or pro-tumorigenic (M2) functions. In most solid human tumors, increased TAM infiltration has been associated with enhanced tumor growth and metastasis, while other studies showcase that under certain conditions, TAMs exhibit cytotoxic and tumoricidal activity, inhibiting the progression of cancer. In this review, we summarize the current evidence on the role of macrophages in the pathogenesis and progression of HCC and we highlight their potential utilization in HCC prognosis and therapy. Abstract Hepatocellular carcinoma (HCC) constitutes a major health burden globally, and it is caused by intrinsic genetic mutations acting in concert with a multitude of epigenetic and extrinsic risk factors. Cancer induces myelopoiesis in the bone marrow, as well as the mobilization of hematopoietic stem and progenitor cells, which reside in the spleen. Monocytes produced in the bone marrow and the spleen further infiltrate tumors, where they differentiate into tumor-associated macrophages (TAMs). The relationship between chronic inflammation and hepatocarcinogenesis has been thoroughly investigated over the past decade; however, several aspects of the role of TAMs in HCC development are yet to be determined. In response to certain stimuli and signaling, monocytes differentiate into macrophages with antitumor properties, which are classified as M1-like. On the other hand, under different stimuli and signaling, the polarization of macrophages shifts towards an M2-like phenotype with a tumor promoting capacity. M2-like macrophages drive tumor growth both directly and indirectly, via the suppression of cytotoxic cell populations, including CD8+ T cells and NK cells. The tumor microenvironment affects the response to immunotherapies. Therefore, an enhanced understanding of its immunobiology is essential for the development of next-generation immunotherapies. The utilization of various monocyte-centered anticancer treatment modalities has been under clinical investigation, selectively targeting and modulating the processes of monocyte recruitment, activation and migration. This review summarizes the current evidence on the role of TAMs in HCC pathogenesis and progression, as well as in their potential involvement in tumor therapy, shedding light on emerging anticancer treatment methods targeting monocytes.
Collapse
|
6
|
Hu B, Yang XB, Sang XT. Development and Verification of the Hypoxia-Related and Immune-Associated Prognosis Signature for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:315-330. [PMID: 33204664 PMCID: PMC7667586 DOI: 10.2147/jhc.s272109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background It has been widely suggested that the association of hypoxia with the immune status within the microenvironment of hepatocellular carcinoma (HCC) is of great clinical significance. The present work was carried out aiming to establish the hypoxia-related and immune-associated gene signature to stratify the risks in HCC. Patients and Methods The ssGSEA and t-SNE algorithms were utilized to estimate the immune and hypoxia statuses, respectively, using the TCGA database-derived cohort transcriptome profiles. Different immune groups are distinguished according to the ssGSEA scores, while the hypoxia-high and -low groups are inferred based on the distinct overall survival (OS) of the two groups of patients. Moreover, prognostic genes were identified using the Cox regression model in combination with the LASSO approach, which were later used to establish the hypoxia-related and immune-associated gene signature. At the same time, an ICGC cohort was used for external validation. Results A total of 13 genes, namely, HAVCR1, PSRC1, CCNJL, PDSS1, MEX3A, EID3, EPO, PLOD2, KPNA2, CDCA8, ADAMTS5, SLC1A7 and PIGZ, were discovered by the LASSO approach for constructing a gene signature to stratify the risk of HCC. Those low-risk cases showed superior prognosis (OS) to the high-risk counterparts (p<0.05). Moreover, it was suggested by multivariate analysis that our constructed hypoxia-related and immune-associated prognosis signature might be used as the independent factor for prognosis prediction (p<0.001). Patients in high-risk groups had severe hypoxia, higher immune checkpoint expression such as PD-L1, and different immunocyte infiltration states (eg, higher infiltration of regulatory T cells in the high-risk group) compared with those low-risk patients. Conclusion Our as-constructed hypoxia-related and immune-associated prognosis signature can be used as an approach to stratify the risk of HCC.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
7
|
Yu L, Li CH, Chen J. A novel CC chemokine ligand 2 like gene from ayu Plecoglossus altivelis is involved in the innate immune response against to Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2019; 87:886-896. [PMID: 30797066 DOI: 10.1016/j.fsi.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Chemokine (CC motif) ligand 2 (CCL2), also known as monocyte chemoattractant protein 1 (MCP-1), is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages (MO/MФ) in mammals. However, the functional repertoire of fish CCL2 remains unclear. Here, we identified a cDNA sequence encoding a novel CCL2-like protein (PaCCL2L) in ayu, Plecoglossus altivelis. Sequence analysis revealed that PaCCL2L grouped with CCL2 homologs, and is most closely related to Mexican tetra (Astyanax mexicanus) and zebrafish (Danio rerio) homologs. PaCCL2 transcripts were expressed in all tested tissues from healthy ayu, with the highest level in the spleen. Upon Vibrio anguillarum infection, PaCCL2L transcripts increased significantly in tested tissues, including the liver, spleen, and head kidney. We then produced the recombinant PaCCL2L mature peptide (rPaCCL2L) by prokaryotic expression and generated the corresponding antibodies (anti-PaCCL2L). A significant increase in PaCCL2L protein and mRNA expression was observed in ayu MO/MФ following V. anguillarum challenge. Intraperitoneal injection of rPaCCL2L resulted in significantly improved survival and reduced tissue bacterial load in V. anguillarum-infected ayu. rPaCCL2L had a positive effect on the chemotaxis of MO/MΦ and neutrophils both in vitro and in vivo. Meanwhile, rPaCCL2L exhibited a positive effect on the chemotaxis of LPS-stimulated MO/MΦ (M1 type) in vitro, whereas it exhibited no chemotaxis effect on cAMP-stimulated MO/MΦ (M2 type). In addition, rPaCCL2L treatment exhibited an enhanced effect on MO/MΦ phagocytosis, bacterial killing, respiratory burst, and mRNA expression of proinflammatory cytokines, whereas anti-PaCCL2L treatment had an inhibitory effect. Our study demonstrates that PaCCL2L might play a role in the immune response of ayu against V. anguillarum infection through chemotactic recruitment and activation of MO/MΦ.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
8
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
9
|
Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:168. [PMID: 30041669 PMCID: PMC6058381 DOI: 10.1186/s13046-018-0792-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a primary brain tumor with a 5-year survival rate of ≤5%. We have shown earlier that GBM-antibody-linked curcumin (CC) and also phytosomal curcumin (CCP) rescue 50-60% of GBM-bearing mice while repolarizing the tumor-associated microglia/macrophages (TAM) from the tumor-promoting M2-type to the tumoricidal M1-type. However, systemic application of CCP yields only sub-IC50 concentrations of CC in the plasma, which is unlikely to kill GBM cells directly. This study investigates the role of CC-evoked intra-GBM recruitment of activated natural killer (NK) cells in the elimination of GBM and GBM stem cells. METHODS We have used an immune-competent syngeneic C57BL6 mouse model with the mouse-GBM GL261 cells orthotopically implanted in the brain. Using immunohistochemistry and flow cytometry, we have quantitatively analyzed the role of the intra-GBM-recruited NK cells by (i) injecting (i.p.) the NK1.1 antibody (NK1.1Ab) to temporarily eliminate the NK cells and (ii) blocking NK recruitment by injecting an IL12 antibody (IL12Ab). The treatment cohorts used randomly-chosen GL261-implanted mice and data sets were compared using two-tailed t-test or ANOVA. RESULTS CCP treatment caused the GBM tumor to acquire M1-type macrophages (50-60% of the TAM) and activated NK cells. The treatment also elicited (a) suppression of the M2-linked tumor-promoting proteins STAT3, ARG1, and IL10, (b) induction of the M1-linked anti-tumor proteins STAT1 and inducible nitric oxide synthase in the TAM, (c) elimination of CD133(+) GBM stem cells, and (d) activation of caspase3 in the GBM cells. Eliminating intra-GBM NK cell recruitment caused a partial reversal of each of these effects. Concomitantly, we observed a CCP-evoked dramatic induction of the chemokine monocyte chemotactic protein-1 (MCP-1) in the TAM. CONCLUSIONS The recruited NK cells mediate a major part of the CCP-evoked elimination of GBM and GBM stem cells and stabilization of the TAM in the M1-like state. MCP-1 is known to activate peripheral M1-type macrophages to secrete IL12, an activator of NK cells. Based on such observations, we postulate that by binding to peripheral M1-type macrophages and IL12-activated NK cells, the brain-released chemokine MCP-1 causes recruitment of peripheral immune cells into the GBM, thereby causing destruction of the GBM cells and GBM stem cells.
Collapse
|
10
|
Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget 2018; 8:48436-48452. [PMID: 28467800 PMCID: PMC5564660 DOI: 10.18632/oncotarget.17061] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/22/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer research in recent decades has highlighted the potential influence of the tumor microenvironment on the progression and metastasis of most known cancer types. Within the established microenvironment, tumor-associated macrophages (TAMs) are one of the most abundant and crucial non-neoplastic cell types. The polarization of macrophages into tumor-suppressive M1 or tumor-promoting M2 types is a fundamental event in the establishment of the tumor microenvironment. Although ample evidence indicates that TAMs are primarily M2 polarized, the mechanisms responsible for the regulation and maintenance of M1 and M2 polarization imbalance remain unclear. The manipulation of this critical axis through three main approaches may provide new strategies for cancer therapy - (I) specific interference with M2-like TAM survival or inhibiting their signaling cascades, (II) repression of macrophage recruitment to tumors, and (III) repolarization of tumor-promoting M2-like TAMs to a tumoricidal M1-like phenotype. This review summarizes current strategies for cancer intervention via manipulation of macrophage polarization, with particular focus on composition of the tumor microenvironment and its influence on cancer progression and metastasis. It is clear that additional fundamental and preclinical research is required to confirm the efficacy and practicality of this novel and promising strategy for treating cancer.
Collapse
|
11
|
Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 2018; 8:4730-4746. [PMID: 28002796 PMCID: PMC5354867 DOI: 10.18632/oncotarget.13972] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-12 is a potent antitumor cytokine. However, immunosuppressive tumor microenvironments containing transforming growth factor-β (TGF-β) attenuate cytokine-mediated antitumor immune responses. To enhance the efficacy of IL-12-mediated cancer immunotherapy, decorin (DCN) was explored as an adjuvant for overcoming TGF-β-mediated immunosuppression. We designed and generated a novel oncolytic adenovirus (Ad) coexpressing IL-12 and DCN (RdB/IL12/DCN). RdB/IL12/DCN-treated tumors showed significantly greater levels of interferon (IFN)-γ, tumor necrosis factor-α, monocyte chemoattractant protein-1, and IFN-γ-secreting immune cells than tumors treated with cognate control oncolytic Ad expressing a single therapeutic gene (RdB/DCN or RdB/IL12). Moreover, RdB/IL12/DCN attenuated intratumoral TGF-β expression, which positively correlated with reduction of Treg cells in draining lymph nodes and tumor tissues. Furthermore, tumor tissue treated with RdB/IL12/DCN showed increases infiltration of CD8+ T cells and proficient viral spreading within tumor tissues. These results demonstrated that an oncolytic Ad co-expressing IL-12 and DCN induces a potent antitumor immune response via restoration of antitumor immune function in a weakly immunogenic murine 4T1 orthotopic breast cancer model. These findings provide new insights into the therapeutic mechanisms of IL-12 plus DCN, making it a promising cancer immunotherapeutic agent for overcoming tumor-induced immunosuppression.
Collapse
|
12
|
Abstract
The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention.
Collapse
Affiliation(s)
- M Yao
- University of Kansas Medical Center, Kansas City, KS, United States
| | - G Brummer
- University of Kansas Medical Center, Kansas City, KS, United States
| | - D Acevedo
- University of Kansas Medical Center, Kansas City, KS, United States
| | - N Cheng
- University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
13
|
Liang CM, Chen L, Hu H, Ma HY, Gao LL, Qin J, Zhong CP. Chemokines and their receptors play important roles in the development of hepatocellular carcinoma. World J Hepatol 2015; 7:1390-1402. [PMID: 26052384 PMCID: PMC4450202 DOI: 10.4254/wjh.v7.i10.1390] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/08/2014] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
The chemokine system consists of four different subclasses with over 50 chemokines and 19 receptors. Their functions in the immune system have been well elucidated and research during the last decades unveils their new roles in hepatocellular carcinoma (HCC). The chemokines and their receptors in the microenvironment influence the development of HCC by several aspects including: inflammation, effects on immune cells, angiogenesis, and direct effects on HCC cells. Regarding these aspects, pre-clinical research by targeting the chemokine system has yielded promising data, and these findings bring us new clues in the chemokine-based therapies for HCC.
Collapse
|
14
|
Conrad SJ, El-Aswad M, Kurban E, Jeng D, Tripp BC, Nutting C, Eversole R, Mackenzie C, Essani K. Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:19. [PMID: 25887490 PMCID: PMC4337313 DOI: 10.1186/s13046-015-0131-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022]
Abstract
Colorectal cancers are significant causes of morbidity and mortality and existing therapies often perform poorly for individuals afflicted with advanced disease. Oncolytic virotherapy is an emerging therapeutic modality with great promise for addressing this medical need. Herein we describe the in vivo testing of recombinant variants of the tanapoxvirus (TPV). Recombinant viruses were made ablated for either the 66R gene (encoding a thymidine kinase), the 2L gene (encoding a TNF-binding protein), or both. Some of the recombinants were armed to express mouse chemotactic protein 1 (mCCL2/mMCP-1), mouse granulocyte-monocyte colony stimulating factor (mGM-CSF), or bacterial flagellin (FliC). Tumors were induced in athymic nude mice by implantation of HCT 116 cells and subsequently treated by a single intratumoral injection of one of the recombinant TPVs. Histological examination showed a common neoplastic cell type and a range of immune cell infiltration, necrosis, and tumor cell organization. Significant regression was seen in tumors treated with virus TPV/Δ2L/Δ66R/fliC, and to a lesser extent the recombinants TPV/Δ2L and TPV/Δ66R. Our results suggest that oncolytic recombinants of the TPV armed with activators of the innate immune response may be effective virotherapeutic agents for colorectal cancers in humans and should be explored further to fully realize their potential.
Collapse
Affiliation(s)
- Steven J Conrad
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Mohamed El-Aswad
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Esaw Kurban
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - David Jeng
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Brian C Tripp
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Charles Nutting
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Robert Eversole
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| | - Charles Mackenzie
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
15
|
Alahari SV, Dong S, Alahari SK. Are macrophages in tumors good targets for novel therapeutic approaches? Mol Cells 2014; 38:95-104. [PMID: 25518927 PMCID: PMC4332036 DOI: 10.14348/molcells.2015.2298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/09/2014] [Indexed: 02/08/2023] Open
Abstract
The development of cancer has been an extensively researched topic over the past few decades. Although great strides have been made in cancer prevention, diagnosis, and treatment, there is still much to be learned about cancer's micro-environmental mechanisms that contribute to cancer formation and aggressiveness. Macrophages, lymphocytes which originate from monocytes, are involved in the inflammatory response and often dispersed to areas of infection to fight harmful antigens and mutated cells in tissues. Macrophages have a plethora of roles including tissue development and repair, immune system functions, and inflammation. We discuss various pathways by which macrophages get activated, various approaches that can regulate the function of macrophages, and how these approaches can be helpful in developing new cancer therapies.
Collapse
Affiliation(s)
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Tian D, Sun Y, Yang Y, Lei M, Ding N, Han R. Human telomerase reverse-transcriptase promoter-controlled and herpes simplex virus thymidine kinase-armed adenoviruses for renal cell carcinoma treatment. Onco Targets Ther 2013; 6:419-26. [PMID: 23723709 PMCID: PMC3665657 DOI: 10.2147/ott.s41978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
New treatment strategies are required for renal cell carcinoma (RCC) due to its relative insensitivity to conventional radio- and chemotherapies. The promising strategy of tumor inhibition using human telomerase reverse transcriptase (hTERT)-controlled herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) in the hTERT promoter-driven HSV-TK/GCV suicide gene system was investigated. Tumor volume, weight, relative proliferation rate, and cell-apoptosis levels were examined in mice injected with adenovirus (Ad)-hTERT-HSV-TK and GCV. Increased cell death occurred following treatment with Ads carrying hTERT-HSV-TK/GCV or cytomegalovirus promoter-controlled (CMV)-HSV-TK/GCV for human RCC 786-0 and fibroblast MRC-5 cells. In mice, Ad-hTERT-HSV-TK/GCV more specifically inhibited tumor and RCC xenograft growth than Ad-CMV-HSV-TK/GCV (P < 0.05). Furthermore, Ad-hTERT-HSV-TK/GCV did not significantly damage normal fibroblasts or organ systems (heart, lung, liver, brain, kidney, and spleen). Thus, Ad-hTERT-HSV-TK/GCV is an effective RCC inhibitor in human cells in vitro and in vivo mouse models, indicating potential usefulness in RCC-targeted gene therapy.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Medical University, Tianjin, People's Republic of China ; Tianjin Medical University, Tianjin, People's Republic of China ; Tianjin Medical University, Tianjin, People's Republic of China ; Tianjin Medical University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Hong S, Zhang P, Zhang H, Jia L, Qu X, Yang Q, Rong F, Kong B. Enforced effect of tk-MCP-1 fusion gene in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:74. [PMID: 22971726 PMCID: PMC3515507 DOI: 10.1186/1756-9966-31-74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/01/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The efficiency of HSV-tk/GCV system is not high because of insufficient gene transfer and incompletely initiative of host antineoplastic potency. The present study was designed to assess the antitumor efficacy of tk-MCP-1 on ovarian cancer in vitro and vivo. METHODS A novel bicistronic expression system can help to improve the expression level of a gene in a stable manner. pLXSN/tk-MCP-1 co-expressing tk and MCP-1 genes was constructed using a pLXSN retroviral vector and an internal ribosome entry site sequence by restriction enzyme. Western blot was performed to determine tk and MCP-1 expression in the infected SKOV3. The GCV-sensitively tumoricidal activities of SKOV3/tk-MCP-1 with or without monocytes were compared to those of SKOV3 expressing HSV-tk or MCP-1. We investigated the growth of subcutaneous tumors in SCID mice immuno-reconstituted, and evaluated the antitumor effect of MCP-1 in conjunction with suicide gene. RESULTS The significant GCV-sensitively tumoricidal activity of pLXSN/tk-MCP-1 was observed when compared with those of pLXSN/tk, pLXSN/MCP-1 and pLXSN/neo, especially when monocytes were added. The growth of subcutaneous tumors in SCID mice immuno-reconstituted was markedly suppressed by co-delivery of HSV-tk and MCP-1 genes, and the enhanced antitumor effect was associated with the recruitment of monocytes. CONCLUSION These results demonstrated pLXSN/tk-MCP-1 presented an enhanced antitumor effects on ovarian cancer by orchestration of immune responses.
Collapse
Affiliation(s)
- Shuhui Hong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Ji'nan 250012, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 2012; 38:218-25. [DOI: 10.1016/j.ctrv.2011.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
|
19
|
Marukawa Y, Nakamoto Y, Kakinoki K, Tsuchiyama T, Iida N, Kagaya T, Sakai Y, Naito M, Mukaida N, Kaneko S. Membrane-bound form of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy in a model of hepatocellular carcinoma. Cancer Gene Ther 2012; 19:312-319. [PMID: 22402625 DOI: 10.1038/cgt.2012.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/05/2011] [Accepted: 01/26/2012] [Indexed: 12/16/2022]
Abstract
Suicide gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) system combined with monocyte chemoattractant protein-1 (MCP-1) provides significant antitumor efficacy. The current study was designed to evaluate the antitumor immunity of a newly developed membrane-bound form of MCP-1 (mMCP-1) in an immunocompetent mouse model of hepatocellular carcinoma (HCC). A recombinant adenovirus vector (rAd) harboring the human MCP-1 gene and the membrane-spanning domain of the CX3CL1 gene was used. Large amounts of MCP-1 protein were expressed and accumulated on the tumor cell surface. The growth of subcutaneous tumors was markedly suppressed when tumors were treated with mMCP-1, as compared with soluble MCP-1, in combination with the HSV-tk/GCV system (P<0.01). The numbers of Mac-1-, CD4- and CD8a-positive cells were significantly higher in tumor tissues (P<0.05), and tumor necrosis factor (TNF) mRNA expression levels with mMCP-1 were almost five-fold higher than those with soluble MCP-1. These results indicate that the delivery of the mMCP-1 gene greatly enhanced antitumor effects following the apoptotic stimuli by promoting the recruitment and activation of macrophages and T lymphocytes, suggesting a novel strategy of immune-based gene therapy in the treatment of patients with HCC.
Collapse
Affiliation(s)
- Y Marukawa
- Department of Disease Control and Homeostasis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A, Morita M, Tsujitani S, Sakaguchi Y, Maehara Y. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today 2011; 42:1-7. [PMID: 22116397 DOI: 10.1007/s00595-011-0058-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/16/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Ken Shirabe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xiao J, Liong EC, Ling MT, Ching YP, Fung ML, Tipoe GL. S-allylmercaptocysteine reduces carbon tetrachloride-induced hepatic oxidative stress and necroinflammation via nuclear factor kappa B-dependent pathways in mice. Eur J Nutr 2011; 51:323-33. [PMID: 21681437 PMCID: PMC3313023 DOI: 10.1007/s00394-011-0217-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
Abstract
Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Collapse
Affiliation(s)
- Jia Xiao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L1-41, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hundreds of G protein coupled receptor (GPCR) isotypes integrate and coordinate the function of individual cells mediating signaling between different organs in our bodies. As an aberration of the normal relationships that organize cells' coexistence, cancer has to deceive cell-cell communication in order to grow and spread. GPCRs play a critical role in this process. Despite the fact that GPCRs represent one of the most common drug targets, current medical practice includes only a few anticancer compounds directly acting on their signaling. Many approaches can be envisaged to target GPCRs involved in oncology. Beyond interfering with GPCRs signaling by using agonists or antagonists to prevent cell proliferation, favor apoptosis, induce maturation, prevent migration, etc., the high specificity of the interaction between the receptors and their ligands can be exploited to deliver toxins, antineoplastic drugs or isotopes to transformed cells. In this review we describe the strategies that are in use, or appear promising, to act directly on GPCRs in the fight against neoplastic transformation and tumor progression.
Collapse
|
23
|
Nonaka K, Onizuka S, Ishibashi H, Uto Y, Hori H, Nakayama T, Matsuura N, Kanematsu T, Fujioka H. Vitamin D binding protein-macrophage activating factor inhibits HCC in SCID mice. J Surg Res 2010; 172:116-22. [PMID: 20855083 DOI: 10.1016/j.jss.2010.07.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/15/2010] [Accepted: 07/28/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND A high incidence of recurrence after treatment is the most serious problem in hepatocellular carcinoma (HCC). Therefore, a new strategy for the treatment of the disease is needed. The aim of the present study was to investigate whether vitamin D binding protein-macrophage activating factor (DBP-maf) is able to inhibit the growth of HCC. METHODS The effects of DBP-maf on endothelial cells and macrophage were evaluated by WST-1 assay and phagocytosis assay, respectively. Human HCC cells (HepG2) were implanted into the dorsum of severe combined immunodeficiency (SCID) mice. These mice were divided into control and DBP-maf treatment groups (n = 10/group). The mice in the treatment group received 40 ng/kg/d of DBP-maf for 21 d. RESULTS DBP-maf showed anti-proliferative activity against endothelial cells and also activated phagocytosis by macrophages. DBP-maf inhibited the growth of HCC cells (treatment group: 126 ± 18mm(3), untreated group: 1691.5 ± 546.9mm(3), P = 0.0077). Histologic examinations of the tumors revealed the microvessel density was reduced and more macrophage infiltration was demonstrated in the tumor of mice in the treatment group. CONCLUSION DBP-maf has at least two novel functions, namely, an anti-angiogenic activity and tumor killing activity through the activation of macrophages. DBP-maf may therefore represent a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Koichi Nonaka
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yeh CB, Tsai HT, Chen YC, Kuo WH, Chen TY, Hsieh YH, Chou MC, Yang SF. Genetic polymorphism of CCR2-64I increased the susceptibility of hepatocellular carcinoma. J Surg Oncol 2010; 102:264-70. [PMID: 20740585 DOI: 10.1002/jso.21623] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES The purpose of this study was to investigate genetic impact of monocyte chemoattractant protein-1 (MCP-1) and its receptor chemokine receptor-2 (CCR2) gene polymorphisms on the susceptibility and clinicopathological characteristics of hepatocellular carcinoma (HCC). METHODS A total of 446 subjects, including 344 healthy controls and 102 patients with HCC, were recruited in this study and subjected to PCR-RFLP to estimate the impact of these two polymorphic variants on HCC. RESULTS No relationship between MCP-1 -2518G/A gene polymorphism and HCC risk was found among our recruited HCC patients and healthy controls. However, there was a significantly increased risk (AOR = 1.91; 95% CI = 1.11-3.29) of having HCC among subjects with GA heterozygotes of CCR2 V64I after adjusting for other confoundings. There was no synergistic effect between gene polymorphism and environmental risk factors, including tobacco and alcohol consumptions, as well as clinicopathological parameters of HCC for MCP-1 -2518G/A and CCR2 V64I genes, respectively. CONCLUSIONS CCR2-64I gene polymorphism is an important factor for the susceptibility of HCC but it might not influence the clinical pathological progression of HCC, and the contribution of CCR2-64I gene polymorphism on the susceptibility of HCC could be not through the affection of liver injury-related clinical pathological characteristics.
Collapse
Affiliation(s)
- Chao-Bin Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Iida N, Nakamoto Y, Baba T, Nakagawa H, Mizukoshi E, Naito M, Mukaida N, Kaneko S. Antitumor effect after radiofrequency ablation of murine hepatoma is augmented by an active variant of CC Chemokine ligand 3/macrophage inflammatory protein-1alpha. Cancer Res 2010; 70:6556-6565. [PMID: 20663902 DOI: 10.1158/0008-5472.can-10-0096] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several chemokines are used for immunotherapy against cancers because they can attract immune cells such as dendritic and cytotoxic T cells to augment immune responses. Radiofrequency ablation (RFA) is used to locally eliminate cancers such as hepatocellular carcinoma (HCC), renal cell carcinoma, and lung cancer. Because HCC often recurs even after an eradicative treatment with RFA, additional immunotherapy is necessary. We treated tumor-bearing mice by administering ECI301, an active variant of CC chemokine ligand 3, after RFA. Mice were injected s.c. with BNL 1ME A.7R.1, a murine hepatoma cell line, in the bilateral flank. After the tumor became palpable, RFA was done on the tumor of one flank with or without ECI301. RFA alone eliminated the treated ipsilateral tumors and retarded the growth of contralateral non-RFA-treated tumors accompanied by massive T-cell infiltration. Injection of ECI301 augmented RFA-induced antitumor effect against non-RFA-treated tumors when administered to wild-type or CCR5-deficient but not CCR1-deficient mice. ECI301 also increased CCR1-expressing CD11c(+) cells in peripheral blood and RFA-treated tumors after RFA. Deficiency of CCR1 impairs accumulation of CD11c(+), CD4(+), and CD8(+) cells in RFA-treated tumors. Furthermore, in IFN-gamma-enzyme-linked immunospot assay, ECI301 augmented tumor-specific responses after RFA whereas deficiency of CCR1 abolished this augmentation. Thus, we proved that ECI301 further augments RFA-induced antitumor immune responses in a CCR1-dependent manner.
Collapse
MESH Headings
- Animals
- Catheter Ablation
- Cell Line, Tumor
- Chemokine CCL3/biosynthesis
- Chemokine CCL3/immunology
- Chemokine CCL3/pharmacology
- Female
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/surgery
- Liver Neoplasms, Experimental/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Receptors, CCR1/biosynthesis
- Receptors, CCR1/deficiency
- Receptors, CCR1/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Noriho Iida
- Disease Control and Homeostasis, Graduate School of Medical Science, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Geller MA, Bui-Nguyen TM, Rogers LM, Ramakrishnan S. Chemotherapy induces macrophage chemoattractant protein-1 production in ovarian cancer. Int J Gynecol Cancer 2010; 20:918-25. [PMID: 20683396 DOI: 10.1111/igc.0b013e3181e5c442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Tumor infiltrating macrophages play an important role in tumor progression. Macrophage chemoattractant protein-1 (MCP-1) is one of the major chemokines responsible for inducing macrophage migration. Our objective was to investigate chemotherapy-induced modulation of MCP-1 in ovarian cancer by investigating macrophage infiltration, tumor vascularity, and MCP-1 expression after chemotherapy exposure. METHODS MA-148 ovarian cancer cells were treated with paclitaxel (43 pg/mL) and carboplatin (5 microg/mL) alone or in combination. Reverse transcription-polymerase chain reaction determined MCP-1 transcript levels and enzyme-linked immunosorbent assay evaluated MCP-1 protein production at multiple time points. The effect of kinase inhibitors on MCP-1 expression was investigated. In vivo MCP-1 production was examined in tumor-bearing mice and immunohistochemistry with fluorescein isothiocyanate conjugated anti-mouse F4/80 antibody, phycoerythrin-anti-CD31, and terminal deoxynucleotide transferase dUTP nick-end labeling assay were performed. RESULTS Macrophage chemoattractant protein-1 transcript levels were up-regulated in MA-148 after treatment with paclitaxel and carboplatin individually and in combination. The greatest elevation was seen with combination therapy: 2.5-fold increase in the MCP-1 protein levels from baseline (P = 0.011) with the mitogen-activated protein kinase and janus kinases/signal transducers and activators of transcription pathways appearing to be involved in the regulation of MCP-1 production. In vivo mouse studies confirmed increased MCP-1 production after chemotherapy; however, there was no significant difference in macrophage, apoptosis, or vessel density. CONCLUSIONS Macrophage chemoattractant protein-1 is up-regulated in ovarian cancer after chemotherapy in vitro and in vivo. Whether MCP-1 production is increased because of a stress-induced response or a scavenger response promoting macrophage infiltration remains unknown. Chemotherapy induction of MCP-1 in ovarian cancer suggests this chemokine plays an important role in the immune response occurring after chemotherapy exposure.
Collapse
Affiliation(s)
- Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
27
|
Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 2010; 411:1570-9. [PMID: 20633546 DOI: 10.1016/j.cca.2010.07.006] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Monocyte Chemoattractant Protein (MCP)-1, a potent monocyte attractant, is a member of the CC chemokine subfamily. MCP-1 exerts its effects through binding to G-protein-coupled receptors on the surface of leukocytes targeted for activation and migration. Role of MCP-1 and its receptor CCR2 in monocyte recruitment during infection or under other inflammatory conditions is well known. METHOD A comprehensive literature search was conducted from the websites of the National Library of Medicine (http://www.ncbl.nlm.nih.gov) and Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature (http://www.pubmedcentral.nih.gov/). The data was assessed from books and journals that published relevant articles in this field. RESULT Recent and ongoing research indicates the role of MCP-1 in various allergic conditions, immunodeficiency diseases, bone remodelling, and permeability of blood - brain barrier, atherosclerosis, nephropathies and tumors. CONCLUSION MCP-1 plays an important role in pathogenesis of various disease states and hence MCP-1 inhibition may have beneficial effects in such conditions.
Collapse
Affiliation(s)
- Amita Yadav
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi-110001, India
| | | | | |
Collapse
|
28
|
Wang D, Dubois RN, Richmond A. The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol 2009; 9:688-96. [PMID: 19734090 DOI: 10.1016/j.coph.2009.08.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 12/14/2022]
Abstract
Chronic inflammation is a risk factor for several gastrointestinal malignancies, including colorectal cancer. Recent epidemiological studies and clinical trials demonstrate that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) markedly reduced the relative risk of colorectal cancer. Chronic inflammation associated with development of cancer is partly driven by the chemokine system. Chemokines are chemoattractant cytokines that recruit leukocytes from the circulatory system to local inflammatory sites. In this review, we highlight recent breakthroughs in our understanding of the role of chemokines in inflammatory bowel disease and colorectal cancer from animal models and human studies. These findings provide a rationale for the development of new anti-inflammatory therapeutic approaches for prevention and/or treatment of inflammatory bowel disease and colorectal cancer.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|